Alaska Logo
Department of Commerce, Community, and Economic Development
Alaska Oil and Gas Conservation
Commission
Loading...
HomeMy WebLinkAbout212-187 LETTER OF TRANSMITTAL DETAIL QTY DESCRIPTION 2 files Qugruk 3 (50-103-20664-0000) Job42322_Qugruk 3 - Isotubes.pdf Job42322_Qugruk 3 - Isotubes.xls Received by:_____________________________ Date: _____________ Please sign and return one copy to: Santos ATTN: Shannon Koh P.O. Box 240927, Anchorage, AK 99524-0927 shannon.koh@santos.com DATE: 1/18/2024 From: Shannon Koh Santos P.O. Box 240927 Anchorage, AK 99524-0927 To: Meredith Guhl AOGCC 333 W. 7th Avenue, Suite 100 Anchorage, AK 99501 TRANSMISSION TYPE: ܈External Request ܆Internal Request TRANSMISSION METHOD: ܆CD ܆ Thumb Drive ܆Email ܆SharePoint ܆Hardcopy ܈Other- FTP REASON FOR TRANSMITTAL: ܆Approved ܆Approved with Comments ܆For Approval ܆Information Only ܆For Your Review ܆For Your Use ܆To Be Returned ܆With Our Comments ܈Required pursuant to 20 AAC 25.071 COMMENTS: PTD: 212-187 T38320 1/18/2024 Kayla Junke Digitally signed by Kayla Junke Date: 2024.01.18 14:14:37 -09'00' RERrOL Transmittal Number: 20191212 0001 State of Alaska 01 From: Repsol E&P USA Inc. 2455 Technology Forest Blvd. The Woodlands, Texas 77381 From: April Smith Tel: 832-663-3377 Date:12/12/2019 RE: Missing Alaska data Meredith, Repsol Houston is sending you the following products: To: Alaska Oil and Gas Conservation Commission 333 W. 7th Ave Anchorage, AK 99501 Attn: Meredith Guhl Tel: 907-793-1235 RECEIVED DEC 13 2019 AOGCC 1. Tuttu-1— missing core chips for cores 4 and S. a. Core Photos — 34 files/ (1584-6631 KB— largest file size available) 2. Tuttu-1 PB1 a. Routine Core Analysis - Tuttu Routine Core Analysis.ppt b. UVWL Core Photos —4 files (1187 KB - 2148 KB - largest file sizes available) 3. Qugruk-3 a. Core Analysis - Repsol_Qugruk-3_Routine_Analysis_Final_Report.pdf) b. Spectral Gamma (Qugruk 3 Core Gamma.xls) C. P&P — (for plugs 26, 27 and 29) — 3 files d. XRD Report— pdf format (no xlsx file available) e. RSWC Analysis — pdf format (no xlsx file available) 4. Qugruk-5 a. Spectral Gamma - Qugruk-5_ingrain_CoreGamma.xlxs b. Core Photos —40 files (1153KB-5991KB in size —no larger files found) Please let us know if you have any questions. Regards, April Smith Please acknowledge by signing, scanning and returning an image of this transmittal upon receipt to awsmith@repsol.com Received Date:JL�2g by: I Transmittal rrpntpri a%,• n. m c..,:a n,__ , — 2 1 4 3 164 4 1 Guhl, Meredith D (DOA) From:DOLFI, KIMBERLY <kim.dolfi@repsol.com> Sent:Thursday, August 30, 2018 12:57 PM To:Guhl, Meredith D (DOA) Subject:RE: Missing Qugruk 3 and 3A Isotube Analyses Attachments:RE: Qugruk 3 and 3A Isotube Samples for AOGCC Importance:High Hi Meredith,  Thank you for the update on the Palm 01.  I’ve sent it over to our geologist who was requesting it.       Regarding the Qugruk 3 and 3A, we got word from our head of Operations:  “The isotubes where collected but  we never  did any analysis.”     I’ve attached her email response for your records.  Did you receive the Isotube samples for these wells and/or do you  need anything more from us since there was no analysis completed?     I hope this helps.  Please let me know if there is more you need from us.        Thanks!!  Kim     Kim Dolfi, CPDA  Well Data Specialist  Petrotechnical Services - Houston  2455 Technology Forest Blvd.  The Woodlands, TX 77381  Direct: 832.442.1705   Kim.dolfi@repsol.com  repsol.com                      From: Guhl, Meredith D (DOA) [mailto:meredith.guhl@alaska.gov] Sent: Tuesday, August 21, 2018 2:49 PM To: DOLFI, KIMBERLY Subject: Missing Qugruk 3 and 3A Isotube Analyses     Hi Kim,     Now I have a question for you. A geologist at another company was researching the Qugruk wells and discovered in the  mudlogging reports that isotube samples were taken on Qugruk 3 and Qugruk 3A, however the AOGCC never received  analyses for these samples.     Can you assist me with this or suggest who I should contact at Repsol about the missing analyses?   2    Thank you,  Meredith     (below are pages taken from the mudlogging reports for both wells as backup to the question)        Meredith Guhl  Petroleum Geology Assistant  Alaska Oil and Gas Conservation Commission  333 W. 7th Ave, Anchorage, AK  99501  meredith.guhl@alaska.gov  Direct: (907) 793‐1235  CONFIDENTIALITY NOTICE: This e‐mail message, including any attachments, contains information from the Alaska Oil and Gas Conservation  Commission (AOGCC), State of Alaska and is for the sole use of the intended recipient(s). It may contain confidential and/or privileged information.  The unauthorized review, use or disclosure of such information may violate state or federal law. If you are an unintended recipient of this e‐mail,  please delete it, without first saving or forwarding it, and, so that the AOGCC is aware of the mistake in sending it to you, contact Meredith Guhl at  907‐793‐1235 or meredith.guhl@alaska.gov.           Qugruk 3A ‐ 4 boxes of Isotubes sent out to Fugro for detailed analysis  3    Below is the prelim analysis from the mud logging report     4          5 boxes of isotubes sent out to Fugro for Qugruk 3     5                                                                         6                Qugruk 3 Isotubes to Fugro – as listed in the mud logging report          7         1 Guhl, Meredith D (DOA) From:ORTIN AGUILANIEDO, ANNA <aortina@repsol.com> Sent:Thursday, August 30, 2018 10:45 AM To:CUMMINGS, LUCINDA; MARTIN VICENTE, ALEJANDRO Cc:BONELLI, JAMES; DOLFI, KIMBERLY Subject:RE: Qugruk 3 and 3A Isotube Samples for AOGCC Hi Cindy    The isotubes where collected but  we never did any analysis.    Let me know if you need anything else    Regards    Anna            From: CUMMINGS, LUCINDA Sent: Thursday, August 30, 2018 1:39 PM To: ORTIN AGUILANIEDO, ANNA; MARTIN VICENTE, ALEJANDRO Cc: BONELLI, JAMES; DOLFI, KIMBERLY Subject: FW: Qugruk 3 and 3A Isotube Samples for AOGCC Importance: High   Hi Anna and Alex,     Can you please see the email attachment and information below regarding the Isotube Analysis that the State of Alaska  is requesting?   James and I looked through the information where we had access to the folders but didn’t see a clear  match to what they were requesting.  Do you know if this data was sent to the State of Alaska and if not, where the  analysis would be for these wells?   We can transmit it to the State of Alaska with the proper transmittals if we know where the analysis is to send them    Thanks  Cindy    Cindy Cummings, PMP, CRM Exploration Petrotechnical Services  2455 Technology Forest Blvd.  The Woodlands, Texas 77381    Cindy.Cummings@Repsol.com  Direct: 832‐442‐1313  Cell:  281‐639‐0225  Our values: Safety • Passion • Results • Respect • Excellence • Teamwork • Honest Communication •     2 From: DOLFI, KIMBERLY Sent: Thursday, August 30, 2018 7:38 AM To: CUMMINGS, LUCINDA Cc: BONELLI, JAMES Subject: Qugruk 3 and 3A Isotube Samples for AOGCC Importance: High   Good morning!!  I got an email back from the AOGCC regarding some information on a different well….  And at the end she asked if we  had any update on the Qugruk 3 and 3A isotube samples/analysis report?    Any thoughts or news?  For reference, I attached her original email… just in case.     Thanks!!  Kim    Kim Dolfi, CPDA Well Data Specialist Petrotechnical Services - Houston 2455 Technology Forest Blvd. The Woodlands, TX 77381 Direct: 832.442.1705 Kim.dolfi@repsol.com repsol.com                  o II , o 0 N 9 V \ J c co o ' J O O 1- a) a) O y o .N 2 m CA n Z vi N co o ti N m = Q a) a) ° E E M 0_ NI 0) co J Z U O :62 E �' o LLi w w °�°' =O 0 3 v co o o ,o O Q 0 0 a) m o a) O O a, a > _ Q Q I- 0) w ° v_ c c c cum H c m 1 m 0 w LU t v, c aci ° c0 C 2 m Occ Z _ _ °a c a - m .� €o co ° r F. 0) I 0 0 a) E co 0 E v E 0) o a) co a m C°°i Y a < O O o > co cc 2 f U Q co ° LL J c cc as 0 2 2 N M M N O •C -E a cL p ce v Ce-a ct - 0 o 0 cc to o O ? °0 U C7 J C7 4) a) 0 Q0 a 0 o c aiy LL m 0 0 E c 0 0 do Q 0 U_ 6 U- ,,,,91) M co = E o m LL a Q 0 0 o° ma omp m Q f0 Q E O H rn Q< ° 'I d E c Cr p cci LL co H u_ >. U E c O c rn co m C 2 2as c n co co (p N Q O 7 p 7 U j C C • C N N C O o V co °° ° a a o N m ci NI— V U J I o cti � Z N N 0 0 .O W ° OE O o O O cC O Ce O 02 O I.I. Z MO O N N CO C a s M J J 2 20 20 2 2 d 2 J O coV C 'O co co co co co co co co M co co co co CL Y > 0 0 0 0 0 0 0 0 0 0 0 0 0 W ° CO y I(...1 N N N N N N N N N N CN CN ea v N- N- N- n N- n - N- N- n N- I r-- Cea/ w C< CO co co co co co co co co co co co co J CO O W U) C C C c C C C C C C C C 0. a) a) a) a) Cl) a) a) Cl) a) a) m a) • Q I = n a s a a n a 0. 0. a s a V O V1 O O O O O O O O 0 O O 0 Z - a < w I Q. 0 0 N N N 0 0 0 0 0 O To co V ON- N- M M O N- V V N- V O ca O w V N- O 0 V V V v co V v v V V N co a N- ce O co ml c CO CO 0 0 0 CA CO CO CO CO CO in p } U CD N O O M O O 0) N_ N_ N_ CO N_ r w O/ � O a) w (n N N N N v N N N M N N nE a) U V N o E CO OH co H co c o J U 0 ' ° — Q w a z' no „ 0) A a. r z ca H' 0I o0 M J 2 U U 0 U U U U 0 oO N Ha) _ W M V F J U N N CO CO 0 CO LI) N Y a CO D ce o \oce 'CC o = c co O o co QCi a - Q Q d II cj o = E co 0 E E E J o m cca a) 'N 'N o o if) u, Z LL O co C/) y w (, o O "Er) .N O if) tt a) a) a) V C 11 ce CC a) E OCO 2 Ca co O 0 .' C O O O co 1, E 2 2 0 co :.= o a m O m ° > > E E E E •c c O O Z p ci 0 U) ci a° U- ) ci ci ci U) n > O J r) m rn °) co o 0 0 0 0 0 0 0 0 0 0 0 I— « H v v v CO CO CO CO CO CO a Z .c C ° W E CO CO N CO CO N N CO CO CO CO CO CO CO 0 CO CO 0 N N N N N 2 0 5 O w o z N N N N N N N N N N N N N N N o a O E :Z 2 o N G oo D O c °)oO co .2 co 1 w LL tD G UZ W O 0 U U U 0 E 5a N -1 01) w OQm OO 1- a d rn: 0 0 0 0 a a 0 ooooooo 0. In J W LU LU LU Q W J J J J J Jre 1 H cC7 tre o — o _ c m a) o CI) O U �CC I Q'ft I co a7 co < 0 0 0 o Z CCi a) co C OI 0I Cl) NN ly • a a O T o U (7 m n a 2 2 2 2 70 20 t1 2 o 1 o) c A — ._ co c6 co O) O) O)U co U0. a) LL _11 .01 J m b ,� c a U E m m 0 0 a' a' 0I a u1 -oo E QI D LL -1 QI F- c inco L 0 aci a N ai E f0 E m £= E2 £ £ 7 LLI co .co 3 Z u co 3 m E E co co co v) m- co I co I co co rn oI FL. .o d 7 co 0 Nfn co N�5 d NU NV N c M'N co E O MI a Q O a) CO Q I N Y 1 Y E Y a Y O Y Y a) (n a ix Z Et cc it Q' J it Q' 0 u_ N LL WI LE WI Il IL `—I 7 2 E 7 a c p O U 0 0 ;J I •'J 0 .X 'X ' cm 2 cm.c o) I o) I o) o)To OOce .--.0 O w 1 o2 ow o W o 7 1 7 0 7 C 7 C 7 7 U Q u) + a 0 U cn= gi cn= u) On ULL Wo_ Cr) U O N ON 015 O)n 0 0 1 to co_ m co :o I coo I co ca I I I d 'U)o d E 2 >' W > O ion co comma co co I- m� m m aia �� �� � aia I'�Q LL .ie -c5 m 0 Mo mo 0 LLa) 0 LLf0 00 0 Q 0 Q N 0 0 it N LL LL Il LL LL LL Il Il d co '•- 0 T- > , 0 , 0 , 0 U<I.ad U Iy o I U Ico I<o g U o a) 0 1 0 1 1 g v 1 7 : CT:, N N c Q . Q a < m o m a Q Q Q Q p C C O C O C@ C C C C C N E E C C C C C C 00 1 7 a = 5 7 7 = = 2 = 2 O Cao, 2c O C uj O C 2 O O 21: 2g 2c 2c O 2c Ko � v � v c' coo v7 � 7 I v7 v7N 15 o_ v I v7 v7 v7 . � 7 C cn a o aa) 0 a 0 a aa) o� W a)�Ce o� o� m o� a) o o W o� o� a)� a) a)� IX ? • 2 2 2 O 2 U 2 U 2 ce w MI0 w M'0 W M1 W M1 c w MI aa)) w W LLl c7 W M1 w M1 w M1 w w M1 GC m O ? 0 M co co co co co co co co co co co co co co co co co 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WO. N N N N N N N N N N NN N N N N N N W W n n r-h- n n n n n n n n n n n n n r` L J c0 co c0 (o c0 c0 c0 c0 co c0 c0 co c0 0 c0 co 0 0 0 W O. a) a) a) a) c a) W(V c) )Y a 0 0 0 0 0 z a < a0+ O O O O O N o o O c[) o Tr V V a V M O CO O_ )` O _ N R �t V V V V V N N O 7 n N- N- N- r- N R N V N- h- o. a wo CA ° U L CO CO O o O O O 0 )A 10o N N O_ _O _O ,- O O M m O O T y N N V V N V N- N- a O � N a N E V 0 w 0 J N Q ccito F"' 0. M 11"." o U U 0 U 2 N M cn 1.0cn aY.1 M N N LO N N N CO n re p Q C I'I a O a) Q ci a ' Z E o o o d C.) 0 E 0_ a) co Z U U N m co co co co co co co co co co m co • Tr ° m ca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M N U a E E c m m m m m m m m m m m To o c •- E E o) w .. .. w r o m co co ca rn 0 rn o) rn 0) o) o) o) o) o) o) o) o 0 U 0 0 0 2 5 0 0 5 0 0 0 0 5 5 0 E5 0 n > 0 0 0 0 0 0 o 0 0 o 0 0 0 0 0 0 0 0 CO l0 IU O M co M co co a U) aa co co u) co 0 u) • I- m U) m m m m co co co co co co co co m m m co N N N N N N N N N N N N N N N N N N N ✓ N N N N N N N N N N N N N N N N N N N CI o 0 « U 0 0 0 0 0 U U U 0 0 0 U U 0 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OQ CL 2 J J J J J W W W W W W LU LU W W W LU LU o -' O O a) y a O X N O N X (V O U O4Z1 �I �1 _ v J U tL acl O co Z 2 N- 0I 0I a V a V 0 < a 0 .0 –=. a coa a N a aO a a a FI I- F �° 1- 2 2 F U U` w 0 0 0 0 2 T o D cI UIQ U1 U1 al 0I wl II al 2I 2I MI a d g (p Q Q N U CO CO CO CO CO X 0 0 0 °' HI 2 0 I° O 3 y 0 V p1 = = 3 > > > > x 3 3 U1 U ami iii CO Z re t a a a a I I a a a y a a m a o – I -p -p -p 1 0 U CO I I I I I a I I I D~ I 12 0 M a) a) a) (h 0 0 M M M M M L M M M 0 al 0? CT a) Y Y (n Ica Y N Y Y w Y w Y Y Y Y Y Y Y Y Y Y H Y Y C 2 2 N 7 N 7 2 O O 2 > 2 2 2 O ` ` W M m a) 5 I 2 2 2 o o o in 0) D 0 0)0 0)O OI V D W D X O) m D m D m D O) a g m O U M > > o � o � o �� �w 3w D � � > > >� 3 3 M d 3 M I � I < 0000G< 0a 0a !� 0 0 0 0 0 0 10 0 0 CC01 0 01- UL GO ai ci UI ui�I y Ul ai `mI N_�I N ai Fl ui ui hi ui ai ai p a) 1) G) ui ai ai m cp ILL it(n it(n it(n LL. C I1 Q it Q 0 I1 I1 it it IL it M ii it it a U) I1 I1 M 0 m N O ()QI 0 QI 0 ,I 0 m 0 m10 c,m121 0 0 0 O O .001 O 0 0 0 W v C) 1 v D 'c C 'c E ';'°- co,� 'c 'c N c •C 'c 'c C 'C C •C •C 'EO 'c 'c , 'CO co 2 2c 2c 2c 2C.n t O C N 1 2c %) O O O O O O C 2 2 2 O 0 2 O C 2 I 7 7 7 E a 7 N 7 3 a'`- 7 U 0 a0i CD a0i a0).c 0 N O CD a W a0) a0) a0i a0i 0 aai aa, a0) a0i a Oa a0i a0i a) Celi ? C W WMI LI co i.1 co W co M W coI C WMI aa)) W W W W W WMI W W W W colt W LT c,-,. WMI Ge t O ? 0 M M CO M CO M M CO CO M M 0) CO M M M M CO M M CL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 dN N N N N N N NNNNNN N N N N N N N /W/ W I\ N- N- N- r- n n n I r` r- N. r` N- N- N- N- N- M I.I J l o co (O CO (O CO CO (O (p CO CO (O (O (O ( CO CO (O CO (O O W c' a. V la ce on Z a Q co o 0 m a asa o u) � "' o co r M C. N o V 0 w O JM Q m a. a. II" M g N W M 7 vI D re 0 ICC . O I— a) Q o Z E Q • U m 2 CO Ca Co CO CO CO CO CO CO CO Ca CO Co CO CO @ CO CO CO CO a) l0 CCI CO CO CO CO CO CO CO CO Co CO CO CO CO N CO CD CO CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N m m m To o m co CD CO CO CD CD CO m m m m m m m O 0 0 0 0 0 0 0 000000 0 0 0 0 0 0 0 0 0 is H o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 N CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO N N N N N N N N NNNN N N N N N N N N N ✓ N N N N N N N N N NNNN N N N N N N N N F. 0 0 O IRn U U U 0 0 0 0 0 U U U U U U U U U U U U 0 U E 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O. M w w w w w w LU W LU LU LU LU LU LU LU LU W w LU LU o w) C a ._ o X N oo C -0 )( 9 �Opp a x N CO 0 o i,„ 0I 0 O c z ci °a .o 7 7 >, >, ti (V - CO 0 _U 7 > a) N �I �I > > �:, C71 O) cm O) I CO CO (0 V) 1 fn a) . LL9 d m d d d N J J1 0 col co M M it it a) a),75 cii a z l E z E E E z zl 0 2I 2I 2I 2I 2I c1 �I �- c 0 CO m (0 m c CO 0 0 WI �I �I-0 �I a �I-o �I a t 4 v a1 a1 0 CO F. N Q N N d I I CO CO M a M M a M a a a CO CO a a Q LL U LL 0 LL 0 LL p O U O U 2 7 z Y O N Z Y O U _ 5 Y p 7 E E a) a) a) Q )Q c c 0)0 0)Q 0)0 0)Q0)0 0)0 0)0 0) `0) U ct U Q 2 i2 Q Q i Q mol " " rn dOI C71ool 0 0 00 OxI 70 0701 Ow U7' rn d m Om 0 0 mo oU d m @ 0I @ aI @ 01 giN. gin ai ai ai,,c': ai Q1 ai Q ai QI ai 01 ai 01 ai 01 ai ai a0i'v7) 0'vii O 0 M 0 2 0 2 it I it I it it it I it 0 it I LL 0 LL 2 it l it 2 it it co N co N rn p n o o PW. p n p n o o p 0 0> 0 0 0> 0 o o o o C 0 CO 7 C co C I C NI CMI 'C co 'C c C C 'p C . 'C I- 'C . C I- C I C NI CMI 'C 'C 9 > O i - • O I O C 0 C O C O 1 O I 0 0 a O N O N O O p C O C O C O O .1).70= N. I— (o uct v 7 ,, 7 u 7 uw u2 v td to 1 to 1 to to 7 t 7 t 7 t t > > 0 V a)� a)� a)� a)� m� m� m On 00 00 a)(0 a)0, a)ct a)ct a)IX a) a) 0 p 0 p Ce ? C W MI W MI W MI W MI W M1 W M1 V W W n W n W n W r- W n W MI W MI W MI W W 2a 2a O a t = 0 M co M co co co co M M co co co co co co M CO CO CO CL o 0 0 0 0 0 0 0 E. 0 0 0 0 0 0 0 0 0 0 W On N N N N N (N N N N N CN N N N N N (N N N co C+) co co co co co co co co co co co co C+) co M co M IX w J 0 0 0 co 8 CO CO CO (0 co (0 CO co CO co (O CO CO (O W cn a. a) Vw a otS o 0 V Z a a CO CO CV co o 0 0 0 0 CO` • (p M CO co n n 0 co 13. co C Q O ,_ M_ co M_ n r r M M co OQ V 7 N a VNp csi CD U w 0 J aaoca a. = co O 5 U U W M V N cc) p a) CO m CL 0 a a p 1— ° N < . a Q Z 0 > Ii) 0 > .5 Ca N N z a) a) _ co CO CO CO CO co co (0 co co co co co CO CO a) CO Q' re m CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO C C 3 -4- 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 N CO CO CO CO CO CO CO CO CO CO CO CO CO (0 (0 CO CO 0 0 r _ _ _ _ _ _ .-� .-. ..+ w :c. .-. ..+ e+ .. ... .-� _m co o) _0) O) _m 2 O) a _O _O 0) o) C_7) O p_) "p -o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C C P > co I- U) (n co in 7, it) ..7) (C) co 7) (f) co co co 7, (q () M U) co CO CO O CO CO CO (O CO O O co CO (0 CO CO O O co N N N N N N N N N N N N N N N N N N N N c N N N N N N N N N N N N N N N N N N N N 6• O O •O. co U 0 0 0 0 0 U U 0 0 0 0 0 0 0 U U U a. 2 w w W W W OW W W LU LU W W W W W LU W J -JO O O In O o O N O 3 N O O t0 Z >, >. 4? a - N > .7) Y Y A U40 _ 'N N cn a u) 2 2 re a) 0 0 0 c 0 := w Q O_CC Q Q a s ad O. a a a 415 F C vi 2 .d CO 2 0) N N a) y Z cci Z O O Z _T 60 �- c • LL N N O 0 0 Ni cci 0 0 E E E 0 t/)'N O 0 aJ aQ WI 0 0 0 Cr) CO 0 CO Q 0 0 J C C J @ Q Z y co c2 c2 co co co co �0 lO M >, 0) LLQ LLLL 2- O O O O O O O U_ d _U d Y w >, 'C Y a O N_I N-I 0_I NI NI NI NI NI NI NI D - — 0 D t J 0 u) CO3d d0 d0 dI 0 do do do al- a Zi. 'E z, a too ce 0 0 o U U d W c 0 c D 0LL0 a� m 0 0Q �° QI LLQ a a a a a a a C O C 0 d N d _ a) 7 O yl 0 0 OI LL LL LL LL LL. LL LLQ. LL a. coO D 01-1 w >> a) C 0 J 0 0 0 O 0 O O 0) 00 OM OM O 0) 00 001 0 fD w W y O u) > > O N W .En y W C C J C c 0 'C O 'C O 'C O 'C O 'C O 'C O B 5 .(7) > ano Q' °- - > O c O O o= 0 0 0— OD OD OD OD OD OD OD y J N O W (L _ = 7 7 7 3 3 3 7 Z c O O O N 2 aNi c N c 0 0 0 0 a)DI a� JI a)DI m MI m MI m MI m MI a�MI a�MI MI IX O F d H d N 0 CC W N it 2 M 2 2 W C'') W C) W M W co W M W M W M W co W M W M 0 = 0 Cl) co M co co co co co co co co co co co co co co co co 0- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WM N N N N NNNNNN N (N (N N N N N N N LUM M M M M M M M M M M M M Cl M M co C'') M LI J 0 co co (O co (O co co (O co co (O co co co (O co co co LU aa s a s a a a a a V ILI • 0 C. C. C. C. O. O. O. 0 co_ z Q O Cl) M 0 0 0 0 0 0 0 0 O co �M M 0 0 0 0 0 0 0 0 0 0LO 0 LO 0 ry 7 0 LO N- N- r J Q Om ° (.0 ' C i[) 0 M 0 0 0 0 0 ,- 0 0 L T t M O N o- E V 0 o Jwl < i °° a o 0 0 0 Z. 0 5r M i 0 0 0 0 0 0 G/ N W V M N co NNNN M Y a) CL 0 Q D of 1 Q o• 4,13a Q d Z Eo w w — U '> '> c > aN c d R N in U 0, U Z y a)V ) N O V ) N LL' W N LL' c N c f0 co O t0 t0 t0 t0 co f0 co 3 O O O o LL Co LL 0) 0) 0 0) 0 0 0 0 0 0 0 0 0 0 CV M .0 .0 2 t �O 2 �O J J J J f0 co f0 m co co t0 co m co 1'0 '0 01 -o 0 0) 0 7 7 7 'j 0) 0) 0) D1 0I 0) 0) _m CA 0) 0 0 C C J C ctJ ce 2 2 2 2 0 0 0 O ö ö 0 0 0 0 I- > N N N N N N N N N N N N N N N N N 00U) U) CO M l0 (n l0 M (0 (0 l0 l(0 U) (O (O l0 (0 l0 l0 l0 U) r ~ 12 CO CO O (O CO (O (O CO O CO 0 CO O CO CO CO (O 0 (O (O N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N M O D00 `r J d U U 0 0 0 0 0 0 0 0 0 0 0 0 0 U C7 P. O 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 Q 2 'J J OW W W W LL' J J J J W W W W W W W W W W o - o 0 O cV O 3 N O O N o z N c 0 5 v in v v t O o o v o `v V v -0 V t , V o n 0. a a a a a a a n 0. n n a n n n n cor a0 O) O N M U) (0 1� M O) O N M Z O co O ON N N N CO CO CO CO M M M M M M M M M M M co co co O O O O O O co O O O O O O O O O O O co M M M M co M M M M M M M M M M co M o o r r r r r r 0 0 ,-- o .— o .— o ,-- o .— o .— o 0 0 O O O O O O O O O O O O O O O O O O . Ni N N N N N N N N N N N N N N N N I . C\11 . I I I I I I I I I I I I 1 < 0 O 0 O 0° 0 0" 0V) 0.4. O LO 00 ON. OW 0 m O N 0%—N a N OM 0.04 4. O LO N d 6 _I 6 _I 6 �I iii�I 6�I 6 a- a- 6�I 6�I 6�I ii�I iii �I ai �I 6 _I ;6 _I 6_I 6_I ai_I ai _I It a LI a LT a ii �- IL a LL �' LI— °- LL n Li: (2- LE n it n IL ifea a it n LE a it ceio. Il o. ii o. m Em Em E0 Eo) pm -E0 Em Eo) c) o Eo) Eo) Eo) Eo) Eo Eo) um Em Em 7 'co 'Eo 'moo Eo 'moo 'Eo 'moo 'Eo 'co 'co Eo Eo 'moo Eo 'moo 'Eo 'moo 'Eo � 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 LL V N c)2 U2 U2 c)2 U2 U2 c)2 c)2 u2 tg U2 U2 U2 v2 U2 c)2 U2 U2 ? Li'a� a) a) a� m a� a> m m a2a� a> a� a� m a� W MI W MI W MI W MI LI MI W MI W MI W MI W MI W MI W MI Lf.,MI W MI W MI W MI W MI W MI O co t = 0 M M M M co co co co co co co co co co co co co co CL o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 5 W as N N N N N N N N N N N N N N N N N N w M co co M M M M M (+) c+) (+) (+) (+) M el M M (') CCJ co cC co co co co co co co co co co co co co co cC co 0 W a V ui re co Z o 8 a Q J Ti 0 CLco � � o N a E VNrq U w 0 Q a a = M 5 0— N CO Cl V M Y ) 0 Qc u, 17-6 o Q C Z g 0 ii coZ m m m m m m m m m m m m m m m m m m d m m m m m m m m m m m m m m m m co m 3 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n m m m m m m m m m m m m m m m m m m o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n > N N NN N N N N N N N N N N N N N N CO F U) U) U) U) U) U) U) U) U) U) U) U) U) U) U) U) U) U) co co co co co co co co co co co co co co co co co co N N N N N N N N N N N N N N N N N N N v' N N N N N N N N N N N N N N N N N N N :Ti 0 D 0 101 '- IU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ci eg C7 d0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 2 w w w w w w w w w w w w w w w w w w o o 0 O N O i N 3 O (O O 0 o ZI N T 5 LL X -x0 6 m ❑ 0 i° v v a v v v v v v E- 7 aaaaaaaa a x x o 0 co v v a I �I "-c3 Z C') C') (N+) C') N C') C') C') 0 r E o E �I coI Y Y v v F. 0 N 0 0 N 0 0 0 0 0 0 �? ri <? ch ch <> �? a a Q MM CO CO co co M M M Y Y Y Y Y Y = =Y Y • _ 10 Y p 2 2 2 2 2 2 0 0 22 �- 22 N N N N N N N N N 0) 0) CO 0) 0) 0) 0)II I 'O01 Onl O01 OM C70l d,l ON OMI C7"*I Ute' 0- U7 0- '0• Ute' Ute' C❑1 0 CdQ 0Q Ute' Q Q N N N N M co M co co d N .,I N NI N .,I d .,I N.,I N .,I N .,I N .,I N .,I N N N N N N N ai N N z ai z N Z LL O' LL O' it O' LL O' it )- it a it a LL a LL a LL LL LL it LL it LL LL LL LL LL LL 1-7-1 LL LL I I co U p) U p) U p) U o U m U p) U p) U m U o O .00 U 01 m 2 C O z O z O 'C O z O C O z O C O 'E E C C C C C C C C J c J c J ,gym 2E 2E 2E 2E 2E 2E 2E 2E 2E O O O O O O O O O O o O o O 0 Ce a> a� a� a� a� a� m a� a� a) a) a) a) a) a) a) a) a) a) a) a) I I I I I 1 I I I ? N W M W M W M W M W M W M W M W M W Cr, W W W W W W W W W W CO W M W M O/� CO U M M M M M Cr) CO Cr) Cr) Cr) Cr) Cr) Cr) CO Cr) Cr) Cr) CO Cr) CO Cr) CL ' O O O O O O O O O O O O O O O O O O O O 0 W aa� N N N N (N N N N N N N N N N N N N N N N N W M (h M M M M M M M M M M M M M M M M co (h i,-.5 /U I.L J (O (O (O (O (O (O (O (O (O (o CO CO CO CO CO CO CO CO CO CO (O O LU rn a V ILI Ct eo Z i LL Q .. I`6 y m0 ao 2I _0 N a O N0CA V m o J Q m a I— I— M 2/�/\ N W co V Y a) Cl)vCt 0 Q a o I • a) Q c a z E 1:3 E ci R z — co co co co co co co m Co co co co co Co CO CO CO Co CO CO m TD co m co co co co m m m co co co co co co co co co co co co 3 0 0 0 0 0 0 0 0 0 ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ 0 0 N m m m m CO m m m CO m CO CO CO CO CO CO m CO CO m m 'o) 0) o) 0) 0) o) o) 0) '0) o) o) '0) o) o) 0) 0) .o) 'o) '0) 'o) 'o) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 N NN la oo in N N N N N N N N N N N N N N N N N N • ~ (O (0 O (O o co O o o (O o (o (O (O (o co (O co (o 0 0 N N N NN N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N G o pLoU • U 0 0 0 0 0 0 0 0 U U U U U U U U U U 0 0 L) C m ❑ '❑ 0 0 0 0 0 0 0 0 ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ 0 0 ¢ d M W w W w w W W w W W W W W W W W W W W W W 0 O } >- O m O O 0 O ~ J O 0 a >+ N J > > C O Z 2 I- >. Q > 0 O O 0 Q O d' O 00 a) N J JI O U' 0 N N c°D'> 0) O 1 I I- eh 0_ Q Q = v I v .. co I rn c c 2 (A co0 y a) o = W1 W1 O O J ,-1 NI COI vI 0 0 E E JI c a 0 0 0 ail OI 0 0 0 0 cn I 2 2 0 v E [— O 0 . a a 0_ 0- --( '3 5 d O U Z t w U a s U OI -C ix d' d' cf 01 M a) a) co U M a Q O' Q M1 M1 C 75.�. c C 0•. O 0 0 0 2 N 0 0 D �'1 aU Q '> 22 21, 2 2 a} ¢ z} u� u� ai cLn 0 M1v U 0 2 U 0) 1 m l co l on rn Ice I Ice 1 I I > a O O 0 a O 7_1 7J 7J 7 7 MQ M MQ M („) M CO co W .EOw 0 Q 7 O"' < '0< 0< 0< 0 0 02 0 02 0 0 0 0 O w a Q a ‹c„.. O 0 Qa O , 6z a)LL a)LL a) 62 a)0- N N N N N N a N 456 N 4 d d N Z' LE 1 W 1 LL 1 it LT. I1 co it. LL cn it it it it ii: Et its) ll w LL LL it m (n l g 0 c.) 0 0 0 y o 0� .0� .0� 0� .0.0 0.0 0.0 .0� 0 °� .0.0 0 0 0 0 0 E 7 1 C J C J 5 ....1 C C CI— EQ Cl— C 0. C 0. C O. C O. C Q Ea.. C C E O. E..- E E E m o (0 of of 0 0 2D og 2D o O O o og 22 2m 2,1 o-0 0 oU 1— j un i�3 i�2 ism i� i� i�Q i�2 i�Q iso t8 t8 iso it2 0E 0m 0 t ....; 0 to Z 'C',,, a) I a) 1 _0 a) o a)D a)Q a)Q _0 N 0 N a)-CO 0 o _0 Q _0 1 _0 f0 0 C CD f0 0 0 a LI M W M W cc W W W O W(n W O W cr W- W v Ti h W(n W co W Q W co W d W W O 0 elf In V 'co co co co co co co co co co co co co co co co co co co Om N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W d N N N N N N N N N N N N N N N N N N N W M M M c7 M m m M M M M m M (-75 (`') ffJ f7 M M N CD CD co (D co co co co co CD (D co co (D co CD cD CD CD Ce J 0 UJ 0 a. V w re 0I ZIS al Q 7 o @CL 0 ' in O c cu N a N E o U � 0 J °° Q m a M 2/ N WM Zr. COM Y 0 v 0 < a Q 0 a Z E 0 E U co z m m m m m m m m as m m m m m m co m m m d ' co m m co co co co co i0 co co m co co m to co CO m 'Q 0 0 Q Q Q 0 0 0 0 0 0 0 0 0 0 0 Q Q cn N m To To m m CO CO CO m CO m CO CO CO CO CO CO CO m Co Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q O I- > IN N N N N N N N N N N N N N CO CO CO CO CO ~ M CL) CO CD (O (O (O (O (O CO CO CO C4 CO (O (D (O (O (O N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N '17 0 • 0 O M v •-• r U 0 0 U U U 0 0 0 0 0 0 0 0 U 0 0 U U 0 O d • 0a 0 0 Q Q Q 0 0 0 0 0 0 0 0 0 0 0 Q Q 4 M 2 W W W W W W W W W W W W W W W W W W W o o a C1 X N O N w I co 0 m co 0 ° E v; ° a) Co E Co Z w (w i) E °� rn i) L c c m E c -C N Q In $ N w w w d ` v O d ° 0 co ° T co - o a_ w m N - - v o m c c c w c • D v m v c 0) J J a) 15 ii a) _ a) _ c a) O 0 E a LL' F= as0 J J LL a I I - f0 • — O r( 7 0 O m w w Co W W I m I- U W a 0 W > 0` W F- q c C9 �c rn co. Co c7i m`o Co cnn 2 m ri a To Z a� rn com - < COI a, JI ~I c 2 r)I CO UI Z' 21 �1 E 2 I E w JI E M CO CO corn Y Y CO co co a p� co a c co a y y Y O Y Y O 0,5) O = Y y Co Y Y c m Y 7 O CT y y 4- 2 c c E c 2 o o 0 a rx 2 2 EE 2 2 cnd 2 (/)45 15 c 2 �v 7 7 7= 7 7 7 -D D 1- n m c O 7 7 co 0. D(oco cm co ri N 00 0) co (o C7 C'l a s O O LL Oce a a o a O 0:E O Y J O > Y < wl O wl U a a;4- m mU m m m m m ma_ m,� m mO m m m m a) a) g, m m m m m 2 it C1 LL it it I1 it it it it W it n it it Il Il a LL O LL LL 7 it it it it it 7 Cn O V U 0(n 0._ U 0 0 U 0 C) U U co U O'N U 0 U U 0 0 o o._ o U 0 c B 'c c IEVEEEEEOE E E 1 'E 'E ui 'E 'E 'E 'E 'E 'E v 'E c as 2• 2 2 8 2 a o 0 0 0 o Z 2 O 2 2 2 2 m 2 s 2 2 y 2 2 2 O- 2 2 y 6 (n U v U V la-1 z U U U U U U a 1(.13' U 0 i) v .� ) Q v U Q %) U 1-D5 9 u U Q m ° m a� I m m m m m m O m w a) l m m U m y m a) m m m @ a� m m Ce z - atci W() w CD CO w12 w w w w wU LU w di 011 w di el: ED al w w8 w w wI- w w� O et N V CO r) CO r) CO r) CO co CO co co CO CO CO CO CO CO CO CO CO CO co a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W0a (N N (N N N N N N N N N N N N N N N N N N N N /L/ w co co co co co co co Co co Co co co CO co co CO co co Co co co CO Ce J co CO CO CO CO CO CO CO (O co co (O (O CO CO CO CO CO (O CO CO ( O W N a V w re co Z 8 a_ Q o w m . a ° cn � � 0 O N a N E cA V 0 o J Q H r M M2 N W CO M Y a) Ce 0 Q n a c o I— m Q c a z E 0 0 coZ (o co co CO N CO CO CO (O CO CO CO CO CO CO CO CO CO CO CO CO (O m CO CO ID CO (O CO CO CO (O CO CO (0 lO CO CO CO CO CO CO CO CO N co 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 – – – – – – – – – – – – – – – n N (O f0 co CO CO (O CO CO CO CO (o CO CO CO (O CO o Co Co N (o 0) 0) 0) 0) 0) 0) 0) 0) 0) 0 0 0 0 0 0 0 0 0 0 0 0 O O O O 0 0 0 0 0 0 o is 0 CO co co co co co co co co co co co co co co co co co CO CO CO CO 02 I- (C) to (n C() U) U) U) (C) (C) Cc) U) C() Cn CC) C() in CI) U) in CC) C() CC) e- co CO CD co (O CO Co CO CD (O CO CC) O O (0 CD CO (O CD CD CO CD N N N N N N N N N N N N N N N N N N N N N N N a- N N N N N N N N N N N N N N N N N N N N N N N F. 0 O . 0 O 0 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 0. m W W W LU LU W LU LU LU W LU W LU LW LU LW LU LU W LU W LU 0 , O 0 0 x O N 3 f0 ,n c a N c O O E X o V a) CO O co Z Ca E . aa)) CO 0. 00. a co 0 CO L CD C 1 a) -0 co r-, M U V) N OE E a E Y O ` U ' N 0 U) T m cD co E E co E o U co LL w E CD 0 W O = 7 7 U) U) (n O N tu O 1 in > p co U) U) I I I dl co Q w a)N Q 0 F. C Z o a ami .c7) 2 = a , Lo t = a a a a Z 3 t _1 0 0 LL T rn w o in rn v I I I I I c c m C7 c U O ao v O CA Y CD Y Y Y Y Y .(7) O Q d O -j OJ (0 O m CA CA 0, o c 2 - c 2 2 2 2 2 C C 1 O M a) U co o co co co > rn CD a rn rn rn CD rn a) m• n '� -g I 0 CO c a) O a U) > > 3 > > V V ? a) Y a) >.^ °) Y EC CV CV CO CO O d > d 0 d d d w w LLvi 1 CC c CO t m co co co co N N N N N N N N N N hi Y N I- N O a 7 a 2i a 0 ai ai ai ui ai ai LE it LL it it ii it it it it it 2 it 0 it D N O iL lL it it IL it Cf d co .) 'o 'g._ c) o o_ o oc 'c)o c 0 o) 0:El 3) L o 0 o 000000 Y c c ca c c c ac a c c ac cd cy c or • N ca 2 2 O 22 O 2 2 O 2 2 2 2 00 . Cl_d C 0O 0 0 0 0 0 I— C1ants r) Niii) i ) i ) iU2mc� aaO aay ) O aO y N L Q O a) a) N a) a) a) Ce Z N W W W I- W W W I- W I- W W I- W W U) W x W N U Q U g N LU LU W W LU LU 0 et ' U CO CO CO CO CO') co co co co Co co CO co co Co co CO M CO CO CO CO 1 Q. o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LI. IN N N N N N N N N N N N N N N N N N N N N N �W/ W I(h Ch Ch (h M M M M M M CO ch ch M M N. (� I� N- N- h r Lf J co co CO co CO co CO CO CO CO (O CO CO CO co iii a O) O) O) a, O W wN N a) a a a a V uJ CL < uts O O O Z a ', Q O o o r 0 J l0 N- N- (0 o 0- u) c co in CO O O ONi o O o 0co N fl- N E UZij 0 —o J Q . ba Fa. — F— co N W M V �M Y a) V/ D re 0 0 Q co I— • i Q O a Z • 0 Q c cn E o co z (i "(7) in co co co co ca co ca co co co bo co a yC6 CO Ca C0 V y ca m CO CO (a m o co as as Ca la (0 (a Ca l0Z V C0 0 CO CO CO CO M 0 0 0 0 0 0 0 0 0 0 0 0 0 N O c_) y N 0 0 0 0 0 0 N To ca ca m To m To To To To a To To 2 Z E o. 2 co co co co co co co o 0 D D D D D D D D O D D 0 .j co co co _10 0 0 0 0 0 N- > I co co co co co co co co co co co co co co co V N N N N N N N N ~ O 0 LCD CO CO CO a. CO CO CO CO o CO CO o CO CO CO CO CO CO CO CO CO CO MMCO CO CO CO CO CO N I N N N N N N N N N N N N N N N N CO CO CO CO CO CO CO M T. I N N N N N N N N N N N N N N N N N N N N N N N N 0 0 a a -) ✓ in > U �, • U U U U U U 0 U U U U 0 U U U U 0 U U U U U U U 0 E 0 wwwwwwwwwww OWWwwwwwwwa M LU LU LU LU - --- o - o 0 0' 0r N C CO cy e a NO co O O p O Z 0 co 7 N 2 C") 0 a) I N �y o = a a a a a c> 0 9c, n0) m a > a > a > a > a > c 0 r)E. H 01 m m O o m m o O CA O O O O O O O O O coO O Za a co a s a a a a a a a U) N N O O M C) V .4 a 2 5 1 O C) C) V O N U) C%) - 4 h O M a M M V V CD ° h n r C` y �I m CA F. ' V O 0 0 0 CO O co n r- O O O O O O W CA p CA Et Ma) Q 0) 0) a) T a) a) cc a) a) rn cc co rn a) m T (D m m T T (D m op x 0 c CO CD CO a CO CD CD CD CD (O CD CD CO CO 0 0 0 0 0 0 0 O 0 O N- 0 C') M co O) N LO 00 R ht. 0 C') U) IL) n N CA ai C) M O '- a) M V t7 V' '7 co U) co co co CD h N- N N Cr) C) ct 7 co co n h O Sr' a C) C) O) O) D) O) O) O) C) o) C) C) C) O) C) O) O) o) C) C) CD C) C) C) C') CU O Q co co Co CO CD CO CO CO CD CD CD CD CD CD CD CD CO CO CO CD CD CO CO CO 0 LY N a ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai ai a)ix lit it LL LL LL LL it it it it it it it it it it it it it LL LL it it it it it it > N U c) c) c) U U U U U U U _U U U U U U U U v U U U U U U U a 7 C C C C C C C C C C C C C C C C C C E E E C C C C C C CU 0 1 O O O O O O O O O O O O O O O O O O O O O O O O O O OO O ) I— V O() U 0 U 0 U U U 0 U U 0 U U 0 U U 0 U U 0 0 U U 0 U U .) ` a ) ) ) ) a ) j m IX z — u L L LU LU LU LU LU u LU LU LU L W LU LU LU LU Lu u u Lu w u u W w a= 0 N U M C) CO M M CO C`') C) C) C) C) C) C) M M C) C) C) CO C) C) M M M V V R CL = 0 O 0 0 0 0 0 O 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 O W d N N N N N N N N N (N N N N N (N N N CN N N N N N N N N N W N \ N- N- r N- N- n n h h r h n f` r r r- h h N N N ii J O m m m m 01 a m N N N 0 W CO a V W re < Z8 8 a ICE N J o CL N � � 0 E • E 1 N V N 0 o J Q a) oa a co 1 C o CO N W c') V I 'p Y a) v, D re 0 Q = C • tTi Q c a z E o Ci E 0 c z m m m CO CO CO CO CO CO CO CO m CO CO CO CO CO CO CO CO CO CO m CO CO CO CO d CO CO CO CO CO CO CO m CO CO CO CO CO CO CO CO m CU CO CO CO m CO CO m CO CO A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r co co co co co CU co co co co CO (a CU CO CU CO CO CO CO CO CO CO CO CU CO CO TO o a0• 0000000000000000000000000 0 > i N N N N N N N N N N N N N N N N N N N N N N N N V V V ') C`') co C) co co C) co co co co co co co CO CO C) C') CO M CO CO CO M 0 0 0 M C) CO M CO M C) M M M C) C) C) CO M M M M C) M M M CO C) CA CA CA N M CO C) M CO CO CO CO CO CO M CO M CO an C) C) co C) C) co an co M C) M co N N N N N N N N N N N N N N N N N N N N N N N N N N N N 6• O O w 7. N- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U CJ d 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a. 2 W LL LL LL W LL La w LL w w w W LL LL LL LL w w LU w w LL w w w w o tn O 0 co cV o N Z Z Z 0 N J O v coo Z o ,z G. .9 aV Q T 4 o = Q 7 co LL W a >. 6 C 0 N @ 7 in o I1< Ti., s W N o < VIII F Z 1x a). = a o o (/) Ur II N (. L .0 �, E. o 0?18 o 0 a m Q J Y O J 2 2 2 IM 7 M M I 1 0 0 p7 m0 j 0 0 J QJ N I <006_ D Ur6 a D6 0 . , D iim D co C7 ,c) co C7 d Z Z E y ro E `� m co co a co E Z `CJ (� ti T- y •V (_V V CO N v Ce ? c N W co Nco O O ▪ LL co a a N op co CN c o 0 I LU o8 M I K) Za) /�/ a, 0,li W N m LL E I J M M LU co N N co d N O N N V I < > N r co o E Zd V co N .- co Q a 0 co co CO16 N O O J a C 0 'o 2 0 0 CL C 2 O O (I) ON la clO �G 0 m o J } V E Q o � E ' oou cct O 11 1 6ri E C.. I—C M N li r co o1 1,1, G o co c m 6 N E11 m 5 0 E �) CO cc N• co 0 in I �• N c o @ m Q o m > Z E > E co co Z u) u) 41 a) co O ` co to M co N C N N N. o 'm 0 @ } v cfl c _1 0 _1 E• ~ ooc MMNN • 1iiT= to coO ce ZW co Ce o Z U U Q o o - Z c CD 0 U C.)CO u w r' U U U `0 11 2 a� .0 0 = m N ,a I a) v E v O E —°o 1 2 E co yr I E E UO 0 0 0 0 co LL 0 2 w 0 o m a' o 0 4 a 2 W W W H i 0 a (D 0 0 Ce 0 0 Release of Confidential Data Coversheet Well Name: QUGRUK 3 PTD: 212-187 E-Set: 22649, 22650, 22651, 22652, 22653, 23332, 23904, 23907 ✓ Physical data labeled with PTD, E-Set# Conf. entry: various ✓ Import CD data to RBDMS via GeoLogs tab ✓ Confidential (incomplete) entry in Well Data List notes 4;nport to DigLogs via E-Set tab V Scan labeled data Apply OCR text recognition 'Rave to Well Log Header Scans B/ New"complete" entry in Well Data List notes Logged by: Meredith Guhl Fully logged: lariats Yo 7/ 5 /a-/ 37-- Repsol Services Company 2455 Technology Forest Boulevard The Woodlands TX 77381 REPJOL RECEIVED MAY 072015 To: AOGCC(Alaska Oil and Gas Conservation Commission) Meredith Guhl AOGCC 333 West 7`h Avenue,Suite 100 v Anchorage,Alaska 99501 '411110.- RE: REPSOL Lorenzo Villalobos/Juan Aluja jalulav@repsol.com,FAX 287-297-1773 2455 Technology Forest Boulevard The Woodlands TX 77381 Reference: Qugruk-3(PTD 212-187) Dear Meredith, As requested on the email of May 5,2015 Repsol Alaska is hereby submitting the data for the well Qugruk 3,following the instructions of the regulation 20 AAC 25071 of the Alaska Oil and Gas Conservation Commission(AOGCC). Qugruk-3 Paper logs: • Run 1A:FMI-GR,5-in dipmeter field log(electronic file name:Qugruk-3_Run1A_FMI_5in_Dipmeter_Field_Log.pdf)2262 50 • Qugruk 3 EngLog TVD(electronic file name:Qugruk-3_EngLog_FINAL_TVD.pdf) • Qugruk 3 GasLog TVD(electronic file name:Qugruk-3_GasLog_FINAL_TVD.pdf) 2�I 26,5 2 • Qugruk 3 MudLog TVD(electronic file name:Qugruk-3_NiudLog_FINAL_TVD.pdf) • Qugruk 3 PrLog TVD(electronic file name:Qugruk-3_PrLog_FINAL_TVD.pdf) U/ Hard Copies: • Advanced Core Analysis Study(electronic file name:130038 Repsol Q-3 Report.pdf),23Ctb`1 • UltraScan CT Scan report(electronic file name:Qugruk-3_RSWC_CT_May-02-13.pdf),?3c N -/ • CoreLab ThinSection Petrography and SEM Microscopy (electronic file name: Repsol Qugruk _3 Well 130038G '10`I Petrography Report-Integrated.pdf) • Weatherford Multi-stage separator test(electronic file name:Qugruk-3 Repsol Fluid Analysis Sample 8 report 2013 07.23' 0 7- 24.pdf) Please acknowledge receipt by signing and returning a copy of the transmittal letter (by postal mail, email or fax) to the attention of Repsol,Lorenzo Villalobos/Juan Aluja,2455 Technology Forest Boulevard The Woodlands TX 77381. Date /6 r / Signed: �' CC: Roberta Camuffo 05/06/2015 Guhl, Meredith D (DOA) From: Guhl, Meredith D (DOA) Sent: Tuesday, May 05, 2015 2:10 PM To: 'FERNANDEZ TORRENT, RICARDO'; VILLALOBOS VENCELA, LORENZO; 'ALUJA VENERO , JUAN ANDRES'; 'caryn.sodden@repsol.com' Cc: Bettis, Patricia K(DOA); Davies, Stephen F (DOA); Bender, Makana K(DOA) Subject: Qugruk 3, PTD 212-187, Data Required Ricard, During my review of the data for Qugruk 3, in preparation to release the well after 6/1/2015, I noted the following data still needs to be supplied for this well. The following logs paper logs are required: 1. Run 1A: FMI-GR, 5-in dipmeter field log(electronic file name: Qugruk- 3_Run1A_FMI_Sin_Dipmeter_Field_Log.pdf) 2. Qugruk 3 EngLog TVD(electronic file name: Qugruk-3_EngLog_FINAL_TVD.pdf) 3. Qugruk 3 GasLog TVD (electronic file name: Qugruk-3_GasLog_FINAL_TVD.pdf) 4. Qugruk 3 MudLog ND (electronic file name: Qugruk-3_MudLog_FINAL_TVD.pdf) 5. Qugruk 3 PrLog ND (electronic file name:Qugruk-3_PrLog_FINAL_TVD.pdf) And the following reports have not yet been supplied in hard copy: 1. Advanced Core Analysis Study(electronic file name: 130038 Repsol Q-3 Report.pdf) 2. UltraScan CT Scan report(electronic file name: Qugruk-3_RSWC_CT_May-02-13.pdf) 3. CoreLab ThinSection Petrography and SEM Microscopy(electronic file name: Repsol Qugruk_3 Well 130038G Petrography Report—Integrated.pdf) 4. Weatherford Multi-stage separator test(electronic file name: Qugruk-3 Repsol Fluid Analysis Sample 8 report 2013 07 24.pdf) Please provide all requested paper logs and paper reports by May 19, 2015. Please send all requested data to my attention. If you have any questions, please contact me. Thank you, Meredith Meredith Guhl Petroleum Geology Assistant Alaska Oil and Gas Conservation Commission 333 W.7th Ave,Suite 100,Anchorage, AK 99501 meredith.guhl@alaska.gov Direct: (907) 793-1235 CONFIDENTIALITY NOTICE:This e-mail message,including any attachments,contains information from the Alaska Oil and Gas Conservation Commission(AOGCC),State of Alaska and is for the sole use of the intended recipient(s).It may contain confidential and/or privileged information. The unauthorized review,use or disclosure of such information may violate state or federal law.If you are an unintended recipient of this e-mail, please delete it,without first saving or forwarding it,and,so that the AOGCC is aware of the mistake in sending it to you,contact Meredith Guhl at 907-793-1235 or meredith.guhlc alaska.gov. 1 Guhl, Meredith D (DOA) From: Shellenbaum, Diane P(DNR) Sent: Tuesday, May 05, 2015 2:05 PM To: Guhl, Meredith D (DOA); Decker, Paul L (DNR) Cc: Bettis, Patricia K(DOA); Davies, Stephen F (DOA) Subject: RE: Qugruk 3, PTD 212-187, Extended Confidentiality? Hello Meredith, DOG has not received any request for extended confidentiality for Qugruk 3. Thank you, Diane Diane Shellenbaum Petroleum Geophysicist Alaska DNR Div Oil and Gas wk(907)375-8241 cell(907)331-9678 Diane.Shellenbaumt alaska.gov CONFIDENTIALITY NOTICE:This e-mail message,including any attachments,contains information from the Department of Natural Resources(DNR),State of Alaska and is for the sole use of the intended recipient(s).It may contain confidential and/or privileged information.The unauthorized review,use or disclosure of such information may violate state or federal low.If you are an unintended recipient of this e-mail,please delete it,without first saving or forwarding it,and,so that the DNR is aware of the mistake in sending it to you,contact Diane Shellenbaum 907-375-8241 or diane.shellenbaum@alaska.gov From: Guhl, Meredith D (DOA) Sent: Tuesday, May 05, 2015 10:56 AM To: Shellenbaum, Diane P (DNR); Decker, Paul L(DNR) Cc: Bettis, Patricia K (DOA); Davies, Stephen F (DOA) Subject: Qugruk 3, PTD 212-187, Extended Confidentiality? Hello Diane, Has extended confidentiality been requested for Qugruk 3, PTD 212-187,due for release after June 1, 2015? Thank you, Meredith Meredith Guhl Petroleum Geology Assistant Alaska Oil and Gas Conservation Commission 333 W. 7th Ave,Suite 100,Anchorage, AK 99501 meredith.guhl@alaska.gov Direct: (907) 793-1235 CONFIDENTIALITY NOTICE:This e-mail message,including any attachments,contains information from the Alaska Oil and Gas Conservation Commission(AOGCC),State of Alaska and is for the sole use of the intended recipient(s).It may contain confidential and/or privileged information. The unauthorized review,use or disclosure of such information may violate state or federal law.If you are an unintended recipient of this e-mail, please delete it,without first saving or forwarding it,and,so that the AOGCC is aware of the mistake in sending it to you,contact Meredith Guhl at 907-793-1235 or meredith.guhlPalaska.gov. 1 Guhl, Meredith D (DOA) From: Guhl, Meredith D (DOA) Sent: Tuesday, May 05, 2015 10:56 AM To: Shellenbaum, Diane P(DNR); Decker, Paul L(DNR) Cc: Bettis, Patricia K(DOA); Davies, Stephen F (DOA) Subject: Qugruk 3, PTD 212-187, Extended Confidentiality? Hello Diane, Has extended confidentiality been requested for Qugruk 3, PTD 212-187,due for release after June 1, 2015? Thank you, Meredith Meredith Guhl Petroleum Geology Assistant Alaska Oil and Gas Conservation Commission 333 W. 7th Ave,Suite 100,Anchorage,AK 99501 meredith.guhl@alaska.gov Direct: (907)793-1235 CONFIDENTIALITY NOTICE:This e-mail message,including any attachments,contains information from the Alaska Oil and Gas Conservation Commission(AOGCC),State of Alaska and is for the sole use of the intended recipient(s).It may contain confidential and/or privileged information. The unauthorized review,use or disclosure of such information may violate state or federal law.If you are an unintended recipient of this e-mail, please delete it,without first saving or forwarding it,and,so that the AOGCC is aware of the mistake in sending it to you,contact Meredith Guhl at 907-793-1235 or meredith.guhlPalaska.gov. 1 \-1.7 2Z("1 ® Repsol Services Company FEB 1 8 2014 2001Timberloch The Woodlands,Texas,773808 DATA LOGGED J``//\,e_t LM,K/l�/2BENDEDE R To: AOGCC(Alaska Oil and Gas Conservation Commission) Makana Bender,Natural Resources Technician 333 West 7th Avenue,Suite 100 Anchorage,Alaska 99501 RE: REPSOL Lorenzo Villalobos/Juan Aluja jalujav@repsol.com,FAX 287-297-1773 2001 Timberloch Place,Suite 3000 The Woodlands,TX,77380 Dear Makana, In the data listed below, Repsol Alaska hereby is submitting the technical information of the wells Qugruk#1 PH,Qugruk#1,Qugruk#6 and Qugruk#3 following the instructions of the regulation 20 AAC 25071 of the Alaska Oil and Gas Conservation Commission (AOGCC). 1 CD containing: - Qugruk-1PH fluid samples analysis reports - Qugruk-1 fluid samples analysis reports - Qugruk-3 fluid samples analysis reports - Qugruk-6 fluid samples analysis reports Please acknowledge receipt by signing and returning a copy of the transmittal letter (by postal mail, email or fax) to the attention of Repsol, Lorenzo Villalobos/Juan Aluja, 2001 Timberloch Place, Suite 3000,The Woodlands, TX, 77380. Date 1-(‘`6 Signed: Pr) 6._„„ef CC: Roberta Camuffo 2_1.2-\ 6/ 7 NoirF ff Repsol Services Company R�cpnp� i �✓� 2001 Timberloch Place,Suite 3000 The Woodlands, exas,77380 FEB 13 2014 DATA LOGGED / 3noia AOGGCM K BENDER To: AOGCC(Alaska Oil and Gas Conservation Commission) Makana Bender,Natural Resources Technician 333 West 7`h Avenue,Suite 100 Anchorage,Alaska 99501 RE: REPSOL Lorenzo Villalobos/Juan Aluja jaluiav@repsol.com, FAX 2 -297-1773 2001 Timberloch Place,Suite 3000 The Woodlands,TX,77380 Dear Makana, In the data listed below, Repsol Alaska hereby is submitting the technical information of the wells Qugruk#1 PH, Qugruk#1,Qugruk#6 and Qugruk#3 following the instructions of the regulation 20 AAC 25071 of the Alaska Oil and Gas Conservation Commission (AOGCC). 1 CD containing: - Qugruk-1PH fluid samples analysis reports - Qugruk-1 fluid samples analysis reports - Qugruk-3 fluid samples analysis reports - Qugruk-6 fluid samples analysis reports Please acknowledge receipt by signing and returning a copy of the transmittal letter (by postal mail, email or fax) to the attention of Repsol, Lorenzo Villalobos/Juan Aluja, 2001 Timberloch Place, Suite 3000,The Woodlands,TX, 77380. p")_tte.dt/T__ Date 2(‘S/%4-1 Signed: CC: Roberta Camuffo (SC-7 Repsol Services Company REPJO1. 2001 Timberloch Place,Suite 3000 The Woodlands,Texas,77380 To: AOGCC(Alaska Oil and Gas Conservation Commission) DATA LOGGED .2/tZl2014 Makana Bender,Natural Resources Technician .M K BENDER 333 West 7th Avenue,Suite 100 Anchorage,Alaska 99501 RECEIVED RE: REPSOL FEB 1 2 2014 Lorenzo Villalobos/Juan Aluja �^ jaluiav@repsol.com,FAX 28 97-1773 AOGCC 2001 Timberloch Place,Suite 3000 The Woodlands,TX,77380 Dear Makana, In the data listed below, Repsol Alaska hereby is submitting the technical information of the wells Qugruk#1 PH and Qugruk#3 following the instructions of the regulation 20 AAC 25071 of the Alaska Oil and Gas Conservation Commission (AOGCC). 1 DVD containing: - Qugruk-1PH SWC laboratory analysis reports - Qugruk-3 SWC laboratory analysis reports Please acknowledge receipt by signing and returning a copy of the transmittal letter (by postal mail, email or fax) to the attention of Repsol, Lorenzo Villalobos/Juan Aluja, 2001 Timberloch Place, Suite 3000,The Woodlands,TX,77380. Date 211,2-1\ Signed: r �r- f CC: Roberta Camuffo Okland, Howard D (DOA) From: MARTIN VICENTE, ALEJANDRO [alejandro.martin@repsol.com] Sent: Thursday, October 24, 2013 3:25 PM To: Okland, Howard D (DOA) Subject: RE: Delivery Dates Good afternoon Howard, Sorry for the delay but we have been very busy this week. Regarding the core description, we already received the final one. Regarding the sidewall core lab porosity & permeability report of Qugruk-1 and Qugruk-3, were were told by Corelab that we will receive the final reports next week. So once we receive that, we will send it to you as well as the conventional core description of the Qugruk-3 . Kind regards, Alejandro Original Message From: Okland, Howard D (DOA) [mailto:howard.okland@alaska.gov] Sent: Thursday, October 17, 2013 6:33 PM To: MARTIN VICENTE, ALEJANDRO Subject: RE: Delivery Dates Hello Alejandro, Any more progress on the Qugruk 1 sidewall core lab porosity & permeability report? Are you able to give me a firm date for the sending of the Qugruk 3 core description? Thank you, Howard Original Message From: MARTIN VICENTE, ALEJANDRO [mailto:alejandro.martin@repsol.com] Sent: Monday, October 07, 2013 12:57 PM To: Okland, Howard D (DOA) Subject: RE: Delivery Dates Good morning Howard, Regarding the pending data of the Qugruk #1 and Qugruk #3 Side Wall core Lab reports, we do not have new information available, Corelab is still working on it. About the Qugruk #3 core description, we are still waiting for the final descriptions from Corelab, so one we have it we will send everything to you. By the way, it was decided that Lab Porosity and Permeability analysis are not going to be conducted on the Qugruk #3 core. I hope you find this information useful. Regards, Alejandro Martin Vicente Operations Geologist Exploration North America and Brazil 2001 Timberloch Place, Suite 3000 The Woodlands, TX 77380 Tel. : 832 442 1478 / Cell 832 381 8898 Fax: 281 297 1773 1 adz — I $ 1 alejandro.martin@repsol.com LEGAL ADVERTISEMENT: This information is private and confidential and intended for the recipient only. If you are not the intended recipient of this message you are hereby notified that any review, dissemination, distribution or copying of this message is strictly prohibited. This communication is for information purposes only and should not be regarded as an official statement from Repsol. Email transmission cannot be guaranteed to be secure or error-free. Therefore, we do not represent that this information is complete or accurate and it should not be relied upon as such. All information is subject to change without notice. Esta informacion es privada y confidencial y este dirigida unicamente a su destinatario. Si usted no es el destinatario original de este mensaje y por este medio pudo acceder a dicha informacion, por favor, elimine el mensaje. La distribucion o copia de este mensaje est& estrictamente prohibida. Esta comunicacion es solo para propositos de informacion y no deberia ser considerada como una declaracion oficial de Repsol. La transmision del correo electronico no garantiza que sea seguro o este libre de error. Por consiguiente, no manifestamos que esta informacion sea completa o precisa. Toda informacion este sujeta a alterarse sin previo aviso. 2 Okland, Howard D (DOA) From: MARTIN VICENTE, ALEJANDRO [alejandro.martin@repsol.com] Sent: Monday, October 07, 2013 12:57 PM To: Okland, Howard D (DOA) Subject: RE: Delivery Dates Good morning Howard, Regarding the pending data of the Qugruk #1 and Qugruk #3 Side Wall core Lab reports, we do not have new information available, Corelab is still working on it. About the Qugruk #3 core description, we are still waiting for the final descriptions from Corelab, so one we have it we will send everything to you. By the way, it was decided that Lab Porosity and Permeability analysis are not going to be conducted on the Qugruk #3 core. I hope you find this information useful. Regards, Alejandro Martin Vicente Operations Geologist Exploration North America and Brazil 2001 Timberloch Place, Suite 3000 The Woodlands, TX 77380 Tel. : 832 442 1478 / Cell 832 381 8898 Fax: 281 297 1773 alejandro.martin@repsol.com Original Message From: Okland, Howard D (DOA) [mailto:howard.okland@alaska.gov] Sent: Friday, October 04, 2013 1:16 PM To: MARTIN VICENTE, ALEJANDRO Subject: RE: Delivery Dates Alejandro, Any update on delivery: Qugruk #1 Side Wall core Lab Porosity and Permeability analysis report? Qugruk #3 Core Description? Have you made a decision on conducting a Lab Porosity and Permeability analysis on the Qugruk #3 core? TNX Howard Original Message From: MARTIN VICENTE, ALEJANDRO [mailto:alejandro.martin@repsol.com] Sent: Wednesday, September 11, 2013 8:07 AM To: Okland, Howard D (DOA) Subject: Fwd: Delivery Dates Howard, Regarding the Qugruk #1 Lab Porosity and Permeability analysis of the SWC, the estimate date of delivery is early October. Regarding the Qugruk #3, the core chips and photos will be sent next week. The descriptions are now in progress and The porosity and permeability analysis probably will 1 not be performed in the conventional core. Sorry for The late response but I am in a training course this week. Please let me know of you need anything else. Alejandro From: "Okland, Howard D (DOA) " <howard.okland@alaska.gov<mailto:howard.okland@alaska.gov» Date: September 9, 2013, 11:17:32 AM CDT To: "MARTIN VICENTE, ALEJANDRO" <alejandro.martin@repsol.com<mailto:alejandro.martin@repsol.com» Subject: Delivery Dates Alejandro, Greetings. Would you please give to me an estimated date for the delivery of the following data to the Alaska Oil and Gas Conservation Commission. Qugruk #1 Lab Porosity and Permeability analysis of the SWC. Qugruk #3 Core chip samples, Core Description, Photos, and Lab Porosity and Permeability Analysis. TNX. Howard 907 793 1235 p.s. I tried calling you at 832 442 1478, but got something about Microsoft and not voice mail. LEGAL ADVERTISEMENT: This information is private and confidential and intended for the recipient only. If you are not the intended recipient of this message you are hereby notified that any review, dissemination, distribution or copying of this message is strictly prohibited. This communication is for information purposes only and should not be regarded as an official statement from Repsol. Email transmission cannot be guaranteed to be secure or error-free. Therefore, we do not represent that this information is complete or accurate and it should not be relied upon as such. All information is subject to change without notice. Esta informacion es privada y confidencial y ester dirigida unicamente a su destinatario. Si usted no es el destinatario original de este mensaje y por este medio pudo acceder a dicha informacion, por favor, elimine el mensaje. La distribucion o copia de este mensaje est& estrictamente prohibida. Esta comunicacion es solo para propositos de informacion y no deberia ser considerada como una declaracion oficial de Repsol. La transmision del correo electronico no garantiza que sea seguro o este libre de error. Por consiguiente, no manifestamos que esta informacion sea completa o precisa. Toda informacion est& sujeta a alterarse sin previo aviso. LEGAL ADVERTISEMENT: This information is private and confidential and intended for the recipient only. If you are not the intended recipient of this message you are hereby notified that any review, dissemination, distribution or copying of this message is strictly prohibited. This communication is for information purposes only and should not be regarded as an official statement from Repsol. Email transmission cannot be guaranteed to be secure or error-free. Therefore, we do not represent that this information is complete or accurate and it should not be relied upon as such. All information is subject to change without notice. Esta informacion es privada y confidencial y est& dirigida unicamente a su destinatario. Si usted no es el destinatario original de este mensaje y por este medio pudo acceder a dicha informacion, por favor, elimine el mensaje. La distribucion o copia de este mensaje est& estrictamente prohibida. Esta comunicacion es solo para propositos de informacion y no deberia ser considerada como una declaracion oficial de Repsol. La transmision del correo electronico no garantiza que sea seguro o este libre de error. Por consiguiente, no 2 manifestamos que esta informacion sea completa o precisa. Toaa informacion est& sujeta a alterarse sin previo aviso. 3 a,, x,- ( V _ i.. mar Repsol Services Company REPSOL 2001 Timberloch Place,Suite 3000 The Woodlands,Texas,77380 To: AOGCC(Alaska Oil and Gas Conservation Commission) RECEIVE!) Howard Okland,Natural Resources Technician 333 West 7th Avenue,Suite 100 SEP 17 2013 Anchorage,Alaska 99501-3572 RE: REPSOL AOGCC Lorenzo Villalobos/Juan Aluja •+vif.� jaluiav@repsol.com,FAX 287-297-1773 2001 Timberloch Place,Suite 3000 The Woodlands,TX,77380 Dear Howard, In the data listed below, Repsol Alaska hereby is submitting the core chip samples and the core photographs of the well Qugruk#3 following the instructions of the regulation 20 AAC 25071 of the Alaska Oil and Gas Conservation Commission (AOGCC): r - One box containing 50 core chip samples of the conventional core. S a-S` $± 1 3 - 1 DVD,containing the core photographs of the conventional core. 7') 333 Please acknowledge receipt by signing and returning a copy of the transmittal letter (by postal mail, email or fax) to the attention of Repsol, Lorenzo Villalobos/Juan Aluja, 2001 Timberloch Place, Suite 3000,The Woodlands,TX, 77380. Date / 7 lit t3 Signed: 2/itigt/•-Lal CC: Roberta Camuffo Okland, Howard D (DOA) From: MARTIN VICENTE, ALEJANDRO [alejandro.martin@repsol.com] Sent: Wednesday, September 11, 2013 8:07 AM To: Okland, Howard D (DOA) Subject: Fwd: Delivery Dates Howard, Regarding the Qugruk #1 Lab Porosity and Permeability analysis of the SWC, the estimate date of delivery is early October. Regarding the Qugruk #3, the core chips and photos will be sent next week. The descriptions are now in progress and The porosity and permeability analysis probably will not be performed in the conventional core. Sorry for The late response but I am in a training course this week. Please let me know of you need anything else. Alejandro From: "Okland, Howard D (DOA) " <howard.okland@alaska.gov<mailto:howard.okland@alaska.gov» Date: September 9, 2013, 11:17:32 AM CDT To: "MARTIN VICENTE, ALEJANDRO" <alejandro.martin@repsol.com<mailto:alejandro.martin@repsol.com» Subject: Delivery Dates Alejandro, Greetings. Would you please give to me an estimated date for the delivery of the following data to the Alaska Oil and Gas Conservation Commission. Qugruk #1 Lab Porosity and Permeability analysis of the SWC. Qugruk #3 Core chip samples, Core Description, Photos, and Lab Porosity and Permeability Analysis. TNX. Howard 907 793 1235 p.s. I tried calling you at 832 442 1478, but got something about Microsoft and not voice mail. LEGAL ADVERTISEMENT: This information is private and confidential and intended for the recipient only. If you are not the intended recipient of this message you are hereby notified that any review, dissemination, distribution or copying of this message is strictly prohibited. This communication is for information purposes only and should not be regarded as an official statement from Repsol. Email transmission cannot be guaranteed to be secure or error-free. Therefore, we do not represent that this information is complete or accurate and it should not be relied upon as such. All information is subject to change without notice. Esta informacion es privada y confidencial y ester dirigida unicamente a su destinatario. Si usted no es el destinatario original de este mensaje y por este medio pudo acceder a dicha informacion, por favor, elimine el mensaje. La distribucion o copia de este mensaje est& estrictamente prohibida. Esta comunicacion es solo para propositos de informacion y no deberia ser considerada como una declaracion oficial de Repsol. La transmision del correo electronico no garantiza que sea seguro o este libre de error. Por consiguiente, no 1 dJ - (Y7 manifestamos que esta informacion sea completa o precisa. Toda informacion ester sujeta a alterarse sin previo aviso. 2 w w��\\I//7: THE STATE Alaska Oil and Gas °ALSKA Conservation Commission lete.r~ Ace rh GOVERNOR SEAN PARNELL 333 West Seventh Avenue 0 -fib Anchorage, Alaska 99501-3572 AL Main: 907.279.1433 Fax: 907.276.7542 August 9, 2013 CERTIFIED MAIL RETURN RECEIPT REQUESTED 7009 2250 0004 3911 3446 Bob Jones Drilling Manager Repsol USA 2001 Timberloch Place, Suite 3000 The Woodlands, TX 77380 Dear Mr. Jones, Repsol USA recently drilled the Qugruk No. 3 well. The completion report (10-407) dated April 1, 2013 indicates that conventional cores were taken and the full laboratory report would be submitted by Geology. Regulations 20 AAC 25.070 and 20 AAC 25.071 require certain information associated with core be submitted to the AOGCC, including representative core chip samples, lithologic descriptions, laboratory analytical results (porosity, permeability and fluids), and if available, core photographs. This required information for the Qugruk No.3 has not been received by the AOGCC. Within 15 business days,please submit this information to the AOGCC. If you have any questions or concerns, please contact me at (907) 793-1235 or at Howard.Okland cralaska.gov . Sincerely, Vhf Howard Okland Petroleum Geologist Assistant • U.S. Postal Service, CERTIFIED MAIL. RECEIPT to (Domestic Mail Only;No Insurance Coverage Provided) �- S For delivery information visit our website at www.usps.com ' , FFICIAL a- 0- Postage $ m Certified Fee Postmark p Return Receipt Fee Here (Endorsement Required) O Restricted Delivery Fee (Endorsement Required) D (LI Total Postage 8 Fees Ft Sent To D Street,Apt.No.; Bob Jones 0 or PO Box No. Drilling Manager City,State,ZIP4 Repsol USA 2001 Timberloch Place,Ste.3000 PS Form 3800. The Woodlands TX 77380 SENDER: COMPLETE THIS SECTION COMPLETE THIS SECTION ON DELIVERY ■ Complete items 1,2,and 3.Also complete A. Signature item 4 if Restricted Delivery is desired. - /: 0 Agent ■ Print your name and address on the reverse 0 Addressee so that we can return the card to you. B.,R,ceived by(Printed Name) C. Date of Delivery ■ Attach this card to the back of the mailpiece, / " � tt�1 f( C - or on the front if space permits. I. Is delivery address different from item 1? 0 Yes 1. Article Addressed to: If YES,enter delivery address below: 0 No Bob Jones 3. Service Type Drilling Manager 0 Certified Mail 0 Express Mail Repsol USA 0 Registered 0 Return Receipt for Merchandise 2001 Timberloch Place,Ste.3000 0 Insured Mail 0 C.O.D. The Woodlands,TX 77380 4. Restricted Delivery?(Extra Fee) 0 Yes 2. Article Number (Transfer from service label) 7009 2250 0004 3911 3446 PS Form 3811,February 2004 Domestic Return Receipt 102595-o2-M-1540 • R43. I zD !v1;'',' 3 1 2O13 AOGCC REPlOL May 30, 2013 Alaska Oil and Gas Conservation Commission 333 West 7th Avenue, Suite 100 Anchorage, AK 99501 RE: 10-407 Well Completion Report: Repsol Qugruk#3 PTD 212-187 Dear Commissioner: Repsol hereby submits the 10-407 Well Completion Report for the permanent abandonment of Qugruk #3, permit to drill 212-187. Qugruk#3 was spudded 2/27/2013, and a total depth of 7,500' was reached on 3/23/2013. Final wellbore abandonment was completed on 4/1/2013. Pertinent information attached to this report includes the following: 1. Form 10-407 Well Completion Report 2. Final Wellbore Schematic 3. Daily Operations Summary 4. Final Directional Survey Report Additional Geological information will be submitted separately. The AOGCC is requested to treat as confidential all information included. If you have any questions or require additional information, please contact myself at 281- 863-1618 or the technical contacts contained in the following pages. Sincer-ly, Bo• ones Drilling Manager Repsol USA i STATE OF ALASKA ALASt.A OIL AND GAS CONSERVATION COMMISSION WELL COMPLETION OR RECOMPLETION REPORT AND LOG la.Well Status: Oil ❑ Gas ❑ SPLUG ❑ Other ❑ Abandoned E• Suspended lb.Well Class: 20AAC 25.105 20AAC 25.110 Development ❑ • Exploratory 0 GINJ ❑ WINJ ❑ WAG ❑ WDSPL❑ No.of Completions: Service ❑ Stratigraphic Test ❑ 2.Operator Name: 5.Date Comp.,Susp.,or 12. Permit to Drill Number: Repsol USA - Aband.: 4/1/2013 • 212-187 • 3.Address: 6.Date Spudded: 13.API Number: 2001 Timberloch Place,Suite 3000,Woodlands,TX,77380 2/27/2013 ' 50-103-2066400 • 4a. Location of Well(Governmental Section): 7.Date TD Reached: 14.Well Name and Number: Surface: 1805'FEL, 1732'FSL,Sec.6,T11N,R6E, UM 3/23/2013 - Qugruk 3 • Top of Productive Horizon: 1618'FEL,326'FSL,Sec.6,T11N,R6E,UM 8.KB(ft above MSL): 46 15. Field/Pool(s): , GL(ft above MSL): 15 ' Wildcat ' Total Depth: 1499'FEL, 181'FSL,Sec.6,T11N,R6E,UM 9.Plug Back Depth(MD+TVD): 2708'MD/2707'TVD 4b. Location of Well(State Base Plane Coordinates,NAD 27): 10.Total Depth(MD+TVD): . 16.Property Designation: Surface: x- 412876 y- 5972219 Zone- 4 7500'MD/7234'TVD ADL 391445 TPI: x- 413051 y- 5970826 Zone- 4 11.SSSV Depth(MD+TVD): 17.Land Use Permit: Total Depth: x- 413075 y- 5970648 Zone- 4 N/A LAS 282269 18. Directional Survey: Yes El- No ❑ 19.Water Depth,if Offshore: 20.Thickness of Permafrost MD/TVD: (Submit electronic and printed information per 20 AAC 25.050) N/A (ft MSL) 1080'MD/1080'TVD 21.Logs Obtained(List all logs here and submit electronic and printed information per 20AAC25.071): 22.Re-drill/Lateral Top Window MD/TVD: FMI, HRLA,SS,GR,AIT,TLD,HGNS, ECS,HNGS,CMR,MDT,MSCT,VSP N/A 23. CASING,LINER AND CEMENTING RECORD WT.PER SETTING DEPTH MD SETTING DEPTH TVD AMOUNT CASING GRADE TOP BOTTOM TOP BOTTOM HOLE SIZE CEMENTING RECORD PULLED 20" 131# J-55 0 113 0 113 26" N/A 13-3/8" 68# L-80 0 2120 0 2120 16" Lead-1680 sx/Tail-397 sx N/A 24.Open to production or injection? Yes ❑ No Q, 25. TUBING RECORD If Yes,list each interval open(MD+TVD of Top and Bottom; Perforation SIZE DEPTH SET(MD) PACKER SET(MD/TVD) Size and Number): 1. COMPLETION 26. ACID, FRACTURE,CEMENT SQUEEZE,ETC. 1Ii' ii . RECEIVED Was hydraulic fracturing used during completion? Yes ❑ No E]_. lFw® i DEPTH INTERVAL(MD) AMOUNT AND KIND OF MATERIAL USED ', . 41' MAY 31 2013 AOGCC - 27. PRODUCTION TEST Date First Production: Method of Operation(Flowing,gas lift,etc.): Date of Test: Hours Tested: Production for Oil-Bbl: Gas-MCF: Water-Bbl: Choke Size: Gas-Oil Ratio: Test Period -0. Flow Tubing Casing Press: Calculated Oil-Bbl: Gas-MCF: Water-Bbl: Oil Gravity-API(corr): Press. 24-Hour Rate . 28. CORE DATA Conventional Core(s)Acquired? Yes E‘ No❑ Sidewall Cores Acquired? Yes 0 • No❑ If Yes to either question, list formations and intervals cored(MD+TVD of top and bottom of each),and summarize lithology and presence of oil,gas or water (submit separate sheets with this form, if needed).Submit detailed descriptions,core chips,photographs and laboratory analytical results per 20 AAC 25.071. 49.5ft of conventional core and 30 Sidewall cores were cut. Full report to be submitted by Geology. RBDMS JUN - 7 20133\ Form 10-407 Revised 10/2012 CONTINUED ON REVERSE ]•I -i3 Submit original only �„/ 29. GEOLOGIC MARKERS (List all formations and markers encountered): 30. FORMATION TESTS NAME MD TVD Well tested? ❑ Yes 0 No• If yes,list intervals and formations tested, briefly summarizing test results.Attach separate sheets to this form, if Permafrost-Top 0 0 needed,and submit detailed test information per 20 AAC 25.071. Permafrost-Base 1080 1080 Upper Cretaceous MFS 2250 2250 Tuluvak/Seabee 2462 2462 Nanushuk 3875 3815 Torok 5145 5010 HRZ Shale 6501 6292 Kup C 6750 6527 LCU 6753 6530 Alpine 6968 6733 Nuiqsut 7230 6980 Formation at total depth: 7500 7234 31. List of Attachments: 32. I hereby certify that the foregoing is true and correct to the best of my knowledge. Contact: Michael Quick 907-317-2969 Email: robertiones@repsol.com Printed Name: Bob rllMi Title: Drilling Manager Signature: Phone: 281-863-1618 Date: 5/30/2013 INSTRUCTIONS General: This form is designed for submitting a complete and correct well completion report and log on all types of lands and leases in Alaska. Submit a well schematic diagram with each 10-407 well completion report and 10-404 well sundry report when the downhole well design is changed. Item ib: Classification of Service wells: Gas Injection,Water Injection,Water-Alternating-Gas Injection,Salt Water Disposal,Water Supply for Injection,Observation,or Other. Multiple completion is defined as a well producing from more than one pool with production from each pool completely segregated. Each segregated pool is a completion. Item 4b: TPI(Top of Producing Interval). Item 8: The Kelly Bushing and Ground Level elevations in feet above mean sea level. Use same as reference for depth measurements given in other spaces on this form and in any attachments. Item 13: The API number reported to AOGCC must be 14 digits(ex: 50-029-20123-00-00). Item 20: Report true vertical thickness of permafrost in Box 20. Provide MD and TVD for the top and base of permafrost in Box 28. Item 23: Attached supplemental records for this well should show the details of any multiple stage cementing and the location of the cementing tool. Item 24: If this well is completed for separate production from more than one interval(multiple completion),so state in item 1,and in item 23 show the producing intervals for only the interval reported in item 26. (Submit a separate form for each additional interval to be separately produced,showing the data pertinent to such interval). Item 27: Method of Operation: Flowing,Gas Lift, Rod Pump, Hydraulic Pump,Submersible,Water Injection,Gas Injection,Shut-in,or Other (explain). Item 28: Provide a listing of intervals cored and the corresponding formations,and a brief description in this box. Submit detailed description and analytical laboratory information required by 20 AAC 25.071. Item 30• Provide a listing of intervals tested and the corresponding formation,and a brief summary in this box. Submit detailed test and analytical laboratory information required by 20 AAC 25.071. Form 10-407 Revised 10/2012 REPSOL 2012-13 Explore )n Qugruk 3 Confidential Final Schematic REPlOL Rig 7ES RKB: 29' Q-3 Elevation: 17'• t '41-- 26" Hole RKB to MSL 46' t :j f : ; I t 4 20" 131# J-55 Casing Horizon TVD @ 113' MD 1080' Permafrost Base 16" Hole 13-3/8" Casing cemented to Surface w/53 bbls cement returns at surface ., (pumped 830 bbls (1680 sx) ASL ► lead and 80 bbls (397 sx) Class G i 13-3/8" 68# L-80 BTC tail) t& -4-Casing @ 2120' MD 2250' Upper Cretaceous MFS 2462' Tuluvak/Seabee Tag @ 2708' 108 bbls 17.0 ppg Class G F411--- 12-1/4" Hole Tag @ 3502' 100 bbls 17.0 ppg Class G 3815' Nanushuk 115 bbls 15.8 ppg Class G 19° Inclination 5010' Torok 10.4 ppg KWM 6292' HRZ 6527' Kuparuk C Tag @ 6852' 6733' Alpine 120 bbls 6980' Nuiqsut 1 ppg Cl15.aa ss G TD @ 7500' MD / 7234' TVD A. Dial o 8,0 o p ?y?i 1 O p�. :B W e i J ii44. cZ ‘ 2 eq N ii O N p 2 2 m f U zN z!,t 2zY m �.{ i8 OG l Q p d, n �. a ,. a z ci GIw 000 Z6 j � Q Z ce [zp�OM1,co zNNOi zNNN OZf02 . gQ• Wo., � Z{Wp I^��I �U O gONOr Oi �ONNfO ONNC_Oh Q� _ � pS zO&M,' 6t' 1 1•- 40,• -c c�OpN� No•• r--.co• ug.� JJ ZW 00DWQ � TiZ R e \ _ 7 ao•rnN dorc, 0o''mS roa.,„W.' uta iii >9—§ O'' WIZ 8 g1. b p n n II,/ ,- n n 11 to a r.r` II I`M > In6�� (� U d uc�II o N IIo N uo 0 II < ZNn LLoo F ��W J .. 4 0 l<5rx 4 g°rx I g2rx a§aF Nc°° .25o Z wze� -113 as U g Qa — CL a s a e i 7. III 14 .14 ( \ _, , o 'bV pp \` �' i l 1 Q' �C cb N. 11 1 );it(.4 I, '0'4' .1q'e4 il tR 0. a \l \� 8 ; ; ig r�, a I y oo -, 4 it i i CO O (fi �� SNj \ �,lip \ . )' , �/� r (\ f/ k �I e o\ R R o v 0 . \ t\ v- (i k II t )3 6 W v !\ w \ \ ,,,, V ' I sl•f s\`o. r 10 _ clit I •...., \t r 1 Z�000 I \ / 01 An �/I NZovopO�\ / r 8o . ~3 g IXW ` f2 1 / ✓ r-1 o W L - ill \ l �N Z 0s caLL3 5 J H 0 8 yti g � r(r I tf Sp '' C.1 F V! o :F �Y M. W Z z liZ ----.".1 -An...----- t.)_ II ge\ I • • mow Qugruk #3 Daily Operations Summary REPSOL API: 50-103-20664-00-00 Permit#: 212-187 Rig: Nabors 7E5 CONFIDENTIAL Date and Footage Drilled as of 24:00 hours. Activity 21 January 2013 Continue Rig Up. 0' 22 January 2013 Continue Rig Up. 0' 23 February 2013 Continue Rig Up. 0' 24 February 2013 Continue Rig Up. 0' 25 February 2013 Continue Rig Up. John Crisp with AOGCC witnessed diverter test. 0' 26 February 2013 Continue Rig Up. 0' 27 February 2013 TD: 757'; Mud Weight: 9.8; Viscosity: 108. P/U BHA and washout conductor 644' pipe to 113'. Drill from 113'to 374'. Circulate and condition mud, L/D cleanout BHA. P/U BHA#1 with LWD/MWD tools. Drill from 374'to 757'. 28 February 2013 TD: 1175'; Mud Weight: 10.0; Viscosity: 72. Drill from 757'to 896'. Work 418' on top drive. Drill from 896'to 1175'. 1 March 2013 TD: 2040'; Mud Weight: 10.0; Viscosity: 72. Circulate and condition.Short 865' trip to 345'. RIH and drill from 1175'to 2040'. 2 March 2013 TD: 2135'; Mud Weight: 10.0; Viscosity: 70. Drill from 2040'to hole section 95' TD at 2135'. CBU. Wiper trip from 2135'to 950'. RIH and pump sweep. POOH and lay down BHA. Rig up casing running tools. 3 February 2013 TD: 2135'; Mud Weight: 10.0; Viscosity: 70. Run 13-3/8"68# L80 casing. 0' Trouble making up hanger.Land surface casing at 2120' MD. 4 February 2013 TD: 2135'; Mud Weight: 10.0; Viscosity: 68. M/U stab in tool, RIH with drill 0' pipe and stab into float collar. Circulate and rig up cementers. Pump mud flush, 830 bbls 10.7 ppg lead Permafrost cement followed by 80 bbls 15.8 ppg tail Class G cement,floats held. Had 53 bbls of good cement returns to surface before losing returns after pumping 18 bbls of tail cement out the casing shoe. Rig down cement equipment. Unsting from float collar,circulate drill pipe clean,POOH. 5 February 2013 TD: 2135'; Mud Weight: 10.0; Viscosity: 59. Lay down landing joint. R/D 0' casing equipment. Nipple down diverter. Nipple up wellhead, nipple up BOPE. 6 February 2013 TD: 2135'; Mud Weight: 10.0; Viscosity: 55. Continue nipple up BOPE 0' 7 February 2013 TD: 2135'; Mud Weight: 10.0; Viscosity: 55. Finish nipple up BOPE. Prep for 0' BOPE test. 8 March 2013 TD: 2135'; Mud Weight: 10.0; Viscosity: 56. Shell test BOPE,250 low and 0' 4000 psi high-good. RD testing equipment.Pickup drill pipe and rack back same. Test BOPE to 250 psi low and 4000 psi high with AOGCC rep,Lou Grimaldi on site to witness. 9 March 2013 TD: 2135'; Mud Weight: 10.0; Viscosity: 56. Finish BOPE test. Replace IBOP 0' valve and pressure test same. Pickup drill pipe and rack back same. 10 March 2013 TD: 2135'; Mud Weight: 10.0; Viscosity: 56. Pickup HWDP. Pickup drill pipe 0' and circulate. Begin pickup of 12.25" directional BHA. 11 March 2013 TD: 2135'; Mud Weight: 10.2; Viscosity: 67. Finish picking up 12.25" 0' directional BHA.Tag at 1972'. Pressure test 13-3/8"casing to 2045 psi for 30 min-good. Drill cement and shoe track to 2135'. Displace spud mud with 6% KCL mud. 12 March 2013 TD: 2957'; Mud Weight: 10.2; Viscosity: 53. Drill 20'of new hole from 2135' 822' to 2155'. Perform FIT to 13.9 ppg EMW. Drill from 2155'to 2957'. 13 March 2013 TD: 4481'; Mud Weight: 10.2; Viscosity: 55. Drill 2957'to 4481'. Circulate 1524' bottom up. 14 March 2013 TD: 4950'; Mud Weight: 10.2; Viscosity: 55. POOH for wiper trip to casing 469' shoe at 2120'. RIH to 4481'and drill to 4950'. 15 March 2013 TD: 4950'; Mud Weight: 10.2; Viscosity: 54. Drill from 4950'to 6473', 1523' maintaining '19 degrees inclination. 16 March 2013 TD: 6925'; Mud Weight: 10.3; Viscosity: 76. Drill from 6473'to 6825'. Drill 452' from 6825'to 6925'circulating for samples every 25'. Core point picked at 6925'. Back ream out of hole from 6925'to 5750'. 17 March 2013 TD: 6925'; Mud Weight: 10.3; Viscosity: 77. Back ream out of hole from 0' 5750'to 2190'. 18 March 2013 TD: 6925'; Mud Weight: 10.4; Viscosity: 74. Continue back reaming out of 0' hole from 2190'. Circulate and reciprocate at 2100'. Finish pulling out of hole and lay down BHA. Rig up to test BOPE. Test BOPE to 250 psi low and 4000 psi high. AOGCC rep,John Crisp,waived witness of test. 19 March 2013 TD: 6936'; Mud Weight: 10.4; Viscosity: 72. Pickup 8-1/2"x 4"coring 11' assembly and run in hole to 6925'. Core from 6925'to 6936'. 20 March 2013 TD: 6968'; Mud Weight: 10.4; Viscosity: 70. Core from 6936'to 6968'. 32' 21 March 2013 TD: 6978'; Mud Weight: 10.4; Viscosity: 21. Core from 6968'to 6978'. 10' POOH with core. Lay down coring assembly. 22 March 2013 TD: 6978'; Mud Weight: 10.4; Viscosity: 31. Pickup 12-1/4"directional 0' assembly and run in hole to 6925',working through various tight spots. 23 March 2013 TD: 7500'; Mud Weight: 10.4; Viscosity: 67. Increase mud system from 6% 522' KCL to 8%KCL. Ream cored section from 6925'to 6978'. Drill from 6978'to TD at 7500'. Circulate and condition. POOH for wiper trip. 24 March 2013 TD: 7500'; Mud Weight: 10.4; Viscosity: 77. Continue POOH for wiper trip to 0' casing shoe,wash and ream through various tight spots. TIH to TD working through various tight spots.Circulate and condition hole for wireline logging. POOH for wireline logging. 25 March 2013 TD: 7500'; Mud Weight: 10.4; Viscosity: 54. Finish POOH and lay down 12- 0' 1/4"directional BHA. Rig up to test BOPE. Test BOPE to 250 psi low and 4000 psi high. Test witnessed by AOGCC rep, Chuck Scheve. Rig down test equipment. Rig up for wireline logging. RIH with logging Run#1(FMI-HRLA-SS- GR). 26 March 2013 TD: 7500'; Mud Weight: 10.4; Viscosity: 55. Finish logging Run#1. RIH with 0' logging Run#2(AIT-TLD-HGNS-ECS-HNGS-CMR). Finish Run#2. RIH with logging Run#3(MDT-GR). 27 March 2013 TD: 7500'; Mud Weight: 10.4; Viscosity: 59. Finish logging Run#3- 0' attempted 26 pressure readings. RIH with logging Run#4(MSCI-GR)-cut 30 side wall cores, 100%recovery. RIH with logging Run#5(VSP-GR). 28 March 2013 TD: 7500'; Mud Weight: 10.4; Viscosity: 61. Finish Run#5. Rig down 0' wireline logging equipment. Verbal approval received from AOGCC,Guy Schwartz for abandonment of Qugruk 3 wellbore. Prep for picking up drill pipe. Begin RIH with drill pipe. 29 March 2013 TD: 7500'; Mud Weight: 10.4; Viscosity: 61. RIH with drill pipe to 7495'. Rig 0' up cementers. Pump mud push, 120 bbls 15.8 ppg Class G cement for open hole plug#1. POOH to 6624'and circulate drill pipe clean.Pick up drill pipe while WOC.Tag plug at 6852',with 14,000 lbs.Tag witnessed by Bob Noble. POOH to 4600'. Rig up cementers. Pump mud push, 115 bbls 15.8 ppg Class G cement for open hole plug#2. POOH to 3417'and circulate drill pipe clean. Pick up drill pipe while WOC. 30 March 2013 TD: 7500'; Mud Weight: 10.4; Viscosity: 63. Continue WOC. Tag plug at 0' 4216',with 10,000 lbs.Tag witnessed by Bob Noble.Tagged depth did not meet regulations. Rig up cementers. Pump mud push, 100 bbls 17 ppg Class G cement, POOH to 3614'. 31 March 2013 TD: 7500'; Mud Weight: 10.4; Viscosity: 52. Continue POOH to 3051'and 0' circulate drill pipe clean.WOC. Tag plug at 3502'.Tag witnessed by Louis Grimaldi. POOH to 3144'. Rig up cementers. Pump mud push, 108 bbls 17 ppg Class G cement for bottom kick off plug.POOH to 2275'and circulate drill pipe clean.Rig up cementers. Pump mud push,88 bbls 15.7 ppg AS1 cement for top kick off plug. POOH to 1426'and circulate drill pipe clean. POOH to surface. otp.P 1 April 2013 TD: 7500'; Mud Weight: 10.4; Viscosity: 56. Rig up for BOP test. Test BOPE 5A 0' to 250 psi low and 4000 psi high. AOGCC rep,Louis Grimaldi,waived witness of test. sl End of Weekly Summary Reports for Qugruk 3. Remaining Summaries ' 13 continued under Qugruk 3A(Permit#:213031) 7 « O ymqn34<hV3NpbvNMM3NN3§AagmNP2NVSAnA2g 0 T. �WEZUOmbNnrPnObnr<rMrQUnm W2%,WMgMrBBnVc388nCM a W a) icm�pTOppppb P� po<<q nNMNrm ,{ JIPRI.4,m g ,ONPP*smnppPgPNMbrM ; I MMMMMMM MMF;MMM MMM O N iGGppoonrnnc nocn0ooroOCGnOoi cP00n0r000 0 tv p Q F^pp N M Y m m N �m N Y m rm g.a O b It M N^W M M R m O p O.tO M m b m n M U1 r IV m� tt�tt$m r�o P n o o Y Ob�Ab Y Y bnn P^m NN h 0 tom -lV. O GIo.�V i5.E rrnnrr nm "2ap" m1Emm mmm��mm mmol W v N m tmV N N N N N N uN N N N N N N N N N N N N N N Z2:--,::::::::::::::::::2—:---. C mM000V M.M.a v s6 gt�On 2n NO mTgRL3NN 8MP,M;;N42M � ° W 6 0 N N ON0naN NQNm0� N ryN N qqN N4f NN Nryry.N • ryry.ryry.N mnN z MrnnPnNiP ]bNM :HnNPNNnN 2i=GYO00mNOnn0OONO !!!gmqMbppMMOv0 !'.8ppntD�<O n O -nOWN<o q,n f P a o b t-o 4r O'ONbn m to 1° 0„0. -go.- ait0t:.o.0..o 00,--00000—=Y rcaP M N� 1 2282OV .m00mf'.♦oamohbgbn P.tM aOhe S. O�Goco0a� -NNNaOYarraot°co NC MO�Oa 3 3 ' N Q Lft j^ pp �tyy �1Dp mm tD .bp y ;ZC O� M ±�,0 mNapiNiwbbm0014- ^<SamNnsOvRbIVmMP vOnmOtm o Uto ii E 0 N L O 00o N 4 ai 0•• NNOMO V O Nn n iI MMM OqN X E , A.t eOp n O Z N C. w U CO m O O V P b M Z O m n p in �l7 ��[[mbwgnp1U' 2ea;a' O `!�O C' m LL m F 0 3 pC ♦ 1y m �2 O o 0 o M b N,,,.N^W 0.D m O r is f t~'1 N O p4Mp b,mM O N 0 T<M O v t y 0 .a.� Z 4 mmmo0.-.-NM Mbr mo-mmvm bromGN'NNMvpib Ttt4F,t N 2 z ' N 0 c c L go d a OPi 1 p h d C g6-, O W 33 . E2;q Q t W g h L p 0 C v i° 0 EQOoWVia LL . Ort U 2 U op MPNm>.a p.p MN O NO4A.00, 0 ' nO W O v O 0 Sd ; CLL *Il_ ° oc WZccOMP000�� NNnm; v .Zpo-°Y:rmom oetco ° = no ai 9Yt. or.-N xW 81Ao0°° 0_ V (.43 0 >'m u¢KC tax 3 X sKUUU O V 2 Z n C O O E g R a 0 L W 1 (0 T N v',>>, 24*L'. 2/z5_9 pp ..pp b rt,, 7--053 O N N ,Mp-O,Itp O.00 m 0 Y wf g W K 1,{a,a�P N m m m m 2 m V O.-N N- O U 1 .Om ntp drgN .- z .41..' F '^—. Nbn Yin aM.g Nn V u0ia iFiE�p�ppppp Pn�tUa'1A W moa n.,'.fYfVv M ,^�^ P N N N N N N N N N N M t•1 m M * Cp op 0o omD��pp Va<p �tna WW ay 2 eA.E88 p2,%;-O aPa m OO b W al nn W e N s mtNa taa ve2=m•.vvY m^NN. F 4.t> mt-0�0 bo04t1 mom N'M1a m lnf MN±OObIb of `"`°Yee�m�Somist:itR7riNiiiimRH� nN'N t^.ru$�n, a I. s♦i t p V OO m�p m�p t� .na fpp N O Q bmMm$r bmnOitabap,mbnNN.ad:2R4ti%=PAg2Me M)ha N d �LOhy,m G c. S r ONN..;NE §$23mrrG23RT§,'..5MMM..-Nitt�it&��Omnwrmwnn ,-:3'g! E n n M N N `$ a. W O �0 N O qp N p 'km 6 O�' C Il Y pp .a _N OOPM.tpp ^,,pp..pp g�p NNmMm m ° G 4 C:.•0 o0"Nn000 nvfm 4ar+Nipn 0�t�l` O♦ On W u! p iC y S m 0 0 0 0 0 0 O- •-0 0 0 0 0 0 0 0 0 0 0- N v v v v N N v t4i d N �NP, m M 6 C P N ; ' b m Q z C 2 0 0 0 3 3 Nf 2 2 2 4 0 pp pp �p 1p 0p p.p V g00MNNv0 C,ami OpC7,OOY DOts(p.•f bn Mpponpf8 pm Op.n N�0ppMNmmm V O C ..:Mmm� !!QQ i N,rWilg,V hElliv NNSNNNNlmV NOTNR Ma�3tM--$mo- fi � 0 itm tO c 0 i+ a C;Igm' � 8 F Wg WS,.. a ('i v .. w�'z iTi° o at o 4 ..r ; u ' E L�o•%oo a - E 'n c$i° E o a 7 S ti " c u-v � §Um u E to E u m c _ ai Z Z Y 3 z E a 'j E. zulub,;m°ani°n`°-u35o6 8 u° cr . n a p V �['1 �y a� �O (�ny Iff yN� Or Qr <OryO�C!Cr tG OtO't0 f7nN�i tT��f f_C W OOOrO ANO m O V1 O I +F Y�O N i*N.pOpml r A C r A N b aaOO oo ppVV��SS�Iyy ttpp pp I+l�y yy�l M1471 m O rr V N WN W N nmr tDcom44WRNM7 S(ON 00 g 0.. 3 mm3o 68goEie4u6SESS868aaES SS8 2Ef888g a QA��ncnnggnnnn�nnr�nnnnnnnr`n�n r�rr IOONNe0i0gssge,nggggs2EssEggngeegngggSssgnclggnge2 • aNW nmpOnJOnbtM�f OMNOrrOrr NW W rt�pmb.Odr rQ��My.l[.f YriOQ) ir n i . r1PV.I�NDr Opp.OfN�po . co i0i5A2F P10mMV- OQNfAmpnarir V4 tamr ggggnrgl.gnhggogo Oogg Ac000g0000ggggggnc0000gggQog'pg F°1I°9i, 81gts2421tA.l,ma.noVo orA,o�am �8f, mT,5ho oNi_1DW-IWp f f f f f f f f f f f f V V O f f f f O f f f f Q Q V V f f f f Q Q Q Q V f Q 6 V f a V ce$6ZAm "'n-' meii,8XERc62:=ppR;;{;p;VA.uFV4e6APy♦yin lip y�pofo�rup°iaclOi.o ff11%Y Ciel IQf.OM.g*V1p NIp Nppgn bN1J «mOrlNm b'W mAOSOO -ONimOmn Agb10 1▪ W W W mmmn f.rNw.m��.f V Q Q MMMNNN rrr GCO Cp Z n nnnnnnnnAA�A"I�I�Annr rA rAl�l�A g �nNi�grgg u'fMm 1iWpH NhNVWf�pp ipmff Wb NNN M Ypi rlmf�fWfN ph YWf�[Wf ffWfQQI YWINNyN N vWi �YWppINhN^lNh uOWi�YWpi�YWp0i 4WihNQNH n N<O NIO4m NIr)0?f.N-W.N V!Re3RX6-R R O of 4gi2g ryf-00�1�N aM7.1PRE3 G -o o,o d o o vi 0 0 0 c o 0 o e o 0 0 0 0 O O O 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 ACInMIQy RAX8a21ySSACRCO N 1AAar.22tVA pWpf.g uuff 7 WOWm�Nj.0j®V OPI�raqi YlSf SNi_m0 ggg Pi MIb01Ogr DOgg'g r:!E gReNf1.fMF104.01fbrIZSW AA 00*NNNNN M YYff MM mm �fpp 11�� �Ipp 11pp��yy qq{{��JJ{� �Ipp ��pp _� 741311mN1IVyV��pp if l7 t7 Nmlm•{V AOf OfN$w�^S ID`f�4f4�1.(,NAt�"lpOlpVV��"!:�v V OOA04�y giDOmIA�g"t7 i1:3 p) NN I+,fA qQ fCl In Kl'F IRn �: T W001008ry� NN mN X3 CJ'Ir� `Qa Qm Sf`°i u"5 a 2 O Nb <AbQsPOf W m rO .IryNQ Ar NNrypn�l?y rtlf Nb bR DNO lO 0falii'011 NQpApOQYbtbbE�n3ApmpOVropVOMNNN 2 m a_ .go“i,Yv',enol*W2.W0t4mmg�w�a4'14,7 u1,”.;;TJMnq mMfi'+,o 3 NOmmEE R5rIf»FEIHNWS $nP AVAv °+ EZ 2 a C O_ y«YQ p♦y pprpp O♦♦ ligW,OGQ1AAAppNmm 4 yy zNAs;;IgOnm a0fmOg grAl?,mS1 O pp ACA:MN)bymmmiiWmp �SOOgVYR NOIm&O00Nbn IL F pigw.Iy..T.gamomoritggso{,m.QiympmNmei'rgi.rwss $RE!sw,,$g6.7, O Ap yy�lmAO01mpWf. V.17,4v W fOI-aD.,OrN n nIt2im .2i000bi Amy l�.g raz^N8 ifGN Z {7 MIrlmM�� f O V V Q4 f f f Qb b„b b�.n..ffN�i rq YYYiii biD 101010 1O 1D b tm0 W pNIXIOrO2;:72ION'62c1. lOfWq�NIWbrrr4V-S6 fOMmNOWgg Af0�eR f OI`gsI$`'lae jpizlV"�S4g sr..itftrn.nbbulbb lgg g m�mg*.t: gIg+'I�'inrinlnvaoQa �S`a'Jf r'ngnmW 'S�`ra$iO4SroSiow;:i- • rAnmmr:g1.igt lgtgsnnr.r.ipng5vE.. ,F5F;tQnT+wgsr.gw� SAO V 000)0)0r. mo 2 w A 0)W O0 0)V"N b<Nm 0 IO g m 00 A-O 0000 W 0)0)AO0)0)OMl,0)0) 42 - 60$N Oi W o6 ce Ol Ci.lt W CIO O W Oi OI Oi W Oi W Oi to m m 0)cti cd.6M W Q W W ai W W COf A2 0n QOi O rO;;RnVlm�,nr00OW NOm:AE0h1[I a WoV iO Nri6t")Nrm ?n pO bK pNmm O00 2n(MO ptl10ig pyasP $fQIf440VQ<2G2b . 010b.�pTi6.10♦2O6 r p N 3 U a rn 8 � 0 a II |` I rii 3- : § 2§2 § VVVV \ 02 000 0 000c2 6 I B §§1 (12 # - ;-& a k ;{ 2 7 �oo l6000 \ '2 -§°fi! ® ( ! ) ))7) ,� 2 P «■! / / kkk \ \((§ \41411 fE • — 4 ; § \i \ �;�/ ) § & , t 4 .i... \ ,-q! /- �, OC,CO _ k§§§ / ` "i'k ~ } , ¥z os. � ...� kI § §§§ ) § < • / = \_ ® \{ o }& ® E6 ƒ §/& ) \\)\ k\ .Co //} �' . . 2 > !!» ! =J2a 0} O. »a / \ ! /_ « ; ! 0. \.6= . ¢ e 28 m } § k k ; ,( § ;%§ $ Mqr# tr \ \ * ® #r§ glop, & 0 E m 2 2 !« \ |®f § $rM5 2g \ `kk / §k§/ }/ / ( �\ � | 47 i \} \ CON} o ) !# a ! I ! - E ` ! ! \ \2 o , \ , f 3 REPlOL Schlumberger NELL FIELD STRUCTURE Qugruk#3 and Qugruk#3A North Slope Exploration Qugruk#3 �gnet c Parameters S etlon NA027 Alaska State Plane Zone04,US Feet Mlsce laneous Dip: 80.638' Date: February 16,2013 Motle: SCAM 2012 Cat SI ocSI 7020 2.216 Northing: 567221900 ftUS Grid C : 0.666Slot 0-3 Scenario 10 TVO Ref: RK6(405 above MSL) Mao Dec: 19.664` FS'. 57575 8n Lon: W 150 42 24.436 Eeating'. 412876 00 841S Scale Fact'.0.99990862 Plan Ougruk60 Srry Date M.10 14,2013 -4000 -3000 -2000 -1000 0 1000 2000 Qugruk#3A Qu•uk#3A Sce - 14 5000 ') 51( ••• 5000 REP13 NorKiem Polygo. 4000 \ 4000 3000 3000 A A A Z F 2000 2000 • 3 •0 1000 1000 V 4. Conductor 134/8"Csg Tie-In survey 0 • ...RTE 1. 0 WRP -1000 -1000 • Qugruk#3 1'-2000 -2000 Qugruk#3 Scenada12 - • -4000 -3000 -2000 -1000 0 1000 2000 «< W Scale= 1:1000(ft) E >» • • Schlumberger FIELD STRUCTURE Qugruk#3 and Qugruk#3A North Slope Exploration Qugruk#3 Magnet.Parameters Surface L°aton NAD27 Alaska Slate Rene,Zore04,US Feet Mlscellaneea Moae 50552012 Op: 80.636° Date. Feteary la,2013 Let. N 7020 2.216 Notary 5972219.0011US Drb Com:-0.666° Slot O-3 Samna l0 TVD Ref'. RKS(46h.bece MSL) Meg Dec. 19.664° FS: 57575.807 Lon: W150 02 24.436 Eafare: 412878008US Scab Fact 0.99990862 Plan: Quaru*3 Sny Dab.Merch14.2013 -500 0 500 Qugruk#3 Qugruk#3 Scenario 12 Qugruk#3A Qugruk#3A Scenario 14 13-3/8"Cap 0 1500 3000 LSUU - LSUU O _.._... 0 : • 0 • I I ' Q3 Tie-In survey RTE (73 WRP 20"Conductor H 1500 3000 3000 1500 QugrutdK7K7�t Scenario 14 Qugruk#3 �+ u ruk#3A 13-3/8"Cog • Q 9 Qugruk#3 Scenario 1�` -500 0 500 Tie-In survey 3000 Vertical Section(ft)Azim=172.146 Scale=1:500(ft) Origin=0 N/-S,0 E/-V 3000 4500 4500 O U • 6000 6000 Qugruk#3 7500 Qugruk43A Scenario 14 • 7500 •ugrul�3X 4. 9000 Qugruk#3 Scenario 129000 -4500 -3000 -1500 0 1500 3000 Vertical Section(ft)Azim=172.14°Scale= 1:1500(ft) Origin=0 N/-S,0 E/-V i.� _ Repsol Services Company REPl01 2001 Timberloch Place,Suite 3000 The Woodlands,Texas,77380 To: AOGCC(Alaska Oil and Gas Conservation Commission) Makana Bender,Natural Resources Technician 333 West 7th Avenue,Suite 100 Anchorage,Alaska 99501 RE: REPSOL 0 rk Lorenzo Villalobos/Juan Aluja /i i�:"' jalujav@repsol.com,FAX 287-297-1773 r 2001 Timberloch Place,Suite 3000 The Woodlands,TX,77380 Dear Makana, In the data listed below, Repsol Alaska hereby is submitting the technical information of the well Qugruk #3 following the instructions of the regulation 20 AAC 25071 of the Alaska Oil and Gas Conservation Commission (AOGCC). 2DVDs: 1:6 7.Zc. - 2 DVDs,containing Schlumberger's Wireline Logging final deliveries Paper Copies: - Wireline Logging final plots. Please acknowledge receipt by signing and returning a copy of the transmittal letter (by postal mail, email or fax) to the attention of Repsol, Lorenzo Villalobos/Juan Aluja, 2001 Timberloch Place, Suite 3000,The Woodlands,TX, 77380. Date 7v U.A-i-- kz � Signed: _i14.41. 616t..4 CC: Roberta Camuffo �� 02` a 7 R EC E WEE Repsol Services Company REPJOL ,M'i eJ �0 3 2013 2001 Timberloch Place,Suite 3000 '` The Woodlands,Texas,77380 A0000 To: AOGCC(Alaska Oil and Gas Conservation Commission) Makana Bender,Natural Resources Technician 333 West 7th Avenue,Suite 100 Anchorage,Alaska 99501 RE: REPSOL Lorenzo Villalobos/Juan Aluja jalujav@repsol.com,FAX 287-297-1773 2001 Timberloch Place,Suite 3000 The Woodlands,TX,77380 Dear Makana, In the data listed below, Repsol Alaska hereby is submitting the technical information of the well Qugruk#3 following the instructions of the regulation 20 AAC 25071 of the Alaska Oil and Gas Conservation Commission (AOGCC). 4 DVDs: - 1 DVD, containing Canrig's Mudlogging final deliveries aZ ,2 ; S - 1 DVD,containing Schlumberger's LWD-Vision Services final deliveries ,?A 4 >7 - 1 DVD, containing Schlumberger's VSP final deliveries 2. - 1 DVD, containing Miscellaneous Well Data 2),(o s� Paper Copies: - Mudlogging final plots ✓-- - LWD final plots •— ' - Extension Requests for following logs/analysis/studies: - Wireline Logging Data - MDT fluid samples laboratory analysis - Biostratigraphic Studies - Conventional Core and Sidewall Cores analysis - Isotubes analysis - Core chips Please acknowledge receipt by signing and returning a copy of the transmittal letter (by postal mail, email or fax) to the attention of Repsol, Lorenzo Villalobos/Juan Aluja, 2001 Timberloch Place, Suite 3000,The Woodlands,TX, 77380. Date / J - t Signed: CC: Roberta Camuffo ww\�����y�,s7 THE STATE Alaska Oil and Gas it: - �M °fALASI�:A -, _ ___ .�: Conservation Commission GOVERNOR SEAN PARNELL 333 West Seventh Avenue O�+ALAS�P Anchorage, Alaska 99501-3572 Main: 907 279.1433 Fax: 907.276.7542 Bill Hardham Operations Manager REPSOL USA rl 2001 Timberloch Place, Suite 3000 I 1 7 Woodlands, TX 77380 Re: Wildcat Field, Wildcat Pool, Qugruk 3 Sundry Number: 313-151 Dear Mr. Hardham: Enclosed is the approved Application for Sundry Approval relating to the above referenced well. Please note the conditions of approval set out in the enclosed form. As provided in AS 31.05.080, within 20 days after written notice of this decision, or such further time as the Commission grants for good cause shown, a person affected by it may file with the Commission an application for reconsideration. A request for reconsideration is considered timely if it is received by 4:30 PM on the 23rd day following the date of this letter, or the next working day if the 23rd day falls on a holiday or weekend. Sincerely, , , ?'' '' ''2(-4— Cat y P. roerster Chair DATED this day of April, 2013. Encl. • STATE OF ALASKA v p- 41�YB ALASKA OIL AND GAS CONSERVATION COMMISSION APPLICATION FOR SUNDRY APPROVALS l'pr i. ,,- 20 AAC 25.280 1.Type of Request: Abandon❑✓• Plug for Redrill❑ Perforate New Pod❑ Repair Well❑ Change Approved Program ❑ Suspend❑ Plug Perforations❑ Perforate❑ Pull Tubing❑ Time Extension ❑ Operations Shutdown❑ Re-enter Susp.Well❑ Stimulate❑ Alter Casing❑ Other: ❑ 2.Operator Name: 4.Current Well Class: 5.Permit to Drill Number: REPSOL USA Exploratory Q. Development ❑ 212187. 3.Address: Stratigraphic ❑ Service ❑ 6.API Number: 2001 Timberloch Place,Suite 3000,Woodlands,TX 77380 50-103-20664-00-00 7.If perforating: 8 Well Name and Number. What Regulation or Conservation Order governs well spacing in this pool'? Qugruk 3- Will planned perforations require a spacing exception? Yes ❑ No ❑ 9.Property Designation(Lease Number): 10. Field/Pool(s): ADL 391445' Wildcat• 11. PRESENT WELL CONDITION SUMMARY Total Depth MD(ft): Total Depth TVD(ft): Effective Depth MD(ft): Effective Depth TVD(ft): Plugs(measured): Junk(measured): - 7500 • 7233 • 7500 7233 Casing Length Size MD TVD Burst Collapse Structural Conductor 83' 20" 113' 113' Surface 2086 13-3/8" 2120' 2120' 5020 2260 Intermediate Production Liner Perforation Depth MD(ft): Perforation Depth TVD(ft): Tubing Size. Tubing Grade: Tubing MD(ft): N/A N/A N/A N/A N/A Packers and SSSV Type: Packers and SSSV MD(ft)and TVD(ft). N/A N/A 12.Attachments: Description Summary of Proposal 2 X13.Well Class after proposed work: Detailed Operations Program ❑ BOP Sketch ❑ Exploratory Q. Stratigraphic❑ Development❑ Service ❑ 14. Estimated Date for 15.Well Status after proposed work: 3/28/2013 Commencing Operations: Oil ❑ Gas ❑ WDSPL ❑ Suspended ❑ 16.Verbal Approval: Date: 3-z2-/3 WINJ ❑ GINJ ❑ WAG ❑ Abandoned Q• Commission Representative: C s—a,c,.,./- GSTOR ❑ SPLUG ❑ 17.I hereby certify that the foregoing i9 true and correct to the best of my knowledge. Contact Michael Quick 907-375-6933 Email michael.quick@servexternos.repsol.com Printed Name Bill Hardham Title Operations Manager Signature Phone 907-375-6917 Date 3/27/2013 ...):1440LACIL.,,..„._ COMMISSION USE ONLY Conditions of approval: Notify Commission so that a representative may witness Sundry Number: Plug Integrity V BOP Test ❑ Mechanical Integrity Test ❑ Location Clearance ❑ Other: RBDMS APR 0 3 201" Spacing Exception Required'? Yes ❑ No LIQ Subsequent Form Required: /6- yO7 / APPROVED BY Approved by: , r COMMISSIONER THE COMMISSION Date: 4- -3 - /3 a'l�ubmit Form and ra j Parrot � tr3Qv ef42A L Approved application is valid for 12 months from the date of approval.�"� l hVe�in Duplicate �� March 27, 2013 AA. .f' -Y'1.;I . i Alaska Oil and Gas Conservation Commission 333 West 7th Avenue, Suite 100 Anchorage, AK 99501 RE: 10-403 Sundry for Permanent Abandonment: Repsol Qugruk#3 PTD 212-187 Dear Commissioner: Repsol hereby submits an Application for Sundry Approvals for the permanent abandonment of Qugruk#3, permit to drill 212-187. Qugruk#3 was spudded 2/27/2013, and a total depth of 7,500' was reached on 3/23/2013. The abandonment procedure is attached with the form 10-403 sundry application. An LWD log for the well was reviewed with Mr. Guy Schwartz and Ms. Patricia Bettis on 3/26/13; and two areas of potential hydrocarbon zones were identified. The abandonment procedure takes this into account, and Repsol plans to follow 20 AAC 25.112 (g)(1) for tagging requirements for each plug, by placing weight on the plug. Pertinent information attached to this application includes the following: 1. Form 10-403 Application for Sundry Approvals — 2 copies 2. Abandonment Procedure 3. Current Wellbore Schematic 4. Proposed Abandonment Wellbore Schematic The AOGCC is requested to treat as confidential all information included. If you have any questions or require additional information,please contact Bob Jones, Drilling Manager at 281-863-1618, myself at 907-375-6917, or the technical contacts contained in the following pages. • � � �� �� A Sincerely, vim" - /� � ft eettjf: Af• . /3 Bill Hardham I�,,� f 3 Operations Manager v Q fA Repsol USA 14577 19 t4. z REPSOL USA Z Qugruk#3 P&A Procedure(PTD 212-187) 1. Notify regulatory agencies 48 hours prior to commencing abandonment Ope�r tions. 2. Rig up cementers and test lines to 4000 psi. 3. RIH with open ended drill pipe to+/-7500' MD. 4. Pump 112 bbls/543 sacks of 15.8 ppg Class G cement for 700'open hole plug with 10% excess factor. 76b x . 1461'2 e/o- - f vZ r38L. .r-to7. - /l z 5BL- 5. Pull up 12 stands and circulate drill pipe clean. WOC. 6. RIH and tag cement plug while circulating with 5 lbs to verify top of cement. ??4, 21?-1j (6oen 7. Pull up to 4600' MD. 8. Pump 96 bbls/462 sacks of 15.8 ppg Class G cement for 600'open hole plug with 10% excess factor. Comx .ivs-P = k7 -,o7 76 ,6QL 9. Pull up 15 stands and circulate drill pipe clean. WOC. 10. RIH and tag cement plug while circulating with,5000d lbs to verify top of cement. loo�� Place Kickoff Plug for sidetrack Qugruk 3A (PTD#213-031)with TOC at+/-2300', and drill per approved permit to drill. Qugruk 3A abandonment to be submitted as separate 10-403 upon completion of well. • REPSOL 2012-13 Explor 3n REPlot • Qugruk #3 lem Current Wellbore Schematic - Confidential Rig 7ES RKB: 29' Q-3 Elevation: 17' r: ; , I"4--- 26" RKB to MSL 46' I I Hole I- yI I , , 4111 20" 131#J55 Casing Horizon SSTVD @ 113' MD • -4 — 16" Hole -1034' Permafrost Base • 13-3/8" 68# L-80 BTC Casing @ 2120' MD/TVD -2204' Upper Cretaceous MFS -2416' Tuluvak/Seabee '-12-1/4" Hole -3769 Nanushuk 19° Inclination -4964' Torok -6246' HRZ -6481' Kuparuk C +z4 tit , -4 — 53' Core @+/- 6925' - 6978' MD -6687' Alpine -6934' Nuiqsut Estimated TD @ +/- 7500' MD / 7233' TVD A. Dial , REPSOL 2012-13 Explor in REPIOL ' Qugruk #3 Confidential Proposed P&A Schematic """"'i Rig 7ES RKB: 29' Elevation: RKB to MSL 46' t % 0 I "4---- 26" Hole E I .:.: % 20" 131# J55 Casing :.: 113' MD 13-3/8" Casing cemented toi: % , ° .11-- 16" Hole Surface w/53 bbls cement °:::: :, returns at surface (pumpedp" ::::: ° , ::• 850 bbls ASL lead and 80 ° bbls Class G tail) ° ; • : ° : :a i / :: Schwartz, Guy L (DOA) From: quick, michael (ext) <michael.quick@servexternos.repsol.com> Sent: Thursday, March 28, 2013 8:58 AM To: Schwartz, Guy L(DOA) Subject RE: Q-3 P&A (PTD 212-187) Thanks Guy. Mike From: Schwartz, Guy L(DOA) [mallto:quy.sd hwartz,u alaska.gov] Sent:Thursday, March 28, 2013 8:52 AM To: quick, michael (ext) Subject: Q-3 P&A(PTD 212-187) Mike, You have verbal to proceed with the P&A of Qugruk#3 as we discussed at our office. Here is a markupcopyfor you till g signed one makes it to you.. I made some minor changes.. tagging with 10000 lbs vs 5000 lbs. This copy should be forwarded to the rig so they have the markup changes to the procedure. Will work on signed copy for you today. Guy Schwartz Senior Petroleum Engineer AOGCC 907-444-3433 cell 907-793-1226 office 1 MEMORANDUM State of Alaska Alaska Oil and Gas Conservation Commission TO: Jim ReggDATE: 3-29-13 & 3-30-13 P. I. Supervisor off 417")� -, FROM: Bob Noble SUBJECT: Plug Tag Petroleum Inspector Repsol USA Qugruk #3, PTD 212-187 3/29/13. Upon arrival I met with Repsol representative Mr. Garland Goodwyn. We went over Repsol's plan for plugging the well. The sundry that they had was not signed by an AOGCC Commissioner. Garland told me that their procedure had a verbal approval by Guy Schwartz. I told Garland I was not approving any part of the procedure, I was there to witness the plug tag only. Bottom Plug. Garland told me that they had pumped 120 BBLs of 15.8 Class G cement. Top of cement was projected to be at 7500 ft MD RKB. 11:00 am — they ran in hole with 5-inch drill pipe with a mule shoe on the end. They washed down to 6825 ft, pumping 100 gpm. No sign of cement was found. 1:00 pm — washed down to 6850 ft, pumping100 gpm. We observed a few 5000 pound spikes that would go away. At 6852 ft they tagged good hard cement and sat down with 14,000 lbs on the mule shoe. We called 6852 ft MD RKB top of cement for the bottom plug. 3/30/13. I returned to the Qugruk #3 location to witness the second plug. Second Plug. Garland told me that they had pumped a retainer basket and then pumped 115 BBLs of 15.8 Class G cement. The calculated top of cement was 3912 ft MD RKB. Cement was in place at 21:00 3/29/13. Again, 5-inch drill pipe with a mule shoe was used to tag this plug, pumping 100 gpm while running in the hole. 6:00 am —washed down to 3942 ft MD RKB; no sign of cement. 8:00 am — washed down to 3980 ft MD RKB; no sign of cement. 11:00 am — washed down to 4010 ft MD RKB; no sign of cement. 1 :30 pm — washed down to 4060 ft MD RKB; no sign of cement. 4:00 pm —washed down to 4095 ft MD RKB; no sign of cement. With the top of the Nanushuk formation being 4190 ft MD RKB the cement was not at least 100 feet over the formation as required, so the decision was made to pump another plug. I did not witness the second attempt at the second plug. Attachments: none 2013-0330_Plug_Verification_Qugruk-3_bn.docx Page 1 of 1 1110 ,„,,,p-,v,\71,777,-/ ,„,7A THE STATE Alaska Oil and Gas � °fALAS� Conservation Commission . itt -_ Th ' GOVERNOR SEAN PARNELL 333 West Seventh Avenue 0 e. Anchorage, Alaska 99501-3572 ALAS Main: 907.279 1433 Fax: 907.276.7542 Bill Hardham Operations Manager Repsol USA 2001 Timberloch Place, Suite 3000 Woodlands,TX 11380 Re: Wildcat Field, Wildcat Pool, Qugruk 3 Repsol USA Permit No: 212-187 Surface Location: 1805' FEL, 1732' FSL, SEC. 6, T11N,R6E, UM Bottomhole Location: 1514' FEL,434' FNL, SEC. 7, TI IN, R6E, UM Dear Mr.Hardham: Enclosed is the approved application for permit to drill the above referenced exploration well. All dry ditch sample sets submitted to the Commission must be in no greater than 30' sample intervals from below the permafrost or from where samples are first caught and 10' sample intervals through target zones. This permit to drill does not exempt you from obtaining additional permits or approvals required by law from other governmental agencies, and does not authorize conducting drilling operations until all other required permits and approvals have been issued. In addition, the Commission reserves the right to withdraw the permit in the event it was erroneously issued. A weekly status report is required from the time the well is spudded until it is suspended or plugged and abandoned. The report should be a generalized synopsis of the week's activities and is exclusively for the Commission's internal use. Operations must be conducted in accordance with AS 31.05 and Title 20, Chapter 25 of the Alaska Administrative Code unless the Commission specifically authorizes a variance. Failure to comply with an applicable provision of AS 31.05, Title 20, Chapter 25 of the Alaska Administrative Code, or a Commission order, or the terms and conditions of this permit may result in the revocation or suspension of the permit. Sincerely, Cathy P. oerster Chair 5f. DATED this Ji day of January, 2013. cc: Department of Fish&Game, Habitat Section w/o encl. (via e-mail) Department of Environmental Conservation w/o encl. (via e-mail) STATE OF ALASKA AL, .OIL AND GAS CONSERVATION COMMI: \l PERMIT TO DRILL 20 AAC 25.005 la.Type of Work: 1b. Proposed Well Class: Development-Oil ❑ Service- Winj ❑ Single Zone ❑ lc.Specify if well is proposed for: Drill ❑, • Redrill ❑ Stratigraphic'Test ❑ Development-Gasp Service-Supply ❑ Multiple Zone J- Coalbed Gas ❑ Gas Hydrates ❑ Re-entry ❑ Exploratory Ot Service- WAG ❑ Service-Disp ❑ Shale Gas ❑ 2.Operator Name: 5. Bond: Blanket Q Single Well El 61., Well Name and Number: REPSOL USA Bond No. 24030 .15 222896•7e8 �ttVLL. Qugruk 3• 3.Address: 6. Proposed Depth: 12. Field/Pool(s): 2001 Timberloch Place,Suite 3000,Woodlands,TX,77380 MD: 9306• TVD: 8939. Wildcat • 4a. Locationgoofs Well(Goer;ental Section): .,)IL3 7. Property Designation(Lease Number): Surface: 3849',FEL,1849 FSL,Sec.6,T11N,R6E,UM 111413°'3 ADL 391445 • Top of Productive Horizon: 8.Land Use Permit: 13.Approximate Spud Date: 1618'FEL,343'FSL,Sec.6,T11N, R6E,UM LAS 28269 2/15/2012 " Total Depth: 9.Acres in Property: 14.Distance to Nearest Property: 1514'FEL,434'FNL,Sec.7,T11N, R6E,UM 2469 acres • 3093 ft • 4b.Location of Well(State Base Plane Coordinates-NAD 27): 10.KB Elevation above MSL: • 44' feet 15.Distance to Nearest Well Open Surface:x- 412876 ' y- 5,972,219 • Zone-4. GL Elevation above MSL: • 15' feet to Same Pool: N/A 16.Deviated wells: Kickoff depth: 2400 feet • 17.Maximum Anticipated Pressures in psig(see 20 AAC 25 035) Maximum Hole Angle: 20 degrees . Downhole: 4648 psi• Surface: 3754 psi 1 18.Casing Program: Specifications Top - Setting Depth - Bottom Cement Quantity,c.f.or sacks Hole Casing Weight Grade Coupling _ Length MD TVD MD TVD (including stage data) 26" 20" 131# J-55 PEB 80 0' 0' 100' 100' 38 sx Permafrost type L cement 16" 13-3/8" 68# L-80 BTC 2214 0' 0' 2214' 2214' 771 sx Perm Lead,314 sx/Glass G Tail iz.Zs" -- — — -- .2ay (, -I,2-1 130C 8Sis-' 6/-f SG ;Gk /ec,„.„ 19. PRESENT WELL CONDITION SUMMARY(To be completed for Redrill and Re-Entry Operations) Total Depth MD(ft): Total Depth TVD(ft): Plugs(measured): Effect. Depth MD(ft): Effect.Depth TVD(ft): Junk(measured): Casing Length Size Cement Volume MD TVD Conductor/Structural Surface RECEIVED Intermediate Production DEC 14 2012 Liner Perforation Depth MD(ft): Perforation Depth TVD(ft): Q 0GCC 20. Attachments: Property Plat Q. BOP Sketch Q. Drilling Program Q• Time v.Depth Plot Q Shallow Hazard Analysis Diverter Sketch Q ' Seabed Report ❑ Drilling Fluid Program E• 20 AAC 25.050 requirements 21. Verbal Approval: Commission Representative: Date 22. I hereby certify that the foregoing is true and correct. Contact Michael Quick 907-375-6933 Printed Name Bill Hardham Title Operations Manager Signature Vol UAC,. Phone 907-375-6917 Date 12/12/2012 Commission Use Only Permit to Drill API Number: Permit Approval See cover letter for other Number: a/-C I g 7 50-/03-010((09 -00 - QQ Date: i 79111) requirements. Conditions of approval: If box is checked,well may not be used to explore for,test,or produce coalbed methane,gas hydrates,or gas contained in shat' Other: 4 '-/006 S . l d P "ris / Samples req'd: Yes No❑ Mud log req'd: Y� IC fi1 !1 C`1 k ere r--F -7j C..,s- .H2S measures: Yes Er No❑ Directional svy req'd: Y' f❑ Srx ax.6 F lion f\LI 1. EI Vias (7 M o 474 Acp ' f- DATE: (— 3(- 13 �/ APPROVED BY THE COMMISSISSION ONEER r / d /s v ex/0 R t C l NA L 'e)10 6 Form 10-401(Revised 7/2009) This permit is valid for 24 months from the date of approval(20 AAC 25.005(g)) Submit in Duplicate I w E RECEIVED December 12, 2012 DEC 14 2012 Alaska Oil and Gas Conservation Commission AOGCC 333 West 7th Avenue, Suite 100 Anchorage, AK 99501 RE: Application for Permit to Drill: Repsol Qugruk#3 Dear Commissioner: Repsol hereby applies for a Permit to Drill an onshore exploratory well on the North Slope. The well, called Qugruk#3, will be located approximately 15 miles Northwest of DS2M. Repsol plans to spud the Qugruk#3 approximately February 15, 2013. Ice road/pad construction equipment has already begun prepacking ice road and ice pad alignments. Upon receipt of all necessary permits and approvals the construction of the DS2M staging pad will begin, followed by the construction of the ice road and ending with the construction of the ice drilling pad. Upon completion of the ice drilling pad, Nabors' Rig 7ES will be transported to location and the well will be drilled to TD. No • well testing is planned at this time. At the completion of the drilling program, the drilling rig will be demobilized to Deadhorse. Pertinent information attached to this application includes the following: 1. Form 10-401 Application for Permit to Drill (Public Information)— 1 copy 2. Form 10-401 Application for Permit to Drill — 2 copies 3. Well Prognosis and discussion of operational considerations 4. Location Plat and Drill Pad Layouts 5. Days vs. Depth Drilling Curve 6. Drilling Procedure 7. Wellbore Schematic 8. Directional Plan 9. Pressure information including pore pressure, mud weight and fracture gradient curves, maximum anticipated surface pressure calculations, FIT and LOT procedures, and casing properties and design factors. 10. Drilling Area Risks 11. Diverter, BOP and Choke manifold schematics and Wellhead Description 12. Cement Program 13. Drilling Fluid Program 14. Shallow Hazard Report Page 2 The AOGCC is requested to treat as confidential all information included in the Application for Permit to Drill (except the Public Information Copy) as information in these documents is drawn from research and data proprietary to Repsol. If you have any questions or require additional information, please contact Bob Jones, Drilling Manager at 832-442-1618, myself at 907-375-6917, or the technical contacts contained in the following pages. Sincerely, 3 IA-a, Bill Hardham Operations Manager Repsol USA RECEIVED DEC 14 2012 AOGCC REPJOt REPSOL USA Application for Permit to Drill Qugruk #3 North Slope, AK December 2012 REPSOL USA Qugruk #3 Overview and Timetable Repsol intends to conduct an exploration drilling program on leases operated by Repsol during the winter 2012 - 2013 drilling season. The drilling program will include activities beginning during the summer of 2012 and ending during the summer of 2013 including: • Conducting a field program during June through September to obtain engineering and environmental data to define ice road routes and ice pad locations. Specific activities include ground surveys for onshore ice roads and pads, lake surveys to determine locations and availability of water for ice road/pad construction and operational uses, and archaeological and cultural resource investigations. • Monitoring soil temperatures with thermistor strings placed along ice road routes in September and pre-packing the ice road alignment for ice roads via tundra-approved vehicle in November to December as permitted by ADNR and the NSB. • Construction of three rig ice pads and three camp pads will be located in the Colville River Delta in which three exploratory wells will be drilled (Qugruk#1, Qugruk#6, and Qugruk#3). An ice pad will be constructed off of DS2M for staging construction and drilling operations in December or January as permitted by ADNR and the NSB. • Construction of approximately 30 miles of onshore ice roads in December and January as permitted by ADNR and the NSB for transporting drilling rigs and equipment for drilling operations. • Conduct the exploration drilling operations during January to April at three separate locations using three separate drilling rigs. The wells are being drilled primarily to assess oil reserves within leases operated by Repsol. • Demobilize all equipment from the ice pad and clean up the sites and ice roads during April to early May. • Conduct summer clean up operations during July to August 2013. Operational Considerations Permafrost Based on offset wells and seismic data,the permafrost is assumed to be present from the surface - to approximately -1070' SSTVD. Gas hydrate problems were encountered in only one of the offset wells so it is not anticipated to present any drilling difficulties. Surface Casing Shoe Depth Surface Casing Setting Criteria ° The on-site Repsol geologist will pick the MCU lithology change. This is prognoses to be at a depth of 2070'TVD/MD. The surface hole TD will be 70 to 100' past this point. If the MCU has not been identified by 2214' MD/TVD then drilling operations will be shut down pending a re-evaluation of the setting point with the on-site geologist and the Repsol Drilling Superintendent. The setting depth for the 13-3/8" surface casing will be between 2,184' —2,214' TVD located deep enough to isolate the permafrost section, shallow gravels and unconsolidated sediments and provide adequate integrity at the casing shoe to accommodate future mud weights. The first expected hydrocarbon bearing sand is the Tuluvak Sand (Tuluvak_FM) at+/- 2,474' • TVD. ,,K,Ro „ ' s ALL DEPTHS ARE IN ”` - 0/ .08t TVDSS I g Decrease ROP @ 2020 ft 1 i T 60 ft esv _ r ri,� ... . . :. AM.-- r MCU Top @ 2070 ft 100 ft s '"S T ---1 2150 — r.-. 21.% -i..._. ` , .� 03 Punned Surface hole V ' V TD 2140 to 2170ft TVDSS zm y [ - as _ ase t ... < 1 —..m.,.e�*, .t 2220ft \ 1 _a Q-3 Re Evaluation I �- . , — - _ Line: 2170ft TVDSS Lost Circulation and Sloughing Shales Some of the wells in this general region encountered sloughing shales below the HRZ and lost circulation in and near their target horizons. The Qugruk#3 mud program has been designed to take these potential problems into account. Pressures Anticipated pore pressures are derived primarily from the histories of offsetting wells in conjunction with a pore pressure analysis. As shown on the attached pore pressure plot and maximum anticipated surface pressure (MASP)calculations, the highest expected pressure is at 8,939 feet TVD and is 4,648 psi (0.52 psi/ft= 10.0 ppg EMW) and will result in a maximum pressure, with a full column of gas, of 3,754 psi,but due to formation breakdown, will result in a maximum pressure at the surface of 1,412 psi (see included calculations). A 5,000 psi working pressure BOP and wellhead system will, therefore, be used on this well. Shallow Hazard Review Abnormally pressured shallow gas is not anticipated in the surface hole interval of Qugruk#3 1 I due to the planned surface casing depth. The pore pressure prediction section of this application contains an evaluation of the risk of drilling high pressure zones as potentially recognized after seismic processing. The following plot can be used as a reference for the planned mud weights compared to the expected pore pressure and fracture gradients. A gas influx on an offset well was experienced at a depth of 2,500' TVD on Well Fiord#2. Mud weight was 9.2 when the event occurred, BOP's were in place and the well was killed with 9.4 ppg. The mud weight was increased to 9.7 ppg and no other problems were encountered. Qugruk-3 PP, FG, and MW 0 - PP —Fg 1,000 — —MW � 2 000 q3A • 3,000 — -- 4,000 — --r- 5 000 r• 5000 — — — 6,000 • • 7,000 • 8,000 9,000 — - 8 9 10 11 12 13 14 15 16 17 18 19 Pressure(ppg) A well control event occurred on Qugruk#2 while drilling with 9.2 ppg mud at 2,523' MD. The design of Q-3 has the surface casing set above the Tuluvak and mud weight in excess of 10.2 ppg will be used to drill the 12-1/4" section. The attached "Alaska Shallow Hazard Screening" report is submitted in accordance with 20 AAC 25.061 (a). This report concludes: (1) the risk for sub-compacted sequences and shallow gas influxes are none to low at the studied areas; (2) the studied area is located inside a potential gas hydrate zone; (3) the gas hydrates stability zone is located in the permafrost and the sedimentary sequence located below the permafrost interval; and (4) the well Till 1 shows some areas that can be associated to gas hydrates. Drilling Within Annular Blowout Preventer Limitations The highest pressure expected above the surface casing setting depth (0.452 psi/ft pressure gradient at 2214' TVD less a 0.1 psi/ft gas gradient) is 780 psi; which is within the 2,000 psi working pressure rating of the diverter. Below the surface casing, BOPs will be used. BOP System and BOPE Testing The BOP system of Nabors Rig 7ES is rated at 5,000 psi working pressure and is described in the BOPE section of this application. Since the calculated maximum anticipated surface pressure- in this well is 3,754 psi, it is planned to routinely test all BOPE to 4,000 psi, except the annular BOP which will be tested to 50% of its rated working pressure (-2500 psi). BOPE will be tested every 7 days per 20 ACC 25.035. Well Deviation The Qugruk#3 will be drilled as a slightly deviated hole (-20 degrees). Directional control will be monitored via MWD in all hole sections. H2S None of the offsetting wells encountered measurable amounts of H2S in the intervals to be drilled, and it is not expect that drilling the Qugruk#3 well will encounter measurable amounts of H2S. However, the drilling rig will be wired with operating sensors, enhanced by additional sensors tied into the mud logging system, to continuously monitor for the presence of H2S. • Drilling Waste Handling Waste drilling mud from the well will be temporarily stored within a bermed storage cell in tanks prior to haul off to G&I ; while the drill cuttings will be temporarily stored within a bermed storage area in "shale bin" containers. Cuttings will be hauled to an approved disposal facility for processing and disposal: Diagrams are included with this application that shows the ice pad layouts with the proposed location of the storage cells. Additional Information Additional information on operations such as formation tops, logging, mud logging, etc. can be found on the attached Qugruk#3 Well Prognosis. Certified Location Plat An as-built location plat, certified by a Registered Land Surveyor, will be submitted shortly after construction of the drilling location is completed and the conductor pipe is set. Contacts The contacts within Repsol for information are: Reporting and Technical Information: Michael Quick 907-375-6933 or Amanda Dial 907-375-6932 Geological Data and Logs: Sofia Soriano 832-442-1476 0 a 0 N .0 O E aJ C 0 upA s 0. CU L -III tel Q M N CO CI ul !TO 0 — Q C v M M A 3 0 L_ to 7 a 0 N M 09 rA O / V 0 0 00 0 0 0 0 0 0 0 0 0 0 N a tD Co 0 IN 1 (;;)y;daa painsem O ODU0 F4 .> O D •'•6op vW Q ;ISaN WJZ LL _:____ re C7 Q F- 33 W 3 o N M u. U z^ zQ l'Z< zo�0 Z av as U S O Z Q. Z OMn� Z NNOI Z NNN QOF=N� NWOp -- ZI' I` U O N 0.00101 ••90:7-N.P. ON O aNmp (J x-00 Za1LiH W 1- A o > I- aoo-ei o.00Nco mopnm O�Fw-J_i OCOj g 4 N LL TZ Q CO Q cV w O Y X z ° (..9 LL JN j W Z W 0a ~c 0� M N f,, 6"' II eD IN Q< 0 0 C Q U w N O a- m 8 o Z � Y1 a 2 aa. /Q 2 L) (\I o U o E- No j O a Ww 0 3 o0 \ S 20 Op00 0 \ W it o. H XN O Oe I ,- !n In `s ; Z 3 N O 3 T in S'I i c N a w o. a N6 N V O J O 0 �m TA Z I V N O 4'4.. / — 4 2 1� T 6 la J % ® N 2000•oo 3�oo ` rltlG`S I � Sm o a 'o r in 'a O uI 06 ri e- M O , s N C O 0 I. u, Z ? o a Q Y � cn g w 1 ;ft El d U W «.1U > 4 0 O w n o U a 4 c O jNa W g D o ° C, U t u- (2 U VE. �], B w �1x<o CD aowz ...5 o a m O�^UV ayZQ� wclu C x t Z 0 E N i O N rn M v CO 0 0 a C O M C) Qom) 4 O ci C) Z z O `o c W w Z W V w _I w ti 1111 J iiii Q U) X Cn $ V N H Q W coM >-coJ CO -J W O Z Z Z rn CO QCLW W W W W W co O °r Q Q J Ct Z��j LU W J Y O N J D O V d N O N) u) O D o 0Z� t N- ^ N N O CO in O O O) O) T F E) co M C.) co C,•) O O p p O s,, Z Z Z Z Z lil LU V) Cl) LU LU W (3(1 . 1 W W a c J J LU W W J J J CO 0 CO O U) 0 CO Q N LC) CO M N CO a O O O O ° Z z Z Z u W W W w co (I) V) V) m Q Q Q Q W W LU LU J J J J Z ÷. z REPSOL USA Qugruk #3 Well Prognosis Surface Location: 1849' FEL, 1849' FSL, Sec. 6, T11N, R6E, UM' Target Location: 1618' FEL, 343' FSL, Sec. 6, TI 1N, R6E, UM Bottomhole Location: 1514' FEL, 434' FNL, Sec. 7, T11N, R6E, UM Elevation: Ground Level 15' AMSL Drill Floor(DF) 29' AGL• Planned TD: 9306' MD Formation Tops: Tops Depth (TVD) Base Permafrost 1114' MCU 2114' Upper Cret. MFS 2274' Nanushuk 3834' Torok 4996' HRZ 6279' Kup C 6560' LCU 6564' t/ Alpine 6712' Nuiqsut 6949' J2 7949' Sag River 8519' Shublik 8589' TD 8939' Cores: A 180' core is possible in the Alpine sand ✓ Planned Logs: Surface Hole (16"): LWD only: Gamma Ray/Resistivity Production Hole (12-1/4"): LWD: Gamma Ray/Resistivity, Density/Neutron Wireline: Res, PEX, NMR, Well Seismic, Res. Imager, Sonic, SWC, Pressure Measurements Mud Logging: Mud Logging will be in operation from the base of the conductor casing to well TD. Services will include sample collection; plotting of ROP, lithology, and drilling parameters; show description; gas analysis of cuttings; and gas chromatography. Samples will be collected every 30' from the surface to TD, and every 5' in zones of interest. Collect Isotubes from any gas shows. The wellsite Geologist will adjust the interval or sampling rates as required. Qugruk #3 Pressure Calculations and Drilling Risks (cont.) 12-1/4" Production Hole- EVENT RISK LEVEL Miti'ation Shale stability in the Moderate Control with higher mud weight and proper drilling interval below HRZ practices. Lost Circulation Moderate Monitor hole cleaning efficiency. Mitigation by good hole cleaning practices. Reduce mud weight if possible. If losses occur,reduce pump rates and lower mud rheology, use LCM material. Hole Swabbing/Tight hole Moderate Circulate hole clean prior to trip. Proper hole fill on Trips utilizing trip sheets,pumping out of hole as needed. Differential Sticking Low Periodic wiper trips as needed for hole conditions. Do not leave pipe static for extended periods. Abnormal Reservoir Low Follow programmed mud weights, monitor well, Pressure increasing mud weights as needed. Ensure adequate kick tolerance prior to drilling pay interval(s). Formation Integrity Test (FIT) and Leak-Off Test(LOT) Procedures Note that the terms used in these procedures are defined as follows: Formation Integrity Test (FIT): Formation is tested to a pre-determined equivalent mud weight. Leak-Off Test(LOT): Pressure is exerted against the formation until fluid begins to discernibly pump away. Pressure at which this first occurs is the leak off point. Open Hole LOTs (OH LOTs): Leak-off tests performed with open hole from the casing shoe to some point above the target reservoir. Generally done when leak-off is required but could not be achieved just below the casing shoe; or where weaker formations are suspected above the target reservoir but below the casing shoe, and assurance is required of being able to support estimated mud weight. Procedure for FIT: 1. Drill 20' of new hole below the casing shoe. 2. Circulate the hole to establish a uniform mud density throughout the system. Pull back up into the shoe. 3. Close the BOP (ram or annular). 4. Pump down the drill stem at 14 to 1/2 barrel per minute. 5. On a graph with the recent casing test already shown, plot the fluid pumped (volume or strokes) versus drillpipe pressure until the appropriate surface pressure is achieved for the FIT at the shoe. 6. Shut down at the required surface pressure. Hold for a minimum of 10 minutes or until the pressure stabilizes. Record time versus pressure in one-minute intervals. 7. Bleed the pressure off and record the fluid volume recovered. The pre-determined surface pressure for each formation integrity test is based on achieving an EMW at least 1.0 ppg higher than the estimated reservoir pressure, and allowing for an appropriate amount of kick tolerance in case well control measure are required. Formation integrity tests are conducted on all casing shoes with the exception of some surface casing situations. Where annular disposal pumping is planned on a well, the formation below the surface shoe is taken to leak-off. This ensures that future disposal fluids can be pumped away without risk of damage to the surface shoe. If two attempts at establishing a leak-off at the shoe are unsuccessful, then an open hole LOT is performed. Where required, the LOT is performed in the same fashion as the formation integrity test. Instead of stopping at a pre-determined point, surface pressure is increased until the formation begins to take fluid; at this point the pressure will continue to rise, but at a slower rate. The system is shut in and pressure monitored as with a FIT. • BOP Control System The blowout preventer stack is a Hydril 13 5/8" x 5000 psi annular preventer, a Hydril 13 5/8" x 5000 psi double gate ram type preventer fitted with blind/shear rams and 2 7/8" x 5" variable rams and a Hydril 13 5/8" x 5000 psi single gate ram preventer fitted with 2 7/8" x 5" variable ram block. The BOPE control system on Nabors Rig#7ES is a 6 station, 165 gallon-220 gallon reservoir. Twelve 1.5 gallon bladder-type separator accumulators, with four nitrogen as backup. One manual master control station with six controls located on the main unit, one six station control panel located on drillers station. Equipped with 1 electric and 2 air pumps with emergency power. The choke manifold is a Cameron 3" x 5000 psi. It will include a Swaco super choke and a 3" manual choke. Wellhead Description An exploration wellhead system has been selected for this well, consisting of a diverter system and a 5M rated wellhead assembly. s« f�c The diverter system is attached to the 20" conductor with an overshot adapter that allows full bore access to the 20" conductor. The rig's diverter tee, knife gate and annular is then attached to the diverter system. The 13 3/8" casing is suspended with a fluted mandrel hanger in a landing ring that is part of the diverter system. If a top cement job is required, it is recommended that the wash pipe be run through the ball valves at the base of the conductor. Once cementing is complete, the diverter system is removed and a 5M wellhead system is installed on the 13 3/8" mandrel hanger. The connection between the wellhead system and the mandrel hanger is pressure tested to 1200psi. The wellhead system has been designed to be completely removed after the well has been drilled and prepared for abandonment. Qugruk #3 Drilling Procedure 1. MIRU Nabors rig 7ES. (A 26" hole will be augered to+/- 80' with 20"conductor casing set and cemented prior to rig moving on location.) y$ 2. Nipple up diverter and function test. Notify regulatory agencies hours prior to test. 3. Drill 16" hole to the surface casing point between 2184' -2214' MD/TVD. Run and utilize MWD and LWD tools throughout this hole section to monitor hole angle and to ensure the hole remains vertical, as well as collect logging data. 4. Condition hole for casing. POOH. 5. Run 13-3/8", 68#,L-80 BTC casing to surface. RIH with drill pipe and stab-in to tool and pump cement until good cement returns reach surface,using a lightweight permafrost cement lead slurry (-339 bbls) followed by a high strength Class G tail slurry (-64 bbls) per cementing program. 6. Nipple down diverter and nipple up BOPE dressed with tw ets of variable pipe rams and blind/shear rams. Test BOPE. Notify regulatory agencies hours prior to test. '-/0ov dos.. 50P Tsf -- 7. Make up 12-1/4"drilling BHA and RIH to the top of the 13-3/8"float equipment. Pressure test the casing to 2,000 psi for 30 minutes. Record the pressure test and send the results to Anchorage office. 8. Drill the float equipment and 20' of new hole. Perform FIT to 14.1 ppg EMW. Record the results and send to the Anchorage office. 9. Drill a 12-1/4" straight hole to +/- 2,400' MD/TVD. Begin build of 3 degrees/100 feet to -19 degrees. Run LWD logging tools in the drill string as required for formation data gathering. 10. Hold -19 degrees to+/-6925' MD/6692' TVD. Condition the hole for coring. POOH. 11. RIH and core 180' of conventional core in three 60' runs. POOH. 12. Continue to drill 12-1/4" hole holding -19 degrees to+/-7510' MD/7244' TVD. 13. Condition the hole for logging. POOH. 14. Rig up wireline. Run wireline formation evaluation logs per logging program. Rig down wireline. ,(C1 15. Continue to drill 12-1/4"hole holding -19 degrees to TD at+/- 9306' MD/8939' TVD. 16. Condition the hole for logging. POOH. 17. Rig up wireline. Run wireline formation evaluation logs per logging program. Rig down wireline. 18. The well will be abandoned to +/-2300' MD/TVD and sidetracked upon completion of evaluation. Sundry will be submitted for P&A plan. A separate 10-401 will be submitted for the sidetrack. 6 Cc- REPSOL 2012-13 Exploi,__.on REPFOL Qugruk #3 Wellbore Schematic - Confidential : % y i 26" Holeri. • .i: r ; :•: :r : $ ; :+ll 20" 131#J55 Casing @+/-80' Horizon SSTVD .41- 16" Hole -1070' Permafrost : ', .5' Base : , -2220' Upper , %, 13-3/8" 68# L-80 BTC Cretaceous MFS ::: % % : Casing @ +/- 2214' MD i /-2170' SSTVD -2430' Tuluvak/ Seabee i -3790 Nanushuk 12-1/4" Hole 19° Inclination -4952' Torok -6235' HRZ -6516' Kuparuk C -6668' Alpine -f1''�+ i-41— 180' Core @+/- 6925' MD/ -6905' Nuigsut -6648' SSTVD -7905' J2 -8475' Sag River -8545' Shublik i Estimated TD @+/- 9306' MD / • ` -8895' SSTVD A. Dial Qugruk #3 Cementing Program 13-3/8" Surface Casing(set at 2214', 16" hole) PreFlush/ Spacer: 75 bbl 10.4 ppg MudPush II Lead Slurry: Top of slurry: Surface Permafrost type L cement, 10.7 ppg density 225% excess across Permafrost, 80' to 1070' 40% excess below Permafrost from 1070' to 1714' Yield: 2.47 cu ft/sk Volume: 339 bbls (771 sx) including excess Tail Slurry: Top of slurry: 1714' Premium class G cement, 15.8 ppg density 40% excess for 500' of annulus volume + 80' shoe track Yield: 1.16 cu ft/sky Volume: 64 bbls (314.5 sx),including excess & Shoe track 12-1/4" Open Hole plugs Lead Slurry: Top of slurry: TBD Bottom of Plug: TBD Length: +/- 500' Premium class G cement, 15.8 ppg density 40% excess Yield: 1.17 cu ft/sk Volume: 81.8 bbls (394 sx) including excess Qugruk #3 Pressure Calculations and Drilling Risks Maximum Anticipated Surface Pressure: The maximum anticipated surface pressure (MASP) for this well will be the higher of the formation pore pressure (less a full gas column to the surface) at TD or the formation fracture pressure at the last casing shoe (less a full gas column to the surface). The MASP expected in the 12-1/4" hole section is 3,754 psi at a depth of 8,939' TVD (or 0.52 psi/ft less 0.1 psi/ft gas gradient). Predicted fracture gradient data for this area based on offset log data, at 2,214' TVD, the depth of the 13-3/8" casing shoe, is 0.738 psi/ft (14.2 ppg). Complete evacuation of the wellbore, except for a 0.1 psi/ft gas gradient, is assumed. 12-1/4" Hole Section—2,214' to 8,939' • S2 MASP (pore pressure) = (8939 ft)(0.52—0.1) = 3,754 psi MASP (form. breakdown) = (2214 ft)(0.738 —0.1) = 1,412 psi Therefore, MASP in the 12-1/4"hole section is 3,754 psi and the 5,000 psi BOPE system to be used will be adequate. Well Proximity Risk: The nearest wellbore to the planned wellbore of the Qugruk#3, is the Colville River 1 well located approximately 2 miles southeast. Therefore, there are no nearby wellbore proximity risks. Drilling Area Risks: 16"Surface Hole— 13-3/8" Casing Interval EVENT RISK LEVEL Miti'ation Broach of Conductor Low Monitor cellar continuously during drilling interval. Gas Hydrates Low If observed: control drill,reduce pump rates,reduce drilling fluid temperatures,additions of Lecithin. Gravel/Sand Sloughing to Moderate Increase mud weight/viscosity,pump high viscosity +/-500' sweeps. Monitor fill on connections. Hole Swabbing/Tight hole Low Circulate hole clean prior to trip. Proper hole fill on Trips utilizing trip sheets,pumping out of hole as needed. Possible Thaw Bulb/ Low Watch return viscosity for signs of thinning. Water Flow Increased mud weight/viscosity as needed. Lost Circulation Low Mitigation by good hole cleaning practices. Reduce mud weight if possible. If losses occur,reduce pump rates and lower mud rheology,use LCM material. Abnormal Gas Zone Moderate Mitigation by not drilling past known hydrocarbon . Pressure bearing reservoirs in the sum"ace hole section. Keep Mud weight at or above 10 ppg below permafrost. . Lo )§ ( 3� \{eL\ \() 11/ - 0) gu. 2° )@\ 5\E// d�--- \w \f 0) 0. R \>o� � a c_)°- { ■& _in o ®§§ \ Dr ` - O 2» CO R\3S= .114 2z«- = 0 -E 5 § » 2 2(e .- 0 z±zg U. oQ - Z = % °0_\c a ( $• � » 0 _ cci ) �tX • \ co w -0 co J2 9 2 $; 22 kto ( 0s 2 7 _ z/3 / u # / f I C.) §io \ C0 CO \ 0 7 2 0 \ 2 a $ } a _ o E _ E ,- - §( CO $ CO \ ° d°° g 15 2 z k 0 0 ` a co - , § 0 8 \ o - - - 0R0 ` f 0 @\4 a "8 @ /- CO u o — a « a Z i Co § ` 0 / , co , : : rn ia cr m 11111 i rip- _ . . ._, I 7 t4,, C ch To •-•I a O. • a C tn I L CVM a- O. ar U. . cc CL. rsi ri •i — •i L \ ji\/ 1Y' •••• C7) • iii . ii . ui. . . i. . . i. O •-i (4)wu. ......., Sd(nYP Q-3 Scenario 12 Proposal Geodetic Report (Non-DNI Plan) Report Clete September 05,2012-0540 PM Survey/OLS Computatlon Mnnmum Curvature tLuban Chant Repsol Vortical Section Azimuth 172 144 (True North) Field Repsol EAplor.Ilon Vertical Section Origin 0000 ft 0 000 f1 Slructur.I Slot 0-310-3 Sana0o10 TVD Reference Datum ROB Well 0-3 TVD Reference Elevation 44 000 N.bore MSL' Borehole 0-3 Seabed l Ground 01.0.Non 150001.bove MSL LAM/APIS Unknown)Unknown Magnetic D.clIn.tlon 19690 Survey Nom. 0-3 Scen.ro 12 Total Gr.vlty Field Strength 1002 6794 mgn(95 based) Survey Date June20,2012 Total Magnetic Field Strength 57576 308 nT Ton 1480/0014 EN0 Rano 19394 12187032111464010245 Magneto Dip Angle 80837' Coordinate Reference Sy.lem NA027 Alaska Slate Plane Zone 04 US Feet Decimation Date FeOm.19012013 Location Let/Long 14 70 20 2 21641 W 160 42 24 43649 Magnetic Declination Model BGGM 2012 Lecation Grid 810100 05972219000 NUS E 412876 000 NUS North Reference True Nath CRS Grid Convergence Angle -06656 Grid Convergence Geed 00000 Grid Sal.Factor 099990662 Tot.l Corr Meg Nonh+True 196901 N orth L ec.l Coord Referenced To Well Heed MO 991 Bzlm TrTrueExck.ion Zona TVOSS TVO VSEL NO EW TF DLS Directional E0Nwran Northing Eutaw Comment. VD CI CI (ft) (ft) Ink (n) (8) (1 Cnoon)Difficulty Ind. Zone Alert Angle (NUM (SUS) Surface Loc.bon 0% 000 17214 -4400 0% 000 000 0% 172149 6)4 0% 916 597221900 41257600 10000 000 17214 5600 10000 000 000 0% 17214M 000 000 916 597221600 41287900 200% 000 17214 15600 20000 000 000 000 172149 000 0% 916 597221900 41257600 300% 000 17214 25600 30000 000 000 000 172149 0% 0% 916 597221900 41287600 40000 000 17214 35600 40000 000 000 0% 172149 000 0% 916 597221900 41287600 500 W 000 17214 45600 50000 000 000 000 172140 000 000 916 597221900 41287600 60000 000 17214 55600 60000 000 000 000 172140 000 000 916 597221900 41287600 700% 000 17214 656% 70000 000 000 0% 172149 0% 000 916 597221900 412576% 80000 000 17214 75600 80000 000 000 0% 172149 000 000 916 597221900 41287600 900% 000 17214 55600 90000 000 000 000 172149 000 0% 916 597221900 41287600 1000% 000 17214 956% 100000 000 000 000 172149 000 000 916 597221900 412876% 110000 000 17214 105600 110000 000 000 000 172149 000 0% 916 597221900 412876% 120000 000 17214 115600 120000 000 000 000 172149 0% 0% 916 597221900 41287600 130000 000 17214 1%600 130000 000 000 000 172149 000 0% 916 597221900 412876% 140000 000 17214 135603 148400 000 000 000 172149 000 000 916 597721900 41287600 411500 00 000 17214 1451% 150000 000 000 000 17214M 000 000 916 597221900 11287600 16)000 000 17214 155600 168400 000 000 000 172149 000 000 916 597721900 41287600 170000 000 17210 1656% 179000 000 000 000 172 149 000 000 916 597221900 11287600 180000 000 17214 175600 180000 000 000 000 172145 000 000 916 597221900 412876% 190000 000 17214 1856% 190000 000 000 000 17214M 000 000 916 597221900 412876% 290000 000 17214 1956% 200000 000 000 000 172140 000 000 916 597221900 41257600 Surface Cowry 21W CO 000 17214 205500 210000 000 000 0% 1721454 000 000 916 597221900 41287600 2200 00 0 00 17214 2156 00 2200 00 0 00 0 00 0 00 172149 0 00 0 00 916 5972219 00 412876% 230000 000 17214 2256% 230000 000 000 000 17214M 000 000 916 597221900 41287600 KOP-3)100 240000 000 17214 235600 240000 000 000 000 172 14M 000 000 916 597221900 41287600 250000 300 17214 2455% 249995 262 -259 036 17214M 300 089 1190 597221640 41287633 200000 600 17214 255563 259963 1046 -1036 143 172144 300 180 1474 597220862 41287731 270000 900 17214 265477 269877 2351 -2329 321 HS 300 233 1764 597219567 41287894 2_50000 1200 17214 275305 279708 4174 4134 570 95 300 270 2056 597217760 41285122 2_90000 15% 17214 255031 259431 6505 9447 589 115 300 299 2350 597215444 41288414 310000 1800 17214 294618 299018 9348 9260 1278 HS 300 323 2645 597212627 41268770 EOC(CurveHold) 304645 1939 17214 299018 303418 10837 10735 1481 HS 300 332 2783 597211150 41268956 3100% 1939 17214 304069 308469 12615 12496 1724 HS 000 339 2783 597209356 41259179 320000 1939 17214 313501 317901 15935 15786 2175 145 000 349 2783 597206092 41289594 330000 1939 17214 322934 327334 192256 19075 2632 HS 000 358 2783 597202797 412%010 3400 03 1939 17214 3323 67 3367 67 225 76 -223 64 30 56 H5 000 365 27 53 5971%03 412904 26 350000 1939 17214 341799 346199 25897 -25654 3540 95 000 371 2783 597196209 /1290841 3600% 1939 17214 351232 355632 29277 28943 3994 HS 000 376 2763 597192915 41291257 370000 1939 17214 360664 365064 32538 32233 1447 HS 0% 381 2783 597189621 412916722 380000 1939 17214 370097 374497 35858 35522 4901 1-19 000 385 2783 597186327 41292068 3900 00 1939 17214 3795 30 3539 30 391 79 -35811 53 55 HS 0 00 389 27 53 5971830 33 41292503 0000 00 1939 17214 388962 3933 62 425 00 421 01 58 09 115 0 00 392 27 83 5971797 39 41292919 4100 00 19 39 17214 3983 95 4027 95 458 20 453 90 62 63 HS 0 00 3 96 27 83 5971764 44 412933 35 420000 1939 17214 407827 412227 49141 48679 6717 HS 000 399 2783 597173150 41293750 430000 1939 17211 417260 421660 52461 51969 7171 HS 000 402 2753 597169556 41294166 440000 1939 17214 426693 431093 55782 -55258 7624 HS 000 404 2783 597166562 41294581 4500 00 19 39 17214 4361 25 4405 25 591 02 -585 45 80 78 HS 0 00 4 07 27 83 5971632 68 41294997 4600% 19 39 17214 4455 58 4499 58 624 23 618 37 85 32 HS 0 00 409 27 83 5971599 74 41295413 4700 00 19 39 17214 4549 90 459390 6557 43 651 26 89 66 HS 0 00 412 27 83 59715%80 412958 28 4800% 1939 17214 464423 466523 69064 68416 9440 619 000 414 2783 587153386 412%244 490000 1939 17214 473556 478256 72354 71705 %94 HS 000 416 2783 597150391 41295659 5000 00 1939 17214 4832 68 4876 88 757 05 749 95 109 48 HS 0 00 418 27 83 5971467 97 412970 75 510000 1939 17214 492721 097121 79026 78284 10801 HS 000 120 2783 597143503 41297490 520000 1939 17214 502153 506553 82346 61573 11255 HS 000 421 2783 597140209 41297906 530000 1939 17214 511586 515986 65667 84863 117% HS 000 423 2783 597136915 412%322 5400% 1939 17214 521019 525419 88987 -08152 12163 HS 0% 425 2783 597133621 41298737 5500 00 1939 17214 530451 5318 51 92308 -914 41 12617 H5 0% 4 27 27 83 5971303 27 01299153 5600% 1939 17214 539884 544284 95624 94731 13071 HS 0% 428 2783 597127033 41299565 5700 00 1939 17214 549316 5553716 989 49 960 20 135 25 HS 0 00 430 27 83 5971237 38 412999 84 580000 1939 17214 555749 563149 102269 -101310 13978 HS 000 431 2783 597120444 41300399 5900% 1939 17214 565182 572582 105590 -104599 14032 HS 000 432 2783 597117150 41300815 6000% 1939 17214 577614 582014 108910 -107888 14886 95 000 434 2783 597113856 41301231 610000 1939 17214 587047 591447 112231 -111178 15340 95 000 435 222783 597110562 41301646 620000 1939 17214 596479 600879 115552 -114467 15794 HS 000 436 2783 597107268 41302062 630000 1939 17214 605912 610312 115872 -117756 16246 HS 000 438 2783 597103974 41302477 6400 00 19 39 17214 6153 45 6197 45 122193 -1210 46 167 02 HS 0 00 439 27 83 5971006 50 413028 93 650000 1939 17214 624777 629177 125513 -124335 17155 HS 000 440 2783 597097385 41303309 6600% 1939 17214 634210 638610 128834 127625 176% HS 000 441 2783 597094091 41303724 670000 1939 17214 643642 648042 132154 -130914 18063 115 000 442 2783 5970907 97 41304140 680000 1939 17214 653075 657475 135475 -134203 18517 HS 0% 443 2783 597087503 41304555 6900% 1939 17214 662508 666908 1387% 137493 18971 HS 000 444 2783 597084209 41304971 7.rgel 694551 1939 17214 6666 00 6712 00 1403 05 -1389 90 191 77 115 0 00 445 27 83 597082710 413051 60 7000 00 19 39 17214 671940 6763 40 1421 16 -1407 82 194 25 HS 000 446 27 63 597050915 413053 66 7100% 1939 17214 6513 73 6857 73 1454 36 -1440 72 198 79 HS 000 4 47 27 83 5970776 21 413058 02 7200% 1939 17214 690805 695205 148757 -147361 20332 HS 0% 448 2783 597074327 41306218 730000 1939 17214 700238 704638 152078 150650 20786 115 000 449 2783 597071032 41306633 740000 1939 17214 709671 714071 155398 153940 21240 HS 000 449 2783 597067738 41307049 75%00 1939 17214 719103 723503 158719 1572229 21694 HS 000 450 2783 59706/144 4130'464 760000 1939 17214 728536 732936 162039 160518 22148 HS 000 451 2793 597061150 41307580 770000 1839 17214 737968 742368 165360 163805 22602 HS 000 452 2753 597067856 413082% 780000 1939 17214 747401 751801 188680 -167097 23056 95 000 453 2783 597%1562 41308711 7900% 1939 17214 756831 761230 172001 -170357 23510 95 000 454 2783 597%1268 41309127 600000 1939 17214 766266 770666 175321 -173676 23963 HS 0% 055 2783 59704797/ 41309502 510000 1939 17214 775699 750099 178642 176965 24417 HS 000 056 2783 597044679 41309958 5200% 1939 17214 7551 32 7895 32 1819 62 1802 55 248 71 HS 0% 456 27 93 5970412 85 413103 73 630000 1939 17214 794564 795964 185283 153544 25325 HS 000 457 2783 59703/091 41310789 840000 1939 17214 503997 806397 118604 156434 25779 HS 000 151 2783 597034797 41311205 850000 1939 17214 813429 817529 191924 -190123 26233 HS 000 459 2753 597031503 41311620 860000 1939 17214 822862 827262 195245 193412 26687 HS 0% 460 2783 597028209 41312036 670000 1939 17214 832295 536695 198565 -1%702 27140 HS 000 460 2783 597024915 41312451 580000 1939 17214 841727 54612_7 201886 199991 27594 95 000 461 2783 597021621 41312867 590000 1939 17214 851160 855560 205206 -203280 26048 HS 000 462 2783 597018326 41313283 900000 1939 17214 860592_ 564992 208527 206570 25502 95 000 452 2783 597015032 41313698 910000 1919 17214 870025 574425 211647 209559 26956 HS 0% 463 2783 597011738 /131/114 9200% 1939 17214 879456 683858 215164 213149 29410 HS 0% 464 2783 597005444 41314529 930000 1939 17214 818890 593290 215485 216438 29864 HS 000 464 2783 597005150 41314945 POHL 930647 1939 17214 869500 893900 218703 -216651 29893 0% 465 2763 597034937 41314972 Drilling Office 2.6.1120.0 Repsol Exploration\Q-31Q-31Q-3\Q-3 Scenario 12 12/12/2012 1 31 PM Page 1 of 2 MD Ind Palm True NOSS TVD VSEC N5 EW TF as Directional Exclu.Ion Exclusion Zona NoNaing EaHing Comments (0) f1 li (N) (ft) (N) (S) (N) (r) (1HOSS)DIMcuSy la Zone NIM Angle (NUS) (505) ) Survey Type Non-Def Plan Drilling Office 2 6.1120 0 Repsol Exploration 1Q-31Q-3\Q-31Q-3 Scenario 12 12/12/2012 1'31 PM Page 2 of 2 REPl40L - Schlumberger Q-3 and Q-3A scenario 14 Repsol Exploration Q-3 Paialneleis sodak l ricetiorir or-II ,Tone 04.0Miscellaneous MadBGGM 2011 D') 80.851° Date: July 25,2012 L. N 0020 2.216 Northing: 5972219 00 m:Grid Co -0.806• Slot e! 0-3 Sce11atio 10 TVD Ref: RNB1448 above MSLI Meg Dec: 20.000° FS' 5700510! Ian. W 1504224.436 Easting'. 41287600 BUS Scale Fact:0.99090862 Plan: 0-38,Scenario 14 Bray Date:July 25,2012 -4000 -3000 -2000 -1000 0 1000 2000 6000 4 4 6000 N 0.3A Stepan)14 PBHL `ll 11104 5000 4 4 4 a 5000 • 1. Target depth 4000 4 Polygon Target 4 4 4000 Driller's Polygon Target A 3000 4 4 4 4 3000 A O O x— li 2000 4 4 4 4".......7/ 2000 a> To U u) V V V 1000 4 v 4 4 1000 EOC Surface Location If KOP-3/100 P 0 S 4 0 In In.KOP-3/100 EOC(Curve-Hold) -1000 4 -1000 Target 1611 Very Small Polygo)1. -2000 4 4 4 -2000 PBHL Q-3 Scenario 12 -4000 -3000 -2000 -1000 0 1000 2000 «< W Scale=1:1000(ft) E >>> RE...JO it Schlumberger %„„II 1111L) •110 Q-3A(P14) Repsol Exploration Q-3 e4nr,Alaska Slate- Joikr,0,1 IN It,I 1,11,011.11wous MD.I lt,3C, 8,1 N Srpfinin -6000 -4500 -3000 -1500 0 1500 0 • 0 1500 4 1500 Surface Casing L Tie In.KOP-3/100 KOP-3/100 • 3000 3000 EOC(Curve-hold) U) EOC • 4500 4500 6000 6000 Target depth Very Small Polygon. Target PBHL •-3A Scenario 14 7500 7500 9000 9000 0-3 Scenario 12 PBHL -6000 -4500 -3000 -1500 0 1500 Vertical Section(ft)Azim=172.14°Scale=1:1500(ft) Origin=0 N/-S,0 E/-W A B V C D GROUND LEVEL // co ep t, !,✓ 22.93" 4-1/Z'TUBING HANGER W/4"H-BPV PREP I 7 7 ,\I 1 11"10,000 PSI 6BX v I — —_ oziI -- 1-13/16"10,000 PSI F I 6 MI . . ---\ - 1111-111 .:' �I 26.75" 6 ■. � � '■ ■ ■ SECONDARY PACKOFF 11 AIM 1! _ �i� 11� 111 — --: PACKOFF 120 00" ' 13-5/8'5,000 PSI 6BX j[ _• .. _ _4 5 C 3 t 5 L --II , T J 9-5/8"FLUTED CASING HANGER 1 i 28.63" 2-1/16"5,000 PSI L 3 u1: o o 1 ° ( r---- 1 11 _ co o til ' _4 a LE — 41 a. 4 _ 3j 13-318"FLUTED CASING HANGER 4 3 ; --13-3/8"QUICK DISCONNECT ra: 111 20"LANDING RIN 1✓ . 101 N 2.44 , li , 4. t Alit'j �� /o\IPar, j 's V.top IV`. , ilk I. i. - 39.25" 1 ,s 2 2 RI TI I RI 9 �- li ' ' CELLAR -------20"OD CSG 1 RUN 4-I/7" TUfl IN(i HANGER 13.3/8"OD CSG �j I L -. __-11"----------9-5/8"__ --95/8"OD CSG vet�9 f �-1/2"ODTBGLAYOUT / TWA STEP 20 s;.1:235 HP 120160-120 NZ ./....,./ Imn a 0{71 II 1 I o I n oana CC 85 g li it \ - , -- �::= = =_=� 3 K__\ II � ii iili 'yiic g . , i_ = , ilII.. 1 i 0 1 f,0 z 911 flu .i o w - eilh11 1 U COCD I- ,, iLI ,l ' I/111 H I 1 I Li i i I i =_ ,"S-=_:=:Cry `*aw J H Z Z .. W N • Q W • . ce .J. Pa o > 1 I ' I o oH' H i1 o 'i II /\ ------ — CD --',. --7, I ILI d , , uII i I 1 I . I1 " kiz = !! O !1: ; o U .,, Z C.) I— 'e ,0 n = ,JL O >> -- _= o W xi inn `=' nii CO rtl- IY J I�I IIII'. 11111IIIl_T 1 H CD= W 111m::10' I MIP Illt4:1i"!" J L a_ .4%, ! ! ,-: IH. Z \ ..A111.111 , —N '-• CD .Z-�f b'.�i n II U II - ux J 61 0 •a. ao jOy ZH CO 111,\ 'I /� D1 i I 1 I Z/ I ( I #= 8>t § i H I1 //l Iu� �I --� / - 6'ib. �a� tow.- mit 'el �5F m�¢Q M^6'� -- -- __ F J.. ogFl ... KtiQ %i: Y6ra'0 AFW-¢N 6-11 1 LI I— xain xu3� 204 . H l07QQ l07Q >w o W o J J^ J'-' W wi N a' In IX (73 1,1\) (7)L.1 11111111i4.11011F3 �Z �1J vii 1 Q NI- I \ n • C) �'�� I o J •-•Q'l07 6' LJ J an u m >- ce d W O' .-7.. .moi 2 PI 3 l O o Q I I .•e Q n J h y 8 o pjl 1 0 Q 2 4111, , c Z o 0 X41 ig dile 7ii li m E Hil "cal ) ________ C a LL u. P. , Z 1 ig N < g¢ i z I. I 1 2 '1 M M h *-2:-.711 Ci y Y U'ii1i 11111111r v N V • I 1 O I al al V Al i�,0 M i _ ,IiIUiIiNIIiIIIeIIiI : i W a -- 11111111111111111110_ I PIPIlowl 40 i In n I► H -7�afN�4� 0\ - 4 - \ I. E • =SIN \ �I~�� m 'A ;. § 1 f, • , � �_ T o_ o ,n -.r 2I w 'w w n to ry 'z,v,' 7Y S y O ccs Li (5 8 1 !— U C 2 .u_ 1 c� 2Q \ .......... 0. P ,c0 - O - )11 .,,, 0 � r 0' 0;, ' ,\ 0' � A . �t ' if. r , Cl) w0 8 i CD fl c0 lir \ ite---9 - :J- co CC V/ i448 C INIIML N o C� _C > CDi 0 N czi O C3 Ti N cu a 17)_ o � cc co (I) - mo a24# > ' a) > 'O '- O (� O O O (D d 0O OOO _7, Q O CC O O NR Q O .) O O Lc) 1:2 mi N Yui g i' Z Z T 6 ir lap ,-.71 b@CA Lull 11 on P ii Z gg J " > > Z < Lro Nz td lis a f '/(J Q g g S O O N � r 3 2 - = = m Z Z N t ^ _ _ co -..‘-/-\-.4(1 ? l'-4 C . .--- .-- .-----; ....--- :7, Z.-, c0 .1 }� J x x Tic9 �M W J d! = _ W i . o _ g ; a z z Uy . o o ,, m mga _ q I I I zI I TIp I E R (J 1 d 1 d 2 a 1 1 1 Z ® J J =J 3 J M f CV 21 CO W N ceZa p r4 1-3 ti V Nm 1 1 ' Z "CV M O J'/- � ` CO Q J NICI NmV M W CO T N� Q N CO2 CC _ N, 31 ^Sm ]$ \ ,(ei\N 1111N-Pµ N vl co "'d �� cel CO p ,,ww,�\\ CD ti o � z m W ow V J m II��'■ C a3 m ~ hQ E2 E.: C I N �� n C Z H C N —1k ® N d ,aw m Z� N H cII U zp�ti" - • %.":. a I IV �` lM It Li I 0 0 o 0 .-r,FPF m m '` `°' Ig°o°od' C Z 2 i. 1-1.J V V O �, ` w N • :N •N A e' U rJ 'Z� L.1 .-W N -1+-YIDS 1 n YJ" iCt, '••• I ®dr ' ' • • m omh d l+-U 61 ,e,lO O— / I ; glI sm a\J MEl El hi M no IIO01/I MMDVIO'LOO\OW\IW,V-I\.31 -I\f1L00 OO,b8^*.ANt1�J' z z T g T r tr, 51 b 11 1V4R1 0 o 00a 3 f g '2 ... 11 n ' 3 3 o a R .. nom. a s 11 C 1 3 - _dYN! d_ E l l i i a x x d 8 8 8 8 8 i (2 a z z z = 2 3 3 3 • • d y 2 2 s -N) laf ( ► w cL v .---.7 to- ao co m m � � � � � F, . 4 LI HI CC CO g ?S 25. LIJ ('1 C a a a a i e a a a a ce 7 z `J W \ J Z \ cp2 3 J L l ii o CO Pd a.Y CO ,N E5 =Q N e V` Nm IY H_1 N T..-c.J ev m® W co co 7-1 W lo e .111 MI W m ® PJ a d� N VI le oo~�1I�� � � ." m 4 i N( ( " o ® �� ,N PJ m ; Q ° J >rN r, {qO b `� 00�p ( 1 z 2 r. LI-Z Ca Z CL Q. M �(inz~h ZaN Uo W VY cam.) >rJ N . r T � " i4-1103"IO ^Y ' n 1 430 000 I 4l� 11 000II rsk am W'N ► ®� .(411 z� N o 10 COZ Y 31" W i I ,..11.. 14 itiemi 1. ,, .. el" ga REPJOL HALLIBURTON DRILLING FLUIDS PROGRAM Operator:Repsol USA Well Name: Qugruk#3&3A Location:Alaska Version 1.1 Prepared by Mr.Chris MacKinnon Technical Professional Chris.MacKinnonna,Halliburton.com Office-907-275-2617 Cell-907-227-5045 Author/Owner Approver Approvers Name: Chris MacKinnon David Higbie Amanda Dial Title: Tech Proff. Operations Lead ODE Date: Nov.12,2012 Nov.12,2012 Signature: 4 HALLIBURTDN Etaraict 1-1ALL1BLIRTDN ear.gid REPJOL Qugruk#3 ver. 1.1 Prudhoe Bay AK/U.S.A. Mud Program Distribution Name Position Document Version Date Alan Livingston,Amanda Dial,Tim Flynn Repsol ODE 1.0 Nov.12,2012 Dave Higbie Halliburton Ops Leader 1.0 Nov.9,2012 Alan Livingston,Amanda Dial,Tim Flynn Repsol ODE 1.1 Nov.16,2012 The table above will serve as a record of distribution control for the approved program,both hard copy and electonic copies shall be logged into the above table. Program Amendment and MOC Record Version.# Date Author Description MOC Document number 1.0 11/12/12 MacKinnon Original draft submitted to Repsol for approval 1.1 11/16/12 MacKinnon Ammended Draft submitted to Repsol ODE's for approval The table above will serve as a record of ammendments submitted for the well. The Management of Change(MOC)process must be followed for changes made to the drilling fluids program after the spud date. Well Data provided bvRepsol Data Provided Document Identifier Date Received Used in Preparation of this Halliburton Program Y/N Approver Wellbore Schematic Qugruk#3 ver 1 11-07-12 Y C.MacKinnon SLB Directional Plan Scenario 12 11-07-12 Y C.MacKinnon Scope Change Documentation No Scope Changes to date Well Data Operator Repsol USA Well No. Qugruk#3&3A Field/Block Colleville River Delta PBU Location Alaska/U.S.A Well Type Exploration Max.Well Inclination Q3—19°;Q3A-58° Maximum Expected Mud Density Q3-10.4 ppg;Q3A—10.8 ppg Estimated Days 74 Days Anticipated BHST at Total Depth of well 195°F Baroid Project Support Team Title • Name Cell Number Office Number Email address Technical Professional • Chris MacKinnon (907)227-5045 (907)275-2617 Chris.MacKinnon@Halliburton.com Operations Leader David Higbie (907)242-7105 (907)275-2631 Das id.Higbie@Halliburton.com Lead Mud Eng. Lead Mud Eng. Night Mud Eng. Night Mud Eng. Stock-point Manager John Jessup/Brent Edmunds (907)943-1028 (907)659-2422 JQhn.Jessup@Halliburton.com Brent.Edmund Olialliburton.com 2 HALLIBUATDN 141/ Baroid REPJOL Qugruk#3 ver. 1.1 Prudhoe Bay / Program Briefing Qugruk#3 will be drilled from an exploratory ice pad on the Northeast side of the Coleville River in Prudhoe Bay Alaska using Nabors rig 7ES. The ice road to the exploratory pad will depart Kuparuk from the 2M drill site. A 20"conductor will be driven/drilled in place to+/-80 ft and cemented. The 16"surface hole will be drilled from 80 ft through the base of the permafrost to TD using conventional bentonite spud mud weighted to 9.8 ppg.The MW will be allowed to rise to 10.0 ppg by the base of the permafrost(+/-1,070'TVD)with the addition of Baracarb or drill solids.3-5 lb/bbl background LCM consisting of Baracarb will be used through the surface hole section to reduce lost circulation potential.The surface hole will be drilled to TD at 2,200'MD. 13 3/8"68#casing will be run and cemented. The 12 IA"pilot hole will be drilled ahead from the 13 3/8"casing shoe to the expected TD depth of 9,306'using a 6%KCUPHPA drilling fluid weighted to 10.2 ppg to begin and 10.4 ppg by the top of HRZ.Depending on bit balling tendencies of the Q-1 pilot hole,the KCI concentration may be raised to 12%if problems are seen. The well will build angle to 19.6°through to the core point at 6,945'MD. 3-4 lb/bbl of background LCM(walnut)will be maintained through this section to help prevent any bit balling through the heavy clay sections.The mud weight will be ramped up to 10.4 ppg by 6,235'TVD.Baranex and Barotrol+(shale stabilization)will be added prior to drilling into the HRZ.Begin this MW ramp up 500 ft prior to entering the HRZ.The well will be conditioned for multiple wireline logging runs beginning at+/-7500'MD and at TD depth of+/-9306'MD. After the logging program is completed,a series of cement plugs will be pumped to P&A the section. An 8 y"sidetrack will be performed from just outside the 13 3/8"casing shoe,using the top cement plug as the KOP. The 8'h"Q3-A sidetrack will be drilled ahead from just below the 13 3/8"casing shoe. Building angle to 58°and holding to TD depth of 10,372'.This section will be drilled using the 6%KCl/PHPA mud system weighted from 10.2 ppg to 10.8 ppg prior to the HRZ top at 6,240'TVD. The 3-4 lb/bbl background LCM strategy used in the pilot hole will also be used in this hole section. Well Design Summary Hole Size Casing/Tubing TD(ft) TVD(ft) Inc.(deg) Feet Drilled Mud System Mud Density Interval (in) Size(in) Max (ft) (ppg) Name 16" 13 3/8" 2,200 2,20(1 0 2,200 Bentonite 9.8-10.0 Surface ✓ Spud Mud 12.25" NA 9.306 8,939 19.63 7,206 6% 10.2-10.4 Pilot KCUPHPA NA 10.372 7.143 58.0 8,172 KCl/PHPA 10.2-10.8 ST1 Surface Interval Casing Size (in) End Depth(ft) 13 3/8 68# 2,200'MD Drilling Fluid System 9.8-10.0 ppg Bentonite Spud Mud Products Required Aquagel,Soda Ash.Dril-N-Slide,Caustic Soda,Baracarb,Barite Shakers:Begin with-80 mesh screens,screen up as flow rates and solids allow. Recommended Solids Control Mud Cleaner:Begin with 3/8-1/2"orifaces on the mud cleaner.Ensure>35 psi head pressure at each cone. Centrifuge:Run as necessary to balanceLGS and necessary MW. Sloughing Gravel Maintain viscosity to cary gravel out of Potential Problems — Solutions wellbore Heavy Clay Intervals Utilize Condet/Dril-N-Slide to minimize problems from sticky clay Maintain Well Control Interval Objectives Run and cement 13 3/8"casing Maximize solids control to minimize waste generation and hauloff Restricted Products None 3 HALLIBUAiON Baroid REPlOL Qugruk#3 ver. 1.1 Prudhoe Bay AK/U.S.A. Formation Tops Estimated Expected Pore Pressure formation Formation Top (EMW ppg) (TVDSS) BPRF 1,070 9.0 Schrader Bluff 2,070 8.8 Upper Cretaceous 2,220 8.8 Surface Interval Fluid Target Properties Interval Fluid:Slud Mud Mud Weight Funnel Vis API MD(ft) (lb/gal) (sec./qt) YP pH (ml) MBT 0-2,200 9.8-10.0 125-275 25-40 >9.0 <14.0 20-25 Spud Mud Fluid Formulation Product Concentration Cold Lake Water 0.94 bbl SODA ASH 0.15 ppb AQUAGEL 25 ppb X-TEND II 0.1 ppb CAUSTIC SODA 0.1 ppb (9.0-10.0 pH) BARACARB 5-25-50 3-4 ppb Background BAROID 41 70 ppb (9.8 ppg) PAC-L As needed to reduce API wl DRIL-N-SLIDE/Condet Premix As needed for sticky Clay • Have the rig or Baroid mud plant mix—600 bbl 9.8 ppg Spud Mud and deliver to the wellsite. • Ensure rig pits and lines are clean prior to offloading any new 9.8 ppg mud from trucks. Surface Interval Operations Summary • Drill ahead maintaining all product concentrations while adding dilution mud or cold lake water. • Run background BARACARB LCM at 3-5 lb/bbl to minimize lost circulation events. • Begin drilling with 9.8 ppg MW and allow drill solids and Baracarb to increase the MW to 10.0 by the base of Permafrost Use Barite if necessary to maintain 10.0 ppg MW. • Maximize the usage of all solids control equipment,screen up when possible and run the centrifuge to reduce LGS and maintain MW. • Utilize cold lake water for rig site dilution fluid. • Maintain>600gpm pump rate while drilling ahead. Utilize DFG 5.4 for realtime modeling of hole cleaning abilities. Adjust fluid rheology,pipe rotation (RPM)and ROP based on the ability to clean the hole. • In preparation of running the 13 3/8"casing,ensure native solids(LGS)content is<10%. • Check with cementers to target a YP while circulating the casing on bottom. Use Desco CF to obtain the desired YP. Well Concerns • Follow all REPSOL-Halliburton processes and Procedures • Truck Usage Volumes-Track the truck utilization volumes using the TFM spreadsheet. CH2Mhill trucks are maximized at 90%of their carrying capacity for every load hauled,and less when heavy fluids are hauled. Attempt to load Vac trucks and Super Suckers to their 90%maximum volume,always taking rig time into account while anticipating trucking wait times. Give CH2Mhill dispatchers>24 hours advance notice prior to jobs requiring multiple trucks on location. • Hole Cleaning—Run DFG 5.4 while drilling to monitor hole cleaning capabilities using real time ROP,RPM and pump rates.The continual loading of drill solids into the mud system will change the rheological properties of the mud. Utilize all solids control equipment.Be prepared to dilute by means of water or whole mud to diminish the effects of the drill solids. • Lost Returns—Losses are not expected,although a full compliment of LCM contingency products will be available on location should losses occur. • Well Control—Rig hands and Mud Engineers both,shall constantly be aware of mud density measurements,trip volumes and pit volumes to ensure good well control practices are followed. 4 HALLI®UATON Baroid REPJOL Qugruk#3 ver. 1.1 Prudhoe Bay AK/U.S.A. Surface Hole ROP/Pump Rates Rheology and pump rate are critical factors in cleaning this verticle wellbore. Consider the following practices if hole cleaning becomes an issue: • Extended periods of circulation(with maximum pump rate). • Hole cleaning sweeps(change flow regime of base mud by using rheology for carrying capacity). • Connection practices-employing extended gpm,rpm and back reaming,prior to the connection. Maximum Acceptable ROP in f h at Specified GPM and RPM GPM 400 450 500 550 600 100-rpm 78 91 103 124 146 Calculated using 4'o maximum cuttings load 03 Pilot Hole Interval Casing Size (in) End Depth(ft) 1A 9,306'MD Drilling Fluid 10.2-10.4 ppg.6%KC1/PHPA System Potassium Chloride(KCI),BARAZAN D+,PAC-L,EZ Mud DP,Caustic Soda,BAROID 41. Main Products DRIL-N-SLIDE,ALDACIDE G,BARACOR 700,BARASCAV D,BDF-515,BAROTROL PLUS Recommended Shakers:165+mesh screens,screen up as solids loading on screens diminishes Solids Control Mud Cleaner:3/8"cone oriface Centrifuge:As necessary to balance MW and LGS buildup Bad displacement Maximize pump rate and pipe rotation host Circulation Have excess LCM products available on Potential Problems Solutions location Sticky Clay Use DRIL-N-SLIDE/Condet,background Walnut to alleviate bit balling and shaker blinding Interval Objectives Drill to core depth(6,945')Core 180 ft.Drill ahead to 9,306'TD depth and run wireline logs. Minimize rig down time due to trips. Restricted None Products Formation Tops Estimated Expected Pore Pressure Formation Formation Top (EMW ppg) (TVDSS) Tuluvak 2,430 9.8 Torok 4,952 9.0 HRZ 6,235 9.4 KuparukC 6,515 9.4 Kingak 6,520 9.4 Alpine 6,668 9.4 Nuiqsut 6,905 9.7 J2 7,905 10.1 Shublik 8,545 10.1 TD 8,995 10.0 5 REPJOL Qugruk#3 ver. 1.1 Prudhoe Bay AFI U.S.A. Pilot Hole Fluid Target Properties Interval Fluid:6%KCl/PHPA MD Mud Plastic field Point Cl MBT API pH LGS% HTHP in Weight Viscosity (ml) Shale(ml) 2,200'-9,306 10.2-10.4 12-24 15-25 30k <15 <5 9.0-10 <6.5% <10.0 Pilot Hole Fluid Formulation Product Concentration Water 0.89 bbl BARAZAN D+ 1 ppb KCI 22 ppb PAC L 2 ppb CAUSTIC SODA 0.1 ppb (9.0-10.0 pH) BAROID 41 89 ppb (as needed for 10.2) ALDACIDE G 0.2 ppb CONDET Premix .5% (Mixed at LMP only) EZ MUD DP .75-1.0 ppb(Mud plant mix 0.15 ppb max add remainder at rigsite) BARACOR 700 1.0 ppb BARASCAV D 0.5 ppb DRIL-N-SLIDE 0.5-1.0%(For clays from rigsite) 111)f-515 4.0 ppb (added prior to HRZ) 13AROTROL PLUS 4.0 ppb (added prior to HRZ) Displacement Procedure Recommendation • Clean the rig pits of the surface fluid and flush all of the surface equipment and lines prior to taking onboard the new 6%KC1/PHPA fluid. • After tagging the landing collar and drilling it out, pump a 50 bbl HI-VIS spacer,followed by the 10.2ppg KCl/PHPA mud.Watch the shakers for KCl/PHPA returns before routing to active system.Plan to pretreat for cement contamination with Citric Acid and bicarb.Do not add Baracor 700 until after finished drilling cement,as the cement will cause the Baracor 700 to precipitate out of the fluid. Pilot Hole Interval Operations Summary • Drill ahead maintaining all product concentrations while adding dilution fluid. • Maintain 3-4 ppb Walnut as a background LCM to prevent bit balling caused by sticky clays. Dril-N-Slide will also help to clean the BHA and shakers of the sticky clays. • Maximize the usage of all solids control equipment,screen up where possible and run the centrifuge to minimize LGS and maintain correct MW. • Ramp up MW to 10.4 ppg beginning 500 ft prior to HRZ. Add BDF-515 and BAROTROL+for shale stabilization.10.4 ppg is the minimum MW requirement from HRZ to TD. • Utilize fresh water or 6-8%KCI water for rig site dilution if LGS begin to rise above the recommended<6.5%. • Maintain?600gpm pump rate while drilling ahead. Utilize DFG 5.4 for realtime modeling of hole cleaning abilities. Adjust fluid rheology,pipe rotation (RPM)and ROP based on the ability to clean the hole. • Lost Returns—Losses are not expected,although a full compliment of LCM contingency products will be available on location should losses occur. • Corrosion Mitigation Plan—As part of the corrosion mitigation plan,Sodium Sulfite and Baracor 700 will be run in the 6%KCl/PHPA fluid system to mitigate corrosion.Daily phosphonate and dissolved 02 checks will be run to monitor this program. Phosphonate levels should be maintained between 250- 850 ppm. Dissolved 02 should be kept at 1 ppm or lower. Record levels of each on the daily mud reports. 6 HALLIBUPITO N Baroid REPJOL Qugruk#3 ver. 1.1 Prudhoe Bay AK/U.S.A. Pilot Hole ROP/Pump Rates Rheology and pump rate are critical factors in cleaning this verticle wellbore. Consider the following practices if hole cleaning becomes an issue: • Extended periods of circulation(with maximum pump rate). • Hole cleaning sweeps(change flow regime of base mud by using rheology for carrying capacity). • Connection practices-employing extended gpm,rpm and back reaming,prior to the connection. Maximum Acceptable ROP in fph at Specified GPM and RPM GPM 500 550 600 80-rpm 171 210 234 0-3A Sidetrack Casing Size (in) End Depth(ft) NA 10,372'MD Drilling Fluid 10.2-10.86%KCUPHPA System ppg. Potassium Chloride(KC1),BARAZAN D+,PAC-L,EZ Mud DP,Caustic Soda,BAROID 41, Main Products DRIL-N-SLIDE,ALDACIDE G,BARACOR 700,BARASCAV D,BDF-515,BAROTROL PLUS,EZ GLIDE Recommended Shakers: 165+mesh screens,screen up as solids loading on screens diminishes Solids Control Mud Cleaner.3/8"cone oriface Centrifuge:As necessary to balance MW and LGS buildup Bad displacement Maximize pump rate and pipe rotation Lost Circulation Have excess LCM products available on Potential Problems Solutions location Sticky Clay Use DRIL-N-SLIDE,background Walnut to alleviate bit balling and shaker blinding Interval Objectives Drill 8%"hole to 10,372'building angle to 58°.LWD tools to monitor while drilling. Pump abandonment plugs to P&A. Restricted None Products O-3A Fluid Target Properties Interval Fluid:6%KCl/PHPA MD Mud Plastic Yield Point Cl MBT `SPI pH LGS% HTHP in Weight Viscosity (ml) Shale(ml) 2,200'—10,372' 10.2-10.8 12-24 18-25 30k <15 <5 9.0-10 <6.5% <10.0 O-3A Fluid Formulation Product Concentration Water 0.89 bbl BARAZAN D+ 1 ppb KCl 22 ppb PAC L 2 ppb CAUSTIC SODA 0.1 ppb (9.0-10.0 pH) BAROID 41 89 ppb (as needed for 10.2) ALDACIDE G 0.2 ppb CONDET Premix .5% (Mixed at LMP only) EZ MUD DP .75-1.0 ppb(Mud plant mix 0.15 ppb max add remainder at rigsite) BARACOR 700 1.0 ppb BARASCAV D 0.5 ppb EZ GLIDE As necessary DRIL-N-SLIDE 0.5-1.0% (For clays from rigsite) BDF-515 4.0 ppb (added prior to HRZ) BAROTROL PLUS 4.0 ppb (added prior to HRZ) 7 HALLIBU1rlT©N vow t3arr icl REPJOL Qugruk#3 ver. 1.1 Prudhoe Bay AK/U.S.A. Displacement Procedure Recommendation • Attempt to reuse the previous Pilot Hole Interval drilling fluid 6%KCl/PHPA. Use a dilution fluid blended with the reused fluid if the LGS content is high. • After tagging the cement KOP,blend any dilution fluid with the reused system while attempting to sidetrack. Q-3A Interval Operations Summary • Drill ahead maintaining all product concentrations while adding dilution fluid. • Maintain 3-4 ppb Walnut as a background LCM to prevent bit balling caused by sticky clays. Dril-N-Slide will also help to clean the BHA and shakers of the sticky clays. • Maximize the usage of all solids control equipment,screen up where possible and run the centrifuge to minimize LGS and maintain correct MW. • Ramp up MW to 10.8 ppg beginning 500 ft prior to HRZ. Add BDF-515 and BAROTROL+for shale stabilization.10.8 ppg is the minimum MW requirement from HRZ to TD. • Utilize water for rig site dilution if LGS begin to rise above the recommended<6.5%. • Maintain>600gpm pump rate while drilling ahead. Utilize DFG 5.4 for realtime modeling of hole cleaning abilities. Adjust fluid rheology,pipe rotation (RPM)and ROP based on the ability to clean the hole. • Should lubricants be required,add 1-2%EZ GLIDE.Call town prior to going over 2%. Q-3A ROP/Pump Rates Rheology,rotation and pump rate are critical factors in cleaning this deviated wellbore. Consider the following practices if hole cleaning becomes an issue: • Extended periods of circulation(with maximum pump rate and pipe rotation). • Hole cleaning sweeps(change flow regime of base mud by using mud density or rheology for carrying capacity). • Connection practices-employing extended gpm,rpm and back reaming,prior to the connection. Maximum Acceptable ROP in fph at Specified GPM and RPM GPM 500 550 600 80-rpm 162 180 193 100-rpm 182 193 214 120 rpm 193 216 230 Calculated using 3%maximum cuttings load SCE Recommendations Shakers • Multiple,High-G,linear motion shale shakers are recommended in order to maximize the system solids control removal efficiency.Run all available solids control equipment to prevent solids build-up. >200 mesh screens should be achievable for this pilot hole section. • All shale shakers should be"screened up"with finer mesh screens whenever possible without the loss of any drilling fluid off the end of the shakers. • The shale shakers should be continuously monitored for the proper distribution of drilling fluid across the screens to fully utilize the entire surface area of the screens. The drilling fluid should cover+3/4 of the entire screen length. • Damaged screens should be promptly changed and noted on the daily mud report screen usage column. • If near size particle blinding occurs,an attempt should be made to"screen-up"to alleviate this problem. If"screening-up"does not solve this situation,then coarser mesh screens must be installed until past this formation. • Sticky clays and heavy oils are prevalent in Prudhoe Bay surface holes and shallow intermediate hole sections. Use DRIL-N-SLIDE to remedy the screen blinding seen while drilling sticky clay and heavy oil formations. Mud Cleaner • It is recommended to use a mud cleaner to accomplish the maximum removal of drill solids.The oriface should be as small as possible while utilizing the mud cleaner for this purpose.This will maximize the drill solids removal efficiency while maintaining drilling fluid properties within the prescribed parameters specific to this area and interval formation characteristics. • Check to see that the Mud Cleaner cones are cleaned and in good operational spec prior to drilling the hole section. • Ensure head pressure to the mud cleaner cone manifold is>35 psi. This is the minimum recommended pressure for each cone to acquire the vortex necessary to strip solids from the drilling fluid. Centrifuge • While drilling ahead,maintain LGS content and MW increases through use of the centrifuge. 8 HALLIBURTON . ;: lir Eta roic9 REPJOL Qugruk#3 ver. 1.1 Prudhoe 114y AK(1 9,A„ ,- _,.„ Well Cost/Volumes(Cubic/bbls) Estimated Fluid Disposal Volumes Dilution rates for the 16"surface interval are anticipated at 1.24 bbl/ft. Surface P10 P50 P90 Initial Build 550 600 650 Dilution 1890 2604 3150 Total 2440 3204 3800 Estimated Drill Solids Disposal Volumes Surface P10 P50 P90 Cuttings Volume 522 653 783 Wetting Fluid 652 1143 1566 Total 1174 1796 2349 Estimated Fluid Disposal Volumes Dilution rates for the 12.25"Pilot interval are anticipated at 0.55 bbl/ft. Pilot P10 P50 P90 Initial Build 858 908 958 Dilution 2842 3908 5329 Total 3700 4816 6288 Estimated Drill Solids Disposal Volumes Pilot P10 P50 P90 Cuttings Volume 1036 1295 1450 Wetting Fluid 1036 1943 2755 Total 2072 3238 4205 Estimated Fluid Disposal Volumes Dilution rates for the 8.5"ST-1 interval are anticipated at 0.5 bbl/ft. Q-3A P10 P50 P90 Initial Build 227 454 681 Dilution 3269 4086 6129 Total 3496 4540 6810 Estimated Drill Solids Disposal Volumes Q-3A P10 P50 P90 Cuttings Volume 574 688 861 Wetting Fluid 373 550 1291 Total 947 1238 2152 Total Well Cost P10 P50 P90 Surface $78,233 $ 100,752 $121,064 Pilot $302.250 $389,450 $521,101 Q-3A $304,430 $392,450 $585,300 Total $684,913 $882,652 $1,227,465 9 HALLIBL IRTONI 0 i-r>ic1 REPJOL Qugruk#3 ver. 1.1 Prudhoe Bay AK/U.S.A. Appendices • Surface Hole Hydraulics • Pilot Hole Hydraulics • Q3A Hydraulics • LCM Decision Trees Surface Hole Hydraulics DFG 5.4 DillAhead® Spud Mud 3.396%Cutting Total Flow Rate=600gpm ROP=103.Oftlhr 3.305%Cutting Eff Density=10.000 ppg Cutting Dia=0.250 in R=100%0103.01t/hr-100.0 RPM IHC=100.0 RPtd..am:C Fm if— ECD VM: ECD Wa+C._: ' *;:.`'A'.. i 7r a f ' t ul .J.x . F �l yty ire r ` yGN 1 tfc.L1 `• .Q 4 2 1. > v,,70 i:•.,..:, t �.i j I yf t I� ., ',:' ?. ' '''' rr a t . b .11 t V.; $' a ,, a ' IG 1 1 1 1 I I I I I I I` 11F4 3 2 4 5 3 0 3 ._ •.- - 50 130 3 30 50 33 33 '3 14 .15 :. 5 10 15 Cutting Load TransportEff Average V Hole Angle ECD Wellbore (°k) (%avg) (ftlmin) I') ()Pg) (in) 10 HALLI1BURT©114 ,„.;- .; Baroid REPlOL Qugruk#3 ver. 1.1 Prudhoe Bay AK/, S.A. ,.,�. Pilot Hole Hydraulics DFG 5.4 DrillAhead® 6%KCIIPHPA 2.954%Cutting Total Flow Rate=550 gpm ROP=210.01t/hr 2.966%Cutting Eff Density=10.400 ppg Cutting Dia=0.150 in R=100%©210.0 Blhr-80.0 RPM IHC40.0 RPM-4m IC 5m I a _ -0— ECD vWCut �+, $ ECD WoCut . 4 r is• . • r ' r' 6 a ! yC y 1 • 0 2 4 6 8 10 0 53 100 0 150 300 0 30 60 9010.4 12.2 14 -15 -10 -5 0 5 10 15 Cutting Load Transport Eff AverageV Hole Angle ECD Wellbore (%) (%avg) (min) (% (ppgi (in) 11 HALLIBURTON ,_». Baroid r REPJOL Qugruk#3 ver. 1.1 Prudhoe Bay AK/U.S.A. Cl-3A Hydraulics DFG 5.4 DrillAhead® 5%KCIIPHPA 2.742%Cutting Total Flow Rate=550 gpm ROP=193.01t/hr 2.914%Cutting Eff Density=10-800 ppg Gutting Dia=0.150 in R=100%©193.0 ft/hr-100.0 RPM MC=100.0 RPM-4m IC-5m I 0-..".77-3- - —o- ECD/ Out illf;,,,,, ECD NoC '4k, — 2500 _ _ _ — 12455`, 5000 el 14290'. 2-. 1 1500 (96211— — — — — —' g yya v. . 10003(55461 H t I t . Ikr, 1 w I « 1 f r It l I 1 0 2 - - S 13 . 53 130 0 330 533 3 30 53 3310.' 12 14 -15 - 1- CuttingLoad TransportEff AverageV Hole Angle ECD Wellbore (f) (°o avg) (ttimin) (1) (PPP) (in) 12 1-1ALLiBLJRTC)V'J mor REPlOL Qugruk#3 ver. 1.1 Prudhoe Bay AK/U.S.A. Lost Circulation Decision tree Losses Lost Circulation Decision Tree f/Intermediate Hole Sections • + + • Partial Seepage 20 60 bbllhr Severe Total 5.20 bbllhr Static Static 60.200 bbllhr Static >200 bbllhr Static Treat Acte System Treat Active System + I + • with 5 sxlhr Barofibre with 10 sx/hr 60-150 bbl/hr Static 150-200 bbllhr Static Drill Across Fault BAROFIBRE + • • Drill Across Fault Drill Across Fault Contact Drilling + + Engineer or Engineer �ynami on call Dynamic 100 ppb LCMIMud Pill: 1----_ Losses 15 Yes bbllhr Losses<25 Ye 20 ppb Baroseal F Contact Drilling Engineer bbl/hr 20 ppb Baroseal M or Engineer on call. 30 ppb Barofibre Drill Ahead Drill Ahead 20 ppb WallnutM 0 No 10 ppb Wallnut F * No Increase Treatment to v • POOH,P/U dumb iron BHA 5 sxlhr Barofibre 70 ppb LCM/Mud Pill: Contact Drilling Engineer or 5 sx/hr Baracarb 50 Engineer"On Call". i 20 ppb Baroseal F 20 ppb Baroseal M Consider spotting EZ SQUEEZE or GUNK pill. 20 ppb Barofibre Dynamic 10 ppb Wallnut M Consider spotting EZ Losses<15 Yes SQUEEZE pill/GUNK Squeeze/ bbl/hr cementlplugback contingency Drill Ahead No 40 ppb Lb/Mud Pill: Dynamic Losses<15 Yes 10 ppb Baroseal F bbl/hr ,. 10 ppb Baroseal M Drill Ahead 10 ppb Barofibre 10 ppb Wallnut M No Notes: 1 1)Drill across fault or loss zone 1.5.2.0 times the length of the throw Contact Drilling Ibefore spotting LCM pills. Engineer or Engineer 2)Circ Sub should be run in BHA to spot pills if"Partial Loss"cases lynamic on call to determine if or above are anticipated prior to drilling,to allow the spotting of LCM Losses<15 Yes additional LCM pills. bbl/hr treatments are to be 3)LCM pill volume=300-600'column based upon actual hole diameter. Drill Ahead made. 4)PRIOR TO ANY LCM PILL,APPROPRIATE DISCUSSIONS AT THE RIG SITE MUST BE MADE TO MINIMIZE THE POTENTIAL No FOR PLUGGING THE DRILL STRING. CONTACT THE MWD i ENGINEER FOR SIZING AND PPB MAXIMUM QUANTITIES ' Proceed to'Partial ALLOWABLE THROUGH BHA, Losses'Pill J 13 Hiki—L-111311LJIIPMCINI At,,, MilPr Gamic! REPJOt Qugruk#3 ver. 1.1 Prudhoe Bay AK/U.S.A. Losses Lost Circulation Decision Tree fl Payzone Mud Systems • . + Seepage Partial Severe Total 5.20 bbllhr Static 20.60 bbllhr 60.200 bbllhr Static >200 bbllhr Static Static I' V Treat Active System Treat Active System i i • with 5 sxlhr Baracarb with 10 sxlhr Baracarb 60-150 bbllhr Static 150-200 bbllhr Static Drill Across Fault 50/150 150 i Drill Across Fault Drill Across Fault Contact Drilling Engineer or Engineer • • on call Dynami Dynamic 100 ppb LCMIMud Pill: Contact Drilling Engineer Losses<15 Yes bbllhr Losses<15 Yes 20 ppb Baroseal f or Engineer on call. bbl/hr 20 ppb Baracarb 50 Consider drill ahead w/ 30 ppb Barofibre Drill Ahead Drill Ahead 20 ppb SteelSeal seawater No 10 ppb Baracarb 150 Consider drilling ahead i No without returns Increase Treatment to V • 10 sxlhr Baracarb 50/ 50 ppb LCMIMud Pill: Contact Drilling Engineer or 150 i Engineer"On Call". 20 bbls Base mud Consider drill ahead wl 10 ppb Baracarb 25 seawater 20 ppb Baracarb 50 Dynamic 20 ppb Baracarb 150 Losses<15 Yes bbllhr Drill Ahead No T 20 ppb LCMIMud Pill: Dynamic Losses<20 Yes 20 bbls base mud bbllhr 10 ppb Baracarb 50 Drill Ahead 10 ppb Baracarb 150 1 No I i 1)ODE must approve any steps past PARTIAL losses. Contact the Engineer 2)Drill across fault or loss zone 1.5-2.0 times the length of the Dynamic on call to determine if throw before spotting LCM pills. < additional LCM 3)PBL sub should be run in BHA to spot pills if'Partial Loss'cases or Losses 15 Yes I above are anticipated prior to drilling to allow the spotting of LCM bbl/hr I treatments are to be palls. made 4) LCM pill volume=300'-600'column based upon actual hole Drill Ahead (diameter. 5)PRIOR TO ANY LCM PILL,APPROPRIATE DISCUSSIONS AT No I THE RIG MUST BE MADE TO MINIMIZE THE POTENTIAL FOR i PLUGGING THE DRILL STRING. Proceed to'Partial Losses'Pill 1 14 HALLIBURTOrvr REPlOL Qugruk#3 ver. 1.1 Prudhoe Bay AK/U.S.A. Testing at the Wellsite • During normal drilling operations one complete mud check should be run every 6 hours. This is a total of four complete checks made over a 24 hour period. Timing for mud checks and cost cut off should begin at 12:01 am each day. Unusual circumstances and/or non circulating periods should dictate deviations from this schedule. • All rheological properties(ie.6 speed readings,LSRV and gel strengths,including 30 minute gels)will be taken at the standard 120°F unless otherwise specified. Routine Sampling • Mud samples(1 QT)should be sent in any time the need arises,ie.hole problems or lubricant problems. • Samples of the mud plant built fluids will be tested prior to shipment to the rig site and saved until the well is completed. Samples must be logged on appropriate sample tracking form. • Samples of new mud delivered to the rig site will be checked for weight and rheology at a minimum prior to offloading into the rig pits. HSE at the Wellsite Health • All rig personnel should have access to current/up to date MSDS sheets and PPE required by MSDS sheets for every drilling fluid product on location.An MSDS book must be retained in the rig pits,and Mud Lab. These books will be maintained by the onsite mud engineer.Additionally quick reference PPE charts for specific products will be posted in the rig pits and the mud lab.These charts are by no means an MSDS replacement. Always read and adhere to the MSDS sheet prior to handling any drilling fluid products. • Rig Crew Pretour meetings are a good platform to discuss upcoming product mixes and HSE requirements. Environment • Ensure all sack products stored outside are shielded from the arctic weather with plastic or a box. • Do not store single sacks outside of a box. • Attempt to use all opened,partial sacks. • Proper planning for necessary products in the pits will diminish the"Hurry up"factor. Properly planned events create less opportunity for mishaps. 15 HALLIBURTON Baroid _ REPlOL Qugruk#3 ver. 1.1 ' . Iff • It 4 ► _ 4 NFPA Rlinimmiatings Product Name Health Flammability Reactivity PPE Aldacide G 0 0 respirator,rubber gloves,rubber apron,chemical goggles,face shield Baracarb 00 coveralls,work gloves,safety glasses Baracor 700 1 2 0 rubber gloves,chemical goggles,coveralls BaraDefoam HP 1 0 s: 0 coveralls,rubber gloves,rubber apron,chemical goggles BaraKlean 1 1 0 respirator,rubber gloves,rubber apron,chemical goggles,face shield BDF-515 1 0 0 dust mask,coveralls,work gloves,safety glasses Barascav D 2 0 0 dust mask,coveralls,work gloves,safety glasses Barazan D+ 0 0 0 coveralls,work gloves,safety glasses Barofibre 0 0 0 coveralls,work gloves,safety glasses Baroid 1 0 0 dust mask,coveralls,work gloves,safety glasses Baroseal 1 0 0 coveralls,work gloves,safety glasses Barotrol Plus 1 0 0 dust mask,coveralls,work gloves,safety glasses BDF-499 1 0 0 rubber gloves,rubber apron,chemical goggles,face shield Bicarbonate of soda 0 0 0 coveralls,work gloves,safety glasses Carbonox 0 1 0 coveralls,work gloves,safety glasses Caustic Soda '4 0 0 respirator,rubber gloves,rubber apron,chemical goggles,face shield CFS-520 1 0 0 coveralls,rubber gloves,rubber apron,safety goggles Citric Acid Anhydrous 1 0 0 respirator,rubber gloves,rubber apron,chemical goggles,face shield Desco CF 1 0 0 coveralls,work gloves,safety glasses Dextrid LT 0 0 0 coveralls,work gloves,safety glasses Dril-N-Slide 0 0 0 coveralls,work gloves,safety glasses EP Mudlube 1 1 0 rubber gloves,chemical goggles,coveralls EZ Glide 1 1 0 rubber gloves,safety glasses,coveralls EZ-Mud DP 1 1 0 dust mask,gloves,safety glasses Geovis XTL 1 1 0 dust mask,gloves,safety glasses Mica fine 1 0 0 coveralls,work gloves,safety glasses N-Dril HT+ 0 0 :41- 0 coveralls,work gloves,safety glasses NoSulf 1 0 0 dust mask,coveralls,work gloves,safety glasses N-Vls 0 0 0 coveralls,work gloves,safety glasses NXS-Lube 1 1 0 rubber gloves,safety glasses,coveralls PAC-L 0 0 0 coveralls,work gloves,safety glasses Potassium Chloride 1 0 10 0 coveralls,work gloves,safety glasses Potassium Hydroxide(KOH) 3 0 1 respirator,rubber gloves,rubber apron,chemical goggles,face shield SAPP 1 0 0 dust mask,coveralls,work gloves,safety glasses Soda Ash 2 0 0 respirator,rubber gloves,rubber apron,chemical goggles,face shield Sodium Bromide 2 0 0 dust mask,coveralls,work gloves,safety glasses Sodium Chloride 0 0 0 dust mask,coveralls,work gloves,safety glasses Steel Seal 1 0 0 coveralls,work gloves,safety glasses Stick-Less 20 0 0 0 dust mask,coveralls,work gloves,safety glasses Therma Thin 1 0 0 rubber gloves,chemical goggles,coveralls Wall-Nut M 0 0 0 coveralls,work gloves,safety glasses X-Cade 207 3 0 0 rubber gloves,rubber apron,chemical goggles,face shield X-Tend II 1 1 a 0 rubber gloves,chemical goggles,coveralls 16 N r-I O N O N ` .... �, C ILI 0 CC Y Q U N QJ 0 0 ( ) ( `) FA MEM LOP 0 U) •tU C!) • • 2 cw U U O •� L s- 0 -g O 0 0 N '-I O N Rod L.f1 ti k 'hut 2 Cl.ir W 0 cD c a) o ,c) ct a Cl) 0 — r_' C7 C Q w a) 0 0 U N ' Ico � al = a) W 31 N Cl) E •N O (if of N N (n Q � .� °a oO `) ci ¢ a U fl_ , 0 2c mu) a) a) . n3 C3) .0 - c U) O -0 (/) N O .Q a) a _ _c +N.' Q a) c •O O O Q w U v U O a) •_O C Oco 0 COi CO :15 +-' O c a C'," 5 Z if) It w m b C 'b O 0�^� a) O t -c L" i) a) E a `a AL (0 .- 'O «-� La N a) O (ts U XL aN `t'_. . Q .0 � �0. O O " ) O U CD J a) coN .> s_ 2 .0 'O 0 = >:+ O = a, � vi �a )co � W EcOO }, -CI _ a) co E F- a) ca .qu) cc) — (NI ,--1 o rq Irl Lii ., 0 Ci5 ‘4 *= Oa 2 iii e" cci D a) a) ci t g 2 0 ro n cf.) 2 al 2 0E/3 :•=-7 -0 .u., ,., 8) (/) -o c .> — .0 0 c co 5 C7) E a) c o-5 a) "0 czi a) 0 a) -0 C (13 0 ai (13 •- a N a C (!) o Cu co 2 r 1>' O c E 0) -1-- 2 al CD 5-- CO In (..) 0 U) C1(1) -C. ca RI co F— cr) .4--, Cl) - -0 . . a) ..c 2 gi. 8 ;;; Li: (,) iii CO C co Cl) 01 4_, 1z3 a) a) a) O) C c 4-n CU (1) 4•4 0. El - u) TD 0 a) 0)(13 -C t rn TO = .-. c CI cla .0 C a cs) ct) 4E. .-• o co > a) 0.) (i) a) Ca. 0 > C s'4••••• ...... co -5-.5 a) o 0 2 a) ra .(...) -5 L) a) 13 a) E 4•-• ...Ne ..--. 5 0.. et" 0 '— = (1) fa0) 0 0 To 0 ,. -0 c- CU s-I...- °) T3C 15 a) (1) 0 0 a) a) ...c (1) - o a) ,a.) Eis_ 4.jr... ..0 .4-' a) = a) (1) () V -o CD F— ,a) _c÷_, "-§ o c • 4.1:6: >., • — >1 0 Cla 9: -F6 5S, 73 g 0 0 a) < > < 0 a) a) E 0 0 a) CO £ ..0 ,,,-- co ct _c F— H ‘4-2- cm s) 1.— , . . '5.- (NI c Nr 1 "-.'"..-.......,......,...............s._.............,......... 1 N Ori N lid Irc r-1 N 4 ° To W `8 0 C V a) N co > c M t o' • C -a ,� O vi L N c > 'E N •+—r a) a) C _ O2 N (/) ..c i a, O a -p L cu pj cr - O - N C L v �- m a) 68.0) E a) L d p Q- 'L L ^' 'L a) Q Q � � � �o '��✓ � � a 2 0 o o co co c ' oU � CO Q a) N a) L v � c3 � � � � � Via) " o Lfl U� LL � • _c C1 .` (B 0 Q. 0 a) H CD I 4- a) co 2 a) C co L O L .O L g - U 4'' CO 4- a) 0) N t� N 4— O o 'er a) .D Q L CO 'C3 = c F- Q) U CO Q > a) U 3 �+ 3 .Q U 0 p a) '� 0 Q tB 'O 0 C 0 C ct/ a) (IQ Q ~ CO O o .... coo o ai p a) a) o p = co c .2 c o cZM as M Y a) a) fn ` `- U ,...- u) u) a) p O 'C O CO Ca• V a) O 0 c cn CO 8 U > 'C3 ~0 Q) +� N as con co Q � •'L o c 2 vi as oCL0a) ma? tea) c6oa) � v — o a) I � "0 al a) a) as O F o _c � a) � cc� > s Dov c > a) _c .0 O a) > Z. -O o c �-' 3 0 U o a) - • .—o o •- CO 4-• Ca N (Do �0 .c -0o 0 .coCU 5 •� CCS Ua) cu) o -ate scu >. Co 0co v, -o 0 o () --c- -t D L V -D � > op F 0 'N o o cY E . o U 3 M M U to N U +.r c fn Cn 0 Cl) cn ° 0 'S o ° c .o CD o con u) • c .n L a) C,, N cn O CO a) O CD CO a) s-a) 0 a) 0 0 U ~ CO U i- s c a) n j N � .0 M Q. 0 N '-4 O N vi1 ui r-I d a , L1 tQ 0 v Y T,• _ } 1j 1•_ �- _...._-.. \ L T,,,.:, ,, ,. .: ,,,,j, ti,- ,_______ , ,,, \., vgralliiii 11 . .411114111, tt -i N - ', i 3. IIS. 111044sc11te111kl`i _ _, ilk _ __ _ ,. 04, , - , I .- - -Pilk. ,ii u; , . i , , ____ ---_attitik , NNN, , . loi,,,...._L .0 . / , A A 10 •1 ___, IA �_WI -----7 Via, +-' 401 „....____,, ,.„, ....,_,,, ..,„. _____ , ,,,,.x,.„,,, Atwoik,----.....„-- . . _ ___ . -Ira" . .....:4111‘ .- - "Iiga., tta) 1 _ t = , L ___ Abirn_ :. ,_.___ . . ' ilt F Cf 4 i ,,r ,......ii,,,,. :,.....oi:1°..1".111...17.1 to 1 "MI : N, t ildiL-k46.1. 7...•AgiiPlw- 4k11:4 ro _ IA 4.14k_ " AA ,r.) lira __"'" 111416.1114/4"pi - ,. :_,____________, _Ainit.4...._ %wals...4.15 .'6-°. ci ''' mearl t a.0-----;!, - i riliViiina. , , , — cc Ip IOITI 14411 1 -f^ ". 0 U 4011 0 a i Tavaitm4m4 Vail < ...kW - l k t (9) 4.. i ffAima.H11 ,,, milliANIF ., . i 1 IlleV --- _ 1 N W ... 1 -1 41 A -: a O _4r11 -Villir 0 m L 0 i.i N O N NMI L1 o �1 I k' 1 W 8 ° Y j 3 „ ,4 _ , 1 , ¢ ir k d . ., ,,, - ,,,11 .-. unrons.LtiAlivlos tiiiiiN14i-Mitdkt%-T--hv Irlikti,,, _ 1,-.,,,............, , ,„.‘0,. limi. r.or o Nwiel.yooti : - i 07.420 PN-No OW' \ i 4,44.,. i , 1 1/4 itri...-40 , - 'i%--Alio *vhg,...0•A‘„ \---. h, "or ;.44-- _, iriti,\*,, 4-410,L illsote . -- 1 g A IllkoliWN I -MINN ' N. • MWdlikakb. coCI cr41,A1 x 1,11 al 2 imialiwz._. _i .11, h. \ \ \., 4-10,--i--- ,, i m l*ori 1141iiiL 1 gciefaki-w- -..w-A--d— = ._,____,---____wm_—_,. .2 1 , . ..z.--, L.. „auk 1 2 co '?. `k..-----"is n--, . 2 1; -. I --_ 96 to I r i L-) 011*.'wfselkill c Illekiiivirgeril il I L., ilik 4 . ! z oil ii , , i c ` _ /.147 "„ 4 loxvir it - (/� ;� ---- fr-I �� _ '7,'_ cm __ ` L `� t_:AI ii ��N ^y ....... C , -65 `t0 i i 11 m c N m ."- O N iiii '-I r-I 8 a ° 0 i cc s- 2 o {J Y as 2 Y O Q U r '\ ,ds 't .E y 4 0 ,n O 7 (k' C-. son 0 1 war nom 000 f ■ i < NH i a _ M 1 .ft,, iiio� ,, m . , 4— !a- W }+ murno, t ,a ao An 0 witi•inin .t. ,-1 a _ _. mum cu cm -. (''Ir w inn . ,,_ ,_, . a V) CO rao = ' o °' 1$11, Q Ilaill ,Y +-, Y I ircs , p7olli ‘, 4 g O a {j { I IEIII C iJ 73 CL ° CU• N a) 41 N ci O N lad lf1' 0 ao 0 ' O a • �YJ3 I (/�l T ( c U_ > " N U_ p c u O U O O O O O -1E5 CCS -oU U UEt2 D -= N N 4) C O c (C CCS C 4) E O LU O U_ U U -0 - - .- >1 = Cn C L' r- M CO E tC5 o O c U 0 0 0 O O 0 C'7 'fit u Cfl t` N 0 N Lf1 0 d ° W 0 C/) TD -2 ` U t/) ti C U > U -� 12 C CO CCS C a� O (5 4-• U) Cl) u) C CO -� C C C O .O O U C0 U U U TD 'a"'' � ( COO -45-<' to c al CO a) 2 g c ft 35 E > 0 Cv O N = s_ > > > C C6 s_ C`r) CO E CQ O > c 0 0 0 <C O O O Cri CO 4q• CQ r%*' or'''-'-I N N url u; Ir e- C2. 'O to N iv z N N C 1- N (U >j . "CT TDa) N U) -2 N O N O 2 C O O .0 0 Q Q lL o L E N -0N ,G � o CY 2 ;2 O com2 -' Q- N O � co 73 N• N F E__ U N U N O O > (.1) ^ (T3a.. O V) iii a) L O O � `O 4., j N r1 N N -7 rz In a val Lei ip ti °' �� _- E � pp po 0 pp p0 0 p0 a) O O O O O O N M < , § M ==I U Eij � 1 0.N o � m III 0 0 ' i I �y Q �i O. o UCOo -t--' H .�.....� ........�I 11111111111111111111111111111111111111=11111117_... U � _ CD _ T■S■..rs.u .on.i = IN- ... .1111111......=1_.. .- d ._. . ____MI .. •... .-.' 7D1Q 1 1I1,,vitivileuji .- {{ 1 1 I . u 0 11 1 1 -' ...Ai,:17 Iiarr�i..... .� N •'•,, laiMru......r�..=..rl.. kS_b'jiInj .. . . -=. ..._ ... .... 1 1Li _ , . - > ....,, ,,,,,.. ,iiii , ..,,. -_-i:ii, 1-- II"tartililirallil i -C ril +1 . ,i 1 • ry 1.4611i1 ..(/11...um....... 4-, 1c. IIIIII 1 I. -. 1J■MMI IiiIIII■i o �I1 _'il 1 ... ..s . ..III1HL'IIt .I 111111111/.- I I El 4-) I rc 1. -+- ■■ . •1••111 -1co • +f�I- ' 1F■riw+w IIt����r�-�-�..a...r1 G HI I dill,II. I'I1.{.111 '- IMIllin.iliimMIA _4 -0 r-, ,, IIf,,-. , lN��rr o.S��!•li�1 (13 > 1 11.,661.VII - �.I1- 'Y i i it i1I R �I iI fol A 1,�.N'�,�l�!o .D filig g iiliiii I 14H .... ... ... , ill __, rim. r.iIPJ! int,-;1 co „>m„Ili 1,1A i ion 1 Rom 1, L.I.' La. Pt wi:m i gm -C E 111111 I J . - I11.rinl r.*sar1llldrW..' PIYi.filr.. a I� I { , T1�"��0 ice.... JY... N co ....._.....�...I:...... - CD ,_ it . ._. .�.r�Brl.. .�._ w •H o -_ iiiiiiiiiiiliiihiii MI- . :r .. � -g1 ■1 0 -� F ■■■ _ ■■ , ■■n■s■■■I•■■■lIfuin■■■ r- = ill_ ■ t�, � � ■ ' ° V) Z 1 5- I, 1 ,, ,A ' - 1%411 III 4.3 CO co I I , . ibt__1/1111111111111111111 u ❑1 o :. ■ 1 ---I- - -1 iN■ ' of 1--i--r-r-z-.r...,i--1-:- -r----i--r -.y_.'---r-:-r-C---r-z---i--r--- -�- -- 7 c x a co --1g Li) c d g ' CD iiI LL1 H. 3, I • I , 1 ' II C� FIR- 9i; . ,I , , ii I. 1' s..... el,,, .. i . 1,( : ii In " „ 1 w /�r•e,44`��'Arr"' Ill :,..„ to 1i � it: 11 ;fit,Co • , '�. ; ,$ % C!! 1 0 }pt. . E > i Vie- )t), '. c = _ ) O '- ' G • iI n. . I' W 1 t Ni i,IW a ,I Ii ' 111.�I 0 r-1 Ce 1 , 02- : - , t k aII 1 d 1 r r 1 z ; ► . I1 : I ;41 r a >~ `�. . . I f r 111 ,. . - ,, I(( .>•N rP lea i I C:-.„— i 1 i; I .' It ;° I . I ` I ' � I y ss . fi $... .._.. ...$ . . . .., . .. AI . . . _1 I o o 0 0 N *-I 0 N Old LI1 .-I j �� L l,i ,,-rr ! ah v N 11 ' u; t 2 f #r4 .. i- ;,� ! 11 iin r-1 x �a :+4 r • ' MPi� I .3 r,,•�+ _ Q 14 , In I f y, ) 1) III f w'. rte ! A 4 + '4i Y 4 43 4 iikt co \ I 'r.i.= . a ' t L : .� \ Sri i, � 1. LL.. : • ,. $0 )► i 0) *' .. r+ay + * I o LAS CO as.! •of * , 1 C i \, tea. a' .t (4 + �{ /�( 14 2 !.. rr V baa r ,� CD c.., .% rrf' }I.. + '\'. ,..a } ....c a , /{j ' 't I, •1-,�t`?"� st'! L j + ► •1. . t . • co C/) Is f r )s )) •• `}ji i 41 ) 1 L Q ill a S..- L ' 41 i i i9! 'I 1( , •to 1 co CU .'„ iCD a C o . cu 1 MINNlN�t w '• E , r u L ~ CU W '+ n+b L ii. l W ;.f. O 4141....l�M 17w.w, M. t afM .W + 1<.N` ` j `+ ****.*°°••• O O 0 CO r` .. 1— N 0 N NIII :I 2 ua a) g 2 t) • (f) (/) 0 ; C C .0 0 0 .0 0 4= - "Z."; .47fa rrc0 0 " (1) X W 0 CO CO C13 0 CO 0 C.) ( 0 0 -0 ---- 77.3 yr) ••••1•0= a) a) = a) c.r > > > Cl) c u) a) 0 co E cc) o > ) a 0 < 0 • (S) C i , 03 •— $ , ,, CL 1 - )4.1112,ft l' —Y i1 _ i = "+ II I t = i •i',.-0..tri 1441N\A'PP/-- L44..... , ito4 1 0) ,--1 J CY i to. I 4 C\i/ co 1 4 = ... oo ER' 4 i• 12 s = -•.- . 0.) ' 62 ; _ ....c C3 • cn L9 LU — t r- i , 1— 2 -0 A ci joy0901...,064.40,04441V .0 \r, 4 s.... , • i 1 .., v•-1 Li— i il , ,, _. w NJ 01 i 1 's C - ' 44. I -.-.1,......._____.....___, 1 g1 lD ui c(1) . I i, i 1 0 2* 0. L.... l*F .• . 1 1 C) . g •1; . r•: I .1 0 g •,• . • - . . , . +—; ......, ....3 2 * I ...CD .... # 4 ',.. 4. r I i' I 1 , - i ... ...........„.. , i4- .... ............. , ,a 1& *1 _... `" Tt; i -r y. 1 § 1 i+ l� o1 COr. ilf P I d 1- z I gP C^' 1! ` i = L... CO V ill , �' = I_ ) Q6. — rl n CI LL 0 , 0) � r o ,,,.,O GC i• N 4. .4, t \I. 1 m L4O Ili' , ,, � � v 1 t, w i s.... -` x 1 , . ,,,„ud r t.Aw► i'' ' ii • , s 4 14 3 == t t .I =1 i - + }Y N r-1 0 N NMI Lt 0 2 Oa o W 6) t 20 o v C_ >` O Q _0 v) Nu -0 Co E cu = . n CQ > U a.:, Ato Q1 aj 0) N 4A Bc; � f 4 i ? 4 R 7 1 c 3 i 9 S 1 5 OC I : �a, i. L T___ I 2 E a-+ O- M INIM _wrr___ N 4-04— , { .w N cu . O 11OIttROili I= ' AiInm "4/1,1a 1 mi 11�11 II pEl2 M 0'1 CU NI 1�� m z . Q 1- S=.. IIIIIIIIIIIfD •___ • E = = cu 11 — 0 �it- ' 00 , 'min mom U Co � ®::•: .. - mmiltOit! --I— . IW aa-t V) 1 K tr i 'NH' " ' `` —ii "k , c — j VI1 'o. i 'IV! ,.Ell 4_, co Cr) t CU s _111 co 4.)m >" ii -, Ya. S f •- p,j / }1 , P - c cu € 11 I cB v s il O _- - —s., 4J a L L - Q O E 4": In N Q) c 4--, _cO O H O 4_, N 0 N v L 0 v A o ri Y W o Q 0 0 G.) 0 .Q 4J Q v E o) vi Tgl; Y i ! i il!R0,J1 0173 s x iiQ a ' 3 -0r 0 - f O. .„ O C v 1:1411..= � lam: 4K I 0 Ih7!%g Fr= : • „,, . _ _ O �, 4. i ��' t3L L . ai 7 Ci) At t ^ ,_1 , . -- V. S5 V 1*101 I r :1 1 I ' 1• 11 r • jif i� L', I , 0 i3{� I..._,,,...;;J...4.1,,,•„,} 1 1 i J I t i l l 1 e'11 Cr) J 0.. i g i MALI! W :4w / E }r1 2 ^ ,iilC"' yy yr. 1 4tiv.w 11 "'i1 111 1. r' ,,t14p 1 I 1 I S Q ' i i 1...41t' .��11 1 1 1 111 1 1 1 1 1 1 I P I. 3 ')'i.f 4 lil ..�..r (6 111 '19 :r:: ,In ff lill 1 }. 3 !(1 O 1. 1 did _c 46_e 1 _ I: O 0 IDA O C� C cu H N +-I 0 N la Lf1 1 5t[ L N Inn W0 CC a 7 0 L 4-0 CD 4— 0 }J CD E N r _— 1 •— Q >< _ • ro u �{ '3 E N • i' CO 3 t CO C +�] .l 4 M i' . t• :• 4`i j Cl 'V) Las • V • D• r; W L� N 1C t 4 p4:3 b.• S GI 4i. .- .�W:u E» J i ul f.iJ +'+...a Z. W4WSr1m 1 I— C. 1 :g • :,c c, v S :a ,1 1 c!1 1 I . r) YL`1' 2 a: f r'n. °1 a a x:.n z t pt .;y cn..y ...;.•.Lt.} •-W H t4 D r 0 caI.-' 1 - F,"..w, [:•i.i i4-LIds.t7 tv•1- 0 . ty k x 7trC "Gr+t i.4. 1 a > 4.1'..1.. W f. 47 ( ) c' .v: 1 :2 14.1 ur~aaln N 4. .�.1:4 U.s• .1.111._ . L• H L] +'S.;W.�'1gUia r.r, oda G:I ........ 4:.-i+:n e. a: C Vl ,s...W:.>r r 0 • (•l.r.-..1.1 f c-•a.A.[ .]K —4) CO C 1. -0 U.1 ) 0.:tr. 1�`{5°W r tlS0 4-' _ - •• > n a,ru t_ f4 QF C i n rJ Ce.n rJ a s Co .4 �i r.-1 j r a. ^v a W A a .1 Cr 0 a) t/$ .xiJ t.,7S a.YU h1 , > •▪i.. W 1_] < •Vy sem- 1s. :1:•.Z% I a) F. ,n a -E ••V.3L.1 .0 _ a.' S 4:T. ,a.11,*1 c._ �N a K:w + sz ; 4: n. 4-1 L. �,xaa exF3n. CCO i i;+, di r:1L u. . ::isZ 7•£ }) r-/ ... I • : .W 7C L I Or. o "1 -t•••-• W y. ^i f 7! t1 f.Staa1 rlr.. 'fif 1 - &• 41 V. . COV �; 1 • 4 r, 4 L.in=L _ :J- : O NYi ' Ur.W w ol �1 • i . . 41a> . t' COa) t'1 CI t-i.t) ; [ s< =VI 3. 0• tri•-+i•1 co ttO CO h O t • X: 1 _. _. 0 0 T,' �, : • O L !F ri 1: 1 t Y N r O Ni 1 73lei�C 0 Lii --I `V)V / 0 U C.9 0 Y > sp tarp 3 o U • I •z 4— g a o 0 vi • NII/ o I 1 1 + .. .. .. K o ~ ` f:.. ; v ` p r }w f 1 ,... 44,'x,$ 0 • 4 9 1)—...4.*+% .1. _.,..._ ._ +cu R C6 i + ± 1 N (B .., .fir,. f it,. _............., 4-'1, C ,..4., (I) i46114 ; 8 "`"" . "' CU c O i' 1• 7 1rt 1 Q) (CU n tcu i _ ,, i aa o 4-1 tQa �Nw _ ri,.r rriJ■.�r-AU I I- -,.'''1- p —0 1 also n + f > ., Q: f �... 'At'?" }` • . .,- g - 0 n I I. .. _ i i ao te-+ N u co ._ ' y ___ _. ___ __ a > . a °' ! c (13 Cr( 3 -,8 { s, f s . . . i cn a •''Z i __ (75 v CU v —C CU I— -0 N ,-i 0 N +d ,ri 111 Q o W 0 IX 3 O .f4/ N Z N L A-' CtS > N N ccu:! $ : i k, -0 !, ._ 1-- of o ` _ � s 03 0 c' - v o '� 2 . 0 us -, N O O Cit tie`•' - « -, > a) Sp "' 8 41 2 u ,,- ._ � ....✓`... ,+- o• "' z s° a fes'• _ Q- `; " ou OWL:::.'!. 1....-. - CU O -$ 3ii_- 'r w' &^1,1' o - M _ � f 4_i 0) �:l#i -• C< o.. I<2 ... •1'1•.,.w:.+:�,,,<'�:.. •••• y� �`'— �' 1 ._•- _ CO O �{' r... +..t . _ - • 00'i',`I w ! . I l,i ira Sri 4 N coCU CU ra V k c. 4 ,7, IU J," ' 7 1I t , , N^,' .SII 1. '; IJ us iJ ;d ini. .... y , in 1 a �, .1 n n, t n, , w • i !, < r i • r r.. 1�/Li CU E <: i 4 V ', .> , { > }gr 'Lvi CD W }} "‘ I U CO co N co ttO ttO .0 CU V F— 0 N O N 1.01 In 0 -,, a ° - IN U x . p c a t o ill CD 1 4-.) a) 01 I O a.) Q •_ U O V . L p ;a o w r 4rLpGvEi .4) car7 G-4 V) -.r W :,W .,4 W ,n *.rCD cu V/ O2 /)c4C4E. FC;• O W I n 61 ,i [Y. £ r4 H • CK. cn H H C)N [: .1 u: f[l an H O x 0 c 0 in H • N HHUU�NO • CO O 47 H :4ggEa7f1W • N N UOG� '1"' • w rl, H. a Gw V O0, E-+ ?I H C7::_)U. . • V { Cl.) 0 CDC Ofi1CS V)r1 •• .'S •,-a M E• .:• C] ac,•, e.; wra 0. x I v :d.1 E' I E-•N .-1wA E. .r, et ti) 1p4. G ,n i E— c., rn ftl nn G. F.., p c E,, o t I m La W Z c/3 U.m 0 c) q ') I G1 V) 1- N E. • 53 c\ D .a r- (z3. H .1..+ .— es; a aCG tic) .42.-. c � I w a) cCHc:i.� v.t:, D N. W a• co E-, frelE4 >• C7 a') s4 f.......•n -- -r•1 O .] 4 .r a 'ti rn m ,n e' cn ..) F+ . . .a ; n, 1") - CD.-a LO r-1 (.L. i �. �, � •xxrx r� Boa n GC9AtoE- XU3 (N awCri • +�.) 0 HU .-4LL W I1 W •-1 -4 1 N L { {:+ .a0 .,XZL1' x • II 0CO www • 0Ct C.1 (......1 ) CVX OA Q 4 N He .f• ,-lw .1XN 7 L] E, s: 0 2 OG 1 1 1 a) p) car � nc •a {a) ++ W E. - `G H W C14 C.:. O U • 4J 51 =-1 �. •r1 • , er f'„c l i E cu a al n, H 0. 5' a' cr: ---- O .a U Z n,rn • rnI rn .-1H ! X DDx -I . tea. Ho 1 cr1C) as 0 f. -1 -a CO V CL.1 rci JS .•5 % C E. • O7 .AWOC4 - a iocn0 f6 v ( to Q .7_,' E, 1 0 N ra ...r ' .._ 2 p) 1 'r) H --I Z ca[.. ' �._I H H O H Y. Orn £ X' .� ., J j 4J ��'[ r•: 1.4 frl :'1 •H an 0 .a Q,'Y. I > •`3 .- HHZZ 1> ••-1C I ..1 " -] [) ! 0 c ♦`V I H r..' 7. Z 1.3 :.7 f1;(U N z H H a .1, W D ► z 41 � 0ZOHul-- ccn a awx(_ 2 V N c�a cn , Fl l.) .-. (J (+.r()[l. LI ,x U 03 m 0 1 YQ _ CC + f, ;�; { Q C .3. - I rn m o r 1 = 0 H H 0 Z LL, 01 r;ul • r)r)CO Ul l••0, ci L')T•) o :o . 4-, d .1 V• F. CJ u) a' Nne#. 9.2 . I� Nd c.104 ' 0 N 2 4 c•) C A c-) Q I. 4-+ 0 ti. 3 r)0 H ca(' I+ L r•1 = $ « I a) �� L_ Wo ❑ d W * _c O N r-I O N `0 l IFQ. W0 ta ° L N U i C 7 L f_ O - a "� tC VI E 4_,+ CD }' v i 5 _O - Q .cn C H EN LE • MIEN • vl 71cu '111111E111151 -:UUI 11 A 1 ,ellnllAsssii lir, ri��alAAl .pc ENI AAs _ 0 co a�._ ,'_ MINIM, A 1�liiiilIlI - MUM a NNnnN�ua -a o co ii AsI I D C m A11 w . IA 1 1d1 i N = g '_ c ' : • ENV 0 0 71_ 4- >, Q I o o � I II 11 0 o .2 .v, "'�'/��, - AAUI�IIAI'18I AAi ,- v, NIawIYauM Mnn� nI tto .i - II1.:arIllrill1''L JUL/UIY'a'fill►ah�faleN�fiali fil�liI7 Iii/t♦I�ti 2 p W,ti i ,; Lf u!Im 1AlhEAs!1 v o IHIMINEM11111I�IIAu IIA M ti 4 $l• 1 II Iiui IA.iJillih n ill III ' i o RI��II� h1�1�111��lrN�!lNdfer.m�pl� qvi .; >. c 'g A ii Nllldh1AAAA1 h billil i il�l iNNIHNNMINNNNNININNININNNIINN Niko ~ E w 1.°-111 ipirsi ■IIIIM II\II M®IINIIWNIIIOYpI IBII ��jjpp... 0 0 0 co ,v2 = � I u. �IIl.. 1AAAIn�IIAASAA -' a s Q1 :AIIU'II IUI1 UI is AIL UI I"u l + hili -• a3 a g t,' ;l I 1 :.. :I. . I! . 1 1; :1 .1 ! ! 1-t ''7"/ (v _ - - — - - . . .! E c a3 ,, s , I6f . . III ' dli11 u C • H N 1-i 0 N old tri 2JoNo W 0 a 0 rr `,^_ -1.�- V V./ _ 4I :=L- 0 o .- N C •a� 0 ca E N y O Y C CO C) 0 __ N COC 11 W E-ta C) �ta,SCIO H x _ _ - t 0, :8 D t O 0N1'lax, ., a Q1 ¢ f- 0 0 41 a Itet� 10 = byy • } $i- N 0 0. �s=..° j c.''.,1 j I O o L .,P.-11 v i .. ;`��z—^.-.`'!.•' , 'y`4,.--;,-.-.1,--,,,;--:,..,_-_ 1 A..!,..7-..,..4.-. fD -1 w'W >=9' .. aysi1 73 ' 7 g - V) te g i , ; 2 II •,I„1 1111 1,1 I.. {I1 ,uw ,1,11 I II 1.1•.0 1 I1 ., C II 1{ I, ::: C:!:, ,/),'11`f 'I M Limo ;,:1;,I I1; ,1 11,11 r. , ;r; Illr, i i :, +E 1 1e4 ; rcrcee , 11,1 11 1 1 11111 1 1i„1.1 \IY��tV, 1 Iti�l 11 I I1`1, I I Ii1L�• •••Q 1 11 111111111: III 11 1.,11 I-(II 11 /11 . r. 1 it. 1 ! 1 i f .. y) W11 II 1 , 1 1 1111 I 1+ , 1 1 1 111 1 I 111 „t ,11 ,�e,.�y 1�•�~I 1, w 4, FUIKAE 111,1 I 11 1 1 , 1 1� !i1 _ ppp 1,1,11 1111, 11 l,l 1111, I,I ,11 1111111 1171 11111 111 1 1 ' �� � -� iR1 '11111111111 111'1111111 1.1 1/1111111.,, 711111111111111111711 ,1111..1 11 7 Bj LINCtoG!' 1:11,1 1 , 11.. .. I 1. 1- 1 :4: :!!. :,.11 0 y f_ n11, I ,: 1 1 1 11 , n 1 I 11 1 n 'nl 111111111 11111 11 1:11:.11 1111111.111 Ili 11!111 11 11:11111 . 111,1�II'lll : DEPTH`eel ,. Num”284 2103 uso 31K NG _ltu 3254 (11 Yi Y li } _�... .1 _ty I i co Ua.) _, 0 a) co VI N tO Nco t3.Q CIO .0 Q1 F- u N r-I 0 N V tri 0 ft‘i/ v . °g ° .4 —. -_ -- , —,, ai m /�' _ � E O Q C) -0 E vo C") 0 a� / f6 N U . Z J W Z E v C a W C+W�"W •.e. C.) '47 0 r xxV)CL41 �E++uo c. 1 •• O 41 41 d 0 CG E • •• rY. a•+ N H E 0 W C55 1••1 u) rn m 1 U H 0 W E) • (9 uH v) a)® J. wOH HZ 8 H W V)61 › 7LJ0 01 aN w W E+ '•c.4aW W[H4.• N N ra�wCU < < E. O •( N 14 CIO • •WWo ,- E o .-4 • CJ OLA.l In e•1 X.' r ., 1 ;•0•l f 1 E.N 2: ao A # I- t x',N'_) 10 41 r4 F a c Y cr • C m W W Z V)G.t''iQ0 c0 0 1 Ea C n ' WxN EGH. ;>.4 _ CN XC)H N GAga Q N :J .as H C.4 ._ (D V/ s • 43.n.-1 Gl!..i.: • s r_ co c9 E. W W >. U w )G G.'.o c-'1 ft5 41 H O.-7 li a RC M r• t • 4... - �.] F 0 .7 GP p. 1.9C) a CA L a c�ra)-I H 4-4 • N c� CD 0 H:) ,- Lk w 44 14x1 a U ' to Q 4444 W a 1-, La V.,X (1.) �� CEaC- �oxaaW4 1 1I G Wtn f.4.n0c).yco.-.k1E• •a4 0 4.) 0 43 .4pa -Da.,•4-aJ a 1U 1 MI U) 0 W U 0r•1 toriW . > E "4-+ — G i.C)H O c••• a .n•A • C Z -,-arnoN W 0% CO Cl.) E• O d�W o N •a w v)O (�1 0 on Co c< E•N cN 0 N .4 > a mamma�( �•7 1-.. FOE+ at: O C')Z?4 N :.,U 3 4 V .. 4. r. r' F m O a eg— ++ U . ~ 1 O2DHHci))�Cv) a i2 El C !� L to 2• a1 U rl O U rat U CL Ca A P4 U r C C m L 0 CO �� - a I + �, en •0 E ., _ a• •— ! a, M D O I a. Y z n1 r)n)0% try r)m v (.9 ' rnrnv. <srlri w Z N +a n moi.. • L E-1 S!3 _ 0 O T M > D � a) ;.;'::_iiimmeni.z3 aAa T C d = rna �LL • 0 CTcu co H N I--I 0 N mil Lri O ri 41 4O W 0 tCL 0 L co a) +' '-' c^6 .a a. ., Q• "V u_ C E co vt >. N cn 5 lA •4/1 131..+ C) ID NV) s -0 lii "1- _ co 4-0 - it t e 6 § a 1 i f ; ; r g o �— '�I _ _ 11 c ; .1= 1�1 [i ITT, I : ;; co , p i i. Q -o .gnrlili — s i{ l a, I _ ' , � t �. i, I �I i t � � -- � f0 i 1�: - .:. i , , I ` . L. .Pg-41 it t _ t, i - i. +rf 00 c / _. .. .�._-._.. _ ._ i 1 ii -0 J 1/1 am�l■YII hII o j Ili ill!! ° B �- .. M ■! !!!! !!i ` ' a —r,, 0 --'- �- > z J + -. ii a T IIIDin CUG Illitialle111111111111111111Milialliall1111- Cr)illi II 1 - I� 1, _ �l �I t 4J S . 6t1 _ 1 1 1 1 1 1 1 1 1 ! I ! ! ±' AWI _— E VJ `: a..�_______.. • U N N +' 1 ro N f1 0 N fri ,11 0 Hi.- AI -8(1) •-I a, ° wit'. 0 ta 0 a, +.. 0 4, 4, Na u Oa Z c.; Z 0 Y af U a q Nw !cog O a Y F- 7F : i 11 i . g Y ti 3o JilM = C _ (Cr)■M' _Fr u b,,,,_ 1 w i d d «d Ce) ^``•t fly T 1 r. .. ' ' r _ _ E -1 ¢ m ~ I ti I _ /✓ �� \..� ram�ie 4..0:)1/4.--1:::-..-.1-41A, • O wail "ril ! 1-4 ii - ' 1 1 t h i" _ I r�rFca- u 1: y -_. i_. -- — i_ ._ u 4. . krerPNYA-Vii"N''V"'"-vi \'',•ql14.^'"'"Airi -F., co 1 I 01 �.�s rrr', • ii,r,l r I r ,, Jnr rfn„ r- �� Gv li r I ri.rl 11 I rrf, �x r (Y'� UII . 111: ,I1111 1, Incl I , I ,n1 1,,,,,n n 1.1. r I . ,III, iiii;,l I I , 111ii1 }iiii11,,,i:1,`i -C tarotttw ;, Il,fr ,1„ i, M �I'i 1, • 1111,. . 1 I;�ii1 . i'i1'i,I,l i ..dl 5'n11 �i1'1'i,1tilii(.,1 C CO D li PEAkST 111,1, ;.: :il I,.!!I 4 m----;,4,...,:� y, .....`-rm-,. T"• ' ^ t I I I I I I 1 ,t 1.; 1 ,, ' Ho, 11,1' i5111.1i,M�,"i y ili,1,'I co CITHit4'' , , ui n1"ii,,,r,I1ip1„t ,u„ n,n.,in„i ,. � ,,ni -Iurr. u, .„u,rn,ul,In ,n11 -0 CI ;, X17+I G�'TT2� srt- VF loos 4:5o (It. 4160 elo Ig 4, I . .Ali�r �i ' 1. y, jo u :IIs C ”' MOONY , coto t/) a) t H N ri 0 N IIIIII Lf) 0.:n L . Q i_. ._. _._. ...___.. _._ .._.__.____.____._.-_.__- x ma tW o IX L v 73 _ O -1- co Nro au CD7 v - M C) _ ✓ C W F+W v W 1n K4'r 0 In X Z 'A e4WHHU0 W I ID .. 0 W •r1 n: S" 11: E•+ • •. (Y•• }+ N H E-i._)CLI C. .a u; film V C H () x CCS) • U C7 Jn H �ry InCD E-IHH•-1- HO• •U)) Ow M._7c ^,) chc') �1 :1I ry Crl W C4 N N Ual • W w H- a .)lr1 = OCA F TI H CV J C-J ••• ••• V WwCI— S.,.. •• 0 0 N C Lai t' U) r-1 •• .s •a N -. E• 4 Aar) c. W� N. I x cutzl E+ .r, rC rn H O Q- W.n ! C, ro m:CnIr. HQr-_- fr. in C x D ro:r) - c- . • ,:441 v co W CO Z U) Cr.(•'C u U CO ) I t0N. -4 D H • W c\: .-i C-- 43 E•I m O (N HCG Z H - > 1-1 Xl•Z N xc-)H CN a s .7 a Z U c.J J d M QW c) .6; IHxr v J r-I n, .0 U) C-, Ir] W >+ U' co �4 f+.42 0 /�t(/„/ X f-7 :•> N o.-'J G- A. -C M N L W fG4i71 ,-.1 FI.] • .-1 CE ). I.) r] C)•H O 1 4 C) r.. 7. i Ya CO Cr � 5 •xxczs r �� rn man OD 0- aw � i f'o t, aO � 4• aa E v CDH :Li aa. w ww •-1 114 .-1 X C)r y fc> • 0rCC COO C) asaSf� UC U c, ;74 I I Wc') 4 fl •-� W .-1W E. • ..▪.... L1 E F '7 _') cf. C3 [fNI X `, 1-I a• • E CO cn • t' fri =1 S.. Ia • ••:' q• f).C 1 C CD _ • 1-•7 Y a..� H CL > cr IIi r CO CD r a i 1 04 - H C) I r7(.) V) c:. i1 :.a H C)I-- C1i In •-1 • +•-•• ›NE• • OzWo�Ji • a wno 0 c • Z W .-i cn : -1 Z -•.:4 L., i T( .L .- H O N . 0 r,-)X X .-I '. C.-)L 1J ... r,, r 1 m H cr) 13 .] a; W I O ..: HHZS C.) -1C I .-3 (_') .-iU Y 0. I 1- Z 07Ct.UNZ. H H 11 W 0 O -su �Cw a wx •a E e1 C U) >. IjU - -)ur=., (,.;a c.) s:) xL) Y •— M N1 = z + — -; v 121- CI I CS, m H V 1 ate., d q r,r:ur r)r)ao O O uiI*;u1 cr(�cr) 0 rl <N4 a ' % 14. n it. H n N EJr tipa ..... .e i — a� " oE M y a 7 W J Y y r-1 0 N ll) o � a ° W 0 ``L^^ = C .o 0 o U 0 0 s- C coCU C o U V .tn > � > U Ce) Co E c o M d` to C6 t`�- ..r 1 • G. O WE . . . N CO R E .,. T ' , R r r t f :-7. _. Je! ♦ L , r 1 M •M� ry "r 04411111, L::: ;_ � • , M: _ Low .. w�� 1 H s �S; ! r Q Ur U- 40_ ' to t e. W c Qi co "_o t O Ce 4?. e \O/ N_ !� N_ + 1 OD } O N O - i� i y„,.le.• 44. 4r_ •t ' Cev._ +i1:: I; .I -O •"- 0 > 1 al CN I N Na) 5 �[ 40Cv) Q" a) F— 0) l.L. •i CD f6 4A tail N +-j N -O -0 C = .� �+- CI 4.., CO cn a) = N -C O cN 0 O 5 a) r+ C Q. •— U cn .6.-0O .— - N F_ u N N 13.0cu 0 _ cn ru v, 1 4- (I) v -O cn -o O IA N O C co Q. O °- tea, CO .17) � o coc� LL a) E 4- — C oiii ro a ,V) CIA a; 4) ▪ c > a) tn _ CU C m C O S o O u co p N(13 -O O 4- a) ( 0 4- C u Q vi > - C = Cr) u O Q) o ca ,ro c �c u >- 0 = c6 " O N H 0 O M O w m Q0 Q. .....v) _c cu C - 0 b +-• ,Q a.)0 733) O O v, aJ .� `^ a� CI co �G Q) Vi N +�., 4-' > N tan O r >` ° c ' E =47.5 I— v cn O a) a) +� L a) CSA 0 kJ N CO 0 — N a) to O 4-' .Q. a) +�-, > tan c6 u O +' co a) O coca C = coca i— O Z ci .N +1 m 0 o = i -C W Lt.--• o a) CU 4-+ •p > o •~ CD +-+ = +-1 p >- +J N c6 — •+-+ a) -0 a) " + a) cu a) 0CD -� -. C 3 U CU 4-4 CI 4-4r- +-+ -� 4- bA c6 ro 76 o o •o o E .� a) >. -o O bJ CO >. 4O +-+ 4- 'E C N = a) = 1— V N OU c6 O- a� 03 o = _c o c E aJ a) +"' co co =-ci co .a a) a) N m • 4-) ca o CU v '—CU tiA o a, C7 ai o o -0 4 m co o o � c E -C = cn 4-1 +-' E . 4-+ O 0v = �' C O U V) I— 4- v O •— CO -0 a; = o 03 o C a) ~ Imo- i) m O I— Q v) co r-I O N u1 r-I d L a ° W U 0 Q U_ E N N W o co co (t) c O `- O O (1) C C O 73 O O O .4-' C 0 CCS O 0 0 Ia) cU a) 17,5 to (l) to Cl) U) oc co a) 2 �o N O U U U 0 / C - � - a) U L.. 0 > > c o O G O <C C O 0 N M N- (.0 1 -Y., 00 , L.- t 1 01 tir t = .0. g,,,,,,,•• i . II t I '1 —0 .. , , li C. op , . CID ,s2.. g I • (\I • t , L.- 1 cc c ' ---- ) 0 ' . .4"' "I''''' * • • — . CV ,9 6 cf 4 ;1 Ili ,.. . .....0 It t .t t mt..= i ..c CN t Z °8• ' / = i i 11 CD '' • .... i (,0 I•LI = SW.. 0) , kit; 't • ) I ,, LI) 7' 0 ' „ .• i , ,. , . A <IC Ln %-i 2 2. L P . 0 LU t CNI c t , Ce • „•-• „ C 21 g. . t 1 '1 ktO Or) O No 0 0 . U 1., 2• ' , . 4. , a.) 1 .0 ,, , i.„ •.. . , , , . I piv. "mi ..... l' ''' . .. , 1 3 . ,1 .,,,..... ... . ,• .......... . Li.:tei.•.0 .,i: .4„...t, ,,,„,,.0....00P14 . CO 1 1 .0. ))' W if 0•1101+ ,.. _ (I•C , '' I 4 a• 0 0 w, 0 0 0 0 0 0 0 0 0 0 -LI • '''"S`•,..................................„........ ...... .. N r-I O N O � CI. W 0 a ° U Q n II a) 03 o E r{q` V/ cts o) c W _c 0 Va c C o tv:6- 73 0 a) 0 0 0 :4-.6co C/a to to a) o a) o CZ CT, a) - > > > .Q v 4) o co co E co 0 0 N M c6' N -1' 0 es, wid in- , 0 I " -° ca. c,f, WI 0 .c -rti c ...._ t g D - a) a) E 4u-3 1:5 LI) I.- a) 02 .c o cf) t't 57t a) al a) E u) 1:3 2 .,L, Uo a) — E ci3 u) u) a) — a) %.... (1) -0 CO tri) ... — E = > co a) 0 u) c a) c vi (11 0 i5 a) "-P co E 7 a) o 'en "C) C C13 C — s_ ? CO -0 -5-.< 0 a.) (Da) = .4-, 1- .4:5 CY) CO 0 CIA (0 CO u ...I..., a) ci i) a) in -urn > Co U) cii c 2e > w C __, "0 — -03 tx0 • ..,_ 0 0 0 a = 0 tiO cu 7) o 0 sa. --c 0 Z.= CO a) a) 8 m 4- ..0 :3 E - ' c •5‹- c) 4..4 4- r...... 8 CNJ CO X • c F/Cr) Cri in >, a) rn RS 46 76 17- o fat) > il: CZ cu 0') a) ...... ....... E --- CI. E E ai r--- ...J ,......, = E c 37 co 2 u) 1 N r-1 O Ni V Lri 0 IF Q. W 8 0 • N a; E -i RUa tE o `soo O m • --All •. Q U N I+ 5 v) N 4 Ili am •_ O_ ° 'L ate: f tr 0 V ' 1 it tilt ti . '9a4~ aky �,,w [� pI pp �e ' bif mg . 1 a� . 1--. ,.. r •1---;•:*1 4-1 4-1 r ; . .� , ,. yi nVit 1 �.( •i. . i.''i y4:. �" f`.�'"� i 4.4 ori` .. sty a � 3.*----- -, _�'-__ 9, L. : s t Twp v ., • ' ` wyJ 1, E'' rte.. CD— A , 1 .,.i Sod • f r I�S2ry j ft NV y� , /� L i r A�illii ' .xis f�`•�,y :',-7 : ...: •;,. .i Pre gitAarriFTPX 4 — fezcA;„/i t,• .... , 4-1 C I ) .- ummowillne Wilk KA4... -3' IV A. itril' 1 ri Cr) 1 ?01 7:3r i i "pal .I ..a 4- r , dam , . „ !. ....., , ,,, ,,,, ,t,i lq 'IL'' ‘4. 'let.-- i ro —V1 ..ILS ....► ;:—. 2 kit1Y ft OD CO N O N riol tri 0 v a W 6 v. t Q 0 Q e $xax E o _ QU 1 ¢ a N N j g �7 1 imgji ii AN A -o .., 0 ›... 4- NI weilimpri." _ ..,_______,_ : co C v1-- ILIAT Q ! 11 r*�_,At., .fid. iii . gr . ''0 i fir' :. i�. , o, -0 boik :4 �_1rra „ r},V 1 -- w ' ., 1-„ �_ .. . a r1., 4. ik — S... , rn r Ithst 934. . E ;:;,,,,,:: ' ,..,..,,4. ..i....,,of.e. '.;-, _,,-;. ,sr:_te X I .. _ a, I� �� -,--4--- `4 a •• .•.,. 4. 1- v. „a :„...,:”. . :-.. . -- , - # .. ""ift:Y''•• pt.4 Tim'- tl r } % ♦ y' c e L',. 1' 1" ,��111 1 '#a'�a :-. 4 .P •r 4 r •.... - q ' }'' ,al cp=s ---- w �+ :.J���� , y •4 v, •••* ._. • :. IR a - . i�� ��1,�i ., ee,......... 2 � . t-. t"..:,...11:+ft ,r •r'! y• moi'�" V :1U w.• •. Sok U S „ i 4 S > , 1, .4 ror ii __ :. •--.-.....,,, ,,,...." mr_ _,. - $ Air 0 4 - - lisurir WSJ � •Ia • ; ` „I-711i% K � f � r ...... .4,..p, . ....,44 /C ..‘, -4 i' I' i 1 I:; iii linal: , im,„ 1.1..1 v) E O 11- (f) CI) CV -r. co 0 1 • c h ; CNJ I " -CD 1, II E : 2 :-- CI , 1.11 < : I 7:3 . CU 4-0 U . — CO 1, s- = (.9 H U • ' , 1 i'"• 2 , l' LI) 4-1 — — I tItti s 0 i 4 i „ LLI . ' It If ce NI E ., . 1 ,4 I < . 1 : ; ' t I Li • . i 4. LID CD > . I CU4-1 , :- 0 : r , .. • rn - ri • . AAA,.0-.-.44 --"-:110i.• 4 1 4 4 4 H I " ( --0 i " (I) CO N ,-i O N all in' 0 k, L a 0 W o vi t 0 0 0 0 LD igimi L, 0 a - E INN -c3 il- C N0,., a-+ ; a - - �� ► s. - ` ' ° �,� ins,` � 1 � rx�..i t ----.,..3i.,‘ ..ye,.,- CL 0 741. f.,,:e :-4*-y tiro ,..'..-,..':;;-4 ; 'w lEaryy. 1'X11/ w$rY ��° £ I " V --- , V•` 1 es CI 1 7 .. H.- ,0*" ...-'4;. t:' "'..::..::#1,#:' 47: ' 4NA •,'"" i il 2 ,,' I /1Mimb'pA7-..V;(\+ 1 2" , . *. t 4f. -4.4-Akt f . = •z4 . i I w ,3S ag § :',.:4::'.713‘''''''''':., v / ff►"7ial f $ Mfid` 1j ....(11117111 . tri Li -r --- - 1 ' 1 : ,,, «re; N .-i O N Mil Lri Q hit a) o W/y o 0 LD v o ,i 333 "si � oi `s � ! s ' 1. 1 110 111111 UMW-AM CD • o _ CU N , mil .. �o 4- M4 w� ♦ AZter C o �� 1, 'I.' ]1-' r �a i ii .111 W ..t ' � 4'"',74 pry M._- is . A0 lit\.1, .. ...-• . '• - - ' «,. . •‘ ‘-, ' .1. ,---•*•,* '...• '•'• . 404;' M'►.. ...' 1' j:. -1,,-,4•6...,.--\'', ,. _ X d .4 !� : ' ' iX _ M `,fit • 1 CO CU t a ti_, I. 4;4, w... .1.../, C *,t1.l.. ' i4ik. -,,fit/13!„,,-,1/44,.....°.k ' _z_ 1.L .�� :1: t :w dr i illia Q : .+"' 4��+30* '�_ .y,,j yam _ �. I , is' , '' , ?,40.14f.i. ,. '1,#i et, 2t 1i 1 'F . ... t''' ti. i fa YtC ,„L'.1. [17 _ ! t4F sNi i . ._. ti.o. .Lar � p7 _ $ I2x OD CO N ,-i O N sad tri 0` O1 . W 0 a E a-• t L - 'VS 0 611• •11 1,._:....„"tilai) I . 'IL ./ v+ S -,74 ♦ r `. 9. e, y •ill, 4 !;.iw �a UI r ♦.: .� .. t y r"► amt ra %O C6 m A ♦ 4. ' • a^, • Cl..) 4 I :;t �+a►, • , • .,r, .=:.4, r; _ ` E t i t E. 4 - ,I.-1" �.. • " �'' a i' S X. s E % 3 ,r� 4 'f4t . - il''' 'le- - IFNI 416 M I Ci r. } ¢ 1 t ,r* a , r-----....j. r W I y ��-- � : f/ j4`", .r�R ,. '.4 ,. ` 11 (13 5 V) € lir sjii �Y1►: 'r •�. � : 2;1 , aA CIO N ,—I O N 01111 In 0 v a ° W 6) N IX a 0 E 0Jo . s - xgeseseesoe eggge z .. i": 4 "44' n '", EtilvIxt co , .,.. o L, C (J) d, �� ¢ ^' cn E .1 13 o o lig INN — —I 0 I-%:: wr -s,,,.: ii, , j f .1::'.- .- 8 "....1. - . .. , 16. 6 If � tet. , ..i, �l- ;, � ; �; 7 • Iiii CU Nly, 0 Kt„. ,. 4 ..m N, ., . 4 a rilwt.. .or,. .,, , .5,,, , , ro . Pe a p a.A.1•,,;. •, A, Q i } ^' yy�,//�� 3 �k .�- J•. t. ¢' „.Ate.. Y'. V.4,! 1� �! ..t. _mow .. ..- ,-, '�3 � 'J k ." tr,„„t„, ,, _ . 0 iota,is•^i - 'e' :: ., —•• �; +r.y .mw ----,Zr 4 �~ . b; . .e � „�li - CO I mairme 4/Aft1111111 IIILI P)Ir i N , , eh , .... , • , i '.i, r--t _ 1 - , iki;11-."7” I .4. ',,,74tp::,„'. -...?-1 :.::*i'th"ll'Hil:4"'idlinaC."7;:". 1 i '1 "Ear ,_ ,, . ...,,...„ ., „. 1111111430111... • (0 illa ate . . h._ ,...... . rf T --,A 1 -I , i CO „,,,,,, , i 6 , 5 __1_i . vvr ala___ _ E C li (NI 1 is- I 1 i ' I ; 0 4-0 V) :LI : 1 0 I . E o . ' t( o • i,. v.) CD 1.; 1 • 4 't °) E = „ ? , , , o 4_, 4- -$:...:: I, , . , E sa) a ...._ -1-1 4 ' b..0 ...0 , „ . C = . 0 4-1 , X „ , , . . (i) LL1 CU : i•:;.• 1 im I.2 • < .n -1-+ , 0 LI.1 . N CD_ t , H. Ce E .., , . lD . . , 1 — 1 ig > cu , 4-1 C — ii.:: rn • 3 ' 1•"'•' ' -44.441*0****•••••-r• 1 ., -Di •i i';' * 4, 7,.: I C .. . . , 1 - b.0 CC N Oc-i N V Ln 0 Ii 61 -2° W o vi t g ° E 0 Q J emo $ s � � aee . - gg 2 �• s4, , xv 44 .f g4 ` 44 00 :4 I' co Y •— Q 0 l: ./` L. C Ea '0 n la_ _` c « ".: a wO ,: s!JIP4 : _ Ytit ' ' .-tee.-x ` ` . 1.* + ? r,.. e..'e �. tit'• 4 '. , _••► 4-1 kL --� Fl��_ ' 't' ,„ 2. `las. ,all . . 3� � . ��ii rcfx a ;: � ►n�� tea. 4 .' " � ":� co I WA—ill _ a �+ '_ r • *T_ # t`'+��--epi�,-*7, f,--.9=_f., ,, ;Vis, �J CU i /_` 'N -A'a""4la + v +"'pelf . I ''; an f F ,, i .;1 • y' 9.,..i.....111-‘ _ ,,..:::::--irtisit.,..,,,..ii, i x - B ikillatinit eh._ 1, . f. „. Ni;t .k'... -:I- • 1`1 t ., .s r �t i.i litrM.' CiA CO N .--1 O N 0 ci .fl v a ° W " O IX a 0 N b:y -k Y •.i . X •• •L 0 4 Y V1 Ara •� Q '� _ @5 "*of 2:i:11 L.7 1vii s, moi ^'#; iC .EO i og,;RM^o° o $ i 0j to N { Y' = gY:o e.',:Ip ;fig= ? 1 �/ he AO (l) a .; s % 1 O O i 1 I . '' F -,,,N,- ,.: .• • i �/ . �.f •<�T` .• r ; �r'�� �1 V Vim) 4 • 44-t.k.. r i'$ ,. ,• - C� • `.ar.4 � ',3 • �. l fila•'� <N ,yyR - a 2 *ex i • "ar ��" ' CO • .N 4t .7... ( ;) ill ',-. rl I( ••• •, i t '...1Creart. f. • * .'• %....... ...4111.111% • E .�ti ..y S�1 ®z. _ ,d.G•�i•'^T�V' 14 _ „Iv I }i .h e .C. "V#tee a ~14.- • . yip . .11• RI 1` r/..--------\_....../ . rn11 1 ` 0 —..vim _ N 0 N Nial tri‘ 0 I 'I ° W 0 t ° .2 �N 11 �� gFeyy ; ; gssg 8 y i 4 % ,", l Q�Ian NJ 0 4-, '',\, _. \\ . • 1; 3 'pyrp ' . d N 8 g`r g'P, 1 c iii: 0 1 II OW - N a r-I V 1e►m eta r�. •=�� g}cg -,g•"=s3101'1:4w s "'''1:,... V- • L.— '' ` s: b. 4— S s '' 1 .4-' F f S ,,,:v *` I' ai B. a ` 1 i • r 'A a) a" � it ,0:7,,..4)k - • " ' '-M ,-,, ,.. ,. -.4._, ., '''414.'.4—E: % -1 -4"*"jto`-•A'',W.:, * tiit 0 a.) .0.4.)- . , ,L2 . 1,,,oi . • .. .. . , , (13 ...... . „: ....... %flaw „id —0 a , 4 Ilk :, 4 4,,,6 I .. .V-, .,, -V.`.:-ivitlir 11.'1.,.... 7. • 'r • She L ,4t.',..11.11.. s r w :-.4tiatitgli .,.0•Ytl.to . _ .. -.1.: ii. ..i , ci , a 'gr..1. ,4FV;.1.,110.,."1 DP soil Ai � J 0,24-0,,4-, i7.•!3��N y5 il 44.:14.‘'vrpt« s � '�`A f4'ir" 46 " sit E . <_•yl $ ^�i r * i. CD IV •• pila '111 •. ^S ,1, r , ''' k •0...dka . - . • . °$4"• ."' • „ . .110-.4.,...4),•4... I- ! ._, RP Q _ m fr?r-----('• ; P O i.i ry ,-I 0 lad Lti 0 '-:- ,,, 0,1114 ,c) (i) L4iL, 0 cd g 0 L, ..... 0 • ' r..; •Itifligtigi 'l, Piti 03 (I) •-1 _ •••, ' - — 1 ' E ct,',:; III" 4-1 u - 0 . ....,.•3.1- wt. A A. r.;:. 1 " ` ' , 022 '•.2 • ,,,/I`v ... g .3 a.a-t.,- g - 3 a ,E/-," '" I . 1 II C (1) LC) eg: " ''',:_,',.-,,:, "°„",:";: 7 '' ____1 . 0, si; .§g -t: s,.,:isgl: i . 11‘ 13) v, NI i I ill ,:. §i? . , ,.11,333.f ,,..`g: \_____ . o ii i ; - - g t I..,, :gi 1; ._ .... 1\ 4-, i g 8 i 8!gi 40 411mi E . . r. . . ,,... 0 o . . Iii‘4 0 441111101' -.-- \\ Jirama..rapAiivo.:-vogicirliiiIP.:-' ---- ..w.,....,,•', :.,-, - -^ .* ...= E e..-1", ...42-X1. :?* .4- --..),.... 41111111r,".•-''''.."13411.-.44.4, 0 1._ i -.3.7.,1:;;" .1.41jr •, .t. l....10///". Itilr,... .„ .1111RIA.- UJJ tl.bri:u -..., .44- a•,.. , sl ''''''• - .., „'it...4- 4,:sy. ,,,,,X.-- n IP ,4-- c ,,,fr -4..:„. ,t4-..... :"... - ,IrAe•,,,,.: VF. -...,'",::•r ri-* ,...._,;,. p 4. „ u ,!,1 . , - ,,, • 441, .. . ..--K- :. „i A- .'' -.1 , " z - i.14 • .id r, - •i . f , 1, ...--Z,3*. '..._ '1;1, %-..a, v 1 •':_, 4Z- .r. X ;-,.. - -, > 1 :'A It * Is...I 4 -.. . ii,,. " ..ir • . _0-4.,..,4,0•11,,•.,- CU .6: ,.. ....... i ' : .°, ea 46 - 4' 4.s. - -• '1/74 !310. .*-104,.'..1.`1,r. il,••• --, 1 s. ..;,-, .., ..;0„,d401% CU 1 ','," y*.r.1,,,,j,..- 4'77...' ,' .". *.ti.,....f..s.Y; — .. . , , (Cs ,e,?4 1447.1.7'.;..er, - .•• 73 1 , ._:-:- .,:-.. . ... ••• .-Irwei 1 .t.i.: z;,,......-:.;... ?f.t.--: D 3 '--ir ', 144:'' 'it- "' . - ''-• *aat. .1 4-1 '4,_.-' 5 t‘*. ^._t .. '7:',"isv* ' Sel"-3',A,.. 't ei.'r ,....' ,---`•-40°' ' i ; ,,,iS q 0_ .- R '".4%. .'-',. t- *--- . : • OD •',74. lg, *,•-•';': ..t.E...*'4 4", '• 4/Cf,rlit: .1.--"7.s. 1 D ,..-- E - attz iid.4. . - 1 • ..' 90 ''''.,' 1.1 1 •' • er • ci .4.11 4: ay./.46.: D , ma \ ,? • .. - •Ar't -•""ar ., Tit„3.1,.. .31,•&,„ , • ,,. fq 117-4.,-....12er- .,\...r,....• -- --- 6u..1. . . M , 1 ,, . _•,-. tifi'AN.'- • :x. ,-t.': ,:t, ,,''•,,4 da. -4:•-v tsrig ,... - ,,-,.,„-", :..-- z...i. , „kir", -4,-* •,,,-;,„„„,..4•,, I,. .., , .....y- — -Wt.!o ., •,,, -,....ti go,- ,..s.,,r, , , .- aitirik 1 3 .,',Cf, `,.. •' ,, -- .. * ;,.',... '' (13 ,. ..-,, ,. :,:7_".,,,,.! ..... ;,.•-,:10.F..,'"" > 1 E ''... a. eit' • ; IIII. 3 ..,. 1.• , '1, • 'w: Jr-":...I:• '. '- ' :*`-.•irl.W.'.44.' '4 11 411k3.- ' -... ff ,. ..t. -* • ' e 01111k. ' i ' . t N. o ; 4 .S •::.a tz t 4 { - ' .: 41 11% 4 !At.4,..... .*-4.•;','":"•‘• :'e'-*.....in •••'V: : i . ..•,.._:-.• 4.....- ..... ... , § i • 0 # i Hog 1 4,, i Cr) ' r o LJ- N r-I 0 N mid tri 0 1 W ill 48' t 2- 2 (.7 23 z '1= . 1 e>.- = 3E .• '' ' - - psn -, u '' 4., .„. v) < E cs ., CD;9 NM iv' -'-'1111 •,.... .10 u E 1 • ! i C v) s §ii 1 I li l't rli Isi: 111, 11 *ri3 0 P t.n CO r• tl 9 g'l' 7 i: i E I; c 1. ° .71- s, i I to :;:iroil 44 i 1 •SIM ‘I . 0 ' k E t 0 o Lc) m .1 ....„ ..., . ... , E 0 ' 1 ....!-•-* .,, 1Fitir* --Y httas. >. '. , s- 4-- CIO 7:3 j 4rk-' .' = * g 4...- • r% ci4-) U F.' ... ., .. fr.,,• < . . ... .,. ,... ,.,, : . (I) ,4•11•1•..ci: L.- .,- ;;•;*!.w";e. * 1 * \* . 4•J , 1., . 11-- r CD - • .1 ) -, . . •... , _, I . • i ' ...Ka CU .Cs — a " I . . -; 1 . 1 E = .....,,,, ,i ,., 1., „ ,hr r. +.0t - M sjr.'-' ,.1.=;'..• +-I ._ L.. Art, ... t::::1bn ""'I ' 1 412 'AY . * . • 0- A "I" ,..A . •. '...‘ A. 1.4 l or.., .. D -cook ti * E i at,.. ' .......•:,..,. ,•, 4.4.: cP,,, ... .., ...T.*,,.•4:Y• T.i. t1.1,7#0,„ 4'. la••-7,..„.,,,,,, It„ . , 1 .0. rilr . i• ,,.. ,., ...--4. ...te,,,ix, ...! t" •14.- ..0„••t•At, , l• • - , . : ., . . 4''.2 ..... .1 • • .. _ _ .,.. ...-.Q. i ....- 1 ' --- .... — . .ff co t 0 k:--.., • li ' , ., . Yti• e -' ':., -‘• • , , - • § „.,,.• - .. -#49:, ... 'q. . *%.,•• 14 Sile9 a) ii ",...,-/ ,..- % "PI& OR ' 'S .. ''''.4-1/.4 3PIP;f 4:.. ..b'l a• . .1 s,• , . i -I—° 1 I 4 at"".7‘....., c4.-..it . ' a • . § .',.' ' • "- 10-- .... .. . • .. *.ii••-.....'"' g.1 1 1 I 0, (*------TC: ,I CD .: 1 - WI . N- - --, I- - --' 0 LL --------_____ (I) E C co it• 0 4--, (I) E — o ...1 as E ,I E _ m o , . _c 1 1 .,•''' . , ' c i 1, . 0 CI L.9 s_ =: ! . ,r) ' i!I 1' 1 W ' . ' ' !., i . 1:3 I, LI.1 .._• iAf ID , 4-, < Lr) CO CI 0 J I (N1 X i . I CU CC CD • . , „ •f I f -0 LD 4-• .4 ' *•2 CL1 i i._A Laa• -' ; ' , i '-,' E < .,..4 i. . 7 . 1 .... I 4. 'tit - ' ' • . 1 f, , ': . . . , , -4 S... ' —-(1) 4-0 C 0 M L_ 0 LL N .—I O N Iiid u'1 0 I 1 Os t.O W 0 0 Q) v _I ._ o 5. g $ ii eso4uxsexg E I NMI -ill' a O P =_1'. =i. lid asII .- 0 „ ;. W N F .... , ....., , . \\ c0 k ‘,... V N , -• d 3 '` X 1 .,,, f ile., A A .,..., ; . ,,, W .a4,. i 7 1 A. �f.f,1, , ill,',� • • 160 IF t. , S 7_` fir. or k� -, --:. 4 Cr '''' ' 1 . Q \ < .... . , . .:, ...._ _ _it. 'w, ow IIVT --.- `4Oh . . , :- . e.," ,'•'- ,itt . , - eli _ , ; . 5 ""4 . •jr ' , irTIIP,,cun„,.-: -,,:e.e.':----`,....— -.0% CI)_, • yo ....1.0r 'c1 I r B I O 1.i N e-.1 0 N ilil Lri 9 k a., 0 4., u t g 0 (..D . •0 _ f2,.1. .. , g.• E.„' i Z,. t•,, '•... :. ,'. t,, „ Mt - E _IDD I 0 • iiitt ii,k vt ? 81 4,,,ci , i ‘11 s .. 4-/ .0 r• '''Iii iti:Ili I!;.:Fig f, ; il .7:_, / I ?, !! c E .a)Ln N. 1 _, -. . , ,.., a 0. - , Ik C1,) v, o i ,, ; !i: §reili i i, g: I a. 'i.. i ti:Ill ig .-,i: - ik - ,, _ i f, -D iiii v\) .... (.4 , ! 4..• 1 1 j K le E ‘ 1411111, 0 3 0 0 5- L.D E R. IN , _ .' '..'t• = . 41 ;4- 19 0 L.- 4— i CLO , 03.) i . E U 1 il.:i 4 c s_ F, , . 3 11 < X 34 N • 0:1) ,r . , b -0 a) . .. , L. M ir CD i We , 4 ,1 .41 - • - lD lie 401 = t 1 a .41,40 ... , 1 = E •— P , 'i ' .1 ik. . ta0 ( i )* < gl A E i .. . . ,,,,, cti, — . '' -os 1 . a' _J-. , a. i . \ ``g < 2 1 • .44.. 4 Cl --- L ', __ .1 MT^ ,==:.........-,........ .-.• ,,..........r..._,,---- .,g. •- .4. ,, lD I 41 11 4 ..0:r ,0 + 017e a, co i 0 t ‘ J - > 1 y.. . ... . irl olliMil 4_, . .... . i 1 i A • - 1--- - , '8 A8 1 ,, rel 1 •r. et ., .. 1 , c t I A A u 0 U— ... --- -------______ (I; E O N -_... _. N 0 'i ' :i ; 1 of � O � � 7r 04 1, a-4-1 ! , I E W cc• 1,,•, s cV O N �,';, . ;,,,,IVH E Ls) o t. ca �;- L.. _. (1) j j ' A IL; 1 0 + 13 0 c:' . VI E O N N O ;�, , �� i o • j .!,-,1i,4 'y , I•, , L.0I E � ' 1 I - O a _ I, ` CU U '‘ V G . ' I 0 X , I ca O N ' /i LLE ce cv +_ +fi ' j E , f$ s I i ' Q 0 i ' 0 Kr N ,--I 0 N 1111 L P 1 alla cu _a o +, o 1,11 0 IX g 0 0 a, ' -_- • i ,,,_ ,,: 91, F, 'i a e ! il:ii :tarIB :i z 7, F ,7, 47 & ; tEst ! Mci A b MI WINIF TIM (13 I. .z 4z'c 0 NI!q;', 21 If 413i .! : `it .....1 %/• ' 0J 't-r) an ..! ,t i "ti s , :•21,s.;! - : t I ^ i ii 1 i '," ilii1".1 -- gi 0 4--; - r I i .,g,ill i 1-8, ma j ig '"%. V) , . • I:—— E 1 _. v : • - ... .- NJ . g• g - c..) .. E , • : . . • , . _ ... ._ , .., IN.•,‘. C2_ L 1 L.. • L- • . 0, .. tv , vw. ',,,,, E \-- •-_, ' < .44v .,. ,..,..., ___,= •- . ---. • 1 ' • QD _ - ,....b b.10 4 p. C CO , ...... -,.. • ,,,, , , 4.' V) . X '4n. 1 , ‘47• It CU - r4., P 4 ;.; , , , 41 IA Am V''• ---- t - t CU . •00,44040 —0 co ,. , ..- , ,.. ... t _ AC. M , ' 3 ;X* ' ,f 4...1 , ', A, Ali ..4. . • : I . — = — - 1... ti i., , —.- .• 0.. .- , , • -'.,- 'tee, ,. .,31 -4, 0.0 = - , •"- .r ., ....„,,... ,. .. .1. ° Ci -tip • .1. I 4 • - '-' . , p,i 3 I .. ._______ ma 11 "li + . . a -. 1 . :. -., , _ aiik likii, _ i)—--- '. 14miliE.‘ri — --- -1911a ' ' -. ' h1 I .1 -, • , -•L - ' . mi.••...: • — (l3 i 3 ' ••'•se • .. ,,, ' • .44 --it.-- .1111kri";--: '.z'.-- rite% , E + ., . . . ... r t: f -,to • . .... i: 1 t 1(---*. ' 'VI. ''''' '-r".• illiel I ; 2, „. .V. . , . • . .. . . . ..1 , . • • ..1 ';—;), ' . i ' • • t ' 4 illitic: - -1-, ce • itr ••:7 ' P ,; — .'l ;.:* ..... ...t....• - , PI 0 i 1 1 iL- - . s iii mji zt - • - i,... i* 1 m i a • -,' , . • - - bh. ,. --Fr— I 0 0 LL --.....-___ • v) E o .:t. 00 0 4-1 (I) E o NJ N E . . ____ o __, ,,, _c L._ , ti , , , , = 4- 73 . : 1 ; H . Q) , ! 1 I LU ...• 4-) ;.... U '''' ' ' ' . . H ". < CO i i .i i. . I U +-) Lr •; 1 . il — LLI CU > i , .. •, - CV _44 e-i . 1.f,\ CC -0 i 1 , , ,i L.0 ._ _ i . • , , I : ., I , ' I i . ., . E ' .- , d i < i ' • • ti ., N .... 03 > S.- Q) 4-1 C CD m ID 1- 0 LL -------_____ N O N L42: .fl / g' a� v � (Q C c o c U o_ 0 ° vi g 0 0 0 0 c6 U U U CU@ a) a) X 617,3 u) t/) t!? a) v} o C CCS (L c0 4) ,o 0 CU o U U U -0 (-7) co - > a) U ) gO Q1 N — -C U > > > .a u) c 4 N— Co CU F co 0 > C U 0 C1 C3 ‹, O O 0 .4 ti ii NrONL(1i 63 � � W O+- Oa � UaV ►nai' CC` d .4c-C' Qvu mow o � a, > 0 a, c X C.) `m 13 0 al V . Q CC �� r `� Z3 C C a) -a 4-ja3 ....___) /) c I MI 10 co F— to � (9 DC cU Q Cr 0 3 Q. C Z ctiri L._ m cu a 1 . N r-1 0 N r1 04... 1 O.`-.� Ly 0 Tf L 46 i I me F1/4 t N 1 o ` �f W w t ! t \\ S ;' F l'c' .."71%)\. , ...._... , ,„>' ,,, ti.. ( \, 2 aw � r' 1) W 1— • a :44 fi 0o I � d , A CI ..... •• i ..•..1C \ r _ COa4 0 ii a. �. i; � jam ' ; s L 1 SMM' i �;`j i^f. '!0Ce- gx If 1 7; . ,..- t .-' ,„„. ....0.. I ill\ , . L Lg &` ' Y* L / - N 0 N lid ili -' ,- J , .a a ° W 0 0 a, _ (l) OlmilImi• Q :� l'"•4Q• E Z toi ^ w . N 11) til N `� �., >- ,110.1"moil to) 17. o -- —. • .•r f — .• 411111110 d000roO o••,.., 411) 1.....e 1, a. Filme if! -t r C Q, W th M M Y1 1 t i 4:40: XI i b I 3 I I It 1Itn w - I iv a) CP CU 4E �; II 5 I I 4—• CD wig :I I I I co I V/ c c I, , c £ (J CO(( $ V ui1 )I01)PIU1AVO1S N r-1 O N IQ ui i)", o W 0 0 a) o .n .` ' a U E N 5 r 01 i Ai ; Iiii ? 1 6 it 6 N eiS 10 ig $ Of il sLJ ggi ;ii0 -.7 tisi- lb i 11 g 0 g- 0 •. I �_ I . i _ I I i F 1- t .� i • • , . , , . 01. H . si i ; 1 H_ -ice •.rtr .w t,ri,,:r . L. _wr if v. rpvir ti�- �. l7 . , • _A il lki i ,:ial . .h117- . • • Ct• ` 1 ',� y •'. : lt il J : �obv: s ,r?. _____ _tT.:= c ta10 500• :.J.. ,550 1!. _800 650 7D0 750 800 850 - ;4, ,, 12_, .;,.. ...i... :,i_ ,-.. .... 1.1 :_. is,. .:1,A iiiamiel 1 rl •= F a) N O N Nil ui• '-I O` 4-i A 1N a -, W 0 IX g0 `^ V Ili }, .` }, 4. a U E 8N 7 Q) N 1 2 1:- ! z g i 3.11 Ra -- A : 1 " ..: . : ..• w tii .1 t .1 fate d 8p Siit:!4 ReDmv kte • d LJ N __1 _ �. .: _ I__._._1 . _ .1.._ • t, 10 I { i' Y f I' 1 .,... A , / 1 / ..... , —-1.- -"I] 1 i \ t • t2IIItI, • 11 !_ h� 11, , , r 1,S • 3:1:1:'r,rr ,:., •r+ , 1r, ' 1 r 1 I'.1 1. b..0 • ':' r i ; i, a r i ,r r r r ,,, r ,r i i r r r r ,o , , i, ,r ,�.r,! 1 + I O O . . •' {'r , ::• '1•' i,-,,•i, i r. I I 1. ; {.J • '•i r', , .::,,,.,,,,,,,,,,,,,,,,,,,,,,,,,.,,,,,,,y.,.,,,,••:•,,,,..,,,,,,,,,,,..,,,,,,,,,,,",,„ '' '-! .''f'ti n 1 •1 i , "'Y .-f. ,,,, i r,' ,,, r ,I,,,, , , i ,y,,,, ,,,r.i�',','r',.,,,,,,,,r,r,,.,,,' 4 1 t I,l C t t 1800, 1850 1900 1950 2000 2050 2100 ' 2150 r. --� ,t ,I, , • I - i_` !.._ - -;-; ••, . :1,.1 t , -- : -tai (. '1 _ . I. . • , ,. 1 A l- , .. 1.: 111 _ • W i N I O N Ll �-i O ::(214 OU O L 4} Ca Q (1) > S" a) a) -o C'S Cx CU Q i-., 0 ° ui ui vi o oma o 0 0 �, . CO U U U s_ T a) a) a) +j 6 (f) u) a) u) 0 Cts CCS CCS a) E O a) O U U U . .v� (I) a) a) += U > > CCS > C a) 0 r— C`, C� E co 0 C U 0 0 0 < 0 O 0 N Lo N ci Cl) via Li;cts O 2 - 0` p cn 4) N A' o m = a) WW a _ 13- C C C — :n a)> a) F.: co 11) LI a) 6 N i6 `CD o� .- ...Ne C 0 - p) a) ;C — t6 C N a N E 3 H . E > Q E I T V 'C�., to N CO i c 03 • O) a) Tii -0 2 C) O) 5 O O C1' cin m .N a) .Q s a) = � to f-' -0 0c coCO N_ � m � a)' N C C I— t- s co O a) f— O O N V N u) o a) co N N O _ s _ Y N CV a) as U i «- V -0 c 0 6). ) - C O --C O Co V 0 c N >. O N ii: as Y . as v us N V -� p- S N Q. 0) ami co 'a C .0 co VO) C F� - D t 0 L 0 a) nz �. V N i m o co m ° i� E N RS co 12 Y �, .S cn (U :.-. — 3G a) O a) L CI. la _° a) c o 5 CO co 0 c La) p a N 0 V _ c0 CD Q 0 L RT a) N > ) ami E13_ a) C a) V in co U c ( - - V > .0 N 0 >, >, O Q Z3 N N - U •.N a) 'Q a) CD ca V O Y — U� C 'II a) ca Y E E U 0 c6 O N UJ 0 O o F-- :`� :� — m _O p fn V a) C ttiE o "". ' a)a c) 0 O N a) +'C+ z "O 4- H co c� CO co O O N CO O Y cac - � > (0 V 0 i = a) 0 'O Q. N 0 0 0 O V — Y a) cocu cL) 0 0 in a) m _CD a) a) , ' ' ' a) a) a) a) ca 0 Ha) H H H .c H H S J'SEJE.J 1)9 lzo/3 N O N I . pIOMOcC rI a) tL V )1.0 i O O .13 ._ a) (1) E N tai N ICC v .N 0 N ditCo Cll CU � s Q L O) co co Q Q CU a) -a D O •- a u) >, E E O O s= U U _� Q < �E -E I U O •� (I)cx5 O O) o (/) Q O U i i t i cfl c\ cr 0 M s � Q Q 0) ii cn .� > CD CC Q Q CD CO ID ID o •�' a >N E E co g c� Q Q O c 0 0 a = a. < E E 2 3 c c .c_n Cl) U C6 NCD Cl) oU) U) C0U N M z 0 of V 0 ( a) •Cl) cn -cz 0 � E RSO 2 CCS o - co Q . ii o C N co (,) 43 2 2 " nfl _, I- v) Cl) ` O Q- r- 0) CO- 2 7c:13) L Ca N E ":g C +� N CI) 44— O) cn O ca U O r .O U C6 L- 0 C co :P, c!) SC/) c jO CO N CI L CD c U = cii a) a EU o •a � CO Qcn = E E O cl >, o a) IA o- QQ CD o ca tam o . a -cC _c C _c N-- N CO O H cI5 cn RS . F— C) (i) ' 10 V 0 as a) c L Q 0) 10 •� Cl)• c Q CD a) 7 ex (i) -a -al ciD) cn cn ca Q Q ° a, Q •E •E = U �• 0 c(1) 0 U C N M d' LO CO 0 m V 0 W rit r ,`.0 D Ir. o� < i . ,-DQ O � O F1. L---, rc• O Op ` l, r SI x t m Y 2 n j N7 Y 2 9' G • o. = i fi g« E Z c ~• A >a 2 I. �# " • 9 s. D n U L < 0 C ®- m ? UT s o� ' S Y C .',.Tie' aLL'?o , m <- $ • z 6• g U •v o O C t, °O p moa ��C eb rs 1) p og m -6 m ^, ,=, ��6 o OOOt7Gc Ja E � x f , , - Qg a• o eg � w N • • O Oo ,,i o tJ d• D S 0 _ c2,o db o 0 0 G� O op P O o p O O. pr^ o m o C) o D p m m 3 c+ N 0 Q -t s- 3 3 QaO�a _ nap � t:::, c �i O a i m.l [lb y �z 3 Q GO o0 o p d • c • w �r �' n p° Oo o �!� C O f• ITS C.) 0 -J r- 011 V O W rot 4 IX "t_-: 4_2i 1 I 1.111 Y U v,1 a 1 ci 1 ry F a N } � i. --1 . •.-.:-Dr: _11111111111111 11111111 -a dot o1111■11I■11■■11■ 111111111111111111111111111 11101111111110111111 - °u -+r ,t. D. °° ❑ M■M■!11■ _ -8 y ° 1;4) ' ■I■■■� . ° ( �° m ❑ ■■■M■■■M.. °f r .A d ° e ❑° ❑ ■■MME■■! 1, ❑❑ 1111■■■■■11 atir r ` r. .ti °` P m ■■■■■■■■ _o T �7`�i,l+F7 cp❑ _11!11!!■■■...o"'-, ° ❑ NEEM■■■■ , oy J J°❑ ■E■EM■■■ - 1 .i •.°. ■■■■■■■■ .MENEMMENNI co O. 1�-tto ❑ ° �1 ' l off -�•EMMEN 6 % ° ■■■Ill 111111 -!� —._ 0 °8 ❑ J'^:' I '9 0.. ■■E , d CHEW . ' —_ ° 9 ❑ ■ , m d i4❑cII 1 °- P1Nl11R7% ra ❑ r-'- N a Nr■Ekerfa■ . ®a ❑° N u ❑4_, I, L^II'!. r,aw�L.. ,❑ ❑ °' ■ L!■dMENL■PII ..❑ tfb ro ■■M 7■■!■■■■r■■L■h ..• `rI••❑ LA o X11■■■■■■■!■11r qurrs 71 -1 „❑ • ;r EN■■■!!!■■!■■11irrr sr...r. =■■■!■■■■■■11NL1ia■U■\r. . �+ - m■■■■■M■■M■■N■■■■■■■11r.r - :. ■ _PA N — O` arm:; g� CO6. N ►� X11■■111111■■11■■■!11■■■■■■■■■■ ;B8 a :, ', N v, > a11. i� o >I (s7—ti:( i ! F is 1 Fa u!" o s § (1 g c t y; 1ti Ii � N H LLL H . ., 11110111111 M NM MOM MIM a) co V l & � I N„ I E. s s 8 g g s e § s 8 1f i71 f WI tit iiaiiiiiiiioiio I ii...1rlr. 0;11XI 1•zamizim i•ilaz••�•U f.iII•1 'd.i il.11i . I U,21 ,y i II TI III P 111 .�i.At/��. .01�ilwil�f 11{11•.11,wIi1J.'4Animalism n��,71I iEl Y� I v iris1!111 All Y ,ir 7�.J11 Y'..1►11�1�1111lliil I'1LIMIN Y11.w �1\IJ'1111at1 111diiiRiil�ilA'1'J,.'171I1rd,rI,I'Aliiiiiiis L/iiiii IIIIIIIHIIIIIIIIIIIHIIIIIII1III!II ____ Ili � � lyl il\��.^ 'lti YI !l11 1i .� �' �! i IIA 1,r17"�11 m III1fl! l„ IVR111"'II1'W ,a IIMMIIII®11u11IIU m o , R.4JWLIYl l iiiiul iiiii iiiii iiiiii i �fRl'I ,I1i11f1 l' 1.1f l 'I I' W iii 1i�1� 1111111111111110111111111111 i i� , � u ilk l;j1 I 111111111 o I Illli IIPill 1111 o n ■CC IHIUIIIIIIUIIIIIHIHIIIIINIIII r Hail 111i14+L11R1711\iiiiiiiiiiiiiiiiiiiiiiii �liii1!+II'I l�I, ,,,. !i'I11I1H1111111111111111 1f 14,1 I'i.11 5 yr p114111111 Itlll.itJl114.a i111 Y7 MAI,'L'1 r. Ip it 1!11111..mil•iilurl.I�i1.1 -I u111 r r Pr Air,_!_,, ■Ilii 1■,I1ln�1711r11J111 .ii11i1M1i11• AIM i'Lill:M'IRwi itteml' I l nit Wnlii g > I■■IL LI.11Ill',.iialiiiil1iW1i111M MIi11,19111111.'i1'l,...i'1'•I urr if l'l'.i Iv1 1UiiIIIIIIIIlIIIIIIII I• 1 ii of III11 II n1 I III I COMM •111111."151111'I '3 11111ii111 11 All 4.\11111 1 ill' III I iiYliiiii11i111iiiiiYi Am,..-'711'1611.11 All i i.ll1J.i N11771 i III 1111111111111111 IIIN111111iiu,w,i l.aiiILJi111,"1ffe.,i1Wii al Mil I Jl I III 11111111•11111•1111111111111111 r"1;4''1.11A7 .1/4:.'iii iiiia_r'liiil�i 19 i■11/1Y1 h IIIII�i1/r11 Ell MO.1111/11,..0•111111i4.1.i. C ,Yltl 1'�P'1}r:' l ,j111111111/1111 r-i as ��II 11 _ Si ,Illul 111111111N ''; j� ��, 111118•FI11 u1',lIIl. 'r11sU1ii•lI 1i111MMO.I.'?H'lii OCD '�` I UIIVLJl,It r•hi lural.. q^-mum1Ir I.Vl nisi III l.ii �' & I iiiiiiiiil'iYil'1111I Ir x'611/iiWY,aails'1f"1 id'111;1 Al iiilll'i 7‘c2.-. i bil 1 iif MIMI II AllII In I �� 1� i ITM _ A —.71 NIMNE.— I- o o = o- § c o 3 .it o 0 r 03 $ g s on V a W a _ > • 4 Q o < P Y• Q Qo 8 o 'o w lc 0• O t ic Y Zvi ii 1 `• a o S. Vf Y f., ^q 3 Y O • h° f? O i • ,41 N M1! , -toogi�'4 , , Q z 2 a m ak � ; t I pt. *,..'.T ' . , 2 • i o "Gou 'a V� LL i r •_ E. n - s � oov !• oPn �o 0 0 a oQ 0 000 0?0 " Do ��P a v E $ • "• o c' i Cqa ' I ; Oo ° 1: q• �• O 0oa P 0 3• a p0 O� O 00 v c:'c" DCD OC)c" o. �� O CD' O g8 = o o D 0 m 3 & rj O Q flC, D pO 1, = O C3 Q 3 3 N m v n c $ O o 0 o Q do �o p O b +0 s 3 a oa pow ©p • • ® • 5-- G-'�� c' % 'ti,,,,, �p J Cl)V, o OH �Q>��l C' 0 �'o c� o n L as E L w OM 0 e- 1 W C it cu ci co LS O —)= co2 >' t= o c CCS o L.0 'C6 Cn c° C • E O N C\I cn UCr) — (1) CCS N- a- ca a) Q 0) L N V -C:35 O H N = O VP 0) (� O GD Q a. O O l'E L_ L L L L a) O �O .O C C O. 8 CS O a) G) a) L._ L._ ,e a �Ca) a , Cl) Q z z as C, ,(0 a) `� Q CZ CN CO � 1- o L. 0 w ,g > U U a 0 0 d) to Q N � L Q 0) LU > coco Q Q : ci)j Q Q •� O C7 U U >, 5 •MOWN E •E = U cz O v) C cn cr) 0 U 0 M r I `I �J O To 4 E W .V p To cn -c -o > u)— : ca O a) -0 , c o a) > � c ca W o ccii� a) E 2 E ,._ o ai Q a) cp LC) c(ini 2 cz a) � 1-E" c = 0 = O ._ o .— coco >% U .— cn 4= ca o o = C x (1) 0 (13 Z = .C.) OU c C4.----- o a) ai Q 0 C < cn E ._ .a U Q 0 N 0 V IIP. a 41 rit0 X 00 coMillitr, V N O N Y '9 W 0 2 Om ,- minisifinim N O O 0 O co 1 o - Wr 0 CO •WM i MI ii O O ENr QO co N O O �\ O W Q N ' E N I. , O C O N co O O Z o Z o4 m co O O O Mo o ■_ v CtSo E O O /w) N E § Q O O O o 0 0 0 o OO 25 O O O O O O O O O DO co (V O 00 (O 7 (Ni C N N e uipioo3-i r 0 E 0 .,_ V ,04 W 1 c, s . o s §§ 5 • o • , * o N A i '. ' - , • • W Y o T1 tri C ■. Q0 iio X o Eo c o o Q a) • 1 o L Q Cl) E o 0 0 0 0 0 0 0 0 0 16o 1.6o ori 0 N N O BUIpJ003-A N E 0 co V 4 W rit 0. CO 4.0 U) in Lo. U) to 2 X- O O 4 N (.1 M c BVI W x., mo O O M O co II WM^ Q O Q0 V W c• V O O oa Cti Q a) 07Z Z 2OX MN O x .4. . , ,,,„., , , ,- - ,,, ,, c:co t Nr2 kO 0 q. O N E O w 00 V. OOOOO OO0O O N CO O O Co (O V N Ie►euipJoo3-A E O N v— ti v- V 0 W coo 7r o 0 iiit o 8 8 a • iii. e . o . a) . • _ . -cs -a_ s O T Q m . N it ^— cy) C_ E Q ., O X Q • - e 0 wNr 0) ,�, - W r O > .p. ' '1 . O E O O 0 8 0 8 O O O O O to O NN N ejeuipJoo3-A Ch E 0 N co V A-1 W CL o to CO 5 X O O 9 N (N r e Cl) r „:4{` F 1..x vk"'. O o o 4.0 AlIkte**0 ■� o a .I , ,., as y� �,.' Y to a }�K�{� "� Ig�F'} " µ - o Om co s r $ �` f f sy,'"6 g ,h ?..47.4.K4•1 � ,'3x 4 �5 E S o Tr ^+ W co Ili ,� O o O •m - -I:00 4000 fl. �tt (13 O C n' a) N o O Z Z U L O X o cfo o o 'r co O •� 4t..::.14i: A O UN E OO M N r aleuipJoo3-A E 0 N CD e• V OL4 W Cit ' 0 pp o 0 0 0 0 coOcoOV N O Cil 9 C9 o CIL . O O o Cl) ` CD 73 N 7 O QLb- ♦+ Q ■ N N C_ i0 ) 0 p ii O E Q O U O X a Soo ^' C p W (O M L+ A4 W 0 0 o Q .4 0 E OCS, o Q o 0 0 0 0 ZS o 0 0 0 M N N Oiri ' e eu!paoo3-A 0 E imirN 0 N V 0 W Q nx ❑ 2 ❑ (!I m .t_ x O f N r? `7 U7 [D A+ ® r i W Clill E pO Q O O a) co m O a u N CU E O •C rn spo g m o Z nil -CI z p 7C I o o oCO O fr = i . o to E a A .� 8, + 8 X a p gDo O N 88 8 8 8 O O O p O p O p O O pp 5>iO co Lo p co Co V N 08 aleu pi000•A N 'It rci I , VI E '0 A M N V AI W CC O o o 0 Caw . 8 Rf0 o 4 N coT. ma a) • 1 O •/- c / a) e-, a 0 E i o x Q a.) O 0 co CI) -'1114 :. L 0 o u) O 00 0 § o o 0 0 0 0 0 0 glqr N O O to ' 9WeuipJooO-A E 0 CD M N N V OL4 W 4 O. CO o X M N O N (h I ,^ ' 1 1* . . :',4 AV+/ W vO O O ,yz� O Tf Y O E O Q O V r � ` a o o •gm. o Q CU pQ a) O C W . ..., O O Z Z U �p o NO c o 0 coo 't l o co 2 00. 00 E N OO O O O O O O O O O O O O OO O O O O O O O O N W (O C O N CO cs ' eleuipJoo3-A E O op M N V 0 W CX 0 0 0 I) 0 0 O ,n 1111111.M11110_01111110116— 11=1.111 : r. �FE _ 8 O 5� r oN G W a/ to ^* .a.. 1:13 i • 00 13 � Lri iri E . c ,aC p; a .. 0 v oO W 8 ...is • 4.^. • ' 12 • %A % h X /\ O a _ Cl) II E 0 O O O O O O O O O O O IA O d to (0 N N 1- I812U!pJoo3-A u) E 0 CO de N O ^co i.1 kii c cc O U CO CU CU Q > a5 coO CU co L L N CD O C6 co C CU Cz O E -t � O o C • Q E 1 !: N c E O : Ct3 c0 Li- O O O co O -0 O -0 47, as C� O O CU CACA }' Cz I— Ca .0 0 N N s, L- 0) Ln � Cl). Ca C C Q Q a) 7 -0 �C AA+ iCijn Q cn 5 — Q s_ o C �° U �, = Q < E E = U U CCS F N t6 U) Q O. V • CV. co 4-1z 0 N iii CU CI) Oki - _ Co ) — W 7 u - E 0 cn a) CN O Ct Co C6 O O a) V) CD OL U U CI3 CU o a) 7) N > a}) co c Qto O N .4:--, 0, CO > LC) co N 2 = ,c2 +_ O -;-' > -0 ct) CY) 0 ,> m a_ O ,_ Ca 2 0 cn a) E •_ L N Q 2 C� 1,.. E -0 so 0 .� v) N Esa) oX Ct.E t= 0N � cov -� Cll co co L M CD N Q a) a) "a) ca -0 co � c L.L. O 0) 0 N v� ..c E -� E CD CO = _,_.., O N • 'X • Q �C %._ L _ � � U N C3) Q = C6 ) U a 1- 0 C6 ,s= 1 N V An W ct is N � r g y _ - -,- ji, j- a. __ b N A __ O . , iiiir„, a.) .. .\\ 1. NMI _ . o $.1 V' •iii. .z.; n = I o Ecu L r �*` 0 a W fi is , r •- _dpi • 4., i A. i '* ,.1•tom. ^ „P' Cli) v11.1 _ ,• } E ( 1 )\ x A+• +A• .: O •41 S • e C ■— * r % O x Nir S hku L. 'tha t/1 s I ' M>. W ■ ■ 4, M L 4, ID X W L y O CD 13 ■� 4 LL' a E Q CO N V li W I 4' Ct W Lo in - ------- N CC 'Q E CC J O V, i 0-fi- N CD Z W Z SLI N cy ( 0 O J M f 00 U COlti N + L W Q t ` CV -Co) CO � LI Q N _ r V Y T Y r b / Y ,, a ,[ If, al a Y E f E 4. 'lime r j0•? -i.a 0 N V co di z 'p §Iia mom I z i 0 2.— - - - .� >, U 9,m L yd L • W momtnm a < Q E a) N V ti a W CC J N N RSi .44 nZ N- CD CV n o ZCD t L. !Q x W w N 0 ilt co Cr) CI ; M � N �* N „' — - — Y N a .. E. 0 $ o LL a d a E M iiime P .R. (0TO N m • tiV c aCO •_ . C • CU ... . ; - . * :Li 040 :r ' i L Or ICD 2 0 N 103iis co r i40 W cn a • E a O M V 0 W CC ,T. p,,ill ...1 ; \ 1.7 0. N + vz r� :r a R • , c .04 i ICA,•*:' 04, ',,• 4,, r 4.11 o2 c. - >C .a . I�,W ; . o ria m w A. a .g' Z , a AV ISI p ca wr • ■ 2 . `.7 a coL �C •.4 • C! i C CU 2 M� W CI '4d Mas L. ■ 3 w L 0 TS a momIL Q E a ce) S , lu ,. _..1,....„4,.., - _ _,„_...........r wo ioir C.) La w I Cl) E > . ....II ...1 _J 1 LiJ -I 0 ..= CO "tr *la C) 5 -1- 1 L.0 -1 Cr) C1-J C\I (N5 i i lIS ........ ?..,! .. Cla 0 0 Z L) 1 U CSI T.' C) Lu i Z I CI , , 0 0 E u... z ,-- co (1) (N IA 1 " 1 g § 0 = 0 , 4 ' ' ..-..- (..) cn 1 1_ , 0 co 1.... ...a --- -1 --v- -,- ------ -r- t ';'. LU CU 1 cm 1 i 2 , an 1 " cv 0 CNI CNI .,. , UNI ;- + • lik • • CO II ;t • ......... = t 1-- (/) el - - -Z ', ---i 4 _ .. = 1:1 - le a "1:3 C4, I 6) _ ?).. a — I. (0 ' m. 1- i 6 00 a) = 1 E %c 1 0 1 1 C\I I (V CI I al bt tli •Imo LI.. - , , i — 4. --T —1---- i E 0 i F; WOK I Z co . ; .. i •. • 1-- o I CY) i :t- CC N- 1 t\J C\I 1 . 4_0 2 1 0 Z c CO CD .2 c.) CD 2 T"'" "CS rc I u.i ... = u) 4.1 a) = •. . = I. • .... ._ Ci) a. = E E < a < N M V 4 W a) 1 ■� "00" J - -- _� _ - u, '�"'' Q E CU �' N i 0) 1 a� Z1 (N N NIi ' CO CD Z W O ` N N . !� C CD _ .� V M o N H CI CU CU L W co � CAco a to Ur N C`') M r hi L t _ .73L17 0. 01 0 a 0 a s (NLL N in 71- (0 a E N 2 c Ca O • ■.c o CU (OW• L CD 2 W N I."— ..1- E Q ■ w M Q N -0 , co L. L = } 0 L W D) • N 0 < C. E Q M M V litei _ :) W CC V. M 43)W N• 1,}I .5 ' 11 , ,.; } - milia I a a -- a N �3 ■m w n C)= O r . I Z, n v f ,— _ e+ X p, v m m LLI -. . '0- l I 1 -- . SMD e., ■111.111 r r m m -_ w I f. _ Z _ y r, III n —_ —— W a A z is0a f M • m T • Y III MN L E , , c r < >1m . . 10 M cc cc w L y 0 °' -a Q E Q M V cll. )W ct "NJ CI 0 CtS _ W W � E I .. .W co 4:1)W Z J N JCO CI ' 1i N I W ' o LL. 3 Z f , _ c p V CO 1 cx CI 3 N M { M rWCO � d N Y 1 t--- 1 �.LJ T N Y m O �' Yt Li �r 81 7( T V co 4. N N dI CO °1 P. O 2 e.‘_, •§ Cf simimy CI 03CD2 CO73 co 6. 171( LLI MIMI SINIB • 0a E a 10 M V 0 W `v I CC 14t ;� o M Z 1 N 1 N ' Z W ��' o QCD N i o li :7A V CO 16. cti E = —r— c,,4 r< W co CD N-- Q N r. Tt N M J F- N M N I =4, a Ism •o l I Q NI O CO ` 2 01 kima L. �„ CO .� E _ • 0 2 — w N ,� L N a o N -0 CD -o L I—CD X 4.0 W N d a E a < Q co co V 4 W c ,,, 1-7--a - 5 , O �\Z -, ,L, E.11 r4 Q L 1 3 '..s 1C ar wl W - 03 ..,,, H. i _ - Z Z - e 5 �' 4. '*.4; •.E L \, , 7- t - ,,,. lr- -4,.-- , ,„,, . . . , -. E z tll 0 X + r^ N I E 2 A m 73Ci 2 M c.)L I w Lco 0 U E a T N. M V ISA W ritw CU 4.• Jmmornip* 1.... i E cp co CD Z , Z i Ln _j o NM M E 3 . v ILI N L.C , , 1 1 Drypt, 10, a' �M 1 ti . , v Y N 113 IA, Y♦ L i 4t13 . I r "'' Y L Q E i E �_ j dao m § N dM2IMIIIII • CU i I D CD CO 4•0L ■_ ++ sm Immox • Li.i al) CD N 0 aCL E CO ts.) Hit CD >1 ^ t P „do' = 7.: •mem 'swift' ' , 0 lima - 1 ''''' 0 C) 1 v CO E ” 4 c 6 Nt Z : , cv, E ci + 1 - 1 , , .....•0 1 , cy., = 4) 41 -. CV CV CNI CO "0 C .„,,,,.•- 0 ; C I NM (I) 1 I I 0 X —- 'Z.; 0 CD CC I- x 2 CO 1— 0) 0 CO I 1-- LU I C'', • • CICV V; ell r ... , 13 0 ti Lim CO 1:7) M d 1-0 S a U 1 : I E : I 2 min ct 7%) -"•• m co ,- E 0 I.' 161°M. 1 ' ° ° 1 i CD 0 ' = /) Z 04 c .... •—• 1 t .. t.... 3' z i IMMO 't 0 i E , ..., C le mom CO 0 x .... • CO CN to .. CU (N C 4.11 t3 1 0 E a) 2 ci >, G) 03 CSI 1:3 73 Alia E X sisa MEM LU Clan 0 co co = E 73 = .- 73.. E < ao M V 4 W alg ,iii156441 • .... s 4 ;I.-i..\\\\;1/4„,... __., CU 0 CD �-+ N j '\ 0.. ■ 1 '- W _ Li r 11 cr l a r• Vo P. L.L. �i �- R ff Q W ' f, I i I t ,-: ,Ly) .,.. 1 :-. . ,Z II z v. '� w = t. Z inT ` I • I E Q CC >.• M W a CV.) CIL w LEN N 130 ILL a E Q 0 .4. %Id Oa. 41111 CC CD ( (...) > '. - -----,-- - •... .....1 — - -- E 4.0 (IC a$ CU 0 CD II-. ,i- N-- , CO : Co I 0 a) z , Co (N (N Z LLI 1 p / `Cr _Li_ : . / §- E o 1.0 .c-- 7 en !Y 4 ! uul a RI y r-- . C‘i . C 0 •som 0 -4 Er- X ! Co CU ! LLI 2 ,: •' . i , CD T 1 a CO = ) CO C3 1 Ni:i 1 (N Or C") I ! I IV -- __ , _... .._ ... ..... '0 2 . Lem ! 1 E .• ..., •am CD U / N-- if'•• z : (N (N ttWoo 0:0 2 f4.:. • a..,, — a) ---T - ... __ _ _ ._ .... ..., . - - ------- - -.--] ",-, 2 •ISM 0 I . g me" CC , .... Cti co a) , . I Co E >, Cl CO (1) 10 12 C.) II OS i.. M •- 4m° X M •1111111 Ill INI ism (/) • Cr) 13 4?, = E 0 < a. E < r V a.W . ') cc a) ■� � N .i.+ t E CCI co W ~ W r Z N 1 N °° CI II � d' I 3 goo /iI rn o 0 X I co 6. yN XW G -"---"---------7------- --.---t"'"""."1""' N Ym L `' 110 3 a ; N d' VO O a) c CD 1 C C 0 O CD 41. C co C ..O Q 4 O +� N N = 0 O -0 _c N co ♦-' c c6 O N C6 = C 0 0 C (.oa) � RI CL — co o _� O > a) .Cn as co .co . .- O) > O CO �A Co O O c 4- +, N Cl) O U ui 0 O c O L N N co 7 .� , c as O O -o E O 73 N Cl)amN ki Q Q. as -0 •— . •E ,..CD COE a) Cl) Cl) co }, � cncm - ° �� 0O O ct cn :}= O O m L-(13 C 0 ._ O CO Q N _C «S 0 E 0 a) `-' � E 0 CO 4.I E UO � +-% co .— O O O • CCs v) O a) O v) O -0 > > O s= ct5 CO cO aTo ) co Eu) O •co CCS C O 0 •— E N '+ O CD N j � .0 u) co O N U 0co M O O a) Cl) 73 N O N 6. I— H Co all CO 0) I- I- E 0 U. M M v O 11 O .O -c WCt5N4- O 1- >, ce) (6 2 2 co O cmco 4- N +-.. O E O > to c O — co ca N O +r > all ---, O O a) R3 c .— Cl) O N D O o 7 -� to a) �ca, cu al cli 12 0T) 2 c O — co a) ca N c Zz O Q .u) _ = O O a) co a) a) cn H H =o 0) CO Nr V 0 W fit -f a ^°111 l 1 _y a H M • �f O fR F ��. !' ' fig. r, i:,.. _E .. .Iiii:44 . .,-,• ,., ■ t: , „..., Z & ,tififole.i. -glow *IN- - •-- - '2 '. oi • E , : ,,,,,,,,,, ._ ,itt_ __,,.. _ : * , umplor I , 4 Ali") (13 s - + ,` r .... i • • kw,: . _ - :. . - .M. w� S 7 111""•• /00/ . el , ,, ' • ... •MMIxillQ 4.0 �r • I CI L X :1 :1 0. E a .... V An W I ;;) It _r '� .. . ' 4 7.i.. . .i a-,,iliti646 0 i 13 V '4 -I . * - �' :1...�. �R� 7 off. ciu c. Zed 4 4 Q' R u.� " CU E ■ u ) i w �, iiii X COws, -, ,fir ,. lib E . . / ... is _ CES ' ' ' et lill NON. v, . i 1 ' 0 1,44401. 11111111111'... 1 II , ....... , x . ....„. _., n ' x el. 4t* ,Q w aw .. I a : ,„ =t INN :,,,,,, r) Csi c4 CI) a ' :-.. RI it MI i ■NM X W Clan ^ cu Q Q Q co er V 0 atW gg CO • 1 „; M 73 .� 1 3 vimal lir I. 4 o g-- _ Z r =r' 4 ' ' i , -- '•-:ast_ __- I iihs 9 • t is P ° y e � i • CU Tr tr 4t, n^. lilittrIftwo 40 (10 CO CO . r r. m E _ iY a q aVr L. wf�I 11 Z ZR ] "Q a COc. CD mob vilime <X '2 Xi M WNI ■E dL O. 13 Clin .� 0 < Q ti et V ti Olt 411)kiiCC 4 inAsi - . e Yeo \ ..... J t I 'sem' *-R_' C ImleCU w ' O -: _. Z _ '— i 740),,,i 0 , , 0 W k • CU / v 1 illtS ilmal ! .. a n _ F. 13 rairal i"' -4 , , _ 114:1C -Alit M , ., 4. - ,.**- i ' \ .1,ro CO _ i _ . CO (13 cLU hI L �I■� fi H w w" . z t M ZT I a 11: (NiN co W N C5) aii d o.E a CO Tr V 0 m N „ g ct161611:1171 .4j1)..= : G co 7 , . 1,-,... ; ,0. . , ___________________ 0 cu a Emus W �, ■_ �� a � PA C ' e? r Z 1, • ` 0 ' LU Q , t ,, ... A All 4._ z f • , ,.. .. o 44' CO T( m ,...2„,.. r '41.° ry Q C Ste'`p'. s t d _y„7- a � y .�'`� Q - f d • , 1.4.• z` CA CD i CD W O a O L 4~ K L s W N N 0 < a E a vs 0 0 W � Co 0 4- Cv C6 0 Co a) co 0) a) (v 0 +..� Q co 0 • `J . U . Q L U O (/) ■- •Cn a .111111111 N 0 N 0 0 W rr' co c) cD 0) L o •- 0 N u) 0 c 0 L -g, (1) < .c a) L o ca a) �CD CO w 0 c w O v cri 0 T U) V O lb W E r ii :C\\ Z [ Z utE CE r3 .4- o Wal a V w .,<: V 2m CD E,. c- CC vC 7u) C CU a) WO. a) r Tt - ts 03 ea 1— t6 o0 cc giez cc 0 3 a � o Z OL Zs /mow, Z C CD a , 1 . L 2 t 0 Z ,. CsI 10 V ' : 17---' ... , 6- • r t 1. -1 4 • \ it.,:., . uj c i I Illik t.4 l• t 0 i Itr'J/.'..'__,--,_:.,,,..,--1-4':•: 1 •• _.,---- ," - ;—'. if-------, ....1, E 11 6-' ----‘ %v. Aa \ --.,..; -.1. 1d4 ut 1 ' ..-., ar a: i \ ''' 5 . • ,-, A \ •,,,• ..,.. '''‘. \ 'N, cc '' .-;:',..„. \ , - •-,`?- ( 11, . t. ''. i -z--- - -- ,,.,.----• - 1 . ...N. ,.. . . / .Cf.....' , ... ...-. ..— . I*. ,,,, V , ,. . U.1- R 4.0 t- ; .-I-, B (t ),., • ' ---- rn a \-\;,.. < CC ''''---, , c ,.. **:.* ..!.., -- CLI. -:: a) ,, ,,.4 5 •4) ‹C _ i X •. . , 1.... • ilt X 'ICC 0 it: . ... ;-. •.. - X, .. ,--- -4? , . el 7". i ••..,e 0 it ' ;'- II 4 'ct •-' ' a _ G) '4.0... .,,,,,,. - . _ ,, 5 i1 3 i \ 45- ".' '• . • ;: i m --r• t 4 "?' 1 „:„. C13 t• .1 x 0 '•. I : I— 4 im IV i 1.- 4 a IX ct i 111,– _ ,..• .'-c• "-. t• . / 0 a •,.,s- . •,...y.", c ;i li 1 1 1 >-. r ,,,,,,4„. VI •<i let I 1:! "" '. il• , 3 9- 1 •e..241*-aillb`'. • I'm. (i) _. ., i); •-..i=r.,„ ;it.V.!:.. 111;7 *1> - 1 ...' ''''. ..• 00 i .0. .1'. :,.- ,. ..... ••• 2 lij 1__.,_-4 ' • ''',(;i: ' Cr r: a . .• o tc ri-•,---... ..v.. a of,c as • 1; f. 0 ••:4.; 00 !:-. . - •-• . • .,1 :. ,, ... -0 . E CtS ,.-.,.,, s - • . 1., . ' " ' ' ..;-,,,, , 4 .-,- v .... -- .. ...___. _. L RS i , f tc .. . el..,,,,, E RI CL iiirlt 1 ril$I '.."\\. •,---. • o C i --es (....)• , r • i C Som '40 , ) 000 ,:' "'"' 4 CtS , ' .5.--• -- • , -, ''' ---•' •,..,- L..1 © il M N V a W 4 Qa J 40M* cr.; c.,„:: r 07 +-, 141111111.10 >, 41111111r--11111111111111111111* 0.W./ tr' w M R A' ^y 4/1 I`' ,i I i {I VII �� IY/ V 413 C a) a ! ,� d � � I I i 4L. `1 } o I y mom limip M y��_ I ... I ;giI• , lli a) r 1 wir, g_ I .,_, ,....,,.,., if. � ,, __O-. ,.. . L +� f0 i' -, ' ' ,'''' .' f.,I141'1• ,- I ./6/ Ni, el ?lei -10 , , . . . .. . tA tO = Z _ C g6 _wi , r, „,,,,,,,,,s.4, , ., ;. ,...., , ,. , „ Iv 4 ,.., c �Qcj & dam CO ni co v .0. H Tt U) SA Nil ) CC e't Ei j.•'! „ T gg /3 It , • ,.; ch i 5e w.`' Vs ws w4 : 1"i g . gn gi i 1 1412i .1.51 ;c '.41111 gi'' -: $ .J gla 1 i 15 -.P g2 in 4.0 gli gig iig gig 7ii._, 7' . 1 r L. : 0 ...,......„:„,....,...„_._.__,,„ ..... .. , (.) co i i 1 ca 1 1 i q • .5 t -............, I. . , Ill igr is rf ' ,. r 1 7 !! II a 1 . . It •-- I ' I •e 1 ..W 1 0 ' y "..,-.i,. .,,t•,, •.:• •. >. ::..... ,!::, ,, ii,. .,:., ., :.. .,.:-., : :-: .... .:. : • .• : ...1 ...-•; • .• ,. ... ••• •••• • . ••• .. - • . ....• • .... 0) ,,Z,:,.:,.. 1:. :.,--•,...9 i?" ... 7 .....::::: ... '......... ... '....::.•..4.... .: ......;:i.:'.*:. L'..• Om 0 ':_LI .',: Z. `,,-..,:.o. .•1::; .-.):-\:-:•: ••:):-::::-::•lc-:-..•.. : :T: ...:••;:. . :::::i::.,...:••••;.. Z `.•• •--Y--.."-' ..-.: "..-74.*:-..i: 0 ..-P,:-Es71.r.":1. ../...k.,- .9$.?.0.°.;..°b.°;?.??.9.°1? ' :•: l2).LC:` .•-• ............" .i:* :•• :•-.::.; ••:•:•••••:-.....• .::...;,..:.i •.i. •••••:". .. : 0) :::, •-. . ..:..: :..:-. •:. •: - ;•::::. ..•: :::-:.:::...:•• .... .....:.: .:....-:::....::-: ...::::.-: .• .....,..:. 0 .• • •.:,.E.-..::..,::.i.. .,..-i....-•••:-: ••• .-.-:-.• .:....:.::.:..:::: : :- :-:••:-.:•-:. . : ,.. WO NS III 650 700 750 SOO 050 2 1 :. . .:,.. i ._ ...;,-; .; ..-: :' A-. ! 0\1, •:-I- n --•-. :,. ----.-..;;---"Vr• C'i".4.1- - • - -- -. .ft ••••-.-1-. -.--;--.':-. ... . .. . . 1. adtal. ...... cr -/:. % ,.--, , \ ,.:!...:".- •:•:: - 11 i:d:;.: •,‘..);'--.. _}.•—:" gem _::_ ..imag.. ,....,.1.. 13 -... ._-.,,,.._... __,.-__L_ .., . _ r _ 0 • ., • , War r 1 - Yl= - --- .I' -..M : -irkitel 1 • I.Mil -•-- • - -ALA 14 ill iiit . ..tAilf - A • I- i I Tif ::t • '•I•it i 1: ..411 :---j• l'l:•-; 4'.I• t 1-1-T11",.;, TET --:--..% -r:--;-: -12*--t: ±j ill %-.. I .... .... ii- ...... a) 1 to in V o An W c M t i d a ? y� Pi JL � s"�c A Se' 1 7 L tit CL`` a do ti"` c . �.. O 7+f RLC d 04 ..:02:_4 rite ci___ 4 • 1 , V . . . 174: 1 I.\ i ........ , . __. ..11.111!11 _ 'aile • 1F--- 1- -4:--I-- i : - i 1- -t- ....- - 0 � ) :. + I. • 1 1 I , , . j.,r. ...I 1 . . sit . 1i'l'I'l'I'l'I'l'I'lll'I't's'I'IWIIIII'll.'t,i , i i,i i,t i•, , ,,t,t t,i a,,, 133,1..t•t' 1 i, 1 , CIMM ' , ,, • ,, fl ,,1,3,111 ' ,,11111• •,•,,•, +•t t1'-1 1 . ' 1' ,,t,1 : . , ,,,,,,, ,,,,11t, 1,311,,, 1 1 1 1,• ,1,1,,,.5 ,',,1.•,1. 1 ,,• 1,' .•� '1, •!.!.!.'''.541- 4-',: ' 'tom' '.r4!' •1;):-:i.•-...... c- �� 1-f r' 1 , t„1111 1111 i ,1t,,, ,t .,it111t11 r,11 4 t-1k1(, ,,,11„,,,,11 i 1311 ,,1.1,11,,, 11t1ti 111,1111, J t, t � .• • �;;,,1••1,1,.,,333•., , , , ,,1.1.1.1 ,.,. , ,,11:,•1.1',.,,1 .,..•1•,.1. .t 1001 1050 1N0 1050 2000 2050 2100 2150 + 1 - ,- X11-....1 �i3•. ::14♦. �._ — /-- .17-7-1 /..� 1-41 T 1, _t t•L r:.1. -:-.2 r'_f W IIIIIIIIIIIIII 1111111111111 W co V Cl) o 0 1„„s 2 2 Wo 3 5 a) > E E co L L •— 0 0 0 cn Q_ Co CD a) Cl) —Tic's — o •c -o c o a) a) a) co Q _a c) czU t3 O a) a) •- U (I) C a) 2 CO c Oa) 2 U CO N c N + - = E Ca — O" O U 1E5 a) O C6 (I) . L V) CO 0 ED_ c L CCS co L N To E . > _ _c a) I- a) =O u) u _ Co 7413 CZ ca 175 a; L. -C (/) F— N I— CO ._ F— o 0 U) .Y W Q 10 ._(./) ._ co co Q a) W O O O •- Q N cn 4-- C6 Q Q _„s— C3 L O U 0 %.1>, 5 ccs O •� ) = U • � O � u) o u7 to Ce U ce Lc5 cfl 4.0z 0 co in .i O C C O O W 02 CD CO N CC Cn 6 E E Co Oal -= N .0 Co � 0- cn O _c co O N — cn Cll Coco -a c �— O N (I) CD cn .0 Q Co -0 U CD U Ca C6 O C CZ = .C/2 O CO r.1 .� w '(CIA 4.9. c o 0 Co N N U a = ) >, N N U = 7fi - = CCS 2UO .25 N ccn E Coc.i) O a CoO 2, N Co C CCS N CO -0 E L >, � U) • Cl) O CO 0 0 H CO _ i Cl)cn .� .- Ca -C (CS N �j, M CO co CU c N O CD CU cn .0 _c -CO C = 'I . C CO C H Cf) F-- N 1— CD .C_ F- C) 0 0 Bettis, Patricia K (DOA) From: quick, michael (ext) [michael.quick@servexternos.repsol.com] Sent: Friday, January 25, 2013 5:15 PM To: Bettis, Patricia K(DOA) Cc: dial, amanda (ext) Subject: RE: Qugruk 3: Permit to Drill Attachments: Q-3_Q-3A Scenario 14 mini plot PV.pdf; Q-3_Q-3A Scenario 14 mini plot VS.pdf Hello Patricia— Attached are the directional profile plots for the planned Qugruk#3 and Qugruk#3A. We are working on the separate 10-401 package for the Qugruk#3A sidetrack that will likely be submitted to the AGOCC in the next week or two, and I do not have a directional plot for only the Qugruk#3, as the wells have been planned together. Each well is labeled at the TD of the line as either Q-3 or Q-3A. If you need the Qugruk#3A details removed, we will have to work with Schlumberger next week to generate a new plot. Please let me know if this is not what you were looking for. Have a great weekend. Regards, Mike From: Bettis, Patricia K (DOA) [mailto:patricia.bettis@alaska.gov] Sent: Friday, January 25, 2013 4:57 PM To: quick, michael (ext) Subject: Qugruk 3: Permit to Drill Mike, I'm wrapping up my part of the review for the Qugruk 3 permit to drill. The well will be a deviated hole of up to 20 degrees. Please provide a copy of the wellbore plat showing both vertical and horizontal deviation. It was missing from the application. Thank you and have a wonderful weekend, Patricia Patricia Bettis Senior Petroleum Geologist Alaska Oil and Gas Conservation Commission 333 West 7th Avenue Anchorage,AK 99501 Tel: (907)793-1238 1 Bettis, Patricia K (DOA) k ,>,ki( 3 From: quick, michael (ext) [michael.quick@servexternos.repsol.com] Sent: Tuesday, January 08, 2013 2:24 PM To: Bettis, Patricia K(DOA) Cc: JONES, ROBERT Subject: Questions from Repsol Qugruk Wells PTD Patricia— Following up on your questions/requests from our conversation on Jan 4th regarding Qugruk#6 and Qugruk#3 PTD applications, here are my responses: Qugruk#6: • Block#4A of the 10-401 form was incorrect. The pad as staked drawing included were correct. The correct surface coordinates are: 1067' FNL, 2606' FWL, Sec 25 T13N R5E UM • The X/Y coordinates are correct • Halliburton has updated the mud program to cover the shallow gas hazard potential. The file is large and I can deliver a hard copy to the AOGCC. Qugruk#3: • Block#4A of the 10-401 form was incorrect. The pad as staked drawing included were correct. The correct surface coordinates are: 1732' FSL, 1805' FEL, Sec 6 T11N R6E UM • The X/Y coordinates are correct The Shallow Hazard Analysis report has been updated to specifically address and show the location of the Qugruk 1, Qugruk 6, and Qugruk 3 well locations. The file is large and I can deliver a hard copy to the AOGCC. Please let me know if I missed any points we discussed, and I will deliver copies of the mud program and Shallow Hazard Analysis to your office tomorrow. Regards, Mike Michael Quick Alaska D&C Operations Team Lead / Repsol E&P USA, Inc. 1029 W. 3rd Ave. Anchorage,AK 99516 Tel.:907 375 6933 /Cel:907 317 2969 michael.ouicka1servexternos repsol.com REPfOL 1 • Bettis, Patricia K (DOA) From: quick, michael (ext) [michael.quick@servexternos.repsol.com] Sent: Friday, December 21, 2012 10:19 AM To: Bettis, Patricia K(DOA) Cc: JONES, ROBERT; ysa, rick (ext) Subject: RE: Repsol Qugruk Drilling Programs Hello Patricia— Following up on our conversation, Repsol geology does not use a "K-10" sand name. The top potential hydrocarbon bearing sand in all three wells is the "Tuluvak", and this is the zone that gave the influx on last year's Qugruk 2 well. The Tuluvak's expected depth is noted in the Well Prognosis that was submitted with the APD for each well. Please let me know if you need any further details on this. Best regards, Mike Michael Quick Repsol Alaska D&C Operations Team Lead 1029 W.3rd Ave Suite 260 Anchorage,AK 99501 (sae Tel..907-375-6933 Cell:907-317-2969 michael.quickc servexternos.repsol.com REP701 From: Bettis, Patricia K (DOA) [mailto:patricia.bettis©alaska.gov] Sent: Friday, December 21, 2012 8:54 AM To: quick, michael (ext) Subject: Repsol Qugruk Drilling Programs Good morning Mike, I am working on the Qugruk permits to drill. I would appreciate Repsol providing the expected depths (measured depth) for the K-10 sand in the proposed Qugruk 1, 6 and 3 wells. Thank you, Patricia Patricia Bettis Senior Petroleum Geologist Alaska Oil and Gas Conservation Commission 333 West 7th Avenue Anchorage,AK 99501 1 OVERSIZED DOCUMENT INSERT This file contains one or more oversized documents. These materials may be found in the original hard file or check the parent folder to view it in digital format. TRANSMITTAL LETTER CHECKLIST WELL NAME atf%,..ic 3 PTD# � ��s=.7- Development Service /Exploratory Stratigraphic Test Non-Conventional Well FIELD: POOL: Check Box for Appropriate Letter/Paragraphs to be Included in Transmittal Letter CHECK ADD-ONS WHAT (OPTIONS) TEXT FOR APPROVAL LETTER APPLIES MULTI LATERAL The permit is for a new wellbore segment of existing well (If last two digits in Permit No. ,API No. 50- - - API number are between 60-69) Production should continue to be reported as a function of the original API number stated above. PILOT HOLE In accordance with 20 AAC 25.005(f), all records, data and logs acquired for the pilot hole must be clearly differentiated in both well name ( PH) and API number (50- - - ) from records, data and logs acquired for well SPACING The permit is approved subject to full compliance with 20 AAC EXCEPTION 25.055. Approval to produce/inject is contingent upon issuance of a conservation order approving a spacing exception. assumes the liability of any protest to the spacing exception that may occur. DRY DITCH All dry ditch sample sets submitted to the Commission must be in SAMPLE no greater than 30' sample intervals from below the permafrost or from where samples are first caught and 10' sample intervals through target zones. Non-Conventional Please note the following special condition of this permit: Well production or production testing of coal bed methane is not allowed for (name of well) until after (Company Name) has designed and implemented a water well testing program to provide baseline data on water quality and quantity. (Company Name) must contact the Commission to obtain advance approval of such water well testing program. Rev:9/09/2011 a) @ a V) N E a) o a a) _ = v o C Q o co 0 Iii c Cco4 N a)`o 0 a) 't a a o 3 Cl- 0) ° 3 0 0 o 0 aci) @ _ o 00 ai X a o a N, T, • O a n m o. 01 p c O x 3 a 1—co E O a.) = -c p o 0)a3 CV _ -0 .) O = E od a) = 3 -- O O L- a :•-• 3 3 m 5 L y 0 o i°at c @ a E a NF in c 3 -° > @ a- 03 - a) c = .0 -s,--, (C aAM o -p C to CO = " > 7 ON C CO C o - CO 0 aCc co a)"o NN C D 7 v 2@ CO a) a' 3 c o — W E E W co -0 'u, N ° N ) CO c a3 7 a a) . a)2 a CO 0 E V a) w p co o �C a O. a O N m E 5 c co 3 5 — E o co E o o C) N a N cn .N 0 cn E —>. o w ai a a) o o N Y ° a)Z aa) w 0 -0 o c n a aci = o > 0 CO a) CO 7 t, V >tri as .0. M O O (o - a) r O N Y t oin o 0 3 ai CO m > � v 3 a a) CC o 3 C co a) 3 c D o@ 7 as — CD .9 o — ° U m y n E c o a) o ti n .c 13 T �' 3 (a �-• 0 @ c° E CO 0 @ CO a' E _, COM a� Ui Co C O N o 03 N d 0 03 a) "O7 -° c CO n ir) .y 0 8 a). 5 , n o'n Q (n E o o 0 o E CO L I o .a co a) 0,_ca cc rn, @-c @ ° ` a) N U cn '@t C Q N (n •° 0_ '(.3 ,�, d co E Uo M o o v a) a ° a) @ ,8 3 .Q <) a) co a aii c) x Q Z co Y@ Z C 7 ° ° m a L n oE o ii o (n E o U C otf o f `0 3 -o o a 00 w E o O a c N 0 CO a a 7 x 0 p 0 2 H 7 0 O a) @ < N O @ 7 O CO • a < 0 W m N z O COO z z z 2 « 2 I z 2 co O 2 y W W O c < < aa)) aa)) O CO aa)) a0) aN) a0) aa)) aa)) aa)) a) < < Q aN) < aa)) < < aa)) aa)) < oaCO a)) aa)) Cl)l. aa)) CO aa)), 0, Q, 0, aa) rvo ), CO, Q, CO a z z } >- z } } >- >- >- >- >- } } z z z >- z >- z z } >- z } } } } >- } } z z 1 z � >, z. }, ! I H o a) N u_ @ coto T a 1 @ ` U co o TO c -c E 3 — E a) . . , OU , U c a) a) u N , O o ° co — WT _0. T 7 �- C _c O a E it 5 ° o N C U -°o` 3 E a) ° p a) M c v o a U C C ` @ ° E a m-° (o O• u! N U n O O O co n c ° LL N `t N O] 7 To 0 N 0 C 7 Q 2° a) ° .4 CO c ami w v ami m co - p N !; hIH ,ts Uco O cc c _O N cu N 0 -0 _O O o- E •° co O. a M a 0 w 7 a O0 = _c O U ` N @ 7 3 cn C 0) L c N 7 Q 7 Q N V) O N 01 �. _ 'O O C D O Cl) 'C @ a) a D O C 0 m 0 0 0) 0 _cQ) C Cc) E E = -oo C c E `r m o C c in ' H ats a) N C o' a oN t o �)c u) O O '� 7 O -0 c 3 O U co' 0.2 U C O O a) cn N >, Q C () -° U@ in o 0 ° a) U ao ai d 3 > .N o c C o c c o 0 0@ c E Q@ ur ° o o' o a) a) cn _�} U ° o v u m > a o o ° o o@ „ ° Z o �. E 3 a) o m r@ a) c z E m e yo co n a m s r t, m@ -0 ate) N c m m M m 'u) U m oa 0 oa n 3 0 'c o >, 3 tL o I- T) Q o a ° c iii .E a m 3 3 m .. a c '� r o ca CD a o N a n c @ ° 3 0 = Z U O co c F "° '° > O 0 n -0 -0 0 N E O 0 a) o O C o" CO -O N @ O 0) C '° a S 7 9 C s, a- D c -o o a) 0 @ o o a) ,� a) o E m E s ,o m y c a2s a OU a) Q a) _° a s@ r a a c7n S d C V N a O w a) — N a) r 0 -0 @ E C) O N .- c7 C O 0 '0 as CO U al E @ O O a) cO n .N .� @ L c m 0_‘-- 7 7 To— N O) @ .0 N O >, '0 3 "C 0) O V7 O -a W J °' C _0 "0 "0 U _N N 21 0 "O L N N a) a) > Q) y6 C 03 @ N cr a �-' CO O 0 ° 0 - C a)' c E'• O aC) a) E a) a) a; a_) cv o -c c C " a) o @ -o -o 0 'in _ 3 . 0 CO c o ° io c a) c o @, (n > a) 7 3 (6 (o @ N 09 c6 E co 2' 7 0 0 @ @ U 0 _ c 7 '0 a) (O = C. U (o CO co O C p"co a c C 0 0 0 , m 0 0 0 0 a) 0 Ch o 0 m o o - @ -a @ r ui, a E a) C 0 2' 0 -o '� W O O 7 O O O .V .> @ a) c- a) 0_ -0 (o > > 3 m Q Q a) W. W. Y y, a. n E �, @. ai a o aE� '- a) a) a) = -oo a a E a) m a) - m o = 2 2 2 m -0 @ -0 `a _ O O _c ° ° a a) coE al a a@), o, p ✓ c z a_ _I D co m o o a a U � Q a` U co 0 0 0 U Q w < ± o m m 0 2 a 0 co co 0 W n r C N M C IC) CO CO 0) o N M A V7 (D h 00 O) O N M A LO (O t,7--) - 00 0) ✓ EO N CO C (f) (0 h CO O N N N N N N N N N N M M M M M M M M M M __ c2 O C 03 o O NiYNl0 V O ar r 0 a co p rn p CO CD',7) - CO N 0) N N O (/) r T 0 E (� J N E 0 0) 0 C uj- o a m c a o Y U a s a s w a 0 °da Well History File APPENDIX Information of detailed nature that is not particularly germane to the Well Permitting Process but is part of the history file. To improve the readability of the Well History file and to simplify finding information, information of this nature is accumulated at the end of the file under APPENDIX. No special effort has been made to chronologically organize this category of information. REPSOL EXPLORATION NORTH AMERICA MUDLOGGING DATA FINAL WELL REPORT FOR Qugruk #3 (2013 Alaska Campaign) North Slope Borough Alaska USA Provided by: Approved by: Juan Aluja Compiled by: Douglas Acker Anthony Anyanele Dan Hillegeist Ricard Fernandez Benjamin Handley Fernando Leandro Levi Potter Alejandro Martin Britten Adams Kelly Childers Distribution: 05/24/2013 T.D. Date: 03/23/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 1 TABLE OF CONTENTS 1 MUDLOGGING EQUIPMENT & CREW................................................................................................2 1.1 Equipment Summary......................................................................................................................2 1.2 Mudlogging Crew............................................................................................................................3 2 WELL DETAILS.....................................................................................................................................4 2.1 Well Summary................................................................................................................................4 2.2 Hole Data........................................................................................................................................4 2.3 Well Synopsis .................................................................................................................................4 3 GEOLOGICAL DATA.............................................................................................................................5 3.1 Lithostratigraphy .............................................................................................................................5 3.2 Lithological Summary......................................................................................................................6 3.3 Sidewall Core Summary ...............................................................................................................16 3.4 Hydrocarbon Shows......................................................................................................................18 3.5 Gas Peaks ....................................................................................................................................24 3.6 Sampling Program / Sample Dispatch..........................................................................................26 4 PRESSURE / FORMATION STRENGTH DATA.................................................................................34 4.1 Pore Pressure Gradient Evaluation ..............................................................................................34 4.2 Quantitative Methods....................................................................................................................34 5 DRILLING DATA..................................................................................................................................36 5.1 Daily Activity Summary .................................................................................................................36 5.2 Survey Data ..................................................................................................................................39 5.3 Bit Record.....................................................................................................................................42 5.4 Mud Record ..................................................................................................................................43 6 DAILY REPORTS ................................................................................................................................45 Enclosures: 2”/100’ Master Log MD / TVD 2”/100’ Engineering Log MD / TVD 2”/100’ Geopressure Log MD / TVD 2”/100’ Gas Ratio Log MD / TVD Final Well Data on CD/ROM C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 2 1 MUDLOGGING EQUIPMENT & CREW 1.1 Equipment Summary Parameter Equipment Type / Position Total Downtime (Hrs) Comments Ditch gas QGM Agitator and Gas Trap (mounted in mud return trough) E-Series Flame Ionization Detection (FID) Total Gas and (FID) Gas Chromatograph with. C1 to nC5 analysis (3 min cycle.) 2.5 Trap packing off, Agitator blade breakage Block Height/Bit depth Canrig Rigwatch Crown Encoder 0.5 Calibration Hook Load / Weight on bit Canrig Rigwatch 0 Mud Flow In Derived from Pump Rates and Pump Output 0 Mud Flow Out Canrig Rigwatch Radar Flow Meter 1.0 Calibration Mudlogging unit computer system HP Compaq Pentium 4 (x4: DML, Rigwatch, and Sample Catcher station) 0 RigWatch Server HP Linux Server 2 Power supply failure Pit Volumes, Pit Gain/Loss Canrig Rigwatch Radar Probes 0 Pump Pressure Canrig Rigwatch Stand Pipe Pressure Sensor 0 Pump stroke counters Canrig Rigwatch Proximity Sensor 0 Rate of penetration Canrig Rigwatch 0 RPM Canrig Top Drive 0 Torque Canrig Top Drive 0 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 3 1.2 Mudlogging Crew The crew consisted of veteran logging geologists filling one or more of three important positions ensuring accurate sampling, log preparation, and real-time well monitoring. Logging geologists were primarily responsible for maintaining the well log and monitoring the well. Data engineers were responsible for data management and quality control, production and posting of all log and data files, and assisting the loggers with their duties as needed. Loggers with sample catching duties ensured that mud and cuttings samples were caught at the proper time, maintaining an accurate inventory of all samples, and working with data engineers to prepare and track shipments of samples. Some loggers with sample catching duties were exchanged with other nearby wells (notably Q-1) for short periods. This was done when one well was not drilling while another was drilling at high ROP. Having teams of two sample catchers working per shift during such periods helped maintain sampling quality without jeopardizing safety. The catchers from other wells are also listed in the table below. Crew Compliment: 6 Unit Type : Arctic Steel Unit Number : ML004 PERSONNEL EXPERIENCE POSITIONS FILLED AND DAYS SPENT IN VARIOUS POSITIONS Crew Member Years1 Data Engineer Total Days2 Logging Geologist Total Days2 Sample Catchers Total Days2 Douglas Acker 3 X 25 Kelly Childers 1 X 25 Benjamin Handley 3 X 25 Levi Potter 3 X 25 Daniel Hillegeist 1 X 25 Britten Adams 1 X 25 1 Years experience as a Canrig Logging Geologist (note: All loggers are also trained as sample catchers). 2 Days at wellsite between rig up and rig down at various position(s) filled by the logger on this project. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 4 2 WELL DETAILS 2.1 Well Summary This appraisal well will consist of a vertical hole that will be logged and plugged back and abandoned after evaluating the Nanushuk, Alpine and Nuiqsut Sands. Well: Qugruk #3 API Index #: 50-103-20664-00-00 Field: Appraisal Surface Coordinates: X: 412876 ft, Y: 5972219 ASP Zone 4, NAD 27 Borough: North Slope Primary Target Depth: 6968’MD/ 6733’TVD State: Alaska Total Depth: 7500’MD/ 7280’TVD Rig Name / Type: Nabors Alaska 7ES / Arctic Land Suspension Date: 4/1/2013 Primary Target: Alpine Sands Permit to Drill: 212-187 Spud Date: 02/27/2012 Ground Elevation: 15’ AMSL Rig Release Date: Continue to ST Q-3A RT Elevation: 46’ AMSL Nanushuk 3875’ MD / 3815’ TVD Torok 5145’ MD / 5010’ TVD Completion Status: Plugged and Abandoned Secondary Targets: Depths: Nuiqsut Sand 7230’MD/ 6980’TVD Classification: Appraisal TD Date: 03/23/2013 TD Formation: Nuiqsut Sand Days Testing: 0 Days Drilling: 25 2.2 Hole Data Maximum Depth Shoe Depth Hole Section MD (ft) TVD (ft) TD Formation Mud Weight (PPG) Dev. (oinc) Casing/ Liner MD (ft) TVD (ft) LOT (PPG) Conductor 113’ 113’ Permafrost 0 20” 86’ 86’ 16” 2135’ 2134’ Lower Schrader Bluff 10.0 0.63 13 3/8” 2120’ 2119’ 13.9 12 ¼” 6925’ 6692’ Kingak Shale 10.3 19.39 N/A N/A N/A 8 ½” coring 6978’ 6742 Alpine 10.4 19.39 N/A N/A N/A 12 ¼” * 7500’ 7233’ Nuiqsut 10.4 19.39 N/A N/A N/A *Drilled through 8.5” coring section and widened Hole to 12.25” to TD. 2.3 Well Synopsis Qugruk #3 was drilled as an appraisal well to evaluate the Nanushuk, Alpine sands, and Nuiqsut sands. Baker Hughes ran a conventional core barrel from 6925’ to 6978’; coring 53’ and recovering 48’. Schlumberger ran 5 separate wireline runs including the sidewall coring, obtaining the following logs. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 5 3 GEOLOGICAL DATA 3.1 Lithostratigraphy All formations or markers provided by Repsol Geology. Well Prognosis vs Actual Pad Name Qugruk #3 Well Name Qugruk #3 Prognosis Actual Geologic Markers MD (ft) TVDSS (ft) MD (ft) TVDSS (ft) Base Permafrost 1114’ -1070’ 1080’ -1034’ Lower Schrader Bluff / MCU 2114’ -2070’ 2034’ -1988’ Upper Cretaceous / MFS 2263’ -2220’ 2250’ -2204’ Tuluvak/Seabee 2474’ -2430’ 2462’ -2416’ Nanushuk 3894’ -3790’ 3875’ -3769’ Torok 5124’ -4952’ 5145’ -4964’ HRZ Shale 6483’ -6235’ 6501’ -6246’ Pebble Shale 6615’ -6359’ 6596’ -6336’ Kup C 6781’ -6516’ 6750’ -6481’ Kingak Shale / LCU 6785’ -6520’ 6753’ -6484’ Alpine 6942’ -6668’ 6968’ -6687’ Nuiqsut 7193’ -6985’ 7230’ -6934’ TD 9299’ -8895’ 7500’ -7188’ C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 6 3.2 Lithological Summary 3.2.1 Permafrost 113’ MD / -67’ TVDSS to 1080’ MD / -1034’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 357 1 72 49 0 7 Within the permafrost, surficial deposits and poorly consolidated to loose sands and gravels with occasional thinly bedded clays/claystones. Gas levels were negligible, and with no significant gas peaks to indicate the presence of hydrates. Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 279’ 49 135 Representative sample descriptions are as follows: Conglomeratic Sandstone: moderate gray to dark gray, very coarse, unconsolidated, 25% quartz, 5% Clear chert, 70% lithic clasts, moderate poor to poorly sorted, sub angular to very angular, trace pyrite. Sand: Dominantly lithic clasts (80%), moderate gray to dark gray with less common dark gray, grayish brown, and olive black. 20% quartz clear to white and commonly translucent, coarse to moderate grains, moderate sorting, subangular to subrounded, trace pyrite and minor amounts of feldspars. Gravel: gray to black with occasional olive brown clasts, unconsolidated, 30% quartz, clear chert, very coarse, poor to very poor sorting, angular to subrounded, moderate to very low sphericity, occasional slight reaction with HCl, trace pyrite aggregates. Clay: light gray to pale yellowish brown with minor shades of medium dark gray. Hydrated and slightly expanded, adhesive, sectile, massive, earthy, nodular cuttings, common suspended sand grains in cuttings. 3.2.2 Base of Permafrost / Upper Schrader Bluff Formation 1080’ MD / -1034’ TVDSS to 2034’ MD / -1988’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 123 7 61 25 3 13 The top of the Schrader Bluff lay within the permafrost zone. Below this the Upper Schrader Bluff Formation is dominantly claystone with consistent and varying low quantities of sands, sandstones and conglomeratic sandstones. Siltstone becomes common towards the bottom of the formation. Gas levels were generally negligible in this interval with a single gas peak near the top of the formation at 1218’. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 7 Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 1218’ 352 59202 880 119 155 0 0 0 Representative sample descriptions are as follows: Claystone: medium light gray to medium dark gray with minor light olive gray and pale yellow brown, clumpy to mushy and very soft consistency, sectile tenacity, earthy fracture, nodular cuttings habit, very slight expansion and hydration, amorphous and massive. Sand: light gray to dark gray with minor greenish gray. Dominantly quartz with lesser amounts of lithic clasts and assorted minerals. Very fine to med coarse grains and fair sorting. Grains are rounded to sub rounded with moderate sphericity. Very slight reaction to no reaction with HCL. Siltstone: Light olive gray to medium dark gray. Crumbly to pulverulent tenacity, earthy to occasionally planar partings and fractures. Nodular to occasionally blocky cuttings habit. Silty to abrasive tenacity, massive structure to trace fine laminations. Gravels and conglomeratic: Medium dark gray to gray black and dependent upon a variety of crushed gravel lithic fragments. Gray black volcanics. Translucent, white, to gray cherts. Generally hard to very hard with fractured edges and rounded/frosted edges. Common conchoidal fracture. 3.2.3 Lower Schrader Bluff Formation / MCU 2034’ MD / -1988’ TVDSS to 2250’ MD / -2204’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 210 3 69 60 4 24 The Lower Schrader Bluff Formation is dominantly claystone with lesser amounts of siltstone and a distinct white tuff that varies in quantity from trace to 40%. Gas levels were consistently low, averaging 10-20 units. Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 2221’ 60 10926 214 22 0 0 0 0 Representative sample descriptions are as follows: Claystone: White to light gray, very soft to slightly firm, punky consistency, varies from dominantly clay to silty clay. Amorphous and nodular cuttings that are very hydrated, cohesive and adhesive, occasional laminations. Scattered fine quartz grains and lithic clasts. Siltstone: light to dark grays and browns. Low to moderate induration, silty to clayey texture, crumbly to subplanar fracture, nodular to blocky cuttings habit. Occasional fine laminations. Tuff: White to light gray, crumbly tenacity, nodular cuttings habit, waxy to occasionally clayey texture, matte to smooth texture, occasional thin vague laminations. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 8 3.2.3.1 Upper Cretaceous / MFS (Base member of the Lower Schrader Bluff Formation) 2250’ MD / -2204’ TVDSS to 2462’ MD / -2416’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 216 2 94 192 2 53 The Upper Cretaceous Formation primarily consists of Siltstones and claystones with common tuffaceous claystone. Background Gas climbed to 30-50 units at the top of the formation and averaged 50 to 100 units in the lower portion. Two small gas peaks, one at 2362’ with no associated lithology and another just before the Tuluvak Formation. Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 2362’ 130 19033 1208 334 0 0 0 0 2442’ 192 23720 2691 1656 188 210 149 109 Representative sample descriptions are as follows: Tuffaceous Claystone: White with occasional gray hues. Punky to crumbly consistency, irregular to planar fracture, dull to waxy luster, finely interbedded with claystone, tuff, and siltstone. No reaction with HCL, No associated oil shows. Siltstone: light to dark grays and browns. Low to moderate induration, silty to clayey texture, crumbly to subplanar fracture, nodular to blocky cuttings habit. Occasional fine laminations. Claystone: Medium brown, very soft, grading into clay and siltstone. Clayey to silty texture, occasional cuttings are firm, less hydrated. 3.2.4 Tuluvak/Seabee Formation 2462’ MD / -2416’ TVDSS to 3875’ MD / -3769’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 308 2 117 945 1 70 The Tuluvak Formation top is an over pressurized gas bearing sandstone and gravel lithology that produced a significant gas peak. The sandstone gives way to dominant siltstone and claystone interbeds with trace to 20% clay shale in the lower portions of the formation. Trace to no oil indicators. Formation gas levels varied consistently above 50 units in the upper portion of the formation with multiple gas peaks. Some may have been zone gas peaks from the sandstone but this could not be verified; however, nearly every trip in the hole for the duration of the well saw a trip gas peak attributed to this sandstone region at the top of the Tuluvak. The lower portion of the formation produced lower gas levels around 30-50 units. Unfortunately due to highly adhesive claystone and claystone cavings our QGM gas equipment clogged frequently and portions of the log show unreliable gas readings. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 9 Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 2466’ 886 45197 7380 6414 7810 8714 6189 4515 2495’ 443 25360 3403 3069 3318 3677 2514 1872 2656’ 282 31051 3003 2286 435 562 56 72 2678’ 270 30386 2672 1961 423 581 53 52 2697’ 388 65301 5472 4041 904 1242 170 155 2806’ 409 45522 3564 2102 444 656 188 183 2840’ 382 52596 3509 2022 403 610 113 88 Representative sample descriptions are as follows: Sandstone: Light to medium gray. Dominantly fine grained with occasional coarse grains to small clasts. Moderate to well sorted, angular to subrounded, low sphericity grains. Cuttings are soft to slightly firm, massive and nodular. Dominantly quartz with feldspars, mica, and glauconite. Dull greenish yellow sample fluorescence, no other oil indicators. Siltstone: Medium gray to olive gray with occasional medium light gray. Firm to firm friable, wedgelike to tabular cuttings habit, earthy to greasy luster, silty to gritty texture, massive bedding. Yellow to light green weak sample fluorescence, no other oil indicators. Claystone: Light gray to light olive gray. Mushy to malleable consistency, earthy fracture, nodular cuttings habit, waxy to greasy luster, clayey to silty texture, occasional fine laminations to incipient fissility. Weak yellow to light green sample fluorescence. 3.2.5 Nanushuk Formation 3875’ MD / -3769’ TVDSS to 5145’ MD / -4964’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 307 1 113 1170 2 218 The Nanushuk formation is characterized as a thick regressive sequence with a series of deltaic and fluvial deposits. Sands are fine grained with rich quartzite and lithic clasts (chert, limestone, shale). Origin of sand deposition is from the distributary channel deposits and mouth bar sediments. These deposits are very fine grained crevasse splay sands interbedded with silt and bay-fill shales. At the top of the Nanushuk (3875’-4170’ MD), background gas levels are approximately 115 to 135 units. Claystone increase from 30%-80% and is the dominants sediment. Shale stayed consisted from 30%-20%.Traces to 10% of calcareous tuff was deposited from 3990’-4080’ MD. Siltstone had thin bedding throughout to upper Nanushuk at 10%. Sandstone/sands appeared at 3990’-4020’ MD with thin 10% interbedded section. Traces of pyrite, glauconite, and micas are deposited throughout the clays. While entering the sands/sandstone at 4170’ MD, gas units increase from 116u to 1169u. Shale deposits decrease to Pixler Plot 4200'-4210 1 10 100 1000 10000 1 2 3 4 DRY GAS GAS CONDENSATE OI L NON PRODUCTIVE C1/ C2 C1/ C4 C1/ C5C1/ C3 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 10 traces in samples and oil shows appeared. Hydrocarbon reports were taken at 4200’-4210’ MD, 4260’-4290’ MD, 4380’-4390’ MD. The gas units peaks are 1169u (4206’ MD), 799u (7301’MD), 615u (4367’ MD) and 557u (4418’ MD). Highest intensity show was from 4200’-4440’ MD. Background gas was 310u-325u throughout this area. After 4440’ MD, sample fluorescence intensity decreased and the sand/sandstone decreased with increasing depths. At 4480’ MD, the rig performed a wiper trip to the shoe. After the wiper trip, the gas baseline units were 120u-90u with no gas spikes. From 4480’-5100’ MD, sands/sandstones decreased (30%-10%) as depth increased. Claystone increased from 20%-80%. The claystone characteristic changed from lumpy-clumpy to stiff-sectile. Siltstone and shale appeared with thin 10% interbedded throughout the clay/claystones. From 5101’-5144’ MD, gas baseline stayed around 102u-98u but hydrocarbon shows started to increase. These shows had low intensity. Sands/Sandstone increase to 20% and claystone stayed dominant at 80%. Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 4208’ 1169 62949 6654 4686 1062 2084 1129 1600 4307’ 798 62557 9081 6823 1678 3218 1483 2151 4367’ 615 44123 7528 5552 1484 2740 1215 1885 4419’ 557 25528 4343 3276 878 1763 766 1008 Representative sample descriptions are as follows: SILTSTONE: pale yellow or light gray with occasion medium gray-pale black green, fine to slight medium grain, fair to well sorted, subrounded to subangular angularity, moderate sphericity, hard friable, low calcareous cement w/ slight reaction to acid, trace pyrite. CLAYSTONE: very light gray to slight white with occasional light olive gray, clumpy-mushy, irregular blocky-malleable fracture, nodular cuttings habit, greasy to earthy luster, clayey to slight silty texture, thick-massive bedding, very fine to fine unconsolidated sand in clay. 3.2.6 Torok Formation 5145’ MD / -4964’ TVDSS to 6501’ MD / -6246’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 347 9 104 251 1 92 The Torok Formation consisted mainly of claystone with varying amounts of interbedded sandstone and siltstones. Less common lithology Includes clay, shales and calcareous tuff. Poor oil show was seen from 5175’ to 5250’ with a weak petroleum odor, weak yellow sample fluorescence, small yellow oil pops in the Pixler Plot 4380'-4390' 1 10 100 1000 10000 1 2 3 4 DRY GAS GAS CONDENSATE OI L NON PRODUCTIVE C1/ C2 C1/C4 C1/ C5C1/ C3 Pixler Plot 4260'-4290' 1 10 100 1000 10000 1 2 3 4 DRY GAS GAS CONDENSATE OI L NON PRODUCTIVE C1/ C2 C1/ C4 C1/ C5C1/ C3 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 11 mud, and rare small white streamers when cut. A moderate oil show was seen from 5400-5500’ similar to the last show but with slightly stronger indicators. Very poor oil show seen at 6180’. Gas levels averaged around 100 units for much of the clay-rich section of this interval. The upper portion saw formation gases rise frequently to between 200-250 units with no sharp peaks and related lithologies. Gas fell consistently below 100Units in the lower half of the formation. Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 5219’ 148 14558 1450 843 184 283 115 126 5261’ 207 18276 1890 1222 255 443 179 216 5407’ 227 25774 2722 1762 318 544 239 293 5493’ 224 23667 2727 1822 335 500 262 357 5589’ 244 27073 3174 1975 433 596 261 367 5636’ 251 27921 3097 2663 459 661 413 714 Representative sample descriptions are as follows: Claystone: Medium brown to olive gray, smooth to silty texture, common thinly interbedded fine grained sandstone: dominantly quartz with less common feldspars, lithic fragments, mica, and pyrite. Slight adhesive, amorphous, and nodular shaped cuttings. Cuttings have thick coating of clay to hydrated claystone often obscuring structures and shale habits. Occasional very dull to trace sample fluorescence. Common spotty bright yellow to green mineral fluorescence. Sandstone: Brown to greenish gray with a variety of translucent to transparent grains with cloudy white to gray colors. Gen fine to medium grained, moderately sorted, and subrounded. Grain size varies with depth. Clay matrix supported with rare quartz cement in tighter cuttings. Siltstone: Difficult to distinguish from claystone and appears to be thinly interbedded with claystones and shales at depth. Distinguished from claystone by slightly harder induration and siltier texture. Softer and containing fewer visible structures than the Shale. Light to medium brown and brownish gray. Soft to firm, crumbly to dense tenacity, platy to wedgelike cuttings, earthy to sparkling luster, silty to abrasive texture. Shale: Commonly difficult to distinguish from claystone due to cutting habits and mud hydration. Often found in small semi-fissile cuttings surrounded by hydrated clays in nodular cuttings. Olive gray to shades of yellowish brown. Silty to abrasive texture, blocky to planar fractures, dense to crumbly tenacity, platy to tabular cutting habit, sparkling to earthy luster, com fissility to occasional fine laminations. Structures become more defined in the lower portion of the unit near the top of the HRZ Shale. 3.2.7 HRZ Shale 6501’ MD / -6246’ TVDSS to 6596’ MD / -6336’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 153 6 91 271 1 164 The HRZ Shale consists of carbonaceous shale with inter-bedding siltstone, fine grained sandstones and carbon rich to lignitic layers. Cuttings show a variety of structures and laminations. Claystone was logged within the formation but may be attributed to significant up hole caving. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 12 Formation gas levels rose at the top of the HRZ shale to 200-250 units and maintained that consistently throughout the Formation with no significant drops or sharp peaks. Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 6518’ 271 21242 1995 1189 193 303 84 69 6579’ 215 18912 1693 1032 198 274 72 62 Individual representative sample descriptions are as follows: Carbonaceous Shale: Medium dark gray to olive gray, moderate to hard induration, dense to occasionally tough tenacity, planar fractures along bedding and irregular to jagged across bedding. Wedgelike cuttings habit, earthy to occasional resinous luster, Dominant fissile structure with common laminations and interbedding of Siltstone and organic rich laminations. Silt interbeds produce lighter color grays and sparkling luster. 3.2.8 Pebble Shale 6596’ MD / -6336’ TVDSS to 6750’ MD / -6481’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 243 13 109 265 1 164 The Pebble Shale is a carbonaceous shale with a slightly smaller gamma signature than the above HRZ shale and contains less organic rich black laminations. Claystone was logged within the formation but may be attributed to significant up hole caving. Gas levels are between 100-250 units with no significant peaks or associated gas bearing layers. Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 6612’ 265 23400 2106 1323 218 314 83 58 Individual representative sample descriptions are as follows: Shale: Medium gray to brownish black, occasional reddish hues. Tough to dense tenacity, wedgelike to tabular cutting habits, blocky to planar fracture, earthy to occasional sparkling luster, clayey to matte texture, Dominant fissile texture with less common laminations. Carbonaceous Shale: Similar to the Shale but overall darker color. Slightly softer along laminations which are more common and organic rich. Trace scattered glauconite. Siltstone: Olive gray to medium gray, Moderate hard to soft induration, crumbly to crunchy tenacity, planar fractures, tabular to platy cuttings habit, earthy luster, silty texture, laminated to commonly no visible structures. Occasionally bedding plane aligned organic debris. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 13 3.2.9 Kup C 6750’ MD / -6481’ TVDSS to 6753’ MD / -6484’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 95 89 92 168 162 166 The Kup C is an extremely thin dark gray to grayish black unconsolidated sand interval. Background was consistently 166 units throughout the interval. Within this very thin layer there were no peaks, however a general gas breakdown follows. Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 6750’ 168 16914 1410 1008 221 258 79 102 No sample collected represents this layer and no sand was found nearby, however correlating wells described the sands as follows: Sand: Dark gray to grayish black, medium to fine grained, unconsolidated, 90% Quartz, 10% lithic fragments, glauconite, moderate to well sorted, sub round to round, moderate to high sphericity. 3.2.10 Kingak Shale 6753’ MD / -6484’ TVDSS to 6968’ MD / -6687’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 186 1 77 172 1 54 The Kingak Shale/LCU interval is a bed of claystone and shale that was much more clearly defined by Gamma. The top of the formation shows significant quantities of carbonaceous shale along with regular argillaceous shale. The carbonaceous shale decreases with depth and is replaced to some extent by much redder sideritic shale. At the top of the formation gas was consistently between about 130 and 170 units, followed by a very substantial drop to just a few units up to about 50, most likely due to a coinciding slide. After rotating resumed, gas remained low for 15 feet before peaking at 172 units. Following that peak it stabilized around 70 units for most of the remainder of the formation before dropping to 10 to 20 units preceding the top of the Alpine. We tripped out for coring at 6925’ MD and got back trip gases of 121 and 141 units on the way back in. Low gas in the base of the Kingak could be attributed to reaming the previously cut core section. Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 6829’ 172 21992 1716 1441 374 401 774 154 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 14 Individual representative sample descriptions are as follows: Shale: Medium gray to brownish black, sometimes with reddish hues, wedgelike to tabular cuttings habit, blocky to planar fracture, showing earthy to occasionally sparkling luster. Generally has a clay to matte texture, but can be occasionally silty-looking. Tough to somewhat hard tenacity. Occasionally it has laminations of darker more carbonaceous material and grades to carbonaceous shale. Carbonaceous Shale: Generally similar to the argillaceous shale described above, but darker, slightly softer, and often appearing as elongated thin splintery cuttings and as small chips. Sideritic Shale: Nearly homogeneous, color from very dusky red to dusky yellowish brown, crunchy to brittle tenacity, planar to splintery fracture, flaky to bladed cuttings. It has an earthy to matte and often slightly sparkling luster, silty to somewhat gritty texture and occasionally has laminations of darker organic material. Sideritic shale appears to be associated with a slight rise in pyrite, siderite and glauconite and a decrease in carbonaceous shale. No significant oil indicators were present in this formation. 3.2.11 Alpine Sand 6968’ MD / -6687’ TVDSS to 7230’ MD / -6934’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 142 1 75 141 11 63 The Alpine Sand is the primary target of investigation. It is characterized as an extensively burrowed fine-grained sideritic sandstone layer with relatively abundant glauconite and pyrite. Sands appear fairly abruptly at the top accompanied by a large drop in gamma and a flood of glauconite. As depth increases toward the Nuiqsut the sands grade silty and the gamma readings get progressively larger. At the top of the Alpine, gas was pretty steady at around 20 units, but it increased shortly after as the sandstone content increased, consistently between 50 and 125 through most of the formation. Nearing the Nuiqsut the gas dropped dramatically as the sand fined to silt. With the rises and falls there were no true peaks. Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 7006’ 141 19867 1128 1048 387 373 761 121 Individual representative sample descriptions are as follows: Sandstone: Light brownish gray to olive gray and occasionally medium dark gray. Grains fine to medium sized, well sorted, subrounded to rounded, and surrounded with a mixed clay-silt matrix. Nodules are largely grain supported. Compositionally mostly quartz, with some feldspar, dark lithic clasts and scattered siderite and glauconite. Associated with notable free glauconite, siderite & pyrite grains and pyrite-filled worm burrows. Many sandstone cuttings show an even golden brown oil stain and light to moderate yellow sample Pixler Plot 6970'-7080' 1 10 100 1000 10000 1 2 3 4 DRY GAS GAS CONDENSATE OI L NON PRODUCTIVE C1/ C2 C1/C4 C1/ C5C1/ C3 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 15 fluorescence, fast to instant pale to bright yellowish white cut streaming rapidly bright yellow from exposed edges and occasionally pale yellow amber visible cut, leaving an irregular moderately strong residual ring with bright yellow fluorescence. No visible free oil or iridescent sheen. The trace petroleum odor was mostly masked by the native scent of the mud. 3.2.12 Nuiqsut Sand to TD 7230’ MD / -6934’ TVDSS to 7500’ MD / -7187’ TVDSS Drill Rate (ft/hr) Total Gas (units) Maximum Minimum Average Maximum Minimum Average 211 11 88 88 3 64 The Nuiqsut Sand is a secondary target of this investigation. The interval begins with a very fine to medium grained unconsolidated sand containing traces of more well lithified sandstone. The interval then fines with depth to a more sandy siltstone and claystone. Background gas levels held consistently between about 70 and 90 throughout the formation. As with the Alpine, there were no standout gas values. Gas Peaks Depth TG C1 C2 C3 iC4 nC4 iC5 nC5 7271’ 88 3751 308 311 94 110 204 47 Individual representative sample descriptions are as follows: Siltstone: Similar in appearance to Alpine sandstone, but finer grained, dense to stiff to crumbly tenacity, irregular to earthy fracture, nodular cuttings habit, dull to earthy to occasionally sparkling luster, silty to gritty texture, occasionally laminar structure. The siltstone grades from the sandstone above and claystone. Generally non-calcitic, other than the rare trace calcite and calcareous tuff. Siltstone bears trace dull brownish yellow sample fluorescence and is associated with scattered mineral fluorescence. Claystone: Light olive brown to gray, clumpy consistency, malleable to pulverulent tenacity, moderately adhesive, very cohesive, no fracture, massive to amorphous cuttings habit, dull luster, smooth to matte texture, often with shale, sand and clastic inclusions, generally no structure, featuring rare contacts with siltstone. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qu g r u k # 3 16 3. 3 S i d e w a l l C o r e S u m m a r y Si d e w a l l C o r e S u m m a r y p r o v i d e d b y W e l l s i t e G e o l o g i s t . No De p t h Li t h o l o g y Co l o r Le n g t h ( c m ) St r u c Gr a i n Si z e So r t i n g Po r o s i t y Od o r St a i n i n g Fl u o r e s c e n c e Ct F l u o r Fo r m a t i o n 1 7 2 7 0 2 7 2 6 1 3 7 2 5 6 . 5 4 7 2 5 0 5 7 2 3 6 6 7 0 7 7 . 5 7 7 0 4 8 8 7 0 3 0 9 7 0 2 7 10 7 0 1 4 11 7 0 1 0 12 7 0 0 6 13 6 9 8 8 14 6 9 8 6 . 5 15 6 9 7 6 16 6 5 9 8 S H D K G Y C L Y B D G P O O R B H R Z 17 64 5 8 S H / T F D K G Y / W H C L Y B D G / C T C P O O R LO W E R TO R O K 18 5 9 7 8 S S T M D G Y S L T W V Y L A M L V F V W L M O D W K W K D U L Y E L N O T O R O K 19 5 9 6 8 S S T M D G Y S L T U V F V W L M O D W K W K D U L Y E L N O T O R O K 20 4 3 7 8 . 5 SS T M D D K G R Y SL T / S D W V Y L A M S V F - F M O D M O D M O D T R C B R T Y E L B L - W H N A N U S H U K 21 4 3 4 0 S T T B N G Y - B N S D CA R B / O R G LA M LF - F M O D W K - MO D W K T R C Y E L O R YE L W H - W H B L NA N U S H U K 22 4 3 1 2 S S T LT B N G Y - G Y B N SD LF - F M O D M O D TR C B T Y E L YE L W H - W H B L NA N U S H U K 23 4 2 7 3 S S T DK G Y - B N GY SD / S L T W V Y L A M LV F - LF FR P R / M O D TR C TR Y E L - Y E L GD YE L W H T N A N U S H U K 24 4 2 6 9 S S T DK G Y - B N GY SD / S L T W V Y L A M LV F - LF FR - MO D PR / M O D W K T R C P C H Y E L O R Y E L - W H N A N U S H U K 25 4 2 3 6 S S T B N G Y S D / C L Y S L T Y L A M LF - UF W L MO D - W K MO D T R C P C H Y E L O R Y E L - W H N A N U S H U K Comment [E1]: If applicable. CO N F I D E N T I A L in ac c o r d a n c e wit h AS 38 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qu g r u k # 3 17 Si d e w a l l C o r e S u m m a r y p r o v i d e d b y W e l l s i t e G e o l o g i s t ( C o n t i n u e d , ) . No De p t h Li t h o l o g y Co l o r Le n g t h ( c m ) St r u c Gr a i n Si z e So r t i n g Po r o s i t y Od o r St a i n i n g Fl u o r e s c e n c e Ct F l u o r Fo r m a t i o n 26 4 2 2 8 S S T B N S D / S L T W V Y L A M LF - UF W L MO D - W K ST R N G TR C - AB D NI L - B R T Y E L GL D BR T Y E L - BL W H NA N U S H U K 27 4 2 0 9 S S T B N G Y S D / C L Y S L T Y L A M F M O D MO D - W K MO D T R C B R T Y E L - O R BR T Y E L W H NA N U S H U K 28 4 2 0 6 . 4 SS T B N G Y S D / C L Y UV F - LF W L M O D S T R N G AB D BR T Y E L - GL D YE L W H - BL W H NA N U S H U K 29 4 2 0 1 S S T O L V G Y S D UV F - LF W L M O D S T R N G AB D BR T Y E L - GL D YE L - B L W H NA N U S H U K 30 4 1 9 9 S S T O L V G Y S D UV F - LF W L M O D S T R N G AB D BR T Y E L - GL D YE L - W H N A N U S H U K 30 r o t a r y s i d e w a l l c o r e s w e r e c u t a n d r e c o v e r e d ; c o r es 1 - 1 5 s a m p l e s r e c o v e r e d a n d p r e s e r v e d , n o t d e s c r i b e d i n t h e f i e l d . S a m p l e s 1 6 - 3 0 w e r e c l e a n e d , ph o t o g r a p h e d , a n d d e s c r i b e d i n t h e f i e l d . CO N F I D E N T I A L in ac c o r d a n c e wit h AS 38 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qu g r u k # 3 18 3. 4 H y d r o c a r b o n S h o w s 3. 4 . 1 S u m m a r y SA M P L E L I T H O L O G Y DR I L L I N G M U D ST A I N SA M P L E F L U O R CU T F L U O R RE S C U T F L U O R VI S C U T AVG VERBAL SH O W DE P T H LI T H O L O G Y % OD O R PO P S % CO L O R IN T E N S I T Y % CO L O R IN T E N S I T Y SP E E D CO L O R IN T E N S I T Y CO L O R RA T I N G RATING 1 4 2 0 0 ’ – 4 2 1 0 ’ C L A Y 6 0 1 . 5 1 0 . 5 1 . 5 1 . 5 2 2 3 3 0 . 5 0 . 5 0 1 . 4 F a i r 2 4 2 6 0 ’ – 4 2 9 0 ’ S S T 7 0 1 . 5 1 0 . 5 1 . 5 0 . 5 1 2 3 3 0 . 5 0 . 5 0 1 . 3 F a i r 3 4 3 8 0 ’ – 4 3 9 0 ’ S S T 4 0 1 1 0 . 5 2 1 1 . 5 1 . 5 2 2 . 5 0 . 5 0 . 5 0 1 . 2 F a i r 4 6 9 7 0 ’ – 7 0 8 0 ’ S S T 5 0 1 0 3 3 4 4 3 4 3 3 2 3 2 . 8 G o o d Comment [E2]: Use Oil Show Summary Table we use once approved by Respsol CO N F I D E N T I A L in ac c o r d a n c e wit h AS 38 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 19 3.4.2 Hydrocarbon Show Reports C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 20 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 21 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 22 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qu g r u k # 3 23 3. 4 . 3 H y d r o c a r b o n S h o w P a r a m e t e r s I) D R I L L I N G M U D II I ) S A M P L E F L U O R E S C E N C E IV ) C U T S A M P L E F L U O R E S C E N C E V) R E S I D U A L C U T F L U O R E S C E N C E A. F r e e o i l i n m u d ( f l u o r p o p s ) A. C o l o r A. C o l o r A. C o l o r 0. N o n e 0. N o n e 0. N o n e 0. N o n e 1. 1 m m ( p n p t ) s c a t t e r e d , f e w i n n o . 1. N o n e – v . p a l e y e l ( p y ) 1. V . p a l e y e l ( v p y ) , p a l e o r g ( p o ) 1. V . p a l e y e l ( v p y ) , p a l e o r g ( p o ) 2. 2 m m s c a t t e r e d , f e w w / o c c 2 m m 2. B r o w n ( b ) , o r g - b r n ( o b ) , b r n - g o l d ( b g ) 2 . L i g h t y e l ( l y ) , y e l - o r g ( y o ) 2. L i g h t y e l ( l y ) , y e l - o r g ( y o ) 3. C o m m o n t o a b u n d a n t 1 - 2 m m 3. O r g ( o ) , g o l d ( g ) , y e l - o r n g ( y o ) 3. B r t y e l ( b y ) , b r t y e l - o r g ( b y o ) 3. B r t y e l ( b y ) , b r t y e l - o r g ( b y o ) 4. A b u n d a n t 2 m m a n d l a r g e r 4. W h t - y e l ( w y ) , g r n - y e l ( g y ) , b l u - w h t ( b l w ) 4 . G r n y e l ( g y ) , v . b r t y e l ( v b y ) 4. G r n y e l ( g y ) , v . b r t y e l ( v b y ) B. O d o r B. I n t e n s i t y B. I n t e n s i t y B. I n t e n s i t y 0. N o n e t o s l i g h t 0. N o n e - v e r y w e a k 0. N o n e - v e r y w e a k 0. N o n e - v e r y w e a k 1. V e r y s l i g h t 1. V e r y w e a k ( t r a n s p a r e n t ) 1. V e r y w e a k ( t r a n s p a r e n t ) 1. V e r y w e a k ( t r a n s p a r e n t ) 2. S l i g h t 2. M o d e r a t e ( t r a n s l u c e n t 2. M o d e r a t e ( t r a n s l u c e n t 2. M o d e r a t e ( t r a n s l u c e n t 3. M o d e r a t e 3. M o d e r a t e - s t r o n g 3. M o d e r a t e - s t r o n g 3. M o d e r a t e - s t r o n g 4. S t r o n g 4. S t r o n g ( o p a q u e ) 4. S t r o n g ( o p a q u e ) 4. S t r o n g ( o p a q u e ) II ) V I S I B L E S T A I N I N G O N C U T T I N G S C . P e r c e n t D i s t r i b u t i o n C. S p e e d VI ) V I S I B L E C U T 0. N o n e ( 0 % ) 0. N o n e A . D i s t r i b u t i o n , p e r c e n t 1. T r a c e ( 0 - 1 0 % ) 1. V . S l o w ( o c c s t r e a m e r s ) A) C o l o r 0. N o n e 2. S p o t t y ( 1 0 - 4 0 % ) 2. S l o w ( f r e q u e n t s t r e a m e r s ) 0. N o n e - c l e a r 1. T r a c e ( 0 - 1 0 % ) 3. S c a t t e r e d - p a t c h y ( 4 0 - 8 5 % ) 3. F a s t 1. P a l e s t r a w ( p s ) 2. S p o t t y ( 1 0 - 4 0 % ) 4. E v e n , u n i f o r m ( 8 5 - 1 0 0 % 4. I n s t a n t 2. S t r a w ( s ) 3. S c a t t e r e d - p a t c h y ( 4 0 - 8 5 % ) 3. A m b e r ( a ) 4. E v e n , u n i f o r m ( 8 5 - 1 0 0 % ) 4. D r k a m b e r t o b r n ( d a ) VI I ) S H O W R A T I N G 0. 0 t o 1 . 0 = P o o r 1. 1 t o 2 . 0 = F a i r 2. 1 t o 3 . 0 = G o o d 3. 1 t o 4 . 0 = E x c e l l e n t CO N F I D E N T I A L in ac c o r d a n c e wit h AS 38 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 24 3.5 Gas Peaks 3.5.1 Connection Gases 1 unit = 0.05% Methane Equivalent Depth Gas over BGG (MD/TVD feet) (units) 16” Hole Section N/A N/A 12 ¼” Hole Section 2472’ 180 3042’ 30 3144’ 20 3425’ 46 3517’ 23 3811’ 67 4009’ 42 4396’ 119 3.5.2 Trip (Wiper) Gases 1 unit = 0.05% Methane Equivalent Depth Trip to Gas Downtime (feet) (feet) (units) (hours) 16” Hole Section 375’ 0’ 10 9.6 1175’ 345’ 9 4.5 2135’ 0’ 30 240 12 ¼” Hole Section 4481’ 0’ 368 71.9 6925’ 0’ 1744 71.9 6925’ 0’ 28 45.0 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 25 3.5.3 Drilled Gas Peaks 1 unit = 0.05% Methane Equivalent Maximum peak composition Depth (MD) Total Gas Background Gas C1 C2 C3 iC4 nC4 iC5 nC5 ft Formation Units Units ppm ppm ppm ppm ppm ppm ppm 16” Hole Section 279' Permafrost 49 2 9671 3 0 0 0 0 0 1218' Schrader Bluff 352 24 59202 880 119 155 0 0 0 12 ¼” Hole Section 2221' MCU 60 21 10926 214 22 0 0 0 0 2362' MFS 130 26 19033 1208 334 0 0 0 0 2442' MFS 192 28 23720 2691 1656 188 210 149 109 2466' Tuluvak 886 446 45196 7379 6413 7810 8713 6188 4514 2495' Tuluvak 443 148 25360 3403 3069 3318 3677 2514 1872 2656' Tuluvak 282 250 31051 3003 2286 435 562 56 72 2678' Tuluvak 270 65 30386 2672 1961 423 581 53 52 2697' Tuluvak 388 65 65301 5472 4041 904 1242 170 155 2806' Tuluvak 409 75 45522 3564 2102 444 656 188 183 2840' Tuluvak 382 69 52596 3509 2022 403 610 113 88 4208' Nanushuk 1169 80 62949 6654 4686 1062 2084 1129 1600 4307' Nanushuk 798 591 62557 9081 6823 1678 3218 1483 2151 4367' Nanushuk 615 156 44123 7528 5552 1484 2740 1215 1885 4419' Nanushuk 557 299 25528 4343 3276 878 1763 766 1008 5219’ Torok 148 17 14558 1450 843 184 283 115 126 5261’ Torok 207 197 18276 1890 1222 255 443 179 216 5407’ Torok 227 109 25774 2722 1762 318 544 239 293 5493’ Torok 224 135 23667 2727 1822 335 500 262 357 5589’ Torok 244 146 27073 3174 1975 433 596 261 367 5636’ Torok 251 186 27921 3097 2663 459 661 413 714 6518’ HRZ 271 268 21242 1995 1189 193 303 84 69 6579’ HRZ 215 202 18912 1693 1032 198 274 72 62 6612’ Pebble 265 241 23400 2106 1323 218 314 83 58 6750’ Kup C 168 147 16914 1410 1008 221 258 79 102 6829’ Kingak 172 5 21992 1716 1441 374 401 154 199 7006’ Alpine 141 129 19867 1128 1048 387 373 121 141 7271’ Nuiqsut 88 81 3751 308 311 94 110 47 113 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 26 3.6 Sampling Program / Sample Dispatch 3.6.1 Sample Dispatch Washed and dried samples are contained within sample envelopes, and wet samples are in plastic Whirl- pak® bags. Gas samples are contained in IsoTubes®, and headspace samples were put in IsoJars™ . All were packaged and affixed with address labels, at which point they were turned over to a Repsol representative for delivery. Set Type / Purpose Frequency Interval Dispatched to 1 Washed, screened, rinsed and dried reference samples Unwashed samples in Whirl-pak® bags Set owner: Repsol 30’ 35’ 25’ 30’ 60’ 30’ 15’ 8’ 5’ 10’ 27’ 25’ 5’ 10’ 30’ 30’ 5’ 25’ 30’ 60’ 30’ 15’ 8’ 5’ 10’ 27’ 25’ 5’ 10’ 30’ 110’ – 2100’ 2100’ – 2135’ 2135’ – 2160’ 2160’ – 2880’ 2880’ – 2940’ 2940’ – 6780’ 6780’ – 6840’ 6840’ – 6848’ 6848’ – 6853’ 6853’ – 6873’ 6873’ – 6900’ 6900’ – 6925’ 6925’ – 6930’ 6930’ – 7110’ 7110’ – 7500’ 110’ – 2130’ 2130’ – 2135’ 2135’ – 2160’ 2160’ – 2880’ 2880’ – 2940’ 2940’ – 6780’ 6780’ – 6840’ 6840’ – 6848’ 6848’ – 6853’ 6853’ – 6873’ 6873’ – 6900’ 6900’ – 6925’ 6925’ – 6930’ 6930’ – 7110’ 7110’ – 7500’ FUGRO Attn: Allen Rother Fugro Data Solutions 3311 South US Hwy, 77 Schulenburg, Texas 78956 Office: (979) 562-2777 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 27 Set Type / Purpose Frequency Interval Dispatched to 2 Paleo Samples Unwashed samples in Whirl-pak® bags Set owner: Repsol Paleo 30’ 5’ 25’ 30’ 60’ 30’ 15’ 8’ 5’ 10’ 27’ 25’ 5’ 10’ 30’ 110’ – 2130’ 2130’ – 2135’ 2135’ – 2160’ 2160’ – 2880’ 2880’ – 2940’ 2940’ – 6780’ 6780’ – 6840’ 6840’ – 6848’ 6848’ – 6853’ 6853’ – 6873’ 6873’ – 6900’ 6900’ – 6925’ 6925’ – 6930’ 6930’ – 7110’ 7110’ – 7500’ IRF Group 6721 Round Tree Dr. Anchorage, AK 99507-7018 CC: David Goodman (907) 346-4090 3 Washed, screened, rinsed and dried reference samples Set owner: AOGCC 30’ 35’ 25’ 30’ 60’ 30’ 15’ 8’ 5’ 10’ 27’ 25’ 5’ 10’ 30’ 110’ – 2100’ 2100’ – 2135’ 2135’ – 2160’ 2160’ – 2880’ 2880’ – 2940’ 2940’ – 6780’ 6780’ – 6840’ 6840’ – 6848’ 6848’ – 6853’ 6853’ – 6873’ 6873’ – 6900’ 6900’ – 6925’ 6925’ – 6930’ 6930’ – 7110’ 7110’ – 7500’ Alaska Oil and Gas Conservation Commission Attention: Howard Okland, Petroleum Geologist Assistant 333West 7th Avenue, Suite 100 Anchorage, Alaska 99501 4 Unwashed samples in IsoJars® Set owner: Repsol 90’ 120’ 60’ 90’ 113’ – 2820’ 2820’ – 2940’ 2940’ – 3000’ 3000’ – 7500’ FUGRO Attn: Allen Rother Fugro Data Solutions 3311 South US Hwy, 77 Schulenburg, Texas 78956 Office: (979) 562-2777 5 Gas samples in IsoTubes® Set owner: Repsol 90’ Selected Gas Peaks 30’ zones of interest 113’ – 7500’ FUGRO Attn: Allen Rother Fugro Data Solutions 3311 South US Hwy, 77 Schulenburg, Texas 78956 Office: (9+79) 562-2777 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 28 Set Type / Purpose Frequency Interval Dispatched to 6 Mud Samples Set owner: Repsol Beginning and end of hole section and upon change of mud properties or phase of drilling 113’ 2135’ 6925’ 6978’ 7500’ FUGRO Attn: Allen Rother Fugro Data Solutions 3311 South US Hwy, 77 Schulenburg, Texas 78956 Office: (979) 562-2777 Sample frequency was locally altered according to drill rate constraints and zones of interest. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 29 3.6.2 Isotube Samples Box 1 Hole Section Sample Depth MD/TVD Total Gas (units) Methane (ppm) Ethane (ppm) Propane (ppm) iButene (ppm) nButane (ppm) iPentane (ppm) nPentane (ppm) 16” 1 165'/165' 0 0 0 0 0 0 0 0 16” 2 210'/210' 1 73 0 0 0 0 0 0 16” 3 300'/300' 11 2256 39 0 0 0 0 0 16” 4 390'/390' 6 2756 38 0 0 0 0 0 16” 5 480'/480' 4 1065 0 0 0 0 0 0 16” 6 570'/570' 7 2313 23 0 0 0 0 0 16” 7 660'/660' 6 720 0 0 0 0 0 0 16” 8 750'/750' 8 3473 20 0 0 0 0 0 16” 9 840'/840' 27 5505 0 0 0 0 0 0 16” 10 930'/930' 1 1075 0 0 0 0 0 0 16” 11 1020'/1020' 23 5841 16 0 0 0 0 0 16” 12 1110'/1110' 21 5668 39 0 0 0 0 0 16” 13 1200'/1200' 13 3741 21 0 0 0 0 0 16” 14 1214'/1214' 325 22665 351 40 0 0 0 0 16” 15 1293'/1293' 25 7032 21 0 0 0 0 0 16” 16 1380'/1380' 13 4507 43 19 0 0 0 0 16” 17 1470'/1470' 13 5094 0 0 0 0 0 0 16” 18 1560'/1560' 28 7661 35 15 0 0 0 0 16” 19 1650'/1650' 27 6952 19 0 0 0 0 0 16” 20 1740'/1740' 21 5781 29 0 0 0 0 0 16” 21 1830'/1830' 26 6825 0 0 0 0 0 0 16” 22 1920'/1920' 27 7015 44 0 0 0 0 0 16” 23 2010'/2010' 11 3487 17 0 0 0 0 0 16” 24 2100'/2100' 20 4883 37 0 0 0 0 0 16” 25 2135'/2135' 18 4595 22 0 0 0 0 0 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 30 Box 2 Hole Section Sample Depth MD/TVD Total Gas (units) Methane (ppm) Ethane (ppm) Propane (ppm) iButene (ppm) nButane (ppm) iPentane (ppm) nPentane (ppm) 12 ¼” 1 2159'/2159' 38 6560 4 0 0 0 0 0 12 ¼” 2 2191'/2191' 22 3863 44 0 0 0 0 0 12 ¼” 3 2280'/2280' 44 7379 210 98 0 0 0 0 12 ¼” 4 2370'/2370' 79 12534 843 225 0 0 0 0 12 ¼” 5 2442'/2442' 193 23720 2691 1656 188 210 149 109 12 ¼” 6 2460'/2460' 14 860 121 94 85 95 68 49 12 ¼” 7 2466'/2466' 800 45197 7380 6414 7810 8714 6189 4515 12 ¼” 8 2550'/2549' 7 570 54 48 30 33 19 16 12 ¼” 9 2640'/2639' 13 1333 134 105 19 23 3 4 12 ¼” 10 2730'/2728' 103 12430 1014 809 171 215 70 68 12 ¼” 11 2820'/2816' 150 17415 1217 708 144 215 46 32 12 ¼” 12 2887'/2881' 589 11736 848 486 99 154 42 68 12 ¼” 13 2940'/2932' 165 5627 370 227 55 77 26 28 12 ¼” 14 3000'/2990' 71 10163 662 448 125 168 85 65 12 ¼” 15 3090'/3075' 66 9532 506 331 80 126 50 65 12 ¼” 16 3191'/3170' 65 9783 436 278 76 110 41 76 12 ¼” 17 3290'/3263' 39 6144 253 142 40 55 21 27 12 ¼” 18 3360'/3329' 66 10156 638 380 218 248 74 81 12 ¼” 19 3450'/3414' 3 489 27 15 3 4 5 4 12 ¼” 20 3572'/3529' 56 9363 727 376 69 112 20 40 12 ¼” 21 3640'/3593' 17 2533 151 74 13 17 0 1 12 ¼” 22 3720'/3669' 41 7598 405 216 56 102 0 0 12 ¼” 23 3815'/3758' 54 7933 499 294 275 539 0 0 12 ¼” 24 3900'/3839' 511 37056 5821 4106 955 1880 540 769 12 ¼” 25 3990'/3924' 230 18107 2485 1774 328 632 306 387 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 31 Box 3 Hole Section Sample Depth MD/TVD Total Gas (units) Methane (ppm) Ethane (ppm) Propane (ppm) iButene (ppm) nButane (ppm) iPentane (ppm) nPentane (ppm) 12 ¼” 1 4031'/3963' 281 30790 4452 3133 604 1166 493 642 12 ¼” 2 4080'/4009' 165 18842 2549 1789 405 755 242 346 12 ¼” 3 4170'/4094' 113 13933 1399 990 233 426 223 318 12 ¼” 4 4184'/4107' 328 39623 3782 2680 636 1157 651 929 12 ¼” 5 4197'/4120' 1006 54211 5464 3858 893 1694 935 1330 12 ¼” 6 4260'/4179' 193 13165 1777 1236 255 581 291 405 12 ¼” 7 4300'/4216' 798 62916 9012 6782 1656 3186 1473 2123 12 ¼” 8 4350'/4263' 410 31226 5116 3790 994 1851 828 1265 12 ¼” 9 4364'/4277' 615 44119 7507 5539 1478 2732 1212 1879 12 ¼” 10 4440'/4348' 350 15890 2652 2029 541 1136 491 584 12 ¼” 11 4530'/4433' 331 31542 4676 3640 932 1739 1078 1207 12 ¼” 12 4620'/4517' 157 11967 1603 1336 397 720 387 530 12 ¼” 13 4710'/4602' 125 12324 1400 981 404 723 358 446 12 ¼” 14 4800'/4687' 77 9666 830 615 183 368 197 209 12 ¼” 15 4890'/4771' 78 10599 834 535 115 274 118 251 12 ¼” 16 4980'/4856' 103 12136 1035 637 143 284 110 140 12 ¼” 17 5083'/4952' 102 11381 1015 647 159 271 137 151 12 ¼” 18 5161'/5026' 51 6459 519 413 91 195 80 99 12 ¼” 19 5234'/5095' 200 15409 1720 1202 247 319 133 165 12 ¼” 20 5250'/5110' 105 13468 1351 906 195 338 132 152 12 ¼” 21 5340'/5195' 115 12556 1250 746 158 245 115 96 12 ¼” 22 5433'/5283' 138 13268 1434 929 182 292 141 138 12 ¼” 23 5529'/5373' 107 10698 1067 782 139 258 95 96 12 ¼” 24 5610'/5450' 106 12702 1312 812 207 216 105 100 12 ¼” 25 5700'/5534' 99 11190 964 634 139 153 25 70 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 32 Box 4 Hole Section Sample Depth MD/TVD Total Gas (units) Methane (ppm) Ethane (ppm) Propane (ppm) iButene (ppm) nButane (ppm) iPentane (ppm) nPentane (ppm) 12 ¼” 1 5790'/5619' 30 5085 340 281 64 75 37 79 12 ¼” 2 5880'/5705' 43 5331 377 291 64 89 54 84 12 ¼” 3 5970'/5790' 85 10204 761 551 121 191 132 165 12 ¼” 4 6060'/5875' 71 9948 757 588 112 176 98 88 12 ¼” 5 6150'/5960' 91 11585 909 729 83 194 45 48 12 ¼” 6 6240'/6045' 125 13622 1333 1088 223 345 12 114 12 ¼” 7 6336'/6136' 15 6050 430 403 73 84 25 33 12 ¼” 8 6420'/6216' 83 9923 804 669 146 221 61 67 12 ¼” 9 6512'/6302' 244 18781 1828 1076 172 267 73 63 12 ¼” 10 6600'/6385' 256 18384 1762 1055 469 126 81 66 12 ¼” 11 6690'/6470' 200 16483 1483 1045 217 269 75 99 12 ¼” 12 6780'/6556' 141 14243 1200 828 192 218 35 89 12 ¼” 13 6870'/6641' 53 7113 519 512 118 147 63 44 12 ¼” 14 6960'/6725' 8 2227 164 108 35 76 15 20 12 ¼” 15 6933'/6700' 18 3898 239 241 292 143 260 38 12 ¼” 16 6960'/6725' 22 4205 252 198 85 70 27 28 12 ¼” 17 6990'/6754' 68 10255 521 497 183 174 34 94 12 ¼” 18 7020'/6782' 128 13835 925 832 308 302 148 51 12 ¼” 19 7050'/6810' 51 7790 463 390 210 188 88 36 12 ¼” 20 7080'/6838' 91 10752 714 751 307 370 103 74 12 ¼” 21 7110'/6867' 68 9122 597 584 226 217 18 45 12 ¼” 22 7141'/6896' 55 7389 426 509 203 201 123 57 12 ¼” 23 7230'/6979' 12 453 46 44 10 14 7 8 12 ¼” 24 7323'/7067' 69 8831 532 597 256 265 102 428 12 ¼” 25 7410'/7149' 72 9604 577 622 212 246 96 73 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 33 Box 5 Hole Section Sample Depth MD/TVD Total Gas (units) Methane (ppm) Ethane (ppm) Propane (ppm) iButene (ppm) nButane (ppm) iPentane (ppm) nPentane (ppm) 12 ¼” 1 7500'/7233' 55 7734 503 596 227 264 136 66 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 34 4 PRESSURE / FORMATION STRENGTH DATA Based on a regional pressure gradient, the pore pressure gradient (PPG) is estimated to be 0.455 psi/ft, or 8.8 PPG. 4.1 Pore Pressure Gradient Evaluation Interval Tops Pore Pressure (EMW) Formation Interval Primary Lithology (%) Secondary Lithology (%) MD (ft) TVD (ft) TVDSS (ft) Min (PPG) Max (PPG) Trend Trend Indicators Permafrost 80% SD 20% CLST 113’ 113’ -67’ 9.45 10.26 INCREASE BG, MW, ECD Base Permafrost / Upper 90% SLTST 10% CLST 1080’ 1080’ -1034’ 9.69 10.30 SLIGHT DECREASE BG, MW, ECD Lower Schrader Bluff / MCU 90% SLTST 10% CLST 2034’ 2034’ -1988’ 9.68 10.09 EVEN BG, MW, ECD Upper Cretaceous / MFS 90% SLTST 10% CLST 2250’ 2250’ -2204’ 9.73 10.08 EVEN BG, MW, ECD Tuluvak 60% SLTST 40% CLST 2462’ 2462’ -2416’ 9.82 10.74 EVEN BG, MW, ECD Nanushuk 100% CLST 3875’ 3815’ -3769’ 10.02 11.34 INCREASE BG, MW, ECD Torok 60% CLST 40% SD/SLTST 5145’ 5010’ -4964’ 10.15 10.89 SLIGHT INCREASE BG, MW, ECD HRZ Shale 100% CSH 6501’ 6292’ -6246’ 10.44 10.78 INCREASE BG, MW, ECD Pebble Shale 60% CSH 40% CLST 6596’ 6382’ -6336’ 10.34 10.78 DECREASE BG, MW, ECD Kup C 100% SD 6750’ 6527’ -6481’ 10.49 10.50 EVEN BG, MW, ECD Kingak Shale / LCU 100% CLST 6753’ 6530’ -6484’ 10.12 10.61 DECREASE BG, MW, ECD Alpine 100% SST 6968’ 6733’ -6687’ 10.19 10.36 EVEN BG, MW, ECD Nuiqsut 60% CLST 40% SD 7230’ 6980’ -6934’ 10.22 10.52 INCREASE BG, MW, ECD TD 100% CLST 7500 7233 -7187 10.55 10.55 EVEN BG, MW, ECD NOTE: Sd = Sand, Clst = Claystone/Clay, Sltst = Siltstone, Sst = Sandstone, Sh = Shale, CSh = Carbonaceous Shale, Cs = Conglomeratic Sand, Cg = Conglomerate 4.2 Quantitative Methods The primary indicators used for PPG evaluation were gas trends relative to mud weight (MW) and effective circulating density (ECD), including increases in background gas (BG), appearance and trends of connection gas (CG), magnitudes of trip gas (TG) and wiper gas (WG). As a reference, PPG is calculated initially with a formula provided by Canrig, and then modified using the indicators described above, and DXC and resistivity (RES) data. The formula uses DX, ECD, and BG as C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 35 measured by total ditch gas: PPG = ECD – (0.6-((.001*TLGSU)+(0.05*DX))) The formula has certain limitations, such that it does not allow for a PPG more than 1 PPG less than the ECD, and TLGSU must be differentiated from show gas and gas carried from over pressure zones, and is dependent on reliable DX data. However, the formula proved useful in helping formulate a PPG range, when estimating trends, as with DXC data, with data points in shale intervals. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 36 5 DRILLING DATA 5.1 Daily Activity Summary 2/26/2013 Finish rig up, Spud. 2/27/2013 Rotary drilling F/ 113' T/ 374', monitor well, POOH F/ 374' T/ 100'. Calibrate MWD and rig block position, lay down BHA, rig evacuation drill with all personnel on location. Service rig, pick up 8.25" BHA, F/ Surface T/ 288'. Circulate and condition, wash F/ 288' T/ 374'. Rotary drilling F/ 374' T/773'. Lost gas data F/ 439' T/ 531' due to broken agitator blades. 2/28/2013 Rotary drilling from 621'-815' MD; 15K WOB; 189 SPM; 556 GPM. Rotary drilling from 815'-896' MD; 25K WOB; 193 SPM; 565 GPM; Hard spot at 704'-706' MD. Downtime due to top drive troubleshoot. Ground fault (circulated @880'MD). Rotary drilling from 896'- 1134' MD with 20K WOB; 575 GPM. 3/1/2013 Rotary drilling from 1134'-1175' MD; 20K WOB; 197 SPM; 575 GPM. Circulate and condition; CBU; RECIP from 1175'-1080' MD. Trip out of hole; Monitor well static; POOH from 1175'-345' MD. Rotary drilling from 1175'-1190' MD; 197 SPM; 574 GPM. Rotary drilling from 1190'-1552' MD; 20K WOB; 197 SPM; 575 GPM. Rotary drilling from 1552'- 2040' MD; 25K WOB; 600 GPM. Rotary drilling from 2040'-2035' MD. Surface casing depth 2135' MD. Cleaning hole for casing. 3/2/2013 Circulate and condition hole; CBU/RECIP 2135'-2110' MD. Trip out of hole and monitor well; MWD survey; POOH from 2135'-950' MD. Trip in hole from 950'-2135' MD. Circulate and condition hole; CBU/RECIP 2135'-2085' MD. Circulate HI-VIS sweep. Trip out of hole and monitor well for 5 minutes; POOH from 2135'-921' MD. POOH from 921'-256' MD. Lay down BHA; L/D 8.25" from 256'to surface. Clean and clear rig floor. Rig up/down 13 3/8" casing. 3/3/2013 Run casing w/ size of 13 3/8"; Filling joints on the fly and topping off every 5th joint until 2082' MD. Attempt to M/U hanger and encountered problems with M/U. Wait on 13 3/8" BTC collars. M/U hanger and LND; JT-LND casing string with shoe depth of 2120' MD. Rig up cement hose and other circulated equipment. Circulate and condition at 2120' MD; Break circulation stage up. Rig down cement hose and other equipment. Rig down top split landing joint; Clearing RF of casing equipment. Remove casing tools from rig floor; Put stabbing board up; change out elevators and bails. 3/4/2013 Remove casing tools from rig floor; put stabbing board up, change out elevators and bails. Trip 5” drill pipe and stab in sub to 2040’ MD. Lay SGN drill line; made up pump sub on stand 22. Change saver sub and gripper dies; circulate and condition stage pump up to .5 BBL. Circulate and condition while stabbed into float collar at 78 GPM; 75 PSI. Primary cementing with 4000 PSI; Pump 75 BBL of mudpush II at 5 BPM; 210 PSI. Pump 830 BBLS with 10.7 PPG lead cement at 3.65 BBLS/MIN. Displace with 11 BBLS at 10 PPG mud at 4.5 BBLS/MIN. Pump 10 BBLS at 10 PPG mud at 2 BPM; Check floats (Good); Rig down circulated equipment. Unsting from float collars; pull up to 1951’ MD; Drop wiper in sting TOOH from 1951’ MD to surface. Lay down BHA. Clear and clean rig floor. Rig up to pull landing joints. 3/5/2013 Rig up/down to run casing. Pull and lay down landing joint. Lay down all other casing equipment. Drain stack and rinse. Nipple up/down diverter. Install well heads. Nipple up BOPs. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 37 3/6/2013 Nipple up BOPs, make up single gate, put riser flange on bag, hook up choke hose. Install double gate BOP, offload spud mud from pit #3. Set lifting ring on top of double gate. Prepare annular for installation, clean pit #3, take on 405 BBLS KCL mud. 3/7/2013 Nipple Up BOP components, Pick up Test joint for BOP. 3/8/2013 Canrig sample interval 110' to 2135' shipped out on 3/9/2013. Rig: Test BOPs, lay down test tool, pull plug, lay down test joint. Pick up drill pipe and trip into hole 61 joints, rack back 21 stands. Circulate and condition mud. Trip in hole, pick up 5 inch drill pipe and trip into hole to 1723'. Pick up drill pipe, trip out of hole. Pick up test tools, test BOPs. Lay down test tools, pull test plug. Pick up running tool, run into hole with wear ring, run in LDS, lay down running tool and test joint. 3/9/2013 Repair top drive, pick up and rack drill pipe, pick up test tools, test BOPs, lay down test tools, pick up BHA. 3/10/2013 Pick up drill pipe and run into hole, rack back drill pipe. Circulate and condition. Trip out of hole, monitor well, blow down top drive, pull out of hole from 1915'. Pick up BHA and run into hole. 3/11/2013 Service top drive, pressure test casing, drill out of cement. Drilled ahead 20', performed FIT test. 3/12/2013 Displace to water base; clean out from under shakers. Rotary drilling w/ 2155 GPM, 1050 PP. Circulate and condition Bottoms up. Formation integrity test (FIT); rig to test and get air out of system. Pressure up to 464 PSI and held for 14 minutes; Bleed off to 417=13.9 MDWT. Displace water base, clean pit 4 for new mud, and load mud. Rotary drill from 2135'-2382' MD. Rotary drill from 2382'-2563' MD. Rotary drill from 2563'-2957' MD. Circulate and condition; 600 units of gas @ 2957' MD. Rotary drill from 2957'-3240' MD. 3/13/2013 Slide drilling from 3150' to 3435'. Rotary drilling from 3435' to 4481'. Circulate and condition, reciprocate bit between 4481' and 4380'. Begin short trip to 2120'. 3/14/2013 Short trip to 2120', work tight spots. Pump sweep into shoe, service top drive. Trip into hole to 4350', ream from 4350' to 4481'. Rotary drilling from 4481' to 5165'. 3/15/2013 Drilling ahead from 5165' to 6630'. 3/16/2013 Rotary drilling from 6630' to 6825'. Circulate bottoms up for geologist examination. Continue to repeat 10' to 20' drilling and then circulate up cuttings for examination until TD for coring at 6925'. Begin to trip out of hole to surface. 3/17/2013 Trip out of hole and back ream. Wipe each stand after back ream. Abnormal high torque from 4945' to 4766'. Pick up through tight spots without torque or overpull. 3/18/2013 Trip out of hole, lay down BHA. Pick up test tools, test BOPs. Lay down test tools, pick up BHA. Trip into hole with core BBL assembly. 3/19/2013 Trip into hole, circulate and condition. Core drill from 6925' to 6937'. 3/20/2013 Core drill from 6937' to 6970'. 3/21/2013 Core drill from 6970' to 6978'. Circulate and condition hole. Trip out of hole to surface. Lay down BHA and core barrel, recover core. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 38 3/22/2013 Pick up BHA, Trip into hole. Circulate and condition. Ream, wash tight sections. Tight hole from 6880' to 6925'. Circulate and condition, pump sweep. Begin drill ahead from 6925'. 3/23/2013 Rotary drilling from 6925' to 7500' TD. Circulate and condition hole, reciprocate and rotate at 7500'. Pump out of hole from 7500' to 7234'. Pull out of hole from 7234'. 3/24/2013 Trip out of hole, back ream out of hole. Service rig and top drive. Trip into hole from shoe to 7500'. Wash and ream tight spot from 4347' to 4358'. Circulate and condition. Trip out of hole, lay down BHA. 3/25/2013 Lay down BHA. Test BOPs. Pick up wireline tools and run in hole. Log with wireline tools. Pulling out of hole with wireline tools. 3/26/2013 Pull out of hole and lay down wireline tools for run #1. Pick up wireline logging tools for run #2. Run into hole, log run #2. Pull out of hole, lay down run #2 wireline tools. Pick up and run into hole with run #3 wireline tools. Log with run #3 wireline tools. 3/27/2013 Log with #3 tool string. Pull out of hole and lay down tools. Pick up and run into hole with #4 tool string. Collect side wall core samples. Pull out of hole, lay down #4 tool string. Pick up, run into hole with #5 tool string. Log with seismic tools. Pull of hole and lay down run #5 tool string. 3/28/2013 Pull out of hole and lay down tool string #5. Service top drive. Run into hole to 2085'. Circulate and condition, service rig. Run into hole to 5495', circulate and condition. Run into hole to 7495', circulate and condition. Prepare for cement job. 3/29/2013 Pump and circulate cement at 7495'. Trip out of hole to 6630', circulate and condition. Trip in hole, tag cement plug at 6852'. Trip out of hole to 4600', pump cement plug. Trip out of hole to 3417'. Circulate and condition, Trip out of hole to 1711'. Service top drive, pick up drill pipe, run singles into hole to 3434'. 3/30/2013 Released Canrig sample sets 1, 4, and 6 to expeditor for shipment on 3/30/2013. Circulate and condition, trip in hole to 4010'. No hard cement encountered, pull out of hole to 3992', circulate and condition. Trip in hole to 4060', no hard cement. Pull out of hole to 4010'. Circulate and condition. Trip in hole to 4214'. Pump cement, trip out of hole to 3614'. Cement in place at midnight. Trip out of hole to 3051', circulate and condition. Waiting on cement. 3/310/2013 Trip out of hole circulating and conditioning hole (displace contaminated mud). Tag cement plug at 3501'. Set cement plug at 3166' and 2255'. POOH. C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 39 5.2 Survey Data Measured Depth (ft) Incl. (o) Azim. (o) True Vertical Depth (ft) N/-S (ft) E/-W (ft) Vertical Section (ft) Dogleg Rate (o/100ft) 388.65 0.15 312.56 388.65 0.33 -0.36 -0.38 0.04 481.20 0.27 271.33 481.19 0.42 -0.67 -0.51 0.20 573.27 0.37 247.18 573.26 0.31 -1.16 -0.46 0.18 666.13 0.17 355.80 666.13 0.33 -1.45 -0.53 0.49 757.02 0.61 66.37 757.01 0.66 -1.01 -0.80 0.64 846.90 0.52 50.63 846.89 1.12 -0.25 -1.14 0.20 937.99 0.51 46.64 937.98 1.66 0.37 -1.60 0.04 1032.08 1.12 81.39 1032.06 2.09 1.58 -1.85 0.80 1129.06 1.16 78.92 1126.01 2.41 3.42 -1.92 0.07 1220.67 1.12 71.54 1220.61 2.89 5.24 -2.14 0.16 1315.01 0.75 61.66 1314.93 3.47 6.66 -2.53 0.43 1408.02 0.67 50.90 1407.94 4.10 7.62 -3.02 0.17 1502.40 0.71 48.18 1502.31 4.84 8.48 -3.64 0.06 1597.87 0.54 26.56 1597.78 5.64 9.12 -4.34 0.30 1692.02 0.59 19.54 1691.92 6.49 9.49 -5.13 0.09 1786.56 0.52 353.55 1786.46 7.37 9.60 -5.99 0.27 1880.36 0.46 349.20 1880.25 8.16 9.48 -6.79 0.07 1973.76 0.57 341.53 1973.65 8.98 9.26 -7.63 0.14 2069.00 0.53 335.47 2065.88 9.83 8.93 -8.52 0.07 2087.73 0.65 334.16 2087.62 10.00 8.85 -8.70 0.65 2213.06 1.12 326.45 2212.93 11.67 7.86 -10.48 0.39 2307.83 0.55 262.97 2307.69 12.39 6.90 -11.33 1.06 2403.92 2.06 196.36 2403.76 10.68 5.96 -9.76 1.98 2499.36 4.55 177.11 2499.03 5.25 5.67 -4.42 2.83 2595.93 6.36 177.09 2595.17 -3.92 6.13 4.73 1.87 2690.95 8.72 182.28 2689.36 -16.38 6.11 17.06 2.59 2786.31 12.10 185.04 2783.14 -33.57 4.95 33.93 3.58 2882.28 15.02 179.80 2876.42 -56.03 4.10 56.06 3.29 2977.87 16.42 175.92 2968.43 -81.89 5.11 81.81 1.83 3073.99 18.37 176.10 3060.16 -110.55 7.10 110.48 2.03 3170.81 20.36 172.53 3151.50 -142.47 10.33 142.54 2.39 3266.45 20.08 171.71 3241.24 -175.21 14.86 175.60 0.41 3362.08 19.76 171.42 3331.15 -207.44 19.64 208.18 0.36 3457.90 19.57 171.63 3421.38 -239.33 24.39 240.42 0.21 3553.76 19.40 172.95 3511.76 -271.01 28.68 272.39 0.49 3648.73 18.99 173.02 3601.45 -302.00 32.49 303.61 0.43 3743.93 19.30 169.56 3691.39 -332.85 37.23 334.81 1.24 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 40 Measured Depth (ft) Incl. (o) Azim. (o) True Vertical Depth (ft) N/-S (ft) E/-W (ft) Vertical Section (ft) Dogleg Rate (o/100ft) 3838.02 19.12 171.36 3780.24 -363.37 42.36 365.75 0.66 3934.16 18.91 170.19 3871.14 -394.29 47.38 397.06 0.45 4027.94 18.87 172.11 3959.87 -424.28 52.05 427.42 0.66 4121.74 18.77 172.64 4048.65 -454.27 56.07 457.67 0.21 4216.79 20.16 163.99 4138.29 -485.19 62.55 489.18 3.36 4311.53 20.02 166.15 4227.26 -516.62 70.93 521.47 0.80 4407.10 19.93 165.04 4317.09 -548.25 79.06 553.91 0.41 4501.53 19.93 165.38 4405.86 -579.37 87.27 585.86 0.12 4596.32 19.72 168.97 4495.03 -610.70 94.41 617.87 1.30 4692.55 19.92 173.18 4585.57 -642.92 99.46 650.48 1.50 4787.01 19.98 173.19 4674.36 -674.92 103.29 682.70 0.06 4882.31 20.03 171.70 4763.90 -707.23 107.57 715.30 0.54 4978.15 20.11 173.86 4853.93 -739.86 111.71 748.18 0.78 5074.84 19.81 173.96 4944.81 -772.67 115.21 781.17 0.31 5167.58 19.49 172.63 5032.16 -803.64 118.85 812.35 0.60 5264.18 19.25 173.10 5123.29 -835.43 122.82 844.37 0.29 5359.05 19.25 174.19 5212.86 -866.51 126.28 875.64 0.38 5453.45 19.28 174.00 5301.97 -897.49 129.49 906.76 0.07 5549.09 19.55 174.75 5392.17 -929.12 132.60 938.53 0.39 5644.13 19.42 176.04 5481.77 -960.72 135.15 970.17 0.48 5738.87 19.24 176.58 5571.17 -992.01 137.17 1001.45 0.26 5833.39 18.93 176.27 5660.49 -1022.85 139.09 1032.27 0.35 5927.10 18.71 173.92 5749.20 -1052.97 141.67 1062.45 0.84 6021.19 18.62 171.27 5838.34 -1082.82 145.55 1092.56 0.91 6114.81 18.70 170.65 5927.03 -1112.41 150.26 1122.50 0.23 6210.71 18.95 171.26 6017.80 -1142.97 155.12 1153.45 0.33 6304.07 18.92 171.40 6106.11 -1172.92 159.69 1183.74 0.07 6398.75 19.17 171.75 6195.61 -1203.48 164.21 1214.63 0.29 6494.95 19.47 174.17 6286.39 -1235.06 168.10 1246.44 0.89 6586.47 19.50 173.72 6372.67 -1265.41 171.32 1276.95 0.17 6682.68 18.89 172.44 6463.53 -1296.82 175.13 1308.58 0.77 6779.37 18.82 171.88 6555.04 -1327.77 179.39 1339.83 0.20 6851.20 19.32 170.85 6622.93 -1350.97 182.91 1363.29 0.84 6966.81 19.60 168.73 6731.93 -1388.87 189.75 1401.77 0.66 7062.61 19.87 171.05 6822.11 -1434.09 195.42 1434.09 0.86 7159.12 19.96 171.58 6912.84 -1453.21 200.38 1466.96 0.21 7254.68 19.88 172.34 7002.68 -1485.45 204.94 1499.52 0.28 7350.54 19.93 170.38 7092.82 -1517.72 209.84 1532.16 0.70 7426.02 19.82 170.67 7163.81 -1543.02 214.07 1557.80 0.20 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 41 Measured Depth (ft) Incl. (o) Azim. (o) True Vertical Depth (ft) N/-S (ft) E/-W (ft) Vertical Section (ft) Dogleg Rate (o/100ft) 7500.00 19.82 170.67 7233.40 -1567.77 218.13 1582.87 0.01 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qu g r u k # 3 42 5. 3 B i t R e c o r d Bi t Si z e Ma k e Ty p e / Se r i a l # Je t s / TF A De p t h I n MD / T V D De p t h Ou t MD / T V D To t a l Fo o t a g e Bi t Hr s Av g . RO P (f t / h r ) Av g . WO B (K l b s ) Av g RP M We a r 1 1 6 ” H u g h e s VM - 1 52 1 3 4 9 6 1X 1 2 3X 1 4 0. 5 6 1 11 3 ’ 2 1 3 5 ’ 2 0 2 2 ’ 4 4 . 1 4 5 . 9 1 3 . 5 1 1 0 2 - 3 - L N - N - 3 - X - P N - T D 2 1 2 ¼ ” N O V E 1 7 0 8 4 6 5x 1 2 , 0. 5 5 2 21 2 0 ’ 6 9 2 5 ’ 4 8 0 5 ’ 5 2 . 8 9 0 . 7 2 0 1 4 7 1 - 1 - C T - C - X - X - N O - C P Co r e 8 ½ ” H u g h e s 7 1 3 8 3 9 6 N/ A 69 2 5 ’ 6 9 7 8 ’ 5 3 ’ 4 2 . 3 1 . 3 2 0 6 8 1 - 1 - N O - X - I - X - N O - T D 3 1 2 ¼ ” N O V E 1 6 9 4 3 4 5x 1 2 69 2 5 ’ 7 5 0 0 ’ 5 7 5 ’ 9 . 6 5 9 . 9 2 0 1 6 3 1 - 1 - C T - S - X - I - N O - T D CO N F I D E N T I A L in ac c o r d a n c e wit h AS 38 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qu g r u k # 3 43 5. 4 M u d R e c o r d Co n t r a c t o r : H a l l i b u r t o n | B a r o i d Sp u d M u d Da t e De p t h / T V D MW VI S PV YP Ge l s FL FC So l O/ W Sd pH Al k Cl Ca 2/ 2 6 / 2 0 1 3 0 ’ / 0 ’ 9 . 8 0 1 0 8 4 3 3 1 9 / 2 0 / 3 1 7 . 0 3 / 0 7 . 2 0 / 9 2 . 5 0 . 2 5 0 . 3 0 1 2 0 0 6 0 2/ 2 7 / 2 0 1 3 5 6 7 ’ / 5 6 7 ’ 9 . 8 5 6 5 2 9 2 3 1 5 / 2 9 / 4 0 5 . 8 3 / 0 7 . 2 1 . 0 / 9 1 . 5 2 . 0 0 2 5 . 0 0 . 3 0 1 5 0 0 6 0 2/ 2 8 / 2 0 1 3 1 1 1 0 ’ / 1 1 1 0 ’ 1 0 . 0 0 7 2 1 9 2 3 1 0 / 2 3 / 3 2 6 . 4 3 / 0 8 . 2 0 . 5 / 9 1 . 0 5 . 0 0 3 0 . 0 0 . 3 0 1 5 0 0 6 0 3/ 1 / 2 0 1 3 1 9 9 8 ’ / 1 9 9 8 ’ 1 0 . 1 0 7 0 2 1 2 0 1 2 / 3 0 / 5 3 8 . 0 3 / 0 8 . 7 1 . 0 / 9 0 . 0 1 . 0 0 2 5 . 0 0 . 3 0 1 2 0 0 4 0 3/ 2 / 2 0 1 3 2 1 3 5 ’ / 2 1 3 5 ’ 1 0 . 0 0 7 4 2 8 2 5 1 1 / 2 8 / 5 2 7 . 4 3 / 0 8 . 7 1 / 9 0 . 0 1 . 0 0 2 5 . 0 0 . 3 0 1 0 0 0 4 0 3/ 3 / 2 0 1 3 2 1 3 5 ’ / 2 1 3 5 ’ 1 0 . 0 0 7 0 2 2 1 6 7 / 1 6 / 2 6 8 . 2 3 / 0 9 . 7 1 / 8 9 . 0 0 . 7 5 2 5 . 0 0 . 2 5 1 1 0 0 4 0 3/ 4 / 2 0 1 3 2 1 3 5 ’ / 2 1 3 5 ’ 10 . 0 0 6 8 2 2 1 6 7 / 1 4 / 2 2 8 . 5 3 / 0 9 . 8 1 . 0 / 8 9 . 0 0 . 7 5 2 0 . 0 0 . 2 0 1 0 0 0 4 0 3/ 5 / 2 0 1 3 2 1 3 5 ’ / 2 1 3 5 ’ 1 0 . 0 0 5 9 2 2 1 5 7 / 1 2 / 2 2 8 . 4 2 / 0 9 . 8 1 . 0 / 8 9 . 0 0 . 8 0 2 5 . 0 0 . 2 0 9 0 0 4 0 3/ 6 / 2 0 1 3 2 1 3 5 ’ / 2 1 3 5 ’ 1 0 . 0 0 5 5 1 8 1 4 5 / 1 1 / 1 8 8 . 4 3 / 0 9 . 8 1 . 0 / 8 9 . 0 0 . 7 5 2 5 . 0 0 . 2 0 9 0 0 4 0 3/ 7 / 2 0 1 3 2 1 3 5 ’ / 2 1 3 5 ’ 1 0 . 2 0 8 7 1 3 1 9 7 / 1 1 / 1 5 5 . 2 2 / 0 7 . 4 1 . 0 / 9 0 . 0 0 . 0 5 2 . 5 0 . 3 0 3 1 0 0 0 4 0 3/ 8 / 2 0 1 3 2 1 3 5 ’ / 2 1 3 5 ’ 1 0 . 2 0 8 8 1 1 1 6 7 / 9 / 1 1 5 . 4 2 / 0 8 . 4 0 . 0 / 9 0 . 0 0 . 0 5 2 . 5 0 . 2 5 3 1 0 0 0 4 0 3/ 9 / 2 0 1 3 2 1 3 5 ’ / 2 1 3 5 ’ 1 0 . 2 0 8 6 1 1 1 6 6 / 8 / 1 2 6 . 0 2 / 0 8 . 4 0 . 0 / 9 0 . 0 0 . 0 5 2 . 5 0 . 2 0 3 1 0 0 0 4 0 3/ 1 0 / 2 0 1 3 2 1 3 5 ’ / 2 1 3 5 ’ 1 0 . 2 0 7 0 1 2 1 4 5 / 8 / 1 1 6 . 0 2 / 0 8 . 4 0 . 0 / 9 0 . 0 0 . 5 0 2 . 5 0 . 1 0 3 1 0 0 0 4 0 CO N F I D E N T I A L in ac c o r d a n c e wit h AS 38 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qu g r u k # 3 44 KC l / P o l y m e r Da t e De p t h / T V D MW VI S PV YP Ge l s FL FC So l O/ W Sd pH Al k Cl Ca 3/ 1 1 / 2 0 1 3 2 1 3 5 ’ / 2 1 3 5 ’ 1 0 . 2 0 6 7 1 2 1 4 5 / 8 / 1 1 6 . 0 2 / 0 8 . 5 0 . 0 / 9 0 . 0 0 . 0 5 2 . 5 0 . 1 0 3 0 0 0 0 4 0 3/ 1 2 / 2 0 1 3 2 8 0 5 ’ / 2 8 0 1 ’ 1 0 . 2 0 6 4 1 3 2 0 6 / 9 / 1 2 5 . 4 2 / 0 7 . 6 0 . 7 / 9 0 . 0 0 . 0 4 2 . 5 0 . 2 0 3 3 0 0 0 4 0 3/ 1 3 / 2 0 1 3 4 3 3 0 ’ / 4 2 4 5 ’ 1 0 . 2 0 5 5 1 7 2 0 5 / 1 0 / 1 5 5 . 4 2 / 0 7 . 5 0 . 1 / 9 0 . 0 0 . 0 2 6 . 5 0 . 1 5 3 0 0 0 0 4 0 3/ 1 4 / 2 0 1 3 4 9 2 0 ’ / 4 7 9 9 ’ 1 0 . 2 0 5 4 2 0 2 6 7 / 9 / 1 5 6 . 0 2 / 0 8 . 1 0 . 4 / 9 0 . 0 0 . 3 0 7 . 5 0 . 1 7 3 0 0 0 0 4 0 3/ 1 5 / 2 0 1 3 6 4 5 0 ’ / 6 2 4 4 ’ 1 0 . 5 0 5 4 2 2 2 2 7 / 1 0 / 1 6 5 . 6 2 / 0 8 . 1 0 . 3 / 9 0 . 0 0 . 3 0 1 0 . 0 0 . 1 7 3 2 0 0 0 4 0 3/ 1 6 / 2 0 1 3 6 9 2 5 ’ / 6 6 9 3 ’ 1 0 . 3 5 7 7 2 1 2 7 9 / 1 6 / 2 2 6 . 0 2 / 0 8 . 0 0 . 4 / 9 0 . 0 0 . 4 0 1 0 . 0 0 . 1 7 3 1 0 0 0 4 0 3/ 1 7 / 2 0 1 3 6 9 2 5 ’ / 6 6 9 3 ’ 1 0 . 4 0 7 4 1 9 3 2 1 1 / 2 4 / 3 5 6 . 0 2 / 0 1 1 . 4 1 . 0 / 8 6 . 0 0 . 7 5 1 2 . 5 0 . 1 9 3 2 0 0 0 4 0 3/ 1 8 / 2 0 1 3 6 9 2 5 ’ / 6 6 9 3 ’ 1 0 . 4 5 7 2 2 3 2 8 1 3 / 3 7 / 5 7 6 . 0 2 / 0 1 0 . 8 1 . 0 / 8 6 . 0 0 . 5 0 1 2 . 5 0 . 1 5 3 0 0 0 0 4 0 3/ 1 9 / 2 0 1 3 6 9 3 5 ’ / 6 7 0 2 ’ 1 0 . 4 0 7 0 2 1 2 5 1 4 / 2 9 / 3 6 5 . 8 2 / 2 1 3 . 0 0 . 5 / 8 5 . 0 0 . 5 0 1 2 . 5 0 . 1 7 3 1 0 0 0 4 0 3/ 2 0 / 2 0 1 3 6 9 6 5 ’ / 6 7 3 0 ’ 1 0 . 4 0 7 0 2 1 2 9 1 1 / 2 8 / 4 0 5 . 8 2 / 2 1 2 . 0 0 . 5 / 8 6 . 0 0 . 8 0 1 5 . 0 0 . 2 0 3 0 0 0 0 4 0 3/ 2 1 / 2 0 1 3 6 9 7 8 ’ / 6 7 4 2 ’ 1 0 . 4 0 8 1 2 4 2 8 9 / 2 2 / 3 3 5 . 0 2 / 2 1 1 . 9 1 . 0 / 8 5 . 0 0 . 9 0 1 7 . 5 0 . 2 4 2 9 0 0 0 4 0 3/ 2 2 / 2 0 1 3 6 9 2 5 ’ / 6 6 9 3 ’ 1 0 . 4 0 8 8 2 0 3 2 1 2 / 2 8 / 3 9 5 . 0 2 / 2 1 1 . 9 1 . 0 / 8 5 . 0 0 . 8 0 1 7 . 5 0 . 2 1 2 9 0 0 0 4 0 3/ 2 3 / 2 0 1 3 7 5 0 0 ' / 7 2 3 3 ' 1 0 . 4 0 6 7 2 0 2 9 1 5 / 2 6 / 3 5 4 . 5 2 / 2 8 . 7 1 . 0 / 8 8 . 0 0 . 8 0 1 2 . 5 0 . 3 6 4 5 0 0 0 4 0 3/ 2 4 / 2 0 1 3 7 5 0 0 ’ / 7 2 3 3 ’ 1 0 . 4 0 5 4 1 6 1 5 5 / 9 / 1 4 4 . 0 1 / 2 6 . 9 1 . 0 / 8 9 . 0 0 . 6 0 1 2 . 5 0 . 2 8 4 0 0 0 0 4 0 3/ 2 5 / 2 0 1 3 7 5 0 0 ' / 7 2 3 3 ' 1 0 . 4 0 6 0 1 7 2 0 8 / - - / - - 4 . 0 1 / 2 7 . 9 1 . 0 / 8 8 . 0 0 . 5 0 1 0 . 0 0 . 2 0 4 0 0 0 0 4 0 3/ 2 6 / 2 0 1 3 7 5 0 0 ' / 7 2 3 3 ' 1 0 . 4 0 5 5 1 7 1 8 6 / 1 1 / 2 1 5 . 0 1 / 2 8 . 1 1 . 0 / 8 8 . 0 0 . 2 5 1 2 . 5 0 . 1 8 3 8 0 0 0 4 0 3/ 2 7 / 2 0 1 3 7 5 0 0 ' / 7 2 3 3 ' 1 0 . 4 0 5 9 1 9 2 2 8 / 1 5 / 2 4 5 . 0 2 / 2 8 . 2 1 . 0 / 8 8 . 0 0 . 3 0 1 2 . 5 0 . 2 0 3 6 0 0 0 4 0 3/ 2 8 / 2 0 1 3 7 5 0 0 ' / 7 2 3 3 ' 1 0 . 4 0 6 1 1 8 2 4 9 / 1 6 / 2 2 5 . 0 2 / 2 8 . 9 1 . 0 / 8 7 . 5 0 . 1 0 1 2 . 0 0 . 2 0 3 4 0 0 0 4 0 3/ 2 9 / 2 0 1 3 7 5 0 0 ' / 7 2 3 3 ' 1 0 . 4 0 6 3 1 9 1 8 6 / 1 9 / 2 4 5 . 2 2 / 2 8 . 4 1 . 0 / 8 8 . 0 0 . 0 5 1 4 . 0 4 . 0 0 3 4 0 0 0 1 0 0 3/ 3 0 / 2 0 1 3 7 5 0 0 ' / 7 2 3 3 ' 1 0 . 4 0 5 6 1 5 1 7 4 / 1 3 / 2 0 6 . 5 2 / 2 1 1 . 1 0 . 5 / 8 7 . 0 0 . 0 3 1 2 . 0 5 . 0 0 2 9 0 0 0 3 4 0 3/ 3 1 / 2 0 1 3 7 5 0 0 ' / 7 2 3 3 ' 1 0 . 4 0 5 2 1 3 1 5 4 / 9 / 1 8 6 . 3 2 / 2 1 1 . 1 0 . 5 / 8 7 . 0 0 . 0 8 1 1 . 5 8 . 2 0 2 8 0 0 0 3 6 0 Ab b r e v i a t i o n s MW = M u d W e i g h t G e l s = G e l S t r e n g t h O / W = O i l t o W a t e r r a t i o C a = C a l c i u m ( H a r d n e s s ) VI S = F u n n e l V i s c o s i t y F L = F i l t r a t e ( F l u i d ) L o s s S d = S a n d C o n t e n t ( % ) E C D = E f f e c t i v e C i r c u l a t i n g D e n s i t y PV = P l a s t i c V i s c o s i t y F C = F i l t e r C a k e A l k = A l k a l i n i t y YP = Y i e l d P o i n t S o l = S o l i d s ( % ) C l = C h l o r i d e s CO N F I D E N T I A L in ac c o r d a n c e wit h AS 38 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Qugruk #3 45 6 DAILY REPORTS C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goodwin, Larry Burns DATE Feb 27, 2013 DEPTH 192' PRESENT OPERATION Spudding TIME 6:00am YESTERDAY 113' 24 HOUR FOOTAGE 79' CASING INFORMATION 20" @ 113' SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113 In Hole 79' 1.3 DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 307.2 @ 113' 5.3 @ 165' 83.2 53.5 FT/HR SURFACE TORQUE 2624 @ 120' 997 @ 167' 1513.2 1113.8 AMPS WEIGHT ON BIT 2 @ 192' 2 @ 192' 2.0 2.0 KLBS ROTARY RPM 113 @ 172' 57 @ 116' 100.9 98.2 RPM PUMP PRESSURE 2705 @ 192' 2246 @ 181' 2309.3 2705.8 PSI DRILLING FLUIDS REPORT DEPTH 113' MW 9.8 VIS 108 PV 43 YP 31 FL 7.0 Gels 9/20/31 CL- 1200 FC 3 SOL 7.2 SD 0.25 OIL 0 MBT -- pH 9.8 Ca+ 60 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 0 @ 113' 0 @ 142' 0.2 TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) 0 @ 192' 0 @ 192' 0.0 CONNECTION GAS HIGH ETHANE (C-2) 0 @ 192' 0 @ 192' 0.0 AVG PROPANE (C-3) 0 @ 192' 0 @ 192' 0.0 CURRENT BUTANE (C-4) 0 @ 192' 0 @ 192' 0.0 CURRENT BACKGROUND/AVG PENTANE (C-5) 0 @ 192' 0 @ 192' 0.0 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY Surface Permafrost PRESENT LITHOLOGY @ 180' = 70% Gravel - 20% Conglomeratic Sandstone - 10% Claystone DAILY ACTIVITY SUMMARY Finish R/U, Spud CANRIG PERSONNEL ON BOARD Britten Adams, Levi Potter, Daniel Hillegeist, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5860.00 REPORT BY Britten Adams C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #2 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goodwyn, Larry Burns DATE Feb 28, 2013 DEPTH 773' PRESENT OPERATION Drilling ahead TIME 04:00:00 YESTERDAY 113' 24 HOUR FOOTAGE 660' CASING INFORMATION 20" Cond @ 110' SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH 388.65 0.15 312.56 388.65 481.20 0.27 271.33 481.20 573.27 0.37 247.18 573.27 666.13 0.17 355.80 666.13 BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113 DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 307.2 @ 113.00000 2.8 @ 602.00000 72.2 5.17979 FT/HR SURFACE TORQUE 3396 @ 726.00000 809 @ 284.00000 1561.3 1013.71289 AMPS WEIGHT ON BIT 26 @ 416.00000 0 @ 279.00000 6.3 2.35147 KLBS ROTARY RPM 142 @ 500.00000 57 @ 116.00000 107.3 122.09167 RPM PUMP PRESSURE 3388 @ 660.00000 2166 @ 275.00000 2819.5 3246.41504 PSI DRILLING FLUIDS REPORT DEPTH 773' MW 9.85 VIS 65 PV 29 YP 23 FL 5.8 Gels 15/29/40 CL- 1500 FC 3 SOL 7.2 SD 2 OIL 1.0/91.5 MBT 25 pH 9.5 Ca+ 60 CCI MWD SUMMARY INTERVAL 113' TO 773' TOOLS Bit, Gamma, Resistivity GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 48 @ 279.00000 0 @ 455.00000 5.3 TRIP GAS 0 CUTTING GAS 0 @ 755.00000 0 @ 755.00000 0.0 WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY 0 METHANE (C-1) 90900 @ 735.00000 22 @ 231.00000 3249.7 CONNECTION GAS HIGH 0 ETHANE (C-2) 1888 @ 735.00000 0 @ 553.00000 43.0 AVG 7.5 PROPANE (C-3) 0 @ 755.00000 0 @ 755.00000 0.0 CURRENT 18 BUTANE (C-4) 0 @ 755.00000 0 @ 755.00000 0.0 CURRENT BACKGROUND/AVG 18 PENTANE (C-5) 0 @ 755.00000 0 @ 755.00000 0.0 HYDROCARBON SHOWS N/A INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY Conglomerates to conglomerate sands, sand with trace claystone. PRESENT LITHOLOGY Conglomerate sand, sand. DAILY ACTIVITY SUMMARY Rotary drilling F/ 113' T/ 374', monitor well, POOH F/ 374' T/ 100'. Calibrate MWD and rig block position, lay down BHA, rig evacuation drill with all peronnel on location. Service rig, pick up 8.25" BHA, F/ Surface T/ 288'. Circulate and condition, wash F/ 288' T/ 374'. Rotary drilling F/ 374' T/773'. Lost gas data F/ 439' T/ 531' due to broken agitator blades. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5860.00 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 2/28/2013file://C:\Documents and Settings\EpochAdmin\My Documents\My Wells\Repsol\2013022... C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #3 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goodwyn, Larry Burns DATE Mar 01, 2013 DEPTH 1175' MD PRESENT OPERATION Reaming hole to shoe. TIME 04;00:00 YESTERDAY 773' MD 24 HOUR FOOTAGE 402' MD CASING INFORMATION 20" Cond @110' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH 756.02 0.61 66.37 756.01 846.90 0.52 50.63 846.89 937.99 0.51 46.64 937.98 1032.08 1.12 81.39 1032.06 BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 309.1 @ 896.00000 1.1 @ 889.00000 67.0 0.00000 FT/HR SURFACE TORQUE 5291 @ 1108.00000 921 @ 890.00000 2692.9 1407.80164 AMPS WEIGHT ON BIT 30 @ 1005.00000 0 @ 1007.00000 14.4 1.51708 KLBS ROTARY RPM 135 @ 777.00000 77 @ 1165.00000 104.9 86.92509 RPM PUMP PRESSURE 3404 @ 796.00000 1993 @ 893.00000 2186.6 2131.44702 PSI DRILLING FLUIDS REPORT DEPTH 1110' MW 10 VIS 72 PV 19 YP 23 FL 70 Gels 9/21/30 CL- 1500 FC 3 SOL 8.2 SD 5.0 OIL 0.5/91.0 MBT 30 pH 9 Ca+ 60 CCI MWD SUMMARY INTERVAL 113' TO 1175' TOOLS Bit, Gamma, Resistivity GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 30 @ 844.00000 0 @ 942.00000 11.8 TRIP GAS 0 CUTTING GAS 0 @ 1175.00000 0 @ 1175.00000 0.0 WIPER GAS 0 CHROMATOGRAPHY (ppm) SURVEY 0 METHANE (C-1) 22609 @ 982.00000 94 @ 942.00000 4204.1 CONNECTION GAS HIGH 0 ETHANE (C-2) 127 @ 982.00000 0 @ 922.00000 13.5 AVG 12.6 PROPANE (C-3) 0 @ 1175.00000 0 @ 1175.00000 0.0 CURRENT 0 BUTANE (C-4) 0 @ 1175.00000 0 @ 1175.00000 0.0 CURRENT BACKGROUND/AVG 10 PENTANE (C-5) 0 @ 1175.00000 0 @ 1175.00000 0.0 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY Conglomerates sands, sands. PRESENT LITHOLOGY 60% claystone, 30% sands, 10% conglomerate sands DAILY ACTIVITY SUMMARY Rotary drilling from 621'-815' MD; 15K WOB; 189 SPM; 556 GPM. Rotary drilling from 815'-896' MD; 25K WOB; 193 SPM; 565 GPM; Hard spot at 704'-706' MD. Downtime due to top drive trouble shoot. Ground fault (circulated @880'MD). Rotary drilling from 896'-1134' MD with 20K WOB; 575 GPM. P/U at 1175' MD for wiper trip. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710.00 REPORT BY Britten Adams Page 1 of 1Daily Report 3/1/2013file://C:\DOCUMENTS AND SETTINGS\EPOCHADMIN\MY DOCUMENTS\MY WEL... C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #4 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goodwyn, Larry Burns DATE Mar 02, 2013 DEPTH 2135.00000 PRESENT OPERATION Cleaning hole for surface casing TIME 04:15:41 YESTERDAY 1175.00000 24 HOUR FOOTAGE 960 CASING INFORMATION 20" Cond @ 113' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH 1786.56 0.52 353.55 1786.46 1880.36 0.46 349.20 1880.25 1973.76 0.57 341.53 1973.65 2069.00 0.53 335.47 2068.88 BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 147.7 @ 1556.00000 0.2 @ 1973.00000 67.4 14.86408 FT/HR SURFACE TORQUE 5591 @ 1228.00000 1054 @ 1551.00000 2667.3 1908.06958 AMPS WEIGHT ON BIT 37 @ 2127.00000 0 @ 1572.00000 17.1 21.80798 KLBS ROTARY RPM 142 @ 1415.00000 74 @ 1869.00000 113.4 116.01726 RPM PUMP PRESSURE 2531 @ 2089.00000 1917 @ 1914.00000 2061.7 2448.60083 PSI DRILLING FLUIDS REPORT DEPTH MW VIS PV YP FL Gels CL- FC SOL SD OIL MBT pH Ca+ CCI MWD SUMMARY INTERVAL 113' MD TO 2135' MD TOOLS Bit, Gamma, Resistivity GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 351 @ 1218.00000 1 @ 2008.00000 22.0 TRIP GAS 0 CUTTING GAS 0 @ 2135.00000 0 @ 2135.00000 0.0 WIPER GAS 0 CHROMATOGRAPHY (ppm) SURVEY 0 METHANE (C-1) 40668 @ 1216.00000 248 @ 1277.00000 5254.6 CONNECTION GAS HIGH 0 ETHANE (C-2) 621 @ 1216.00000 0 @ 1472.00000 27.4 AVG 14.6 PROPANE (C-3) 74 @ 1216.00000 0 @ 1296.00000 3.1 CURRENT 0 BUTANE (C-4) 106 @ 1216.00000 0 @ 1296.00000 1.0 CURRENT BACKGROUND/AVG 20 PENTANE (C-5) 0 @ 2135.00000 0 @ 2135.00000 0.0 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY 60% claystone, 30% sands, 10% conglomerate sands PRESENT LITHOLOGY 50% claystone, 30% siltstone, 10% tuff, 10% sands DAILY ACTIVITY SUMMARY Rotary drilling from 1134'-1175' MD; 20K WOB; 197 SPM; 575 GPM. Circulate and condition; CBU; RECIP from 1175'-1080' MD. Trip out of hole; Monitor well static; POOH from 1175'-345' MD. Rotary drilling from 1175'-1190' MD; 197 SPM; 574 GPM. Rotary drilling from 1190'-1552' MD; 20K WOB; 197 SPM; 575 GPM. Rotary drilling from 1552'-2040' MD; 25K WOB; 600 GPM. Rotary drilling from 2040'-2035' MD. Surface casing depth 2135' MD. Cleaning hole for casing. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710.00 REPORT BY Britten Adams Page 1 of 1Daily Report 3/2/2013file://C:\DOCUMENTS AND SETTINGS\EPOCHADMIN\MY DOCUMENTS\MY WEL... C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #5 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goodwyn, Larry Burns DATE Mar 03, 2013 DEPTH 2135' PRESENT OPERATION Running casing in hole. TIME 04:15:41 YESTERDAY 2135' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @ 113' MD 13 3/8" Surface casing @ 2135' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113 2135 2022 DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING FLUIDS REPORT DEPTH 2135' MW 10 VIS 74 PV 28 YP 25 FL 4.9 Gels 11/28/52 CL- 1100 FC 3 SOL 8.7 SD 1 OIL 1/90 MBT 25 pH 8.6 Ca+ 40 CCI MWD SUMMARY INTERVAL 113' TO 2135' TOOLS Bit, Gamma, Resistivity GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY 50% claystone, 30% siltstone, 10% tuff, 10% sands. PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Circulate and condition hole; CBU/RECIP 2135'-2110' MD. Trip out of hole and monitor well; MWD survey; POOH from 2135'-950' MD. Trip in hole from 950'-2135' MD. Circulate and condition hole; CBU/RECIP 2135'-2085' MD. Circulate HI-VIS sweep. Trip out of hole and monitor well for 5 minutes; POOH from 2135'-921' MD. POOH from 921'-256' MD. Lay down BHA; L/D 8.25" from 256'to surface. Clean and clear rig floor. Rig up/down 13 3/8" casing. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710.00 REPORT BY Britten Adams Page 1 of 1Daily Report 3/3/2013file://C:\DOCUMENTS AND SETTINGS\EPOCHADMIN\MY DOCUMENTS\MY WEL... C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Muddlogging Report #6 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goodwyn, Layyr Burns DATE Mar 04, 2013 DEPTH 2135' PRESENT OPERATION Surface Casing TIME 04:00:00 YESTERDAY 2135' CASING INFORMATION 20" Cond @ 113' MD 13 3/8" Surface casing @2135' MD DEPTH INCLINATION AZIMUTH VERTICAL DEPTH SURVEY DATA BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113 2135 2022 44.12 2-3-LN-N-3-X-PN-TD Casing TD DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING FLUIDS REPORT DEPTH MW VIS PV YP FL Gels CL- FC SOL SD OIL MBT pH Ca+ CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Run casing w/ size of 13 3/8"; Filling joints on the fly and topping off every 5th joint until 2082' MD. Attempt to M/U hanger and encountered prblems with M/U. Wait on 13 3/8" BTC collars. M/U hanger and LND; JT-LND casing string with shoe depth of 2120' MD. Rig up cement hose and other circulated equipment. Circulated and condition at 2120' MD; Break circulation stage up. Rig down cement hose and other equipment. Rig down top split landing joint; Clearing RF of casing equipment. Remove casing tools from rig floor; Put stabbing board up; change out elevators and bails. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi potter, Britten Adams Doug Acker, en Handley, Kelly Childers DAILY COST $5710.00 REPORT BY Britten Adams C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #7 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goddwyn, Larry Burns DATE Mar 05, 2013 DEPTH 2135' PRESENT OPERATION Letting cement dry in casing. TIME 04:00:00 YESTERDAY 2135' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @113' MD 13 3/8" Surface casing @ 2135' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING FLUIDS REPORT DEPTH MW VIS PV YP FL Gels CL- FC SOL SD OIL MBT pH Ca+ CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Remove casing tools from rig floor; put stabbing board up change out elevators and bails. Trip 5” drill pipe and stab in sub to 2040’ MD. Lay SGN drill line; made up pump sub on stand 22. Change saver sub and gripper dies; circulate and condition stage pump up to .5 BBL. Circulate and condition while stabbed into float collar at 78 GPM; 75 PSI. Primary cementing with 4000 PSI; Pump 75 BBL of mudpush II at 5 BPM; 210 PSI. Pump 830 BBLS with 10.7 PPG lead cement at 3.65 BBLS/MIN. Displace with 11 BBLS at 10 PPG mud at 4.5 BBLS/MIN. Pump 10 BBLS at 10 PPG mud at 2 BPM; Check floats (Good); Rig down circulated equipment. Unsting from float collars; pull up to 1951’ MD; Drop wiper in sting TOOH from 1951’ MD to surface. Lay down BHA. Clear and clean rig floor. Rig up to pull landing joints. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Ackers, Ben Handley, Kelly Childers DAILY COST $5710.00 REPORT BY Britten Adams C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #8 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goddwyn, Larry Burns DATE Mar 06, 2013 DEPTH 2135' PRESENT OPERATION Nipple up BOPs TIME 04:00:00 YESTERDAY 2135' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @113' MD 13 3/8" Surface casing @ 2135' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING FLUIDS REPORT DEPTH MW 10 VIS 59 PV 22 YP 15 FL 8.4 Gels 7/12/22 CL- 900 FC 2/0 SOL 9.8 SD 0.80 OIL 1.0/89.0 MBT 25 pH 8.1 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Rig up/down to run casing. Pull and lay down landing joint. Lay down all other casing equipment. Drain stack and rinse. Nipple up/down diverter. Install well heads. Nipple up BOPs. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Ackers, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #9 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goddwyn, Larry Burns DATE Mar 07, 2013 DEPTH 2135' PRESENT OPERATION Nipple up BOPs TIME 04:00:00 YESTERDAY 2135' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @113' MD 13 3/8" Surface casing @ 2135' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING FLUIDS REPORT DEPTH MW 10 VIS 55 PV 18 YP 14 FL 8.4 Gels 5/11/18 CL- 900 FC 3/0 SOL 9.8 SD 0.75 OIL 1.0/89.0 MBT 25 pH 8.1 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Nipple up BOPs, make up single gate, put riser flange on bag, hook up choke hose. Install double gate BOP, offload spud mud from pit #3. Set lifting ring on top of double gate. Prep annular for installation, clean pit #3, take on 405 BBLS KCL mud. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Ackers, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogger Report #10 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR DATE Mar 08, 2013 DEPTH 2135.00000 PRESENT OPERATION Picking up test joint for BOP TIME 04:00:00 YESTERDAY 2135.00000 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @113' MD 13 3/8" Surface Casing @2135' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING FLUIDS REPORT DEPTH MW 10.20 VIS 87 PV 13 YP 19 FL 5.2 Gels 7/11/15 CL- 31000 FC 2 SOL 7.4 SD 0.05 OIL 1.0/90.0 MBT 25 pH 9.2 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Nipple Up BOP components, Pick up Test joint for BOP CANRIG PERSONNEL ON BOARD Daneil Hillegeist, Levi Potter, Britten Adams, Coug Ackers, Ben Handley, Kelly Childers DAILY COST 5710 REPORT BY Levi Potter Page 1 of 1Daily Report 3/8/2013file://C:\DOCUMENTS AND SETTINGS\EPOCHADMIN\MY DOCUMENTS\MY WEL... C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #11 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goddwyn, Larry Burns DATE Mar 09, 2013 DEPTH 2135' PRESENT OPERATION Finishing BOP testing TIME 04:00:00 YESTERDAY 2135' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @113' MD 13 3/8" Surface casing @ 2135' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING FLUIDS REPORT DEPTH 2135' MW 10.2 VIS 88 PV 11 YP 16 FL 5.4 Gels 7/9/11 CL- 31000 FC 2/0 SOL 8.4 SD 0.05 OIL 0.0/90.0 MBT 2.5 pH 9.2 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Canrig sample interval 110' to 2135' shipped out on 3/9/2013. Rig: Test BOPs, lay down test tool, pull plug, lay down test joint. Pick up drill pipe and trip into hole 61 joints, rack back 21 stands. Circulate and condition mud. Trip in hole, pick up 5 inch drill pipe and trip into hole to 1723'. Pick up drill pipe, trip out of hole. Pick up test tools, test BOPs. Lay down test tools, pull test plug. Pick up running tool, run into hole with wear ring, run in LDS, lay down running tool and test joint. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Ackers, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/9/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #12 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goddwyn, Larry Burns DATE Mar 10, 2013 DEPTH 2135' PRESENT OPERATION Picking up BHA TIME 04:00:00 YESTERDAY 2135' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @113' MD 13 3/8" Surface casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING FLUIDS REPORT DEPTH 2135' MW 10.2 VIS 86 PV 11 YP 16 FL 6.0 Gels 6/8/12 CL- 31000 FC 2/0 SOL 8.4 SD 0.05 OIL 0.0/90.0 MBT 2.5 pH 9.0 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Repair top drive, pick up and rack drill pipe, pick up test tools, test BOPs, lay down test tools, pick up BHA. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Ackers, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/10/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #13 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goddwyn, Larry Burns DATE Mar 11, 2013 DEPTH 2135' PRESENT OPERATION Running into hole TIME 04:00:00 YESTERDAY 2135' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @113' MD 13 3/8" Surface casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD 2 12.25" NOV E170846 5x12 2135' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING FLUIDS REPORT DEPTH 2135' MW 10.2 VIS 70 PV 12 YP 14 FL 6 Gels 5/8/11 CL- 31000 FC 2/0 SOL 8.4 SD 0.05 OIL 0.0/90.0 MBT 2.5 pH 9 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Pick up drill pipe and run into hole, rack back drill pipe. Circulate and condition. Trip out of hole, monitor well, blow down top drive, pull out of hole from 1915'. Pick up BHA and run into hole. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Ackers, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/11/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 14 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goddwyn, Larry Burns DATE Mar 12, 2013 DEPTH 2155' PRESENT OPERATION Completing Fit Test TIME 04:00:00 YESTERDAY 2135' 24 HOUR FOOTAGE 20 CASING INFORMATION 20" Cond @ 113' MD 13 3/8" Surface casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD 2 12.25" NOV E170846 5x12 2135' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 95.2 @ 2136.00000 5.8 @ 2138.00000 66.2 45.57130 FT/HR SURFACE TORQUE 3949 @ 2147.00000 1908 @ 2135.00000 3409.5 3419.08325 AMPS WEIGHT ON BIT 21 @ 2135.00000 8 @ 2154.00000 12.0 9.02661 KLBS ROTARY RPM 116 @ 2135.00000 24 @ 2137.00000 36.8 31.36149 RPM PUMP PRESSURE 2448 @ 2135.00000 946 @ 2138.00000 1197.8 1078.51306 PSI DRILLING FLUIDS REPORT DEPTH 2135' MW 10.2 VIS 67 PV 12 YP 14 FL 6 Gels 5/8/11 CL- 30000 FC 2/0 SOL 8.5 SD 0.05 OIL 0.0/90.0 MBT 2.5 pH 9.0 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 29 @ 2138.00000 9 @ 2155.00000 23.0 TRIP GAS N/A CUTTING GAS 0 @ 2155.00000 0 @ 2155.00000 0.0 WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY N/A METHANE (C-1) 7151 @ 2138.00000 3529 @ 2151.00000 4933.6 CONNECTION GAS HIGH N/A ETHANE (C-2) 24 @ 2138.00000 1 @ 2150.00000 10.8 AVG 20 PROPANE (C-3) 0 @ 2155.00000 0 @ 2155.00000 0.0 CURRENT 0 BUTANE (C-4) 0 @ 2155.00000 0 @ 2155.00000 0.0 CURRENT BACKGROUND/AVG 0 PENTANE (C-5) 0 @ 2155.00000 0 @ 2155.00000 0.0 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY 20% Tuff, 30% Siltstone, 50% Claystone PRESENT LITHOLOGY 20% Tuff, 30% Siltstone, 50% Claystone DAILY ACTIVITY SUMMARY Service top drive, pressure test casing, drill out of cement. Drilled ahead 20', performed FIT test. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Ackers, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/12/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 15 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goddwyn, Larry Burns DATE Mar 13, 2013 DEPTH 3152.00000 PRESENT OPERATION Rotary drilling to 3240' MD TIME 03:39:56 YESTERDAY 2135.00000 24 HOUR FOOTAGE 1017 CASING INFORMATION 20" Cond @ 113' MD 13 3/8" Surface casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH 2087.73 0.65 334.16 2087.62 2213.06 1.12 326.45 2212.93 2307.83 0.55 262.97 2307.69 2403.92 2.06 196.36 2403.76 2595.93 6.36 177.09 2595.17 BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12,3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD 2 12.25 NOV E170846 5x125 2135' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 531.5 @ 3051.00000 2.3 @ 2383.00000 100.5 75.55387 FT/HR SURFACE TORQUE 8037 @ 3045.00000 5 @ 2956.00000 2863.6 4284.85352 AMPS WEIGHT ON BIT 45 @ 2956.00000 0 @ 2545.00000 9.8 6.22002 KLBS ROTARY RPM 116 @ 2135.00000 0 @ 3085.00000 39.8 55.15124 RPM PUMP PRESSURE 2448 @ 2135.00000 -1 @ 2956.00000 1339.0 1363.21191 PSI DRILLING FLUIDS REPORT DEPTH 2805' MW 10.20 VIS 64 PV 13 YP 20 FL 70 Gels 6/9/12 CL- 33000 FC 2 SOL 7.6 SD 0.04 OIL 0.7 MBT 2.5 pH 9.7 Ca+ 40 CCI MWD SUMMARY INTERVAL 2135' TO 31532' TOOLS Gamma, Resistivity, Mudmotor GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 944 @ 2472.00000 0 @ 2964.00000 92.7 TRIP GAS CUTTING GAS 0 @ 3152.00000 0 @ 3152.00000 0.0 WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) 65300 @ 2697.00000 139 @ 2964.00000 11201.5 CONNECTION GAS HIGH ETHANE (C-2) 7499 @ 2465.00000 1 @ 2162.00000 856.2 AVG 80 PROPANE (C-3) 6413 @ 2466.00000 1 @ 2211.00000 598.7 CURRENT 25 BUTANE (C-4) 17274 @ 2472.00000 3 @ 2964.00000 526.3 CURRENT BACKGROUND/AVG 86 PENTANE (C-5) 11144 @ 2472.00000 1 @ 2635.00000 259.8 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY 20% Tuff, 30% Siltstone, 50% Claystone PRESENT LITHOLOGY 30% Claystone, 70% Siltstone DAILY ACTIVITY SUMMARY Displace o waer base; clean out from under shakers. Rotary drilling w/ 2155 GPM, 1050 PP. Circulate and conition BTTMS up. Formation integrity test fit; rig to test and get air out of system. Pressure up to 464 PSI and held for 14 minutes; Bleed off to 417=13.9 MDWT. Displace water base, clean pit 4 for new mud, and load mud. Rotary drill from 2135'-2382' MD. Rotary drill from 2382'-2563' MD. Rotary drill from 2563'-2957' MD. Circulate and condition; 600 units of gas @ 2957' MD. Rotary drill from 2957'-3240' MD. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Ackers, Ben Handley, Kelly Childers DAILY COST $5710.00 REPORT BY Britten Adams Page 1 of 1Daily Report 3/13/2013file://C:\DOCUMENTS AND SETTINGS\EPOCHADMIN\MY DOCUMENTS\MY WE... C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 16 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goodwyn, Larry Burns DATE Mar 14, 2013 DEPTH 4481' PRESENT OPERATION Short trip to 2120' TIME 04:00:00 YESTERDAY 3152' 24 HOUR FOOTAGE 1329' CASING INFORMATION 20" Cond @ 113' MD 13 3/8" Surface casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH 4027.94 18.87 172.11 3959.87 4121.74 18.77 172.64 4048.65 4216.79 20.16 163.99 4138.29 4311.53 20.02 166.15 4227.26 4407.10 19.93 165.04 4317.09 BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD 2 12.25" NOV E170846 5x12 2135' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 1036.7 @ 3333.00000 1.6 @ 3691.00000 128.7 0.00000 FT/HR SURFACE TORQUE 9887 @ 4310.00000 13 @ 3705.00000 6222.2 0.00000 AMPS WEIGHT ON BIT 40 @ 4159.00000 0 @ 3336.00000 18.9 0.00000 KLBS ROTARY RPM 71 @ 4053.00000 0 @ 3711.00000 55.7 0.00000 RPM PUMP PRESSURE 2388 @ 4333.00000 1319 @ 3211.00000 1835.2 0.00000 PSI DRILLING FLUIDS REPORT DEPTH MW VIS PV YP FL Gels CL- FC SOL SD OIL MBT pH Ca+ CCI MWD SUMMARY INTERVAL 2135' TO 4481' TOOLS Gamma, Resistivity, Mudmotor GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 1169 @ 4207.00000 0 @ 3854.00000 158.4 TRIP GAS N/A CUTTING GAS 0 @ 4481.00000 0 @ 4481.00000 0.0 WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY N/A METHANE (C-1) 62949 @ 4207.00000 43 @ 3854.00000 11947.5 CONNECTION GAS HIGH 0 ETHANE (C-2) 9081 @ 4305.00000 3 @ 3329.00000 1496.7 AVG 164 PROPANE (C-3) 6823 @ 4305.00000 2 @ 3329.00000 1064.3 CURRENT 0 BUTANE (C-4) 4896 @ 4305.00000 1 @ 3329.00000 754.5 CURRENT BACKGROUND/AVG 0 PENTANE (C-5) 3633 @ 4305.00000 0 @ 3645.00000 502.3 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION 4170-4440 Sandstone w/ claystone 789 units Slight to moderate oil show w/ weak odor, pale yellow sample fluor, moderate bright cut fluor. LITHOLOGY Dominant Sandstone with some claystone and siltstone PRESENT LITHOLOGY 50% Claystone, 40% sandstone, 10% sand DAILY ACTIVITY SUMMARY Slide drilling from 3150' to 3435'. Rotary drilling from 3435' to 4481'. Circulate and condition, recipricate bit between 4481' and 4380'. Begin short trip to 2120'. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Ackers, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/14/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #17 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Garland Goodwyn, Larry Burns DATE Mar 15, 2013 DEPTH 5165' PRESENT OPERATION Drilling Ahead TIME 04:00:00 YESTERDAY 4481' 24 HOUR FOOTAGE 684' CASING INFORMATION 20" Cond @ 113' MD Surface casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH 4692.55 19.92 173.18 4585.57 4787.01 19.98 173.19 4674.36 4882.31 20.03 171.70 4763.90 4978.15 20.11 173.86 4853.93 5074.84 19.81 173.96 4944.81 BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD 2 12.25" NOV E170846 5x12 2135' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 307.0 @ 5143.00000 1.0 @ 4621.00000 100.3 134.68756 FT/HR SURFACE TORQUE 14694 @ 4522.00000 13 @ 4578.00000 8103.8 10557.60156 AMPS WEIGHT ON BIT 43 @ 4691.00000 2 @ 5142.00000 26.7 23.70433 KLBS ROTARY RPM 81 @ 5142.00000 0 @ 4625.00000 64.9 71.44448 RPM PUMP PRESSURE 2622 @ 5157.00000 1871 @ 4574.00000 2313.1 2499.95337 PSI DRILLING FLUIDS REPORT DEPTH 4920' MW 10.2 VIS 54 PV 20 YP 26 FL 6 Gels 7/9/15 CL- 30000 FC 2/0 SOL 8.1 SD 0.30 OIL 0.4/90.0 MBT 7.5 pH 9.2 Ca+ 40 CCI MWD SUMMARY INTERVAL 2135' TO 5165' TOOLS Gamma, Resistivity, Mudmotor GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 351 @ 4492.00000 5 @ 4509.00000 124.2 TRIP GAS 367 CUTTING GAS 0 @ 5165.00000 0 @ 5165.00000 0.0 WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY N/A METHANE (C-1) 33300 @ 4556.00000 425 @ 4509.00000 12709.5 CONNECTION GAS HIGH 0 ETHANE (C-2) 4851 @ 4556.00000 63 @ 4509.00000 1416.9 AVG 124 PROPANE (C-3) 3850 @ 4556.00000 48 @ 4509.00000 1033.3 CURRENT 10 BUTANE (C-4) 2874 @ 4556.00000 34 @ 4509.00000 797.6 CURRENT BACKGROUND/AVG 30 PENTANE (C-5) 2320 @ 4529.00000 30 @ 4509.00000 609.8 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY 90% Claystone, 10% Sandstone PRESENT LITHOLOGY 90% Claystone, 10% Sandstone DAILY ACTIVITY SUMMARY Short trip to 2120', work tight spots. Pump sweep into shoe, service top drive. Trip into hole to 4350', ream from 4350' to 4481'. Rotary drilling from 4481' to 5165'. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/15/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 18 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Stanley Calvin DATE Mar 16, 2013 DEPTH 6630' PRESENT OPERATION Drilling Ahead TIME 04:00:00 YESTERDAY 5165' 24 HOUR FOOTAGE 1465' CASING INFORMATION 20" Cond @ 113' MD Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH 6210.19 18.95 171.26 6017.80 6304.07 18.92 171.40 6106.11 6398.75 19.17 171.75 6195.61 6494.95 19.47 174.17 6286.39 6586.47 19.50 173.72 6372.67 BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022' 44.12 2-3-LN-N-3-X-PN-TD Casing TD 2 12.25" NOV E170846 5x12 2135' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 347.0 @ 5527.00000 5.8 @ 6505.00000 100.8 125.51947 FT/HR SURFACE TORQUE 17557 @ 6425.00000 13 @ 6032.00000 8726.8 10371.78809 AMPS WEIGHT ON BIT 55 @ 6400.00000 4 @ 5713.00000 25.5 28.86239 KLBS ROTARY RPM 90 @ 5703.00000 0 @ 6511.00000 65.7 71.44448 RPM PUMP PRESSURE 2928 @ 5528.00000 2124 @ 5718.00000 2482.8 2694.68237 PSI DRILLING FLUIDS REPORT DEPTH 4920' MW 10.20 VIS 54 PV 20 YP 26 FL 6 Gels 7/9/15 CL- 30000 FC 2/0 SOL 8.1 SD 0.30 OIL 0.4/90.0 MBT 7.5 pH 9.2 Ca+ 40 CCI MWD SUMMARY INTERVAL 2135' TO 6630' TOOLS Gamma, Resistivity, Mudmotor GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 270 @ 6518.00000 0 @ 6504.00000 99.4 TRIP GAS N/A CUTTING GAS 0 @ 6630.00000 0 @ 6630.00000 0.0 WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY N/A METHANE (C-1) 29428 @ 5713.00000 55 @ 6370.00000 10504.4 CONNECTION GAS HIGH 0 ETHANE (C-2) 3492 @ 5713.00000 4 @ 6371.00000 1012.5 AVG 99 PROPANE (C-3) 2662 @ 5636.00000 3 @ 6504.00000 713.3 CURRENT 175 BUTANE (C-4) 1152 @ 5713.00000 1 @ 6504.00000 353.3 CURRENT BACKGROUND/AVG 45 PENTANE (C-5) 1126 @ 5636.00000 0 @ 6228.00000 210.8 HYDROCARBON SHOWS Trace to weak INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION 5190-5270 5370-5580 Sandstone Spotty yellow fluor, trace petrol odor and fast yellow to white streamers when crushed. LITHOLOGY Primarily claystone with siltstone and sandstone. 60% - 80% shale and carbonaceous shale from 6420 to present. PRESENT LITHOLOGY 40% Carbonaceous shale, 20% shale, 30% claystone, 10% silstone DAILY ACTIVITY SUMMARY Drilling ahead from 5165' to 6630'. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/16/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #19 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Stanley Calvin DATE Mar 17, 2013 DEPTH 6925' PRESENT OPERATION Tripping out of hole to surface for coring TIME 04:00:00 YESTERDAY 6630' 24 HOUR FOOTAGE 295 CASING INFORMATION 20" Cond @ 113' Surface Casing @ 2120' SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH 6586.47 19.50 173.72 6372.67 6682.68 18.89 172.44 6463.53 6779.37 18.82 171.88 6555.04 6799.72 19.04 172.27 6574.30 6851.20 19.32 170.85 6622.93 BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022" 44.12 2-3-LN-N-3-X-PN-TD Casing TD 2 12.25" NOV E170846 5x12 2135' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 243.4 @ 6665.00000 10.4 @ 6786.00000 94.1 0.00000 FT/HR SURFACE TORQUE 12581 @ 6814.00000 15 @ 6797.00000 8341.7 6490.11670 AMPS WEIGHT ON BIT 35 @ 6651.00000 3 @ 6853.00000 23.3 11.03674 KLBS ROTARY RPM 84 @ 6820.00000 0 @ 6804.00000 66.5 75.50763 RPM PUMP PRESSURE 2898 @ 6721.00000 2177 @ 6925.00000 2548.5 2177.04810 PSI DRILLING FLUIDS REPORT DEPTH MW VIS PV YP FL Gels CL- FC SOL SD OIL MBT pH Ca+ CCI MWD SUMMARY INTERVAL 2135' TO 6925' TOOLS Gamma, Resistivity, Mudmotor GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 211 @ 6707.00000 0 @ 6823.00000 97.5 TRIP GAS N/A CUTTING GAS 0 @ 6925.00000 0 @ 6925.00000 0.0 WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY N/A METHANE (C-1) 21992 @ 6829.00000 64 @ 6823.00000 9643.2 CONNECTION GAS HIGH 0 ETHANE (C-2) 1715 @ 6829.00000 3 @ 6796.00000 807.1 AVG 97 PROPANE (C-3) 1440 @ 6829.00000 3 @ 6796.00000 600.0 CURRENT 0 BUTANE (C-4) 774 @ 6829.00000 2 @ 6667.00000 287.1 CURRENT BACKGROUND/AVG 0 PENTANE (C-5) 353 @ 6829.00000 0 @ 6667.00000 107.0 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY Shale with some carbonaceous shale, claystone, conglomerate sand and siltstone. PRESENT LITHOLOGY 70% Shale, 10% carbonaceous shale, 10% claystone, 10% conglomerate sand. DAILY ACTIVITY SUMMARY Rotary drilling from 6630' to 6825'. Circulate bottoms up for geologist examination. Continue to repeat 10' to 20' drilling and then circulate up cuttings for examination until TD for coring at 6925'. Begin to trip out of hole to surface. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/17/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #20 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Stanley Calvin DATE Mar 18, 2013 DEPTH 6925' PRESENT OPERATION Tripping out of hole to surface for coring TIME 04:00:00 YESTERDAY 6925' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @ 113' Surface Casing @ 2120' SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 1 16" Hughes 5213496 1x12, 3x14 113' 2135' 2022" 44.12 2-3-LN-N-3-X-PN-TD Casing TD 2 12.25" NOV E170846 5x12 2135' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING FLUIDS REPORT DEPTH 6925' MW 10.4 VIS 74 PV 19 YP 32 FL 6 Gels 11/24/35 CL- 32000 FC 2/0 SOL 11.4 SD 0.75 OIL 1.0/86.0 MBT 12.5 pH 9.3 Ca+ 40 CCI MWD SUMMARY INTERVAL 2135' TO 6925' TOOLS Gamma, Resistivity, Mudmotor GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT 0 BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG 0 PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Trip out of hole and back ream. Wipe each stand after back ream. Abnormal high torque from 4945' to 4766'. Pick up through tight spots without torque or overpull. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/18/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #21 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 19, 2013 DEPTH 6925' PRESENT OPERATION Tripping into hole with core bit TIME 04:00:00 YESTERDAY 6925' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @ 113' Surface Casing @ 2120' SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 2 12.25" NOV E170846 5x12 2135' 6925' 4790' 51.1 I-I-CT-C-X-X-NO-CP Core Zone TD 3 8.5" HTC Coring Bit 7138396 DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING FLUIDS REPORT DEPTH 6925' MW 10.45 VIS 72 PV 23 YP 28 FL 6 Gels 13/37/57 CL- 30000 FC 2 SOL 10.8 SD 0.5 OIL 1.0/86.0 MBT 12.5 pH 9.1 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Trip out of hole, lay down BHA. Pick up test tools, test BOPs. Lay down test tools, pick up BHA. Trip into hole with core BBL assembly. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/19/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report #22 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 20, 2013 DEPTH 6937' PRESENT OPERATION Core drill TIME 04:00:00 YESTERDAY 6925' 24 HOUR FOOTAGE 12' CASING INFORMATION 20" Cond @ 113' Surface Casing @ 2120' SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 2 12.25" NOV E170846 5x12 2135' 6925' 4805' 52.82 I-I-CT-C-X-X-NO-CP Core Zone TD 3 8.5" HTC Coring Bit 7138396 DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 53.0 @ 6925.00000 0.2 @ 6937.00000 9.3 0.16782 FT/HR SURFACE TORQUE 6851 @ 6926.00000 4740 @ 6932.00000 5650.6 4832.08545 AMPS WEIGHT ON BIT 17 @ 6926.00000 9 @ 6927.00000 15.5 12.06454 KLBS ROTARY RPM 92 @ 6937.00000 15 @ 6926.00000 68.4 92.73540 RPM PUMP PRESSURE 2177 @ 6925.00000 543 @ 6926.00000 921.7 730.13690 PSI DRILLING FLUIDS REPORT DEPTH 6935'/6935' MW 10.40 VIS 70 PV 21 YP 25 FL 5.8 Gels 14/29/36 CL- 31000 FC 2/2 SOL 13.0 SD 0.50 OIL 0.5/85.0 MBT 12.5 pH 9.2 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 72 @ 6925.00000 12 @ 6935.00000 16.5 TRIP GAS 1432 CUTTING GAS 0 @ 6937.00000 0 @ 6937.00000 0.0 WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY N/A METHANE (C-1) 9348 @ 6925.00000 1624 @ 6935.00000 1909.6 CONNECTION GAS HIGH N/A ETHANE (C-2) 706 @ 6925.00000 128 @ 6935.00000 151.2 AVG 14 PROPANE (C-3) 661 @ 6925.00000 131 @ 6933.00000 146.4 CURRENT 15 BUTANE (C-4) 356 @ 6925.00000 65 @ 6935.00000 77.9 CURRENT BACKGROUND/AVG 15 PENTANE (C-5) 122 @ 6925.00000 29 @ 6930.00000 34.1 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY Cuttings too inconsistant to log, will log from core. PRESENT LITHOLOGY Cuttings too inconsistant to log, will log from core. DAILY ACTIVITY SUMMARY Trip into hole, circulate and condition. Core drill from 6925' to 6937'. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/20/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 23 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 21, 2013 DEPTH 6970' PRESENT OPERATION Core Drill TIME 03:30:58 YESTERDAY 6937' 24 HOUR FOOTAGE 33' CASING INFORMATION 20" Cond @ 113' MD Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 2 12.25" NOV E170846 5x12 2135' 6925' 4805' 52.82 I-I-CT-C-X-X-NO-CP Core Zone TD 3 8.5" HTC Coring Bit 7138396 DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 5.2 @ 6940.00000 0.2 @ 6937.00000 1.6 1.11180 FT/HR SURFACE TORQUE 5426 @ 6957.00000 4035 @ 6941.00000 5092.5 5021.98291 AMPS WEIGHT ON BIT 24 @ 6955.00000 12 @ 6937.00000 21.6 23.34392 KLBS ROTARY RPM 92 @ 6937.00000 68 @ 6962.00000 73.3 69.45354 RPM PUMP PRESSURE 942 @ 6957.00000 730 @ 6937.00000 893.8 896.51935 PSI DRILLING FLUIDS REPORT DEPTH 6965'/6900' MW 10.4 VIS 70 PV 21 YP 29 FL 5.8 Gels 11/28/40 CL- 30000 FC 2/2 SOL 12 SD 0.80 OIL 0.5/86.0 MBT 15.0 pH 9.5 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 32 @ 6954.00000 2 @ 6962.00000 17.8 TRIP GAS N/A CUTTING GAS 0 @ 6970.00000 0 @ 6970.00000 0.0 WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY N/A METHANE (C-1) 4357 @ 6954.00000 277 @ 6962.00000 2462.5 CONNECTION GAS HIGH N/A ETHANE (C-2) 260 @ 6954.00000 15 @ 6962.00000 143.1 AVG 18 PROPANE (C-3) 203 @ 6954.00000 13 @ 6962.00000 124.2 CURRENT 18.5 BUTANE (C-4) 163 @ 6954.00000 7 @ 6962.00000 74.4 CURRENT BACKGROUND/AVG 18 PENTANE (C-5) 60 @ 6943.00000 2 @ 6962.00000 31.9 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY Cuttings to inconsistant to log, will log from core. PRESENT LITHOLOGY Cuttings to inconsistant to log, will log from core. DAILY ACTIVITY SUMMARY Core drill from 6937' to 6970'. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Keely Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/21/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging #24 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 22, 2013 DEPTH 6978' PRESENT OPERATION Lay down core barrel, recover core. TIME 04:00:00 YESTERDAY 6970' 24 HOUR FOOTAGE 8' CASING INFORMATION 20" Cond @ 113' Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 2 12.25" NOV E170846 5x12 2135' 6925' 4805' 52.82 I-I-CT-C-X-X-NO-CP Core Zone TD 3 8.5" HTC Coring Bit 7138386 6925' 6978' 53' Finished Core DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 4.0 @ 6977.00000 0.9 @ 6971.00000 2.0 1.74959 FT/HR SURFACE TORQUE 5818 @ 6976.00000 4919 @ 6971.00000 5822.8 5017.89893 AMPS WEIGHT ON BIT 24 @ 6973.00000 21 @ 6976.00000 25.9 22.88880 KLBS ROTARY RPM 70 @ 6971.00000 68 @ 6976.00000 78.2 69.35196 RPM PUMP PRESSURE 969 @ 6971.00000 896 @ 6970.00000 1063.9 950.74768 PSI DRILLING MUD REPORT DEPTH 6978'/6742' MW 10.40 VIS 81 PV 24 YP 28 FL 5.0 Gels 9/22/33 CL- 29000 FC 2/2 SOL 11.9 SD 0.90 OIL 1.0/85.0 MBL 15.0 pH 9.5 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 22 @ 6971.00000 10 @ 6972.00000 18.0 TRIP GAS N/A CUTTING GAS 0 @ 6978.00000 0 @ 6978.00000 0.0 WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY N/A METHANE (C-1) 3010 @ 6971.00000 1366 @ 6972.00000 2454.8 CONNECTION GAS HIGH N/A ETHANE (C-2) 164 @ 6971.00000 74 @ 6972.00000 133.2 AVG 18 PROPANE (C-3) 145 @ 6971.00000 66 @ 6972.00000 118.1 CURRENT 20 BUTANE (C-4) 86 @ 6971.00000 37 @ 6972.00000 62.6 CURRENT BACKGROUND/AVG 18 PENTANE (C-5) 49 @ 6978.00000 12 @ 6972.00000 30.2 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY 50% sandstone, 20% shale, 20% siltstone, 10% claystone PRESENT LITHOLOGY 50% sandstone, 20% shale, 20% siltstone, 10% claystone DAILY ACTIVITY SUMMARY Core drill from 6970' to 6978'. Circulate and condition hole. Trip out of hole to surface. Lay down BHA and core barrel, recover core. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/22/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 25 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 23, 2013 DEPTH 6925' PRESENT OPERATION Begin drill ahead from 6925'. TIME 04:00:00 YESTERDAY 6925' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @ 113' Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 3 8.5" HTC Coring Bit 7138386 6925' 6978' 53' 42.3 X-X-X-X-X-X-XX-TD Finished Core 4 12.25 REED PDC E169434 5x12 6925' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING MUD REPORT DEPTH 6925'/6692' MW 10.45 VIS 81 PV 19 YP 31 FL 4.0 Gels 9/19/32 CL- 38000 FC 2/2 SOL 9.1 SD 1.00 OIL 1.0/88.0 MBL 10.0 pH 9.2 Ca+ 40 CCI MWD SUMMARY INTERVAL 6925' TO 6925' TOOLS Gamma, Resistivity, Mudmotor GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS 171 CUTTING GAS @ @ WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY N/A METHANE (C-1) @ @ CONNECTION GAS HIGH N/A ETHANE (C-2) @ @ AVG 10 PROPANE (C-3) @ @ CURRENT 10 BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG 10 PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Pick up BHA, Trip into hole. Circulate and condition. Ream, wash tight sections. Tight hole from 6880' to 6925'. Circulate and condition, pump sweep. Begin drill ahead from 6925'. CANRIG PERSONNEL ON BOARD Daniel Hillegeist. Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/23/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 26 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 24, 2013 DEPTH 7500' PRESENT OPERATION Tripping out of hole. TIME 04:00:00 YESTERDAY 6925' 24 HOUR FOOTAGE 575' CASING INFORMATION 20" Cond @ 113' MD Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH 7159.12 19.96 171.58 6912.84 7254.68 19.88 172.34 7002.68 7350.54 19.93 170.38 7092.82 7426.02 19.82 170.67 7163.81 7500.00 19.82 170.67 7233.40 BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 3 8.5" Baker 7138396 6925' 6978' 53' 42.5 1-1-NO-X-I-X-TD Finished core 4 12.25" REED PDC E169434 5x12 6925' 7500' 575' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 210.9 @ 7255.00000 0.8 @ 6926.00000 78.5 29.41000 FT/HR SURFACE TORQUE 13303 @ 7464.00000 6490 @ 6925.00000 10426.5 11571.45600 AMPS WEIGHT ON BIT 31 @ 7386.00000 2 @ 7426.00000 20.3 6.39000 KLBS ROTARY RPM 79 @ 7224.00000 43 @ 6931.00000 69.0 69.16800 RPM PUMP PRESSURE 3097 @ 7407.00000 2177 @ 6925.00000 2777.9 2598.96000 PSI DRILLING MUD REPORT DEPTH 7500'/7233' MW 10.40 VIS 67 PV 20 YP 29 FL 4.5 Gels 15/26/35 CL- 45000 FC 2/2 SOL 8.7 SD 0.80 OIL 1.0/88.0 MBL 12.5 pH 9.6 Ca+ 40 CCI MWD SUMMARY INTERVAL 6925' TO 7500' TOOLS Gamma, Resistivity, Mudmotor GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 140 @ 7006.00000 1 @ 6930.00000 60.0 TRIP GAS N/A CUTTING GAS 0 @ 7500.00000 0 @ 7500.00000 0.0 WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY N/A METHANE (C-1) 19866 @ 7006.00000 110 @ 7262.00000 7023.2 CONNECTION GAS HIGH N/A ETHANE (C-2) 1180 @ 7024.00000 9 @ 7262.00000 432.9 AVG 60 PROPANE (C-3) 1071 @ 7012.00000 9 @ 6930.00000 446.8 CURRENT 0 BUTANE (C-4) 782 @ 7024.00000 5 @ 6929.00000 352.4 CURRENT BACKGROUND/AVG 0 PENTANE (C-5) 529 @ 7315.00000 1 @ 6929.00000 156.6 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION 6970'-7080' 20%-30% Sandstone, 20%-30% Claystone, 20%-30% Shale, with some silstone 88 Units Average Very slight odor, 65% dark brown stain, amber cut, 90% brown orange fluor, strong yellow cut fluor, moderate bright yellow residual fluor. LITHOLOGY Silstone with claystone, shale, and sandstone. PRESENT LITHOLOGY 50% Silstone, 30% Claystone, 10% shale, 10% sandstone. DAILY ACTIVITY SUMMARY Rotary drilling from 6925' to 7500' TD. Circulate and condition hole, recipricate and rotate at 7500'. Pump out of hole from 7500' to 7234'. Pull out of hole from 7234'. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/24/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 27 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 25, 2013 DEPTH 7500' PRESENT OPERATION Lay down BHA TIME 04:00:00 YESTERDAY 7500' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @ 113' MD Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 3 8.5" Baker 7138396 6925' 6978' 53' 42.5 1-1-NO-X-I-X-TD Finished core 4 12.25" REED PDC E169434 5x12 6925' 7500' 575' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING MUD REPORT DEPTH 7500'/7233' MW 10.40 VIS 54 PV 16 YP 15 FL 4.0 Gels 5/9/14 CL- 40000 FC 1/2 SOL 6.9 SD 0.60 OIL 1.0/89.0 MBL 12.5 pH 9.2 Ca+ 40 CCI MWD SUMMARY INTERVAL 6925' TO 7500' TOOLS Gamma, Resistivity, Mudmotor GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Trip out of hole, back ream out of hole. Service rig and top drive. Trip into hole from shoe to 7500'. Wash and ream tight spot from 4347' to 4358'. Circulate and condition. Trip out of hole, lay down BHA. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/25/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 28 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 26, 2013 DEPTH 7500' PRESENT OPERATION Pull out of hole with wireline tools TIME 04:00:00 YESTERDAY 7500' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @ 113' MD Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 3 8.5" Baker 7138396 6925' 6978' 53' 42.5 1-1-NO-X-I-X-TD Finished core 4 12.25" REED PDC E169434 5x12 6925' 7500' 575' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING MUD REPORT DEPTH 7500'/7233' MW 10.40 VIS 60 PV 17 YP 20 FL 4.0 Gels 8/0/0 CL- 40000 FC 1/2 SOL 7.9 SD 0.50 OIL 1.0/88.0 MBL 10.0 pH 9.0 Ca+ 40 CCI MWD SUMMARY INTERVAL 7500' TO 7500' TOOLS Wireline Tools GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Lay down BHA. Test BOPs. Pick up wireline tools and run in hole. Log with wireline tools. Pulling out of hole with wireline tools. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/26/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 29 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 27, 2013 DEPTH 7500' PRESENT OPERATION Log with run #3 wireline tools. TIME 04:00:00 YESTERDAY 7500' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @ 113' MD Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 3 8.5" Baker 7138396 6925' 6978' 53' 42.5 1-1-NO-X-I-X-TD Finished core 4 12.25" REED PDC E169434 5x12 6925' 7500' 575' DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING MUD REPORT DEPTH 7500'/7233' MW 10.40 VIS 55 PV 17 YP 18 FL 5.0 Gels 6/11/21 CL- 38000 FC 1/2 SOL 8.1 SD 0.25 OIL 1.0/88.0 MBL 12.5 pH 8.4 Ca+ 40 CCI MWD SUMMARY INTERVAL 7500' TO 7500' TOOLS Run #3 Wireline Tools GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Pull out of hole and lay down wireline tools for run #1. Pick up wireline logging tools for run #2. Run into hole, log run #2. Pull out of hole, lay down run #2 wireline tools. Pick up and run into hole with run #3 wireline tools. Log with run #3 wireline tools. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/27/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 30 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 28, 2013 DEPTH 7500' PRESENT OPERATION Lay down run #5 tool string TIME 04:00:00 YESTERDAY 7500' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @ 113' MD Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 3 8.5" Baker 7138396 6925' 6978' 53' 42.5 1-1-NO-X-I-X-NO-TD Finished core 4 12.25" REED PDC E169434 5x12 6925' 7500' 575' 9.6 1-1-CT-S-X-I-NO-TD TD DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING MUD REPORT DEPTH 7500'/7233' MW 10.40 VIS 59 PV 19 YP 22 FL 5.0 Gels 8/15/24 CL- 36000 FC 2/2 SOL 8.2 SD 0.30 OIL 1.0/88.0 MBL 12.5 pH 9.2 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Log with #3 tool string. Pull out of hole and lay down tools. Pick up and run into hole with #4 tool string. Collect side wall core samples. Pull out of hole, lay down #4 tool string. Pick up, run into hole with #5 tool string. Log with seismic tools. Pull of hole and lay down run #5 tool string. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/28/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 31 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 29, 2013 DEPTH 7500' PRESENT OPERATION Prepare for cement job TIME 04:00:00 YESTERDAY 7500' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @ 113' MD Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 3 8.5" Baker 7138396 6925' 6978' 53' 42.5 1-1-NO-X-I-X-NO-TD Finished core 4 12.25" REED PDC E169434 5x12 6925' 7500' 575' 9.6 1-1-CT-S-X-I-NO-TD TD DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING MUD REPORT DEPTH 7500'/7233' MW 10.40 VIS 61 PV 18 YP 24 FL 5.0 Gels 9/16/22 CL- 34000 FC 2/2 SOL 8.9 SD 0.10 OIL 1.0/87.5 MBL 12.0 pH 9.3 Ca+ 40 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS 1136 CUTTING GAS @ @ WIPER GAS N/A CHROMATOGRAPHY (ppm) SURVEY N/A METHANE (C-1) @ @ CONNECTION GAS HIGH N/A ETHANE (C-2) @ @ AVG 10 PROPANE (C-3) @ @ CURRENT 1 BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG 0 PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Pull out of hole and lay down tool string #5. Service top drive. Run into hole to 2085'. Circulate and condition, service rig. Run into hole to 5495', circulate and condition. Run into hole to 7495', circulate and condition. Prepare for cement job. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/29/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 32 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 30, 2013 DEPTH 7500' PRESENT OPERATION Run singles into hole to 3434' TIME 04:00:00 YESTERDAY 7500' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @ 113' MD Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 3 8.5" Baker 7138396 6925' 6978' 53' 42.5 1-1-NO-X-I-X-NO-TD Finished core 4 12.25" REED PDC E169434 5x12 6925' 7500' 575' 9.6 1-1-CT-S-X-I-NO-TD TD DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING MUD REPORT DEPTH 7500'/7233' MW 10.40 VIS 63 PV 19 YP 18 FL 5.2 Gels 6/19/24 CL- 34000 FC 2/2 SOL 8.4 SD 0.05 OIL 1.0/88.0 MBT 14.0 pH 11.5 Ca+ 100 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Pump and circulate cement to 7495'. Trip out of hole to 6630', circulate and condition. Trip in hole, tag cement plug at 6852'. Trip out of hole to 4600', pump cement plug. Trip out of hole to 3417'. Circulate and condition, Trip out of hole to 1711'. Service top drive, pick up drill pipe, run singles into hole to 3434'. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/31/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlogging Report # 33 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE Mar 31, 2013 DEPTH 7500' PRESENT OPERATION Waiting on cement TIME 04:00:00 YESTERDAY 7500' 24 HOUR FOOTAGE 0 CASING INFORMATION 20" Cond @ 113' MD Surface Casing @ 2120' MD SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 3 8.5" Baker 7138396 6925' 6978' 53' 42.5 1-1-NO-X-I-X-NO-TD Finished core 4 12.25" REED PDC E169434 5x12 6925' 7500' 575' 9.6 1-1-CT-S-X-I-NO-TD TD DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION @ @ FT/HR SURFACE TORQUE @ @ AMPS WEIGHT ON BIT @ @ KLBS ROTARY RPM @ @ RPM PUMP PRESSURE @ @ PSI DRILLING MUD REPORT DEPTH 7500'/7233' MW 10.40 VIS 56 PV 15 YP 17 FL 6.5 Gels 4/13/20 CL- 29000 FC 2/2 SOL 11.1 SD 0.03 OIL 0.5/87.0 MBL 12.0 pH 11.6 Ca+ 340 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS @ @ TRIP GAS CUTTING GAS @ @ WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) @ @ CONNECTION GAS HIGH ETHANE (C-2) @ @ AVG PROPANE (C-3) @ @ CURRENT BUTANE (C-4) @ @ CURRENT BACKGROUND/AVG PENTANE (C-5) @ @ HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Released Canrig sample sets 1, 4, and 6 to expeditor for shipment on 3/30/2013. Circulate and condition, trip in hole to 4010'. No hard cement encountered, pull out of hole to 3992', circulate and condition. Trip in hole to 4060', no hard cement. Pull out of hole to 4010'. Circulate and condition. Trip in hole to 4214'. Pump cement, trip out of hole to 3614'. Cement in place at midnight. Trip out of hole to 3051', circulate and condition. Waiting on cement. CANRIG PERSONNEL ON BOARD Daniel Hillegeist, Levi Potter, Britten Adams, Doug Acker, Ben Handley, Kelly Childers DAILY COST $5710 REPORT BY Daniel Hillegeist Page 1 of 1Daily Report 3/31/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C ) Repsol Mudlog Report #34 DAILY WELLSITE REPORT Qugruk-3 REPORT FOR Rodney McCoy, Larry Burns DATE April 1, 2013 DEPTH 7550.00000 PRESENT OPERATION Test BOP TIME 04:00:00 YESTERDAY 10.00000 24 HOUR FOOTAGE 7540 CASING INFORMATION 20" Cond @ 113' MD 13 3/8" @ 2120' SURVEY DATA DEPTH INCLINATION AZIMUTH VERTICAL DEPTH BIT INFORMATION INTERVAL CONDITION REASON NO. SIZE TYPE S/N JETS IN OUT FOOTAGE HOURS T/B/C PULLED 4 12.25 Hughes VM3 5221024 3x18, 1x16 DRILLING PARAMETERS HIGH LOW AVERAGE CURRENT AVG RATE OF PENETRATION 0.0 @ 7550.00000 0 @ 7550.00000 0.0 FT/HR SURFACE TORQUE 0 @ 7550.00000 0 @ 7550.00000 0.0 AMPS WEIGHT ON BIT 0 @ 7550.00000 0 @ 7550.00000 0.0 KLBS ROTARY RPM 0 @ 7550.00000 0 @ 7550.00000 0.0 RPM PUMP PRESSURE 0 @ 7550.00000 0 @ 7550.00000 0.0 PSI DRILLING MUD REPORT DEPTH 7500 MW 10.40 VIS 52 PV 13 YP 15 FL 6.3 Gels 4/8/18 CL- 28000 FC 2/2 SOL 11.1 SD 0.08 OIL 0.5/87 MBL 9.5 pH 11.5 Ca+ 360 CCI MWD SUMMARY INTERVAL TO TOOLS GAS SUMMARY (units) HIGH LOW AVERAGE DITCH GAS 0 @ 7550.00000 0 @ 7550.00000 0.0 TRIP GAS CUTTING GAS 0 @ 7550.00000 0 @ 7550.00000 0.0 WIPER GAS CHROMATOGRAPHY (ppm) SURVEY METHANE (C-1) 0 @ 7550.00000 0 @ 7550.00000 0.0 CONNECTION GAS HIGH ETHANE (C-2) 0 @ 7550.00000 0 @ 7550.00000 0.0 AVG PROPANE (C-3) 0 @ 7550.00000 0 @ 7550.00000 0.0 CURRENT BUTANE (C-4) 0 @ 7550.00000 0 @ 7550.00000 0.0 CURRENT BACKGROUND/AVG PENTANE (C-5) 0 @ 7550.00000 0 @ 7550.00000 0.0 HYDROCARBON SHOWS INTERVAL LITHOLOGY/REMARKS GAS DESCRIPTION LITHOLOGY PRESENT LITHOLOGY DAILY ACTIVITY SUMMARY Trip out of hole curculating and conditioning hole (displace contaminated mud). Tag cement plug at 3501'. Set cement plug at 3166' and 2255'. POOH CANRIG PERSONNEL ON BOARD Ben Handley, Doug Acker, Levi Potter, Britten Adams, Dan Hillegeist, Kelly Childers, Omar hinostroza DAILY COST 5710 REPORT BY Levi Potter Page 1 of 1Daily Report 4/1/2013 C O N F I D E N T I A L i n a c c o r d a n c e w i t h A S 3 8 . 0 5 . 0 3 5 ( a ) ( 8 ) ( C )             Monopole high- frequency Dipole XD Dipole YD Mo n o p o l e Co m p r e s s i o n a l Di p o l e S h e a r Monopole high- frequency Dipole XD Dipole YD processed X -dipole slowness (DT_XD_R) processed compressional slowness (DTRP) from MF mode generated by Y-dipole source mode generated by X-dipole source mode generated by high -frequency (far) monopole source mud slowness mode generated by low-frequency (far) monopole source Model Sonic Scanner flexural mode curve for homogeneous, isotropic formation (XD and YD) Stoneley slowness DTST (field result) Model Sonic Scanner Stoneley mode curve for a given mud slowness, formation density, caliper, and Stoneley Shear slowness Measurement data: Processing results: Model curves: processed Y-dipole slowness (DT_YD_R)        Anisotropy Analysis Vs()Vs()Vs(r,) IntrinsicStress-Induced Intrinsic Vs()Vs()Vs(r,) IntrinsicStress-Induced Intrinsic Fracture Evaluation from Stoneley ADVANCED CORE ANALYSIS STUDY Repsol E&P USA, Inc. Qugruk-3 Well North Slope, Alaska INTERIM REPORT Submitted to: Repsol E&P USA, Inc. November 25, 2013 Performed by: Core Laboratories Petroleum Services Division 6316 Windfern Houston, Texas 77040 The analytical results,opinions,or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidental use this report has been made.The analytical results,opinions,or interpretations expressed represent the best judgement of Core Laboratories.Core Laboratories,however,makes no warranty or representation,express or implied,of any type,and expressly disclaims same as to the productivity,proper operations,or profitableness of any oil,gas,coal,or other mineral,property,well,or sand in connection with which such report is used or relied upon for any reason whatsoever.This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories. HOU-130038 Core Laboratories Laboratory Procedures Quick Rock Properties Basic Properties - Dean Stark Water Analysis, Permeability, and Porosity RwCore™ Analysis Basic Properties with Tracer Analysis Test Schedule Summary Petrophysical Properties Table of Contents Repsol E&P USA, Inc. Qugruk-3 Well North Slope, Alaska Summary of Results Core Laboratories SUMMARY OF RESULTS The Houston Advanced Technology Center of Core Laboratories received thirty-two (32) rotary sidewall core samples from the Qugruk-3 well, in North Slope, Alaska for analysis. The samples were taken from depths of 4199 to 7270 feet. The received samples were trimmed to provide sample material for thin section description, X-ray diffraction and scanning electron microscopy. The Quick Rock Properties (QRP) protocol was used for six (6) of the samples to provide a method for assessing rock quality without using traditional routine core analysis cleaning and drying procedures. Nuclear Magnetic Resonance (NMR) was used in conjunction with helium expansion to determine residual fluid saturation and porosity, and corresponding effective permeability to gas was determined at the residual fluid saturation. The samples had effective permeability to gas results of 0.0002 to 56.7 millidarcies. The total ambient porosity of the samples ranged from 13.2 to 36.1 percent, with corresponding fluid saturations that ranged from 42.8 to 81.8 percent of pore volume. Bulk density measurements ranged from 2.283 to 2.647 g/cm3. After the QRP measurements, fresh-state samples were tested for Dean Stark water analysis and basic properties measurements. Dean Stark is a distillation method used to directly determine the water content of a sample and also to indirectly determine its oil content. The Dean Stark analysis for the twenty-two (22) samples shows water saturations ranged from 9.4 to 57.1 percent of pore volume. Oil saturations ranged from 0.8 to 40.5 percent of pore volume. The Basic Properties measurements show that Klinkenberg permeability on the measured samples ranged from 0.001 to 12.4 md at net confining stress (see data for individual stresses) and porosity ranged from 6.8 to 22.5 percent of bulk volume. Grain densities ranged from 2.49 to 2.71 g/cm3. Two (2) vertical fresh-state samples were tested for resistivity measurements by R w Core™. R w Core™ is a patent pending technique used on intact, fresh-state core samples to measure the resistivity of formation water. The plugs had been tritium traced, and so measurements will be corrected. The samples were placed between electrodes in resistivity cells and complex resistivity measurements were completed using the patent pending technology to determine R w . At 77°F, the Rw for the samples were 0.108 and 0.056 ohm-m. Following R w Core™ Analysis, the samples were sent for Dean Stark water analysis and tracer analysis. Core Laboratories Company:Repsol E&P USA, Inc.File: HOU-130038 Well:Qugruk-3 Location:North Slope, Alaska Sample Number Depth, feet Quick Rock Properties Basic Properties - Dean Stark Water Analysis, Permeability, and Porosity RwCore™ Analysis Basic Properties with Tracer Analysis 30 4199.00 29 4201.00 X X 28 4206.40 X 27 4209.00 X 26 4228.00 X X 25 4236.00 X 24 4269.00 X 23 4273.00 X 22 4312.00 X X 21 4340.00 X X 20 4378.50 X 19 5968.00 X 18 5978.00 X 17 6458.00 16 6598.00 X 10V 6972.70-6973.00 X X 11V 6974.35-6974.55 X X 15 6976.10 X 14 6986.50 X 13 6988.00 X X 12 7006.00 X 11 7010.00 X 10 7013.90 X 9 7027.00 X 8 7030.00 X 7 7048.10 X 6 7077.50 X 5 7236.00 X 4 7250.00 X X 3 7256.50 X 2 7261.20 X 1 7270.00 X TEST SCHEDULE SUMMARY RwCore™ Analysis Basic Properties - Dean Stark Water Analysis, Permeability, and Porosity Petrophysical Properties Quick Rock Properties Basic Properties with Tracer Analysis Core Laboratories LABORATORY PROCEDURES Quick Rock Properties 1. While still in an “as received, or fresh state” condition, the samples were trimmed as necessary to form parallel-ended cylinders, and the volume of fluid present in each core sample was determined using nuclear magnetic resonance (NMR). 2. Void pore space (i.e. pore space not occupied by water or oil) was measured for each sample using helium expansion. (Boyles Law). 3. The sum of the fluid volume and helium void space provided a value for the total pore volume, and this, in conjunction with an Archimedes bulk volume, was used to calculate porosity. 4. Fluid volume was divided by bulk volume to calculate fluid saturation (fraction). 5. Effective permeability to gas at the “as received” fluid saturation was determined under net confining stress (see data for stress). Dean-Stark and Basic Rock Properties 1. Dean Stark distillation, a solvent refluxing method, was performed on the samples to directly determine the water content and indirectly determine its oil content. Toluene was used as the solvent, and the distilled water removed from the sample was condensed into a calibrated trap where the volume was read. Any salts remaining in the sample were extracted using methanol. Silver Nitrate solution was used to confirm that all salts were removed from the sample. 2. Extraction of residual fluids was done using cool solvent extraction. Toluene was used to extract residual hydrocarbons, and methanol was used to extract any remaining inorganic salts. 3. The sample was dried to a stable dry weight in a low temperature vacuum oven at 110°F, and then cooled to room temperature in a moisture free environment. 4. Grain volume was determined for the sample by placing it into a stainless steel matrix cup. It was injected with helium from reference cells of known volume and pressure using the Core Lab AutoPorosimeter. Grain volume was calculated using Boyle’s Law of gas expansion. Grain density was calculated by dividing sample dry weight by grain volume. 5. The sample was loaded into the CMS-300TM for determination of permeability and porosity. Net confining pressures were applied. 6. The sample was placed into a rubber sleeve between stainless steel end pieces and confining pressure applied. Helium was injected into the sample from reference cells of known volume and pressure. A direct pore volume was determined using Boyle’s Law of gas expansion, then pressure was vented at a known rate and unsteady-state Klinkenberg permeability was determined by pressure decay. 7. Porosity was calculated for the sample as the pore volume fraction of the summation (grain volume + pore volume) bulk volume. RwCore™ Analysis 1. The selected sample was placed between electrodes in a resistivity cell and complex resistivity measurements were processed using proprietary equations to determine Rw. RwCore™ Analysis is a patent pending technique. Core Laboratories Basic Properties with Tracer Analysis 1. Sample Preparation Wellsite preserved, 1.5" diameter plugs were trimmed into right cylinders with a diamond- blade trim saw. All sample trims were archived. 2. Core Extraction Plugs selected for routine core analysis were placed in Dean Stark equipment using toluene, followed by Soxhlet extraction cycling between a chloroform/methanol (87:13) azeotrope and methanol. Dean Stark water was collected and submitted for tritium tracer analysis. 3. Sample Drying Samples were oven dried at 240° F to weight equilibrium (+/- 0.001 g). 4. Porosity Porosity was determined using Boyle's Law technique by measuring grain volume at ambient conditions & pore volume at indicated net confining stresses (NCS) . 6. Grain Density Grain density values were calculated by direct measurement of grain volume and weight on dried plug samples. Grain volume was measured by Boyle's Law technique. 7. Permeability Permeability to air was measured on each sample using unsteady-state method at indicated NCS. 8. Fluid Saturations Fluid saturations were determined by the Dean Stark technique using the following fluid properties: Brine 1.032 g/cc (50000 ppm TDS) Oil 0.845 g/cc (36° API) Core Laboratories Company: Repsol E&P USA, Inc.Date: 26-Jun-2013 Well: Qugruk-3 Analyst(s):TV, CS, AP, CR File: HOU-130038 Total Net Liquid (ambient)Confining Bulk Sample Depth,Saturation Porosity NMR He Stress Density, Number ft % PV %Total (fluid)(gas)psi Description g/cm3 29 4201.00 42.8 32.2 2.011 0.861 1.151 1600 56.7 *Sst, drk gry 2.296 26 4228.00 66.4 23.1 2.250 1.495 0.755 1600 0.654 *Sst, sl lam, gry 2.398 22 4312.00 49.4 36.1 1.474 0.728 0.746 1600 8.62 *Sst, sl lam, lt gry 2.647 21 4340.00 46.3 29.1 2.210 1.022 1.188 1600 30.8 *Sst, sl lam, drk gry 2.283 13 6988.00 57.3 20.5 1.469 0.841 0.627 2900 0.002 Sst, sl lam, gry 2.477 4 7250.00 81.8 13.2 1.321 1.081 0.241 2900 0.0002 Sst, lt gry 2.536 * Permeability exceeded PDP limits (>0.1 md); permeability measured by CMS-300™ SUMMARY OF FRESH STATE CORE ANALYSES RESULTS Preliminary Report Pore Volume, cm3 at NCS (as received), Fresh-State Effective Kg, md Core Laboratories Company:Repsol E&P USA, Inc.File:HOU-130038 Well:Qugruk-3 Date: Location:North Slope, Alaska Analyst(s): CS, CR CMS-300TM CONVENTIONAL PLUG ANALYSIS – SCAL REPORT Oil Water Klinkenberg Kair Zone 1 28 4206.40 Ambient 0.367 0.289 --6.9 13.8 0.904 2.71 2.447 --(1) 27 4209.00 800 1.372 0.225 13.9 17.0 25.2 14.8 4.730 2.67 12.609 1.424 2.325 1600 1.319 0.218 12.4 15.0 25 4236.00 800 1.024 0.204 2.31 2.83 9.7 29.8 3.996 2.68 10.694 1.191 2.314 1600 0.978 0.197 2.12 2.58 24 4269.00 Ambient 0.483 0.180 --8.8 42.1 2.208 2.65 5.845 --(1) 23 4273.00 Ambient 0.484 0.222 --29.2 10.5 1.693 2.69 4.552 --(1) 20 4378.50 800 1.659 0.179 0.821 1.07 40.5 30.6 7.616 2.68 20.388 2.191 2.314 1600 1.582 0.172 0.772 1.00 19 5968.00 800 1.748 0.196 5.20 6.09 15.1 40.7 7.190 2.70 19.405 2.044 2.335 1600 1.668 0.188 4.93 5.81 18 5978.00 800 1.654 0.196 5.67 6.83 4.8 55.3 6.775 2.69 18.233 1.938 2.330 1600 1.592 0.190 5.10 6.11 Zone 2 16 6598.00 800 0.958 0.171 6.32 7.36 1.3 37.1 4.651 2.49 11.582 1.245 2.414 (2) 2900 0.734 0.136 1.34 1.68 15 6976.10 800 1.131 0.138 0.048 0.088 36.4 36.0 7.060 2.69 18.987 1.886 2.327 2900 1.029 0.127 0.009 0.022 14 6986.50 800 0.406 0.160 0.030 0.072 2.1 43.8 2.127 2.65 5.626 0.574 2.322 (2) 2900 0.293 0.121 0.008 0.020 12 7006.00 800 1.174 0.156 0.031 0.074 38.1 17.3 6.333 2.68 16.987 1.715 2.332 2900 1.043 0.141 0.016 0.044 11 7010.00 800 0.576 0.167 0.065 0.133 15.6 17.7 2.874 2.66 7.657 0.785 2.328 (2) 2900 0.468 0.140 0.048 0.097 Porosity fraction Permeability,Grain Volume (cm3) Grain Density (g/cm3) Footnote 13-Sep-2013 Following Dean Stark Dry Weight (g) Length (cm) Diameter (cm)millidarcies Saturation % Pore Volume Sample Number Depth (ft) Confining Stress (psi) Pore Volume (cm3) Core Laboratories Company:Repsol E&P USA, Inc.File:HOU-130038 Well:Qugruk-3 Date: Location:North Slope, Alaska Analyst(s): CS, CR CMS-300TM CONVENTIONAL PLUG ANALYSIS – SCAL REPORT Oil Water Klinkenberg Kair Porosity fraction Permeability,Grain Volume (cm3) Grain Density (g/cm3) Footnote 13-Sep-2013 Following Dean Stark Dry Weight (g) Length (cm) Diameter (cm)millidarcies Saturation % Pore Volume Sample Number Depth (ft) Confining Stress (psi) Pore Volume (cm3) 10 7013.90 800 1.807 0.257 0.047 0.107 0.8 22.5 5.228 2.67 13.966 1.418 2.333 2900 1.634 0.238 0.027 0.064 9 7027.00 800 1.332 0.182 0.080 0.175 37.6 15.3 5.980 2.68 16.000 1.671 2.337 2900 1.108 0.156 0.064 0.129 8 7030.00 800 0.539 0.178 0.055 0.112 15.1 9.4 2.484 2.64 6.563 0.682 2.332 (2) 2900 0.423 0.145 0.032 0.072 7 7048.10 800 0.312 0.159 0.182 0.319 12.3 16.3 1.644 2.65 4.349 0.430 2.330 (2) 2900 0.185 0.101 0.033 0.061 6 7077.50 800 0.940 0.122 0.004 0.015 14.9 54.1 6.791 2.70 18.311 1.760 2.333 2900 0.703 0.094 0.001 0.004 5 7236.00 800 0.889 0.084 0.006 0.016 27.3 57.1 9.709 2.68 26.050 2.496 2.327 2900 0.704 0.068 0.001 0.005 3 7256.50 800 0.579 0.115 0.016 0.036 27.2 17.6 4.447 2.67 11.896 1.140 2.328 2900 0.450 0.092 0.003 0.012 2 7261.20 800 0.822 0.123 0.013 0.033 7.8 37.1 5.860 2.68 15.682 1.511 2.318 2900 0.627 0.097 0.002 0.010 1 7270.00 800 0.742 0.109 0.017 0.041 2.3 50.8 6.080 2.68 16.324 1.593 2.342 2900 0.681 0.101 0.003 0.014 Footnotes: (1) : Denotes fractured or chipped sample. Porosity determined using Archimedes bulk volume at ambient conditions. (2) : Denotes very short and/or irregular shaped sample, porosity may be optimistic due to lack of conformation of boot material to plug surface. Core Laboratories Company:Repsol E&P USA, Inc.Date:8/14/2013 Well:Qugruk-3 File: HOU-130038 Location:North Slope, Alaska Well Depth,Rw-Core Name feet Ohm-m @ 77°F 10V Qugruk-3 6972.70-6973.00 0.108 11V Qugruk-3 6974.35-6974.55 0.056 Sample Number Brine Resistivity Measurements Rw-Core Core Laboratories Company:Repsol Services File:HOU-130038 Well:Qugruk-3 Date:41579.00 Location:North Slope, Alaska Analyst(s):AC, LA, CR Permeability Saturation Tracer Correction Sample Depth Porosity Klinkenberg Kair b(air)Beta Alpha Oil Water % Water Invasion Corrected Water Grain Density Footnote Number (ft)(psig)(%)(md)(md)psi (ft-1)(microns)(g/cm3) 10V 6972.70 - 6973.00 800 9.92 .004 .014 83.96 5.80E+14 7.48E+03 2.675 10V 6972.70 - 6973.00 2900 9.63 .001 .005 129.62 6.09E+15 2.28E+04 27.1 65.0 1.9 63.8 2.675 11V 6974.35 - 6974.55 800 12.29 .002 .007 117.62 3.56E+15 1.77E+04 2.737 11V 6974.35 - 6974.55 2900 10.86 .0003 .002 208.33 8.43E+16 7.96E+04 14.3 76.3 3.4 73.7 2.737 Footnotes : (1) : Denotes fractured or chipped sample. Permeability and/or porosity may be optimistic. (2) : Sample permeability below the measurement range of CMS-300 equipment at indicated net confining stress (NCS). Data unavailable. (3) : Denotes very short sample, porosity may be optimistic due to lack of conformation of boot material to plug surface. (4) : Sample contains bitumen or other solid hydrocarbon residue. (5) : Denotes sample unsuitable for measurement at stress. Porosity determined using Archimedes bulk volume at ambient conditions. Permeability greater than 0.1 mD measured using helium gas. Permeability less than 0.1 mD measured using nitrogen gas. All b values converted to b (air) CMS-300 CONVENTIONAL PLUG ANALYSIS % Pore Volume Net Confining Stress Core Laboratories Company:Repsol Services File:HOU-130038 Well:Qugruk-3 Date:41579.00 Location:North Slope, Alaska Analyst(s):AC, LA, CR APPENDIX A: EXPLANATION OF CMS-300 TERMS "b", "Beta, and "Alpha" K∞=Equivalent non-reactive liquid permeability, corrected for gas slippage, mD Kair =Permeability to Air, calculated using K∞ and b, mD b =Klinkenberg slip factor, psi β (Beta)=Forcheimer inertial resistance factor, ft-1 α (Alpha)=A factor equal to the product of Beta and K∞. This factor is employed in determining the pore level heterogeneity index, Hi. Hi = log10 (αø/RQI)α, microns = 3.238E-9 βK∞ Ø =Porosity, fraction RQI =Reservoir Quality Index, microns RQI = 0.0314(K/ø)0.5 For further information please refer to: Jones, S.C.: "Two-Point Determination of Permeability and PV vs. Net Confining Stress" SPE Formation Evaluation (March 1988) 235-241. Jones S.C.: "A Rapid Accurate Unsteady-State Klinkenberg Permeameter," Soc. Pet. Eng. J. (Oct. 1972) 383-397. Jones, S.C.: "Using the Inertial Coefficient, β, To Characterize Heterogeneity in Reservoir Rock: SPE 16949 (September 1987). Amaefule, J.O.; Kersey, D.G.; Marschall, D.M.; Powell, J.D.; Valencia, L.E.; Keelan, D.K.: "Reservoir Description: A Practical Synergistic Engineering and Geological Approach Based on Analysis of Core Data,: SPE Technical Conference (Oct. 1988) SPE 18167. Thin Section Petrography and SEM Microscopy of Rotary Sidewall Core Samples Repsol Services Qugruk #3 Well North Slope, Alaska Houston ATC Job File No.: 130038G August 2013 Core Laboratories, Inc. Houston Advanced Technology Center 6316 Windfern Road Houston, Texas 77040 August 16, 2013 Mr. Jeff Meyer Repsol Services 2001 Timberloch Place The Woodlands, Texas 77380 Reservoir Geology File No.: 130038G Mr. Meyer: Core Laboratories performed thin section petrography, SEM microscopy, and X–ray diffraction analyses on thirty (30) rotary sidewall core samples from the Repsol Services’ Qugruk #3 Well, North Slope, Alaska. This document represents an integrated report that includes the results of the interim report on twelve high– priority samples that were reported last month and eighteen routine non–expedited samples. The sample depths range from 4199.0 feet to 7270.0 feet. Table 1 contains a summary of the samples. The results of the X–ray diffraction analyses (by weight percent) are contained in Table 2. Plates 1 through 30 contain thin section and SEM photomicrographs and descriptions of the samples. Because the nature of the samples’ fabric cannot be adequately illustrated in the small field–of–view of a petrographic microscope, high–resolution (2400 dpi) thin section scans also are included for the samples in order to illustrate the typical fabric(s) for each unit. The scanned images clarify gross fabric features and interrelationships not evident microscopically. In a few cases where micropores are suspected, supplemental plane and UV light images are included to document these features. The photomicrographs in this report are calibrated for onscreen viewing so that they retain the fidelity of the view from the petrographic microscope. When printed, images from this report will not necessarily reflect the color characteristics and brightness levels of the petrographic microscope view. Print versions of these images will never display the same subtlety as seen on the screen because of the reduced printer color space. This is especially true of the UV light images that document the epifluorescence in these samples. Only by viewing the images on the screen can the subtlety of shades and intensity be appreciated. Core Laboratories 6316 Windfern Road Houston, Texas 77040 USA Tel: 713–460–9600 Fax: 713–460–4389 TABLE 1 Samples Examined Lithology and Texture The entire sample suite is comprised mostly of argillaceous sandstones and siltstones with the exception of a few mudstones (Table 1). One sample (Sample 16) is strikingly glauconitic. In Folk’s (1980) system, the samples classify broadly as subarkoses or quartzarenites based on the relative percentages of quartz, feldspars (as measured by XRD), and estimated percentages of lithic fragments. The samples’ grain size averages range from 0.033 mm (coarse silt) to 0.154 mm (lower fine sand). Although the sandstones contain mostly very fine sand–size detrital material, some burrows in these samples do contain coarser detrital grains. No grain size versus depth trend is identified. Grain sorting ranges from poorly sorted to very well sorted. Grains range from angular to subrounded. Sample No. Depth (ft) Lithology Classification (Folk, 1980) 1 4199.0 Slightly Argillaceous Sandstone Subarkose 2 4201.0 Argillaceous Sandstone Subarkose 3 4206.5 Argillaceous Sandstone Subarkose 4 4209.0 Slightly Argillaceous Sandstone Subarkose 5 4228.0 Argillaceous Sandstone Subarkose 6 4236.0 Argillaceous Sandstone Subarkose 7 4269.0 Argillaceous Sandstone Subarkose 8 4273.0 Argillaceous Sandstone Subarkose 9 4312.0 Silty Mudstone / Sandstone N/A 10 4340.0 Slightly Argillaceous Sandstone Subarkose 11 4378.5 Argillaceous Sandstone / Siltstone Subarkose 12 5968.0 Slightly Argillaceous Sandstone Subarkose 13 5978.0 Slightly Argillaceous Sandstone Sublitharenite 14 6458.0 Mudstone N/A 15 6598.0 Mudstone N/A 16 6976.1 Glauconitic Argillaceous Sandstone Quartzarenite 17 6986.5 Argillaceous Sandstone Quartzarenite 18 6988.0 Argillaceous Sandstone Quartzarenite 19 7006.0 Argillaceous Sandstone Quartzarenite 20 7010.0 Argillaceous Sandstone Quartzarenite 21 7013.9 Argillaceous Sandstone Quartzarenite 22 7027.0 Slightly Argillaceous Sandstone Quartzarenite 23 7030.0 Argillaceous Sandstone Quartzarenite 24 7048.0 Argillaceous Sandstone Quartzarenite 25 7077.5 Argillaceous Siltstone Quartzarenite 26 7236.5 Argillaceous Sandstone Quartzarenite 27 7250.0 Argillaceous Sandstone Quartzarenite 28 7256.5 Argillaceous Sandstone Quartzarenite 29 7261.2 Argillaceous Sandstone Quartzarenite 30 7270.0 Argillaceous Sandstone Quartzarenite Re p s o l S e r v i c e s Qu g r u k # 3 , N o r t h S l o p e , A l a s k a TA B L E 2 Mi n e r a l o g y D e t e r m i n e d b y X - r a y D i f f r a c t i o n File: 130038G Wh o l e R o c k M i n e r a l o g y C l a y ( P h y l l o s i l i c a t e ) M i n e r a l o g y * % S m e c t i t e (W e i g h t % ) in MXL I/S De p t h Q u a r t z K F e l d s p a r P l a g i o c l a s e C a l c i t e D o l o m i t e & S i d e r i t e P y r i t e T o t a l C l a y I l l i t e / I l l i t e & M i c a K a o l i n i t e C h l o r i t e F e - D o l o m i t e S m e c t i t e * 41 9 9 . 0 0 6 0 . 9 2 . 1 1 5 . 1 0 . 0 0 . 7 0 . 0 2 . 1 1 9 . 1 3 . 4 6 . 5 2 . 9 6 . 3 2 0 - 3 0 42 0 1 . 0 0 6 6 . 6 1 . 7 1 2 . 4 0 . 0 3 . 0 0 . 0 2 . 5 1 3 . 8 3 . 1 4 . 5 3 . 5 2 . 7 2 0 - 3 0 42 0 6 . 4 0 6 4 . 6 1 . 5 1 1 . 7 0 . 0 2 . 2 0 . 0 3 . 0 1 7 . 0 3 . 7 5 . 9 3 . 1 4 . 3 2 0 - 3 0 42 0 9 . 0 0 6 4 . 0 2 . 5 1 1 . 6 0 . 0 1 . 6 0 . 0 0 . 4 2 0 . 0 4 . 0 7 . 5 3 . 1 5 . 4 2 0 - 3 0 42 2 8 . 0 0 5 8 . 3 1 . 7 1 2 . 6 0 . 0 4 . 3 0 . 0 0 . 3 2 2 . 7 6 . 0 7 . 7 2 . 6 6 . 4 2 0 - 3 0 42 3 6 . 0 0 5 4 . 0 2 . 2 1 1 . 5 0 . 0 6 . 6 0 . 0 0 . 6 2 5 . 2 6 . 4 8 . 8 3 . 0 7 . 0 2 0 - 3 0 42 6 9 . 0 0 4 5 . 6 1 . 6 1 1 . 6 0 . 0 3 . 9 0 . 0 1 . 1 3 6 . 3 8 . 4 1 3 . 4 3 . 3 1 1 . 2 2 0 - 3 0 42 7 3 . 0 0 4 6 . 4 1 . 7 1 1 . 2 0 . 0 3 . 7 0 . 0 1 . 2 3 5 . 8 9 . 6 1 2 . 6 4 . 0 9 . 6 2 0 - 3 0 43 1 2 . 0 0 2 6 . 7 1 . 2 7 . 0 0 . 0 2 . 6 3 9 . 5 0 . 0 2 3 . 0 6 . 6 9 . 3 4 . 5 2 . 6 2 0 - 3 0 43 4 0 . 0 0 6 0 . 1 2 . 2 1 2 . 1 0 . 0 3 . 1 0 . 0 0 . 5 2 2 . 1 5 . 0 8 . 0 2 . 7 6 . 4 2 0 - 3 0 43 7 8 . 5 0 4 7 . 7 1 . 8 1 2 . 8 0 . 0 5 . 9 2 . 7 0 . 8 2 8 . 3 6 . 1 1 0 . 3 2 . 8 9 . 1 2 0 - 3 0 59 6 8 . 0 0 5 4 . 2 1 . 5 1 2 . 9 1 . 1 5 . 7 1 . 4 0 . 5 2 2 . 7 5 . 1 8 . 7 3 . 0 5 . 9 2 0 - 3 0 59 7 8 . 0 0 6 1 . 3 1 . 6 1 2 . 1 0 . 6 5 . 0 0 . 8 0 . 0 1 8 . 5 3 . 2 6 . 9 2 . 7 5 . 7 2 0 - 3 0 64 5 8 . 0 0 6 . 3 1 . 4 1 4 . 2 0 . 0 0 . 0 0 . 0 2 . 5 7 5 . 5 4 2 . 9 4 . 3 2 6 . 0 2 . 3 3 0 - 4 0 65 9 8 . 0 0 2 0 . 0 0 . 9 3 . 8 1 . 9 3 . 6 0 . 0 2 9 . 7 4 0 . 2 1 1 . 3 1 6 . 1 7 . 1 5 . 7 2 0 - 3 0 69 7 6 . 1 0 6 5 . 8 1 . 5 0 . 9 0 . 0 0 . 8 0 . 0 1 . 3 2 9 . 7 1 4 . 4 1 0 . 8 2 . 0 2 . 5 2 0 - 3 0 69 8 6 . 5 0 6 3 . 9 1 . 5 2 . 0 0 . 9 3 . 1 0 . 0 4 . 0 2 4 . 6 9 . 8 7 . 1 5 . 1 2 . 6 2 0 - 3 0 69 8 8 . 0 0 7 3 . 7 1 . 6 1 . 6 0 . 8 2 . 8 0 . 0 3 . 0 1 6 . 5 6 . 7 5 . 4 2 . 8 1 . 6 2 0 - 3 0 70 0 6 . 0 0 7 0 . 8 0 . 8 1 . 1 1 . 1 4 . 1 1 . 2 2 . 0 1 9 . 0 7 . 8 7 . 0 2 . 5 1 . 7 2 0 - 3 0 70 1 0 . 0 0 7 6 . 5 0 . 9 1 . 1 0 . 7 2 . 7 0 . 0 2 . 1 1 6 . 0 8 . 1 5 . 4 1 . 0 1 . 5 2 0 - 3 0 70 1 3 . 9 0 7 2 . 4 0 . 9 1 . 9 0 . 9 3 . 6 0 . 0 1 . 6 1 8 . 7 8 . 0 6 . 9 2 . 1 1 . 7 2 0 - 3 0 70 2 7 . 0 0 7 9 . 1 0 . 8 1 . 3 0 . 4 2 . 6 0 . 0 1 . 7 1 4 . 1 7 . 3 4 . 6 1 . 2 1 . 0 2 0 - 3 0 70 3 0 . 0 0 7 5 . 9 0 . 7 1 . 3 0 . 5 4 . 1 0 . 0 2 . 0 1 5 . 5 6 . 8 5 . 7 1 . 4 1 . 6 2 0 - 3 0 70 4 8 . 1 0 6 5 . 1 1 . 5 2 . 4 0 . 7 4 . 0 0 . 0 2 . 8 2 3 . 5 1 0 . 6 8 . 1 3 . 4 1 . 4 2 0 - 3 0 70 7 7 . 5 0 6 5 . 3 1 . 0 2 . 6 0 . 0 3 . 3 0 . 0 1 . 9 2 5 . 8 1 0 . 3 1 0 . 0 3 . 2 2 . 3 2 0 - 3 0 72 3 6 . 0 0 6 0 . 3 0 . 7 1 . 7 0 . 0 3 . 1 0 . 0 2 . 0 3 2 . 2 1 1 . 9 1 1 . 4 4 . 3 4 . 6 2 0 - 3 0 72 5 0 . 0 0 6 9 . 2 1 . 0 1 . 2 0 . 6 2 . 9 0 . 0 1 . 5 2 3 . 7 1 1 . 4 7 . 1 3 . 7 1 . 5 2 0 - 3 0 72 5 6 . 5 0 6 3 . 3 1 . 0 1 . 8 0 . 0 1 . 5 0 . 0 4 . 2 2 8 . 3 1 3 . 7 8 . 5 3 . 5 2 . 6 2 0 - 3 0 72 6 1 . 2 0 6 5 . 7 0 . 6 1 . 3 0 . 0 2 . 0 0 . 0 2 . 5 2 7 . 9 1 2 . 7 8 . 2 3 . 8 3 . 2 2 0 - 3 0 72 7 0 . 0 0 7 2 . 1 0 . 8 1 . 2 0 . 0 1 . 2 0 . 0 1 . 9 2 2 . 9 9 . 1 7 . 5 3 . 5 2 . 8 2 0 - 3 0 (W e i g h t % ) Core Lab Reservoir Geology These samples are primarily characterized by bioturbation and burrowing (e.g., 4269.0 feet; Plates 7 and 7A), some of it extensive enough to destroy all vestiges of the original rock fabric (e.g., 7006.0 feet; Plate 19). Other samples appear massive (e.g., 4206.5 feet; Plate 3), but may be so completely bioturbated that the samples exhibit a homogeneous texture. One sample contains well defined lamination (i.e., 4273.0 feet; Plate 8), with only minor burrowing that modestly disrupts the pristine fabric. The individual laminae are defined by abrupt changes in concentrations of detrital grains, detrital clay matrix, and alignment of elongate detrital grains. In one of the two mudstone samples from the sample suite, thin well defined wavy discontinuous lamination is present, where lamination is defined by discontinuous blebs of dark organic matter and lens–like accumulations of detrital clay (e.g., 6458.0 feet; Plate 14B). One of the samples exhibits an uncommon texture (i.e., 4228.0 feet; Plate 5). In this sample, sedimentary boudinage is probably responsible for the amorphous zones of contrasting lithologies. This feature imparts a characteristic “pinch–and–swell” appearance. Boudinage results from differential compaction of the “cleaner” sediment into the soft sediment of underlying facies that produce the tapered look to the sediment lenses. The harmony of stratification and the tapered termination of the sediment lenses are diagnostic for this feature. The sedimentary lenses are typically “cleaner”, in that they are mostly free of detrital clay and contain authigenic cements. Detrital grains in the lenses tend to be slightly coarser than in the stratified portion of the sample. This sample also contains dewatering structures, indicating compaction occurred early in the sample’s diagenetic history. The interpretation of these structures in the broader context of the regional geology is left to the client. Detrital Grains, Allochems, and Accessory Grains Thin section petrography and X–ray diffraction analyses (Table 2) indicate that framework grains in the samples consist of abundant quartz, with lesser plagioclase and K–feldspar. Quartz ranges from 6.3% (6458.0 feet; Plate 14) to 79.1% (7027.0 feet; Plate 22). Plagioclase is found in all samples in trace to common amounts, ranging from 0.9% (6976.1 feet; Plate 16) to 15.1% (4199.0 feet; Plate 1), whereas K– feldspar ranges from 0.6% (7261.2 feet; Plate 29) to 2.5% (4209.0 feet; Plate 4). Argillaceous rock fragments can comprise a significant proportion of the framework grains in some samples (e.g., 4206.5 feet; Plate 3B). Some of these grains may be mud rip–up clasts. A few volcanic rock fragments and chert grains are occasionally observed in the samples (e.g., 4199.0 feet; Plate 1B), but they do not comprise significant percentages of the samples. In a few of the deeper samples both limestone rock fragments (e.g., 7010.0 feet; Plate 20B) and dolostone rock fragments (e.g., 7013.9 feet; Plate 21B) are found in trace quantities. Glauconite is observed in several of the deeper samples, but is most noticeable in the sample from 6976.1 feet (Plates 16A and 16B), where it rivals quartz in a visual estimation of relative percentage. This sample is the first instance of glauconite’s presence. Deeper samples also contain glauconite, but only occasional grains are observed. Many of the samples contain accessory grains that include traces of micas and organic matter. Elongate detrital mica flakes generally align with bedding or are indicators of lamination when its manifestation is faint. Organic matter usually occurs as ductile stringers that warp around rigid framework grains (e.g., 7006.0 feet; Plate 19B). Organic matter is also observed as blebs between framework grains (e.g., 4199.0 feet; Plate 1B). In many cases, organic matter is observed is larger amorphous masses, but it has usually undergone partial pyritization (e.g., 4228.0 feet; Plate 5). A few recrystallized mollusk fragments and several instances of crushed ostracods were observed in some of the deeper samples. Their presence is rare. One sample contains excellent examples of apparent late Jurassic or Cretaceous siliceous nanoplankton radiolaria of the order Spumellaria (e.g., 6458.0 feet; Plate 14B). As seawater is undersaturated with respect to silica, the excellent preservation of these examples relies on specific depositional and burial conditions and diagenesis. Phosphatic fragments are observed in a number of samples (e.g., 6598.0 feet; Plates 15A and 15B) that appear to be preserved fish bones. In this same sample, ferroan dolomite–cemented calcispheres are also present. Other undifferentiated skeletal debris is also observed (e.g., 7250.0 feet; Plate 27B). Matrix Detrital clay matrix is abundant in these samples. Total clay (by weight percent XRD) in the samples ranges from 13.8% (4201.0 feet; Plate 2) to 75.5% (6458.0 feet; Plate 14). The average for all the samples is 25.3%. No depth trend is identified. Note that clays included in the XRD results represent clays from detrital clay matrix, authigenic clays, possible clay products of leached feldspar, clay grains including detrital mica (detected as illite), argillaceous rock fragments, glauconite pellets, and mud rip–up clasts. The clay in the samples is ubiquitous and can appear uniformly distributed (non–laminated samples) to segregated into discrete laminae (laminated samples). In addition, detrital clay can also exhibit non– uniform distribution within some samples (e.g., 7006.0 feet; Plate 19), probably the result of bioturbation. In the deeper samples (i.e., ≥ 6458.0 feet), the detrital clay matrix contains high proportions of illite/smectite and illite & mica (weight percent average of 11.9% and 7.9%, respectively in the deepest seventeen samples). These mixed–layer clays are observable in SEM, typically coating grains or filling intergranular space (e.g., 4228.0 feet and 7236.5 feet; Plates 5D and 26D, respectively). Strong lineation of mixed–layer clays provides the laminated character to some samples (e.g., 6598.0 feet; Plate 15D). Kaolinite contributes 3.9% (weight percent average), whereas chlorite is 4.1% (weight percent average) in the samples, as confirmed by XRD analysis (Table 2). Authigenic Minerals/Cements The predominant authigenic cement in the sample suite is dolomite, usually in the form of slightly ferroan dolomite. Dolomite is measured as high as 6.6% (by XRD) in the sample from 4236.0 feet (Plate 6B). Dolomite’s habit is typically small rhombohedral crystals, some of them displaying evidence of zoning, or multiple generations of cementation. Where present, dolomite typically fills intergranular space between framework grains (e.g., 4236.0 feet; Plate 6B), or as a more extensive replacement of framework grains (e.g., 7261.2 feet; Plate 29B). Ferroan dolomite is also identified by EDS (Energy Dispersive Spectroscopy) analysis in SEM (e.g., 4236.0 feet; Plate 6D). Calcite is present in a eleven samples, but only in trace to minor quantities (e.g., 6986.5 feet and 7077.5 feet; Plates 17B and 25D, respectively). A portion of the calcite that is present is a constituent of the rare allochems observed in some samples. Siderite is observed in four samples. In three of these samples, siderite is present in minor quantities (e.g., 7006.0 feet; Plate 19B), where it cements some pores completely. However, in the sample from 4312 feet (Plate 9), siderite was measured at 39.5% by weight. In this sample, siderite appears as very small crystals that are widely disseminated throughout the detrital clay matrix that is so abundant in this sample. Quartz overgrowths play a small role in cementation of some of the samples. The overgrowths are typically thin (e.g., 6976.1 feet; Plate 16B), often discontinuous, and mostly suppressed by the abundant detrital and authigenic clays in these samples. Authigenic quartz as quartz overgrowths is well displayed in SEM (e.g., 5968.0 feet; Plate 12D). Because of the lack of dust rims in most petrographic examples of quartz overgrowths, SEM is the only means by which this authigenic cement can be observed (e.g., 5978.0 Plate 13D). Authigenic pyrite is present in all but two samples. Where present, pyrite ranges from 0.3% (4228.0 feet; Plate 5) to 29.7% (6598.0 feet; Plate 15), averaging 2.0%. Pyrite is typically observed forming small framboids that replace framework grains or matrix (e.g., 4201.0 feet; Plate 2B) or as late generation replacement of larger areas of organic matter (e.g., 4228.0 feet and 7013.9 feet; Plates 5 and 21A, respectively). Pyrite is best observed in SEM in the samples from 6598.0 feet and 6986.5 feet (Plates 15D and 17D, respectively), where numerous small framboids are observed replacing or displacing detrital matrix. Authigenic kaolinite and chlorite exist in all samples, but some of it is intimately associated with the detrital clay matrix and is not directly observable. Kaolinite is seen in thin section, always occluding pores (e.g., 7261.2 feet and 7077.5 feet; Plates 29B and 25B, respectively). SEM also provides a detailed view of pore occlusion by kaolinite (e.g., 4209.0 feet and 6988.0 feet; Plates4D and 18D, respectively). Chlorite is occasionally observed lining open pores and coating some grains (e.g., 6986.5 feet and 4340.0 feet; Plates 17B and 10B, respectively). Blades of authigenic chlorite are also observed coating grains in SEM (e.g., 4206.5 feet; Plate 3D). Pores and Reservoir Quality The principal controls on porosity in these samples are the degree of compaction and the abundances of authigenic cements. The SEM images in this report best illustrate the grain / authigenic cement / pore relationships in the samples. The most abundant visible pore types are primary intergranular pores (e.g., 4206.4 feet; Plate 3B). However, argillaceous clay infiltration between pores and growth of authigenic cements in most samples has destroyed many of these original pores. Many of the samples’ primary pores were lost during mechanical compaction and dewatering, further exacerbated by the infiltration of detrital clay with lesser influence of dolomite cementation, growth of authigenic clays, and the formation of quartz overgrowths. Other pores seen in lesser quantities are secondary intragranular pores (e.g., 7006.0 feet; Plate 19B). These pores result from partial dissolution of the unstable mineralogy of feldspars, particularly plagioclase in this sample suite. Moldic pores are seen in many samples (e.g., 6976.1 feet; Plate 16B), but never in greater than trace quantities. Moldic pores are the product of complete dissolution of unstable mineralogies. Although most samples are visually porous to some degree (up to moderate amounts), authigenic clays appear to have cemented and destroyed some of the original intergranular space. However, the epoxy used to prepare the thin sections was spiked with autofluorescing blue dye. Under reflected UV light, pores and micropores will fluoresce, whereas non–porous items such as quartz grains or dolomite cement will be opaque. In supplemental, low–magnification paired views of a “cleaner” portion of the shallowest sample under both plane and UV light, micropores are apparent (e.g., 4201.0 feet; Plate 2F). In a higher– magnification view of the sample from 6986.5 feet, the sample is apparently non–porous in plane light (Plate 17E). However under reflected UV light, zones that appear cemented with kaolinite and chlorite exhibit epifluorescence and micropores (Plate 17F). The same is true of the sample from 7270.0 feet, where the paired, high–magnification paired plane and UV light views demonstrate this effect again (Plates 30E and 30F). The three samples just mentioned are the best examples of micropores present in the sample suite. The other nine samples show few, if any, micropores. Examination of the scanning electron microscopy (SEM) images helps illuminate the causal relationships that produce the enigmatic microporous zones. Please note that the microscope/camera combination used to capture the supplemental plane and UV light images is different than the combination used to capture the bulk of the images in this report. Slight variations in image quality and scale are apparent when the two microscope/camera combinations images are compared side–by–side. ~~~ Thank you for choosing Core Laboratories to perform this study. Please contact me with any questions or comments concerning this report. Sincerely, James L. Strasen Ph.D. Geologist Core Laboratories Petroleum Services 6316 Windfern Rd. Houston, TX 77040 James.Strasen@corelab.com REFERENCES FOLK, R.L., 1980, Petrology of Sedimentary Rocks: Hemphill Publishing, Austin, Texas, 184p. http://www.lib.utexas.edu/geo/folkready/folkprefrev.html ANALYTICAL PROCEDURES THIN SECTION ANALYSES Thin sections were prepared by first impregnating the samples with epoxy to augment cohesion and to prevent loss of material during grinding. Autofluorescing blue dye was added to the epoxy to highlight the pore spaces. Impregnation by dyes greatly facilitates the study of pores structures, micropores, and microfractures. Each thinly sliced sample was mounted on a frosted glass slide, then cut and ground in oil to an approximate thickness of 30 microns. The thin sections were stained with Alizarin Red–S to differentiate calcite (stains medium red) from clear dolomite (does not stain); potassium ferricynanide to identify ferroan dolomite (stains medium blue) and ferroan calcite (stains dark red to purple to blue); and sodium cobaltinitrite to distinguish feldspars (potassium feldspar stains yellow and plagioclase does not stain). The thin sections were analyzed using standard petrographic techniques. The photographic strategy was the same for each sample. Low–magnification, plane–polarized and UV light images were taken to document the intrinsic fabric and texture of each sample. Higher magnification plane–polarized and UV light photos were captured that delineate either special features, cements, fractures, or other zones of interest and characterizes the macropore and micropore structures (if any) in the samples. SCANNING ELECTRON MICROSCOPY (SEM) Each sample was mounted on an aluminum stub with silver paste so that a freshly broken surface was exposed. The samples were coated with gold (Au) or gold/palladium (Au/Pd) alloy using a Hummer Jr. Coating Unit. The SEM photomicrographs are secondary electron images taken digitally with a camera attached to a FEI Quanta FEG 250 Scanning Electron Microscope operating at 20 kV. Qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an interfaced Energy Dispersive Spectroscope (EDS) equipped with an Si(Li) detector. Recognition of any authigenic clays was based on the criteria proposed in Wilson and Pittman (1977). X–RAY DIFFRACTION ANALYSES (XRD) SAMPLE PREPARATION Samples submitted for whole–rock and clay–fraction XRD mineral analyses are first cleaned of obvious drilling contaminants and then disaggregated in a mortar and pestle. Approximately five grams of each sample are transferred to isopropyl alcohol and pulverized using a McCrone micronizing mill. The resultant powders are dried, disaggregated, and packed into aluminum sample holders to produce random whole–rock mounts. A separate split of each sample is dispersed in a dilute sodium phosphate solution using a sonic probe. The suspensions are then centrifugally size–fractionated to isolate clay–size (<4 micron ESD) materials for a separate clay–fraction mount. The suspensions are then vacuum–deposited on silver membrane filters to produce oriented clay mineral aggregates. Membrane mounts are attached to stainless steel slugs and exposed to ethylene glycol vapor for a minimum of 24 hours. ANALYTICAL PROCEDURES XRD analyses of the samples are performed utilizing Scintag and Philips automated powder diffractometers equipped with a copper source (40kV, 40mA) and a solid state or scintillation detector. The whole rock samples are analyzed over an angular range of 2–60 degrees 2–theta at a scan rate of one degree/minute. The glycol–solvated clay–fraction mounts are analyzed over an angular range of 2–50 degrees 2–theta at a rate of 1.5 degrees/minute. Semi–quantitative determinations of whole–rock and phyllosilicate mineral amounts are done utilizing integrated peak areas (derived from peak–decomposition / profile–fitting methods) and empirical reference intensity ratio (RIR) factors determined specifically for the diffractometer used in data collection. The total clay mineral (including mica) abundance of each sample is determined from the whole–rock XRD patterns using combined {00l} and {hkl} clay mineral reflections and suitable empirical RIR factors. XRD patterns from glycol–solvated clay–fraction samples are analyzed using techniques similar to those described above. Determinations of mixed–layer clay ordering and expandability are done by comparing experimental diffraction data from the glycol–solvated clay mineral aggregates with simulated one dimensional diffraction profiles generated using the program NEWMOD written by R.C. Reynolds. Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4199.0 Grain Size (mm): 0.099 (U. very fine sand) Sample ID: 1 Sorting: Photomicrograph Caption This supplemental high–resolution (2400 dpi) thin section scan is included in order to clarify gross sample texture and details. The features visible in the scans are not adequately illustrated in the small field–of–view of the petrographic microscope. Note the appearance of a massive fabric. However, some zones in the sample have abundances of detrital clay between framework grains (red arrows), suggesting that this sample is bioturbated. The large dark masses appear to be blebs of organic matter. PLATE 1 High–Resolution Thin Section Scan Sample Description Subarkose Well Lithology: Slightly Argillaceous Sandstone Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4199.0 Grain Size (mm): 0.099 (U. very fine sand) Sample ID: 1 Sorting: A B Quartz 60.9 Dolomite 0.7 K-Feldspar 2.1 Siderite 0.0 Plagioclase 15.1 Pyrite 2.1 Calcite 0.0 Total Clay 19.1 Illite / Smectite 3.4 Kaolinite 2.9 Illite & Mica 6.5 Chlorite 6.3 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Common primary intergranular pores; trace to minor secondary intragranular pores and moldic pore XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption This slightly argillaceous sandstone is massive, although the sample has a general bioturbated character in that detrital clay is present in some restricted areas but is typically absent. Abundant quartz (Qtz) is present with lesser plagioclase (PF) and K-feldspar (Ksp; stained yellow). A volcanic rock fragment is also visible in Photo B. Some organic matter (Om) is also visible. Although both primary intergranular pores and secondary intragranular pores are evident in Photo B (blue epoxy), note the degree of occlusion by authigenic clays in many of the pores. Some of the grains have been replaced by what appears to be chlorite (red arrow). Trace micas and organic matter; a few phosphatic fragments Matrix: Trace detrital clay overall, although abundant in a few restricted zones Cements: Moderate chlorite; minor pyrite and kaolinite; trace dolomite Pore Types: Structures: Massive, although detrital matrix is unevenly distributed – possibly bioturbated Framework Grains: Abundant quartz; common plagioclase; minor K–feldspar; a few volcanic rock fragments Accessory Grains: Subarkose Well Lithology: Slightly Argillaceous Sandstone PLATE 1 (cont.) Thin Section Petrography Sample Description VRF Om Qtz Ksp PF Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4199.0 Grain Size (mm): 0.099 (U. very fine sand) Sample ID: 1 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption Photos C and D represent low and high magnification SEM images. In this and the plates that follow, the high magnification image is centered in the low magnification image (yellow outline). The size of the yellow outline provides an indication of the relative magnification of the high-magnification image (Photo D). EDS (Energy Dispersive Spectroscopy) identifies most grains as quartz (Qtz). The small pore near the center of Photo D is partially occluded with mixed-layer clays (MXL) that are seen in Photo B (previous plate) as clay material between the grains. Mineralogy Determined by X-Ray Diffraction (Weight %) Subarkose Well Lithology: Slightly Argillaceous Sandstone PLATE 1 (cont.) Scanning Electron Microscopy Sample Description 60.9 2.1 15.1 0.0 0.7 0.0 2.1 19.1 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 3.4 6.5 2.9 6.3 0 2 4 6 8 10 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz MXL MXL Qtz Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4201.0 Grain Size (mm): 0.123 (U. very fine sand) Sample ID: 2 Sorting: PLATE 2 High–Resolution Thin Section Scan Sample Description Subarkose Well Lithology: Argillaceous Sandstone This thin section scan illustrates the somewhat chaotic fabric in this sandstone. A few zones contain abundant argillaceous material (red arrows). Many of the darker grains seen in the scan are either argillaceous rock fragments or pyrite replacements. Small, mostly primary intergranular and moldic pores are evident (blue epoxy). Photomicrograph Caption Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4201.0 Grain Size (mm): 0.123 (U. very fine sand) Sample ID: 2 Sorting: A B Quartz 66.6 Dolomite 3.0 K-Feldspar 1.7 Siderite 0.0 Plagioclase 12.4 Pyrite 2.5 Calcite 0.0 Total Clay 13.8 Illite / Smectite 3.1 Kaolinite 3.5 Illite & Mica 4.5 Chlorite 2.7 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% Abundant detrital clay in portions of the sample Note the burrows (Bur) and other evidence of disrupted original fabric visible in Photo A. Compaction is judged as moderate, based on the sub-equal number of point- versus long-grain contacts. In the higher magnification of Photo B, most of the white grains are quartz (Qtz), although common plagioclase (PF) is observed. Argillaceous rock fragments (ARF) are also seen - these fragments may also include mud rip-up clasts. Minor K-feldspar (Ksp; stained yellow) is obvious in Photo B. Cementation is primarily dolomite (Dol) and small framboids of pyrite (Pyr). Pyrite is also observed completely replacing some grains. Minor authigenic kaolinite and chlorite also line some pores. Most pores are primary intergranular pores (P1). Dissolution of some unstable feldspar mineralogy produces some secondary intragranular pores (P2). Abundant quartz; moderate plagioclase; minor to moderate argillaceous rock fragments; minor K-feldspar; trace chert; a few volcanic rock fragments Trace micas including biotite Framework Grains: PLATE 2 (cont.) Thin Section Petrography *Core analysis data taken at N/A psi Sample Description Common primary intergranular pores; trace to minor secondary intragranular pores and moldic pores; micropores within authigenic clay and some grains are minor to moderate Lithology: Argillaceous Sandstone Minor dolomite and pyrite; trace siderite; ocassional thin quartz overgrowths Bioturbated and burrowed; moderate compaction Photomicrograph Caption Pore Types: XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Structures: Cements: Accessory Grains: Matrix: Well Subarkose Bur Pyr P1 P2 Dol Qtz Ksp PF ARF Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4201.0 Grain Size (mm): 0.123 (U. very fine sand) Sample ID: 2 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% Photos C and D represent low and high magnification SEM images. EDS (Energy Dispersive Spectroscopy) identifies most grains as quartz (Qtz) with a small plagioclase grain (PF) also identified. A pore is visible near the center of Photo D. Note the partial occlusion of the pore by booklets of kaolinite (Kaol). *Core analysis data taken at N/A psi Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Argillaceous Sandstone PLATE 2 (cont.) Scanning Electron Microscopy Sample Description Subarkose Well 66.6 1.7 12.4 0.0 3.0 0.0 2.5 13.8 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 3.1 4.5 3.5 2.7 0 1 2 3 4 5 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz Kaol Kaol PF Qtz Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4201.0 Grain Size (mm): 0.123 (U. very fine sand) Sample ID: 2 Sorting: E F Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% PLATE 2 (cont.) Epifluorescent Thin Section Petrography Sample Description *Core analysis data taken at N/A psi Subarkose Well Lithology: Argillaceous Sandstone Photomicrograph Caption These are supplemental, low magnification, paired plane and UV light images included to show the nature of not only open pores in the samples, but also some opportunities for micropores. Obvious open pores (blue epoxy in Photo E) are bright under reflected UV light in Photo F. The red arrows indicate correlative points in the paired images. However, other areas that appear dimmer than the open pores in Photo F represent microporous zones that are not obvious under plane light. Most samples in the sample suite exhibit this behavior with the exception of zones rich in detrital clay. Whereas the microporous zones are not as brightly fluorescent as the open pores, they are significantly brighter (microporous) than the dark (under UV light) detrital grains such as quartz. The microporous zones equate to authigenic kaolinite and chlorite that often partially occlude pores. Low-magnification imagery was used here to illustrate the near ubiquity of dimmer microporous zones. Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4206.5 Grain Size (mm): 0.135 (L. fine sand) Sample ID: 3 Sorting: Photomicrograph Caption This supplemental high–resolution (2400 dpi) thin section scan illustrates the bioturbated and perhaps burrowed nature of this sandstone. The darker brown areas represent detrital clay–rich zones. In the case of the broader, more ambiguous dark brown zones (red arrows), detrital clay has infiltrated between framework grains, probably as the result of bioturbation. Very Well Sample Description Subarkose PLATE 3 High–Resolution Thin Section Scan Lithology: Argillaceous Sandstone Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4206.5 Grain Size (mm): 0.135 (L. fine sand) Sample ID: 3 Sorting: A B Quartz 64.6 Dolomite 2.2 K-Feldspar 1.5 Siderite 0.0 Plagioclase 11.7 Pyrite 3.0 Calcite 0.0 Total Clay 17.0 Illite / Smectite 3.7 Kaolinite 3.1 Illite & Mica 5.9 Chlorite 4.3 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi Photo A illustrates the disturbed fabric of the sandstone. A small, detrital clay–filled burrow (Bur) is observed. The red arrow in the image indicates a partially pyritized stringer of organic matter. A pyrite–replaced grains (Pyr) is also seen. Photo B shows typical framework grains, including quartz (Qtz), plagioclase (PF), argillaceous rock fragments (ARF), and K-feldspar (Ksp; stained yellow). The most obvious cement are rhombs of dolomite (Dol) that is seen filling pores or partially replacing some grains. Smatterings of kaolinite and chlorite are seen in pore areas. Pores include moderate amounts of primary intergranular pores (P1), with lesser secondary intragranular pores (P2), and a few moldic pores (Pm). Abundant quartz; moderate plagioclase; minor to moderate argillaceous rock fragments; minor K-feldspar; trace chert Minor organic matter; trace micas; a few chlorite–replaced grains Minor to moderate intergranular and moldic pores; trace secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Matrix: Abundant detrital clay in portions of the sample Cements: Minor dolomite and pyrite; very thin quartz overgrowths Pore Types: Bioturbated and burrowed; moderate compaction Framework Grains: Accessory Grains: Lithology: Argillaceous Sandstone Structures: PLATE 3 (cont.) Thin Section Petrography Sample Description Subarkose Very Well Pyr Bur P1 P2 Dol Qtz Ksp PF Pm ARF Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4206.5 Grain Size (mm): 0.135 (L. fine sand) Sample ID: 3 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi These SEM images document the larger primary intergranular pores seen between a framework of mostly quartz grains (Qtz). The pore seen near the center left of Photo D is largely open. Authigenic kaolinite (Kaol) is seen between some grains, whereas chlorite (Chl) coat a grain at the bottom right of Photo D. Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Argillaceous Sandstone PLATE 3 (cont.) Scanning Electron Microscopy Sample Description Subarkose Very Well 64.6 1.5 11.7 0.0 2.2 0.0 3.0 17.0 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 3.7 5.9 3.1 4.3 0 1 2 3 4 5 6 7 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz Kaol Chl Qtz Qtz Kaol Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4209.0 Grain Size (mm): 0.106 (U. very fine sand) Sample ID: 4 Sorting: Subarkose Well PLATE 4 High–Resolution Thin Section Scan Sample Description Lithology: Slightly Argillaceous Sandstone Photomicrograph Caption In this high–resolution thin section scan, note the degree of burrowing that is present, especially evident throughout the scan. The dark detrital material just below the center of the scan appears to be an earlier burrow or set of burrows that was disturbed by latter bioturbation and burrowing. Also note the amount of blue epoxy that is visible, which provides a rough indication of pore space percentage. Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4209.0 Grain Size (mm): 0.106 (U. very fine sand) Sample ID: 4 Sorting: A B Quartz 64.0 Dolomite 1.6 K-Feldspar 2.5 Siderite 0.0 Plagioclase 11.6 Pyrite 0.4 Calcite 0.0 Total Clay 20.0 Illite / Smectite 4.0 Kaolinite 3.1 Illite & Mica 7.5 Chlorite 5.4 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% PLATE 4 (cont.) Thin Section Petrography Sample Description Accessory Grains: Subarkose Well Lithology: Slightly Argillaceous Sandstone Structures: Extensively bioturbated and burrowed – non–uniform distribution of detrital clay Framework Grains: Abundant quartz; common plagioclase; minor K–feldspar and argillaceous rock fragments or mud rip–up clasts; a few sedimentary rock fragments Trace micas; a few chlorite–replaced grains Matrix: Abundant detrital clay (more concentrated in some portions of the sample Cements: Moderate chlorite; minor dolomite, pyrite, and kaolinite Pore Types: *Core analysis data taken at psi Common to abundant primary intergranular pores; minor to moderate secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Although detrital clay (Dc; dark brown) is evident within an early burrow in Photo A, other clays are seen in the sandstone that surrounds that area. Note the amount of authigenic clay in some of the pores in Photo B as well as a stringer of detrital clay. In the pores, both chlorite and kaolinite are observed. Quartz (Qtz), plagioclase (PF), and K-feldspar (Ksp) are all observed in Photo B. Pores in this photo are not as plentiful as in the rest of the sample, but include examples of primary intergranular pores (P1), which comprises most of the sample pores, and secondary intragranular pores (P2). The secondary pores result from the leaching of unstable feldspar. Dc P1 P2Ksp PF Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4209.0 Grain Size (mm): 0.106 (U. very fine sand) Sample ID: 4 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% PLATE 4 (cont.) Scanning Electron Microscopy Sample Description Subarkose Well Lithology: Slightly Argillaceous Sandstone Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Note the mostly open pore near the center bottom of Photo D. It is surrounded by quartz framework grains (Qtz), but the intergranular areas are partially cemented with dolomite (Dol), booklets of kaolinite (Kaol), and some mixed–layer clays (MXL). The large grain near the bottom left of Photo D appears to be a titanium mineral (Ti), possibly rutile, as identified by EDS. The wider field-of- view of Photo C shows multiple pores, but many appear partially occluded by authigenic cements such as seen in Photo D. *Core analysis data taken at psi 64.0 2.5 11.6 0.0 1.6 0.0 0.4 20.0 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 4.0 7.5 3.1 5.4 0 2 4 6 8 10 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Ti Qtz Dol Kaol MXL Pyr Qtz Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4228.0 Grain Size (mm): 0.099 (U. very fine sand) Sample ID: 5 Sorting: Photomicrograph Caption In this high-resolution thin section scan, abundant possible sedimentary boudinage and dewatering structures (orange arrows) disrupt the original argillaceous sandstone lithology and lamination. Boudinage results from physical compaction and displacement of discrete sediment bodies that produce the tapered appearance of the sediment lenses. Note the dewatering structures indicated by the orange arrows. The red arrows indicate a zone rich in organic matter that is partially pyritized. Some burrowing and other bioturbation is also evident. Moderately Well Sample Description Subarkose PLATE 5 High–Resolution Thin Section Scan Lithology: Argillaceous Sandstone Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4228.0 Grain Size (mm): 0.099 (U. very fine sand) Sample ID: 5 Sorting: A B Quartz 58.3 Dolomite 4.3 K-Feldspar 1.7 Siderite 0.0 Plagioclase 12.6 Pyrite 0.3 Calcite 0.0 Total Clay 22.7 Illite / Smectite 6.0 Kaolinite 2.6 Illite & Mica 7.7 Chlorite 6.4 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi Photo A shows the typically chaotic appearance of the sample fabric. Between boudinage features, bioturbation, and burrowing, the sample's texture is inconsistent. Near the bottom of Photo A, a "cleaner" zone is visible with minor to moderate, mostly primary intergranular pores. The detrital clay-rich zone near the top of the image contains only a few secondary intragranular pores. In Photo B, a dark organic- rich zone (seen on previous plate) is visible. Note the degree of cementation by dolomite and other authigenic clays between the framework grains. Pores are not plentiful in this sample. The fracture seen in Photo B is not natural. It was induced during sample collection and/or preparation. Abundant quartz; moderate plagioclase; minor K-feldspar and argillaceous rock fragments Abundant organic matter in confined zones or laminae Trace secondary intragranular pores (in argillaceous zones); minor to moderate primary intergranular pores (in "cleaner" zones) XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Matrix: Abundant detrital clay in portions of the sample Cements: Minor dolomite; trace to minor pyrite (abundant in organic–rich zones) Pore Types: Sedimentary boudinage and dewatering structures disrupt the original argillaceous sandstone lithology; some bioturbation and burrowing Framework Grains: Accessory Grains: Lithology: Argillaceous Sandstone Structures: PLATE 5 (cont.) Thin Section Petrography Sample Description Subarkose Moderately Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4228.0 Grain Size (mm): 0.099 (U. very fine sand) Sample ID: 5 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi Framework grains, such as quartz (Qtz) and plagioclase (PF), are mostly surrounded by mixed–layer clays (MXL) that represent the brown detrital clay seen in thin section. Pores are small and nearly occluded by the detrital clays (yellow arrows). The sample used for examination by SEM was taken from an argillaceous portion of the sample. Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Argillaceous Sandstone PLATE 5 (cont.) Scanning Electron Microscopy Sample Description Subarkose Moderately Well 58.3 1.7 12.6 0.0 4.3 0.0 0.3 22.7 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 6.0 7.7 2.6 6.4 0 2 4 6 8 10 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz MXL PF Qtz MXL MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4236.0 Grain Size (mm): 0.082 (L. very fine sand) Sample ID: 6 Sorting: Photomicrograph Caption The high–resolution thin section scan illustrates the sporadic nature of detrital clay across the sample. The cleaner zones may represent burrows (red arrows) or highly bioturbated zones. The dark brown areas consist of silty mudstone lithology and also may represent burrows. Pores are moderate in the "cleaner" zones, whereas traces of secondary intragranular pores are evident in the more argillaceous zones. Soft- sediment deformation may have been active after deposition of this sample. Well Sample Description Subarkose PLATE 6 High–Resolution Thin Section Scan Lithology: Argillaceous Sandstone Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4236.0 Grain Size (mm): 0.082 (L. very fine sand) Sample ID: 6 Sorting: A B Quartz 54.0 Dolomite 6.6 K-Feldspar 2.2 Siderite 0.0 Plagioclase 11.5 Pyrite 0.6 Calcite 0.0 Total Clay 25.2 Illite / Smectite 6.4 Kaolinite 3.0 Illite & Mica 8.8 Chlorite 7.0 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi Much of the dark brown material evident in Photo A is a mixture of organic matter and detrital clay. The "cleaner" zone that occupies the lower half of the image may be a burrow or the original rock fabric before soft sediment deformation. The majority of the rock fabric in this multi- faceted sample is seen in Photo B. Abundant quartz (Qtz) with lesser plagioclase (PF) and K-feldspar (KSP; stained yellow) occupy the framework. Dark organic matter (Om) is scattered about, both a equidimensional grains or, more typically, as elongate stringers. Note the degree of dolomite cementation (Dol) in the dusky blue grains seen between framework grains. The slight blue tint to the grains indicates slightly ferroan dolomite. Pyrite (Pyr) is evident as small framboids. Most of the pores in this sample are primary intergranular pores (P1), although small secondary intragranular pores are seen where feldspar is leached. Abundant quartz; moderate plagioclase; minor K-feldspar; trace argillaceous rock fragments Minor organic matter; trace micas; a few chlorite–replaced grains Minor to moderate intergranular pores; minor secondary intragranular and pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Matrix: Abundant detrital clay in portions of the sample Cements: Moderate dolomite; trace to minor pyrite Pore Types: Bioturbated and burrowed; moderate compaction; soft–sediment deformation Framework Grains: Accessory Grains: Lithology: Argillaceous Sandstone Structures: PLATE 6 (cont.) Thin Section Petrography Sample Description Subarkose Well Dol Om P1 Qtz Pyr Ksp PF Dol Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4236.0 Grain Size (mm): 0.082 (L. very fine sand) Sample ID: 6 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi These SEM images were acquired in the same zone as Photo B (previous plate). Note the quartz grain (Qtz) that is adjacent to a large crystal of ferroan dolomite (Fe–dol) that cements and fills pore space. This sample contains the highest measurement of dolomite (6.6%) of the entire thirty-sample suite. Some mixed–layer clays (MXL) are also evident attached to the quartz grains. A larger former pore near the top center of Photo D is filled with small crystals of ferroan dolomite, nearly occluding the pore. A remant of the larger former pore is indicated by the yellow arrow. Opportunities for micropores exit between the the small ferroan dolomite crystals (red arrows). Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Argillaceous Sandstone PLATE 6 (cont.) Scanning Electron Microscopy Sample Description Subarkose Well 54.0 2.2 11.5 0.0 6.6 0.0 0.6 25.2 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 6.4 8.8 3.0 7.0 0 2 4 6 8 10 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz MXL Fe-dol MXL Fe-dol Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4269.0 Grain Size (mm): 0.075 (L. very fine sand) Sample ID: 7 Sorting: Subarkose Moderately Well PLATE 7 High–Resolution Thin Section Scan Sample Description Lithology: Argillaceous Sandstone Photomicrograph Caption This high–resolution thin section scan depicts a silty mudstone that experienced significant disruption by burrowing (Bur) organisms. The burrows are responsible for the chaotic rock fabric. The black zones are pyritized organic matter. Note the blue epoxy pores seen only in the sandstone the occupies the burrows. Bur Bur Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4269.0 Grain Size (mm): 0.075 (L. very fine sand) Sample ID: 7 Sorting: A B Quartz 45.6 Dolomite 3.9 K-Feldspar 1.6 Siderite 0.0 Plagioclase 11.6 Pyrite 1.1 Calcite 0.0 Total Clay 36.3 Illite / Smectite 8.4 Kaolinite 3.3 Illite & Mica 13.4 Chlorite 11.2 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% PLATE 7 (cont.) Thin Section Petrography Sample Description Accessory Grains: Subarkose Moderately Well Lithology: Argillaceous Sandstone Structures: Extensive burrowing; grains silt–size in mudstone, but upper fine sand–size in burrows Framework Grains: Abundant quartz; common plagioclase; minor K–feldspar, dolostone rock fragments, and volcanic rock fragments Trace micas and organic matter; a few phosphatic fragments Matrix: Abundant detrital clay in non–burrowed portions of the sample Cements: Moderate chlorite; minor dolomite, pyrite, and kaolinite Pore Types: *Core analysis data taken at psi Common to abundant primary intergranular pores; minor to moderate secondary intragranular pores (only in burrows) XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Photo A shows the contrast in grain sizes between the sandy burrowed areas (Bur) and the silty mudstone. Other than a few moldic pores in the mudstone, the sample is otherwise pore–free. Note the abundance of detrital clay (Dc) in the mudstone. The burrows, one of which is partially seen in Photo B, present an open porous fabric. The grains in the burrow are upper fine sand-size as contrasted with the coarse silt in the mudstone. Typical framework grains occupy the burrow as well as a few volcanic rock fragments (VRF). Dolomite rock fragments (Dol) are observed in the mudstone. Most of the pores are primary intergranular (P1), but a few secondary intragranular pores (P2) are also observed in lesser quantities. Kaolinite (Kaol) is seen partially filling a pore. Bur VRF Dc P1 P2 Kaol Dol Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4269.0 Grain Size (mm): 0.075 (L. very fine sand) Sample ID: 7 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% PLATE 7 (cont.) Scanning Electron Microscopy Sample Description Subarkose Moderately Well Lithology: Argillaceous Sandstone Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption These SEM images were captured in a mudstone portion of the sample, which comprises the bulk of the rock. Note the lack of pores and the abundance of mixed–layer clays that fill former pore space. A dolomite rock fragment (Dol) like the one seen in Photo B on the previous plate is also observed in Photo D. Suspected kaolinite (Kaol?) is also observed in Photo D, but the EDS evaluation of this zone is equivocal. *Core analysis data taken at psi 45.6 1.6 11.6 0.0 3.9 0.0 1.1 36.3 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 8.4 13.4 3.3 11.2 0 2 4 6 8 10 12 14 16 18 20 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Dol Kaol? MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4273.0 Grain Size (mm): 0.106 (U. very fine sand) Sample ID: 8 Sorting: Photomicrograph Caption This high–resolution thin section scan depicts a laminated, mostly argillaceous sandstone sample. The laminae that are "clean" contain visible pores (blue epoxy). The darker, clay–rich laminae typically contain more silt–size quartz and plagioclase. The laminae near the bottom of the image are slightly wavy. The laminae near the top are at a slight angle compared with the laminae at the bottom, suggestive of cross- lamination. The very dark, mostly argillaceous features indicated by the yellow arrows may be small burrows. Well Sample Description Subarkose PLATE 8 High–Resolution Thin Section Scan Lithology: Argillaceous Sandstone Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4273.0 Grain Size (mm): 0.106 (U. very fine sand) Sample ID: 8 Sorting: A B Quartz 46.4 Dolomite 3.7 K-Feldspar 1.7 Siderite 0.0 Plagioclase 11.2 Pyrite 1.2 Calcite 0.0 Total Clay 35.8 Illite / Smectite 9.6 Kaolinite 4.0 Illite & Mica 12.6 Chlorite 9.6 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi Photo A illustrates the contrast between the "cleaner", less argillaceous laminae (center of image) with the silty mudstone laminae near the top and bottom of the image. Pores are confined to the "clean" laminae. Note the slightly wavy appearance of the laminae. In Photo B, contrasts are also evidenced by differences in "clean" laminae. At the top of the image, a loose, open fabric is apparent, with larger, mostly primary intergranular pores. Near the bottom, more authigenic cement and clay material are present, restricting and occluding pores. Typical framework grains include quartz (Qtz), plagioclase (PF), and K-feldspar (Ksp; stained yellow). Slightly ferroan dolomite (Fe-dol; stained light blue) cements most of the "cleaner" laminae. Kaolinite is also evident is some of the pores near the bottom of Photo B. Abundant quartz; moderate plagioclase; minor K-feldspar; trace argillaceous rock fragments Trace micas including biotite; a few chlorite–replaced grains Moderate primary intergranular pores and minor secondary intragranular pores (in "cleaner" laminae) XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Matrix: Abundant detrital clay in silty mudstone laminae Cements: Minor dolomite, pyrite, and kaolinite Pore Types: Wavy parallel lamination; evidence of cross–stratification Framework Grains: Accessory Grains: Lithology: Argillaceous Sandstone Structures: PLATE 8 (cont.) Thin Section Petrography Sample Description Subarkose Well Fe-dol Qtz Ksp PF Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4273.0 Grain Size (mm): 0.106 (U. very fine sand) Sample ID: 8 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi The SEM images are from a more argillaceous portion of the sample, such as seen near the bottom of Photo B on the previous plate. Although sand–size quartz grains (Qtz) are visible in the high–magnification of Photo D, most of the intergranular space is occluded or filled with mixed- layer clays (MXL). A small series of pores is all that remain near the center and center right of Photo D (yellow arrows). Some kaolinite (Kaol) is also present, reducing pore volume. As with authigenic chlorite, kaolinite can exhibit micropores. Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Argillaceous Sandstone PLATE 8 (cont.) Scanning Electron Microscopy Sample Description Subarkose Well 46.4 1.7 11.2 0.0 3.7 0.0 1.2 35.8 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 9.6 12.6 4.0 9.6 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz MXL Kaol Qtz Qtz MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4312.0 Grain Size (mm): 0.102 (U. very fine sand) Sample ID: 9 Sorting: Photomicrograph Caption Note the millimeter–scale thick laminae in the thin section scan. Also observe the slightly wavy surface of the thick silty mudstone laminae (yellow arrows). The mudstone mostly is pore–free except for traces of small moldic pores. Primary intergranular pores (blue epoxy) are seen in the sandstone laminae. Lithology: Silty Mudstone / Sandstone PLATE 9 High–Resolution Thin Section Scan Sample Description N/A Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4312.0 Grain Size (mm): 0.102 (U. very fine sand) Sample ID: 9 Sorting: A B Quartz 26.7 Dolomite 2.6 K-Feldspar 1.2 Siderite 39.5 Plagioclase 7.0 Pyrite 0.0 Calcite 0.0 Total Clay 23.0 Illite / Smectite 6.6 Kaolinite 4.5 Illite & Mica 9.3 Chlorite 2.6 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Common primary intergranular and minor to moderate secondary intragranular pores in sandstone laminae; a few small moldic pores in silty mudstone laminae XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Photo A shows the contrast between sandstone laminae and silty mudstone laminae, especially seen in grain size contrasts and concentrations of detrital clay (dark brown). Photo B depicts details of a sandstone lamina with an included thin argillaceous layer seen near the bottom of the image. The sandstone contains quartz, plagioclase, K- feldspar, volcanic rock fragments, and a chlorite-replaced grain (Chl-rg). The distinguishing feature of this sample is the high measured value for siderite (Sid; 39.5% by XRD). Most of the siderite appears to be very finely disseminated in the mudstone lithology detrital matrix. The red arrows indicate black pyrite framboids. The primary intergranular pores seen in Photo B are relatively open in that many of them contain little authigenic clays or cement. Small zones of chlorite and kaolinite are witnessed at very high magnifications, but they are a minor component. Minor organic matter; trace micas; a few chlorite–replaced grains Matrix: Abundant detrital clay in silty mudstone laminae Cements: Minor dolomite, chlorite, and kaolinite; trace pyrite Pore Types: Structures: Millimeter–thick slightly wavy parallel lamination of alternating silty mudstones and sandstones Framework Grains: Abundant quartz; moderate plagioclase; minor K–feldspar and volcanic rock fragments; a few mud rip–up clasts Accessory Grains: N/A Well Lithology: Silty Mudstone / Sandstone PLATE 9 (cont.) Thin Section Petrography Sample Description Sid Chl-rg Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4312.0 Grain Size (mm): 0.102 (U. very fine sand) Sample ID: 9 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption These SEM images were captured in one of the mudstone portions of the sample, which comprises the bulk of the rock. Although a small pore can be seen near the upper right of Photo D, authigenic constituents occlude much of it. Authigenic quartz (aQtz), kaolinite (Kaol), and mixed- layer clays fill the pore. The large mixed-layer clay fragment identified by EDS on the right side of Photo D may be a detrital mica flake. Mineralogy Determined by X-Ray Diffraction (Weight %) N/A Well Lithology: Silty Mudstone / Sandstone PLATE 9 (cont.) Scanning Electron Microscopy Sample Description 26.7 1.2 7.0 0.0 2.6 39.5 0.0 23.0 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 6.6 9.3 4.5 2.6 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD aQtz Kaol MXLMXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4340.0 Grain Size (mm): 0.112 (U. very fine sand) Sample ID: 10 Sorting: Photomicrograph Caption In this high–resolution thin section scan, note the thick and slightly wavy laminations, whose internal thickness is not consistent across the section. The dark zones are mixtures of detrital clay and organic matter (possible plant fragments). Pores are visible as blue epoxy. Lithology: Slightly Argillaceous Sandstone PLATE 10 High–Resolution Thin Section Scan Sample Description Subarkose Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4340.0 Grain Size (mm): 0.112 (U. very fine sand) Sample ID: 10 Sorting: A B Quartz 60.1 Dolomite 3.1 K-Feldspar 2.2 Siderite 0.0 Plagioclase 12.1 Pyrite 0.5 Calcite 0.0 Total Clay 22.1 Illite / Smectite 5.0 Kaolinite 2.7 Illite & Mica 8.0 Chlorite 6.4 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Common to abundant primary intergranular pores; minor secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Photo A shows the juxtaposition of more clay–free laminae and laminae rich in organic matter and detrital clay. Photo B documents typical constituents of a sandstone and mudstone interface. Note the degree of pore occlusion by authigenic constituents, including chlorite (Chl). In addition to authigenic clays, detrital clay (Dc) and other argillaceous fragments are seen in Photo B. Some of these fragments are probably mud rip-up clasts. A thin piece of ductile organic matter (red arrow) is distorted around more rigid framework grains by compaction. Many pores are partially occluded by authigenic cement. Minor blebs of pyritized organic matter; trace to minor micas Matrix: Minor detrital clay in argillaceous laminae Cements: Moderate chlorite; minor dolomite and kaolinite; trace pyrite Pore Types: Structures: Slightly wavy uneven lamination; thicker sandstone laminae with thin argillaceous laminae Framework Grains: Abundant quartz; moderate plagioclase; minor K–feldspar, argillaceous rock fragments, and mud rip–up clasts; a few dolostone rock fragments Accessory Grains: Subarkose Well Lithology: Slightly Argillaceous Sandstone PLATE 10 (cont.) Thin Section Petrography Sample Description DcChl Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4340.0 Grain Size (mm): 0.112 (U. very fine sand) Sample ID: 10 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption These SEM images show the degree of occlusion of some pores in this sample. Two quartz (Qtz) grains are adjacent to one another in Photo D. A primary intergranular pore is observed between the two grains. Much of the intergranular space is occupied with authigenic kaolinite (Kaol) and mixed-layer clays (MXL that are prevalent in some portions of this sample. Although kaolinite occludes pores, it also has the potential for exhibiting micropores between the individual platelets or leaves (see Plate 17F). Mineralogy Determined by X-Ray Diffraction (Weight %) Subarkose Well Lithology: Slightly Argillaceous Sandstone PLATE 10 (cont.) Scanning Electron Microscopy Sample Description 60.1 2.2 12.1 0.0 3.1 0.0 0.5 22.1 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 5.0 8.0 2.7 6.4 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz Qtz MXL MXL Kaol Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4378.5 Grain Size (mm): 0.068 (L. very fine sand) Sample ID: 11 Sorting: Photomicrograph Caption Note the strong contrast between the silty mudstone laminae near the bottom of the high–resolution thin section scan and the sandstone laminae near the middle. Within these two lithologies, numerous thin and subtle laminae are evident (red arrows). Pores are observed as blue epoxy in the sandstone lithology section seen near the center of the scan. The fractures are not natural. They are the byproduct of sample collection and/or preparation. The yellow arrow indicates the approximate position of the photomicrographs seen on the next plate. Lithology: Argillaceous Sandstone / Siltstone PLATE 11 High–Resolution Thin Section Scan Sample Description Subarkose Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4378.5 Grain Size (mm): 0.068 (L. very fine sand) Sample ID: 11 Sorting: A B Quartz 47.7 Dolomite 5.9 K-Feldspar 1.8 Siderite 2.7 Plagioclase 12.8 Pyrite 0.8 Calcite 0.0 Total Clay 28.3 Illite / Smectite 6.1 Kaolinite 2.8 Illite & Mica 10.3 Chlorite 9.1 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Moderate primary intergranular and secondary intragranular pores (in sandstone laminae); trace moldic pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption These photomicrographs illustrate the typical mixed fabric of the sample with often thin and subtle laminae that are defined here by the variability of detrital clay presence. The lamina near the bottom of Photo B is a typical example of the non–uniform boundaries between laminae. Pores are confined mostly to the "cleaner" sandstone zones as seen near the middle of Photo B. In the "cleaner zones, pore occlusion by authigenic and detrital clay is not as pronounced as seen near the bottom of Photo B. Some authigenic chlorite is observed in some of the pores (red arrows) Minor organic matter as stringers and blebs; trace to minor micas Matrix: Abundant detrital clay in mudstone laminae, otherwise minor to moderate Cements: Moderate chlorite; minor dolomite and kaolinite; trace pyrite Pore Types: Structures: Parallel, slightly uneven lamination defined by changes in detrital clay and framework grain concentrations Framework Grains: Abundant quartz; moderate plagioclase; minor K–feldspar; a few chlorite–replaced grains Accessory Grains: Subarkose Well Lithology: Argillaceous Sandstone / Siltstone PLATE 11 (cont.) Thin Section Petrography Sample Description Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 4378.5 Grain Size (mm): 0.068 (L. very fine sand) Sample ID: 11 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption The argillaceous nature of this sample is evident in these two SEM images. Note the degree to which mixed–layer clay (MXL) coats or covers framework grains such as quartz (Qtz). Some of this material appears to be chlorite. In addition, former open space between grains is often filled with authigenic kaolinite (Kaol), seen in Photo D as booklets with micropores between the leaves. Mineralogy Determined by X-Ray Diffraction (Weight %) Subarkose Well Lithology: Argillaceous Sandstone / Siltstone PLATE 11 (cont.) Scanning Electron Microscopy Sample Description 47.7 1.8 12.8 0.0 5.9 2.7 0.8 28.3 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 6.1 10.3 2.8 9.1 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Kaol Kaol Qtz MXL MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 5968.0 Grain Size (mm): 0.078 (L. very fine sand) Sample ID: 12 Sorting: Photomicrograph Caption The thin section scan above shows that bioturbation and burrows have destroyed much of the sample's original fabric. The brown detrital clay is not uniformly distributed throughout the sample (center of scan more argillaceous than the top or bottom). The cut of the thin section slices obliquely through a burrow that contains enhanced argillaceous material (red arrow), yielding its dark brown color. Pores are visible throughout (blue epoxy), but seem fewer and smaller in the more clay-rich center of the scan. Lithology: Slightly Argillaceous Sandstone PLATE 12 High–Resolution Thin Section Scan Sample Description Subarkose Very Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 5968.0 Grain Size (mm): 0.078 (L. very fine sand) Sample ID: 12 Sorting: A B Quartz 54.2 Dolomite 5.7 K-Feldspar 1.5 Siderite 1.4 Plagioclase 12.9 Pyrite 0.5 Calcite 1.1 Total Clay 22.7 Illite / Smectite 5.1 Kaolinite 3.0 Illite & Mica 8.7 Chlorite 5.9 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Minor to moderate primary intergranular, secondary intragranular, and moldic pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Note the non–uniform distribution of dark detrital clay indicated by the yellow arrow in Photo A. Where clay is present in abundance, pores are lacking. Photo B depicts a typical sample fabric exclusive of the more detrital clay–rich zones. Note the abundance of mostly primary intergranular pores. Also observe the rough, sub-parallel alignment of some elongate framework grains that indicate depositional bedding. A few secondary intragranular pores (P2) are evident where feldspar is leached. Also observe the small limestone (red arrow) and dolostone (Dol) rock fragments. Some dolomite is diagenetic and is cement. Ferroan dolomite (Fe-dol) is seen replacing plagioclase in Photo B. Siderite (Sid) is found in minor amounts but is observed as prominent crystals filling pores. Argillaceous rock fragments (ARF) and organic matter (Om) are also seen in Photo B. Minor organic matter as deformed stringers and blebs; trace to minor micas Matrix: Minor detrital clay in argillaceous zones and abundant in burrows Cements: Moderate chlorite; minor dolomite and ferroan dolomite, siderite, and kaolinite; trace pyrite Pore Types: Structures: Extensive bioturbation; some burrows; non–uniform distribution of detrital clay matrix Framework Grains: Abundant quartz; moderate plagioclase; minor to moderate argillaceous rock fragments; minor K–feldspar; trace limestone and dolostone rock fragments Accessory Grains: Subarkose Very Well Lithology: Slightly Argillaceous Sandstone PLATE 12 (cont.) Thin Section Petrography Sample Description Fe-dol Om P2 Dol ARF Sid Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 5968.0 Grain Size (mm): 0.078 (L. very fine sand) Sample ID: 12 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption Photo A (previous plate) depicts a authigenic and detrital clay-rich matrix that is reflected in the amount of coating material on and between grains seen in Photo C. Although quartz overgrowths are not apparent in thin section views, SEM Photo D shows several examples of authigenic quartz (aQtz). The growth of authigenic quartz has produced a narrow slot pore (red arrow). A probable dolostone rock fragment (Dol) is also seen. Mixed-layer clay (MXL) is observed coating grains and booklets of kaolinite (Kaol) are also seen in the top right of Photo D. Mineralogy Determined by X-Ray Diffraction (Weight %) Subarkose Very Well Lithology: Slightly Argillaceous Sandstone PLATE 12 (cont.) Scanning Electron Microscopy Sample Description 54.2 1.5 12.9 1.1 5.7 1.4 0.5 22.7 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 5.1 8.7 3.0 5.9 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Dol Qtz aQtz aQtz Kaol MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 5978.0 Grain Size (mm): 0.101 (U. very fine sand) Sample ID: 13 Sorting: Photomicrograph Caption In the high–resolution thin section scan, the fabric of this sample is featureless and massive. However, examined microscopically, elongate particles and ductile grains such as organic matter sometimes exhibit faint alignment suggestive of bedding direction that is not visible macroscopically (see next plate). Lithology: Slightly Argillaceous Sandstone PLATE 13 High–Resolution Thin Section Scan Sample Description Sublitharenite Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 5978.0 Grain Size (mm): 0.101 (U. very fine sand) Sample ID: 13 Sorting: A B Quartz 61.3 Dolomite 5.0 K-Feldspar 1.6 Siderite 0.8 Plagioclase 12.1 Pyrite 0.0 Calcite 0.6 Total Clay 18.5 Illite / Smectite 3.2 Kaolinite 2.7 Illite & Mica 6.9 Chlorite 5.7 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Common primary intergranular pores; minor to moderate secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption In Photo A, note the massive appearance of the sample. Organic matter and other detrital material appears more concentrated in the lower right of the image. Photo B was taken at a higher than usual magnification in order to capture the nature of the pores and authigenic material that partially occludes the pores. A variety of framework grains are visible, including quartz (Qtz), plagioclase (PF), K- feldspar (Ksp), limestone (LRF), dolostone (Dol), argillaceous (ARF), and volcanic (VRF) rock fragments. Ductile organic matter (Om) is also seen. Some dolomite is represented in a few of the rock fragments, but also serves as a trace to minor cement (red arrow). Some ferroan dolomite (Fe-dol; stained blue) is seen on the left border of Photo B. Authigenic kaolinite (Kaol) is observed partially filling some secondary intragranular pores. Most of the pores that are visible in Photo B are primary intergranular pores. Minor organic matter blebs; trace to minor micas Matrix: None Cements: Moderate chlorite; minor dolomite, ferroan dolomite, and kaolinite; trace pyrite; evidence of some thin quartz overgrowths Pore Types: Structures: Massive; although some elongate and ductile grains show faint preferred alignment Framework Grains: Abundant quartz; moderate plagioclase; minor K–feldspar and argillaceous rock fragments; trace limestone and dolostone rock fragments; a few volcanic and foliated metamorphic rock fragments Accessory Grains: Sublitharenite Well Lithology: Slightly Argillaceous Sandstone PLATE 13 (cont.) Thin Section Petrography Sample Description VRF Fe-dol Om Kaol DolKsp LRF ARF Qtz PF Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 5978.0 Grain Size (mm): 0.101 (U. very fine sand) Sample ID: 13 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption SEM Photo C captures the typical massive fabric that is characteristic of this sample. In Photo D, quartz grains (Qtz) are seen and also euhedral authigenic quartz or quartz overgrowths (Qo) that occlude pores. Quartz overgrowths are not particularly visible in thin section because affected grains lack dust rims. The yellow arrows indicate abbreviated pores as the result of authigenic quartz diagenesis. Mixed-layer clays (MXL) are seen coating some grains. Mineralogy Determined by X-Ray Diffraction (Weight %) Sublitharenite Well Lithology: Slightly Argillaceous Sandstone PLATE 13 (cont.) Scanning Electron Microscopy Sample Description 61.3 1.6 12.1 0.6 5.0 0.8 0.0 18.5 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 3.2 6.9 2.7 5.7 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD MXL Qo Qtz Qtz MXL Qo Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6458.0 Grain Size (mm): 0.033 (coarse silt) Sample ID: 14 Sorting: Photomicrograph Caption This thin section scan shows the fragmentary nature of the sample. Enough of the sample is present to identify it as a mudstone that contains very sparse medium to coarse silt–size detrital grains. Note the laminated quality of the sample. The laminae are defined by concentrations of organic matter. The light lamina indicated by the yellow arrow near the bottom of the scan is a zone rich in detrital quartz and plagioclase that has been cemented by kaolinite. The fractures seen in the image are not natural. This sample contains the greatest amount of total clay (75.5% by XRD) of the entire thirty-sample suite. Lithology: Mudstone PLATE 14 High–Resolution Thin Section Scan Sample Description N/A N/A Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6458.0 Grain Size (mm): 0.033 (coarse silt) Sample ID: 14 Sorting: A B Quartz 6.3 Dolomite 0.0 K-Feldspar 1.4 Siderite 0.0 Plagioclase 14.2 Pyrite 2.5 Calcite 0.0 Total Clay 75.5 Illite / Smectite 42.9 Kaolinite 26.0 Illite & Mica 4.3 Chlorite 2.3 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi No visible pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption In Photo A, the large white objects are not detrital grains but appear to be radiolarians and small nodules (?) of authigenic kaolinite. The nodules may in fact be highly altered radiolaria. The radiolaria resemble spumellaria (a an upper Jurassic or Cretaceous nanoplankton). Their structure appears to have altered from opal to microquartz. Note the wavy discontinuous laminae in Photo B. Yellow arrows indicate dark organic matter blebs. Detrital clay (Dc; lighter brown) comprises the abundant matrix. This sample has the highest total clay (75.5% by XRD) of the entire sample suite. The lighter laminae seen near the bottom of Photo B is rich in both framework grains such as quartz and plagioclase, but also kaolinite as cement. No pores are visible. The fractures are not natural. Moderate organic matter; trace siliceous radiolarians (probable spumellaria) Matrix: Abundant detrital clay Cements: Abundant authigenic kaolinite; minor chlorite and pyrite Pore Types: Structures: Thin wavy discontinuous lamination; some zones rich in detrital framework grains Framework Grains: Common K–feldspar; moderate quartz; minor plagioclase Accessory Grains: N/A N/A Lithology: Mudstone PLATE 14 (cont.) Thin Section Petrography Sample Description Dc Rad Rad Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6458.0 Grain Size (mm): 0.033 (coarse silt) Sample ID: 14 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption Note the featureless expanse of the sample in SEM Photo C. Under higher magnification in Photo D, a small quartz "grain" is apparent. However, most of the quartz "grains" seen in the detrital matrix appear to be authigenic or broken fragments of radiolaria. Mixed-layer clay (MXL) of the detrital clay matrix is also apparent in abundance in Photo D. Mineralogy Determined by X-Ray Diffraction (Weight %) N/A N/A Lithology: Mudstone PLATE 14 (cont.) Scanning Electron Microscopy Sample Description 6.3 1.4 14.2 0.0 0.0 0.0 2.5 75.5 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 42.9 4.3 26.0 2.3 0 10 20 30 40 50 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtx MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6598.0 Grain Size (mm): 0.051 (coarse silt) Sample ID: 15 Sorting: Photomicrograph Caption This thin section scan depicts the dark and faintly laminated character of this sample. Much of the dark color can be attributed to high pyrite percentages in this sample (29.7% by XRD). The light colored objects are a mix of silt–size detrital grains and calcispheres. A light-colored lamina is visible near the bottom of the scan. It is composed of detrital quartz, plagioclase, K-feldspar, and limestone and dolostone rock fragments. The yellow arrow indicates a phosphatic bone fragment. The fractures are not natural. Lithology: Mudstone PLATE 15 High–Resolution Thin Section Scan Sample Description N/A N/A Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6598.0 Grain Size (mm): 0.051 (coarse silt) Sample ID: 15 Sorting: A B Quartz 20.0 Dolomite 3.6 K-Feldspar 0.9 Siderite 0.0 Plagioclase 3.8 Pyrite 29.7 Calcite 1.9 Total Clay 40.2 Illite / Smectite 11.3 Kaolinite 7.1 Illite & Mica 16.1 Chlorite 5.7 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi No visible pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption The most notable feature of this sample is the high level of pyrite (29.7% by XRD) found in this sample, which explains much of its very dark character. As such, lamination is difficult to see, but is present. A large phosphatic bone fragment is indicated by the yellow arrow in Photo A. Also note the detrital grain-rich lamina near the bottom of the image. It appears mostly dolomite-cemented. Photo B shows a few bone fragments near the top (Phos) and some ferroan dolomite-cemented calcispheres (Csph). Some calcispheres are cemented with ferroan dolomite, whereas others are cemented with a combination of ferroan dolomite and ferroan calcite. The darkest areas seen in Photo B are rich in pyrite. The fractures are not natural. Moderate organic matter; traces of calcispheres and phosphatic fragments (probable bone) Matrix: Abundant detrital clay Cements: Abundant pyrite; moderate kaolinite and chlorite; minor calcite and dolomite; trace ferroan dolomite Pore Types: Structures: Faint, thin, slightly wavy and discontinuous lamination Framework Grains: Abundant quartz; minor plagioclase; trace K–feldspar, limestone, and dolostone rock fragments (confined to a single lamina) Accessory Grains: N/A N/A Lithology: Mudstone PLATE 15 (cont.) Thin Section Petrography Sample Description Csph Phos Csph Csph Phos Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6598.0 Grain Size (mm): 0.051 (coarse silt) Sample ID: 15 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption The laminated character of the sample is readily apparent as evidenced by the lineation seen in SEM Photo C. Under higher–magnification, pyrite (Pyr) is observed as small framboids throughout the image, even forming more elongate areas parallel to lamination, as seen in the lower left of Photo D. A zone of elongate calcite (Cal) is observed, but almost all of the matrix is composed of mixed-layer clay (MXL). Mineralogy Determined by X-Ray Diffraction (Weight %) N/A N/A Lithology: Mudstone PLATE 15 (cont.) Scanning Electron Microscopy Sample Description 20.0 0.9 3.8 1.9 3.6 0.0 29.7 40.2 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 11.3 16.1 7.1 5.7 0 5 10 15 20 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Pyr Cal MXL Pyr Pyr Pyr Pyr Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6976.1 Grain Size (mm): 0.153 (L. fine sand) Sample ID: 16 Sorting: Photomicrograph Caption Note the poorly sorted character of this sandstone in this high–resolution thin section scan. Abundant glauconite grains (green) also characterize this sample. The darker zones at the center left of the image are argillaceous material surrounding framework grains and appears to be evidence of bioturbation. Also observe the general lack of pores (blue epoxy) in this sample. Poor Sample Description Quartzarenite PLATE 16 High–Resolution Thin Section Scan Lithology: Glauconitic Argillaceous Sandstone Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6976.1 Grain Size (mm): 0.153 (L. fine sand) Sample ID: 16 Sorting: A B Quartz 65.8 Dolomite 0.8 K-Feldspar 1.5 Siderite 0.0 Plagioclase 0.9 Pyrite 1.3 Calcite 0.0 Total Clay 29.7 Illite / Smectite 14.4 Kaolinite 2.0 Illite & Mica 10.8 Chlorite 2.5 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi Photo A demonstrates the poorly sorted nature of this sandstone. Some of the grains are about 1 mm (coarse to very coarse sand), whereas other grains are coarse silt–size. Note the thin argillaceous lamina near the center of Photo A. The other distinctive feature is the abundance of glauconite grains (Glau; green-colored grains) that populate this sample. Many of the grains are microcrystalline quartz or chert (Cht). Quartz (Qtz), K-feldspar (stained yellow), and plagioclase (PF) also appear in Photo B. Cement appears to be mostly thin quartz overgrowths (red arrow) as well as minor kaolinite and chlorite. Minor pyrite (Pyr) is seen as small framboids, filling pores, and partially or totally replacing grains. Secondary intragranular pores (P2) are seen where feldspar has been leached. A large moldic pore (Pm) is also visible in Photo B. Abundant quartz; moderate plagioclase; minor K-feldspar and chert; trace volcanic rock fragments Abundant glauconite; trace micas Trace moldic and secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Matrix: Abundant detrital clay mostly confined to argillaceous laminae Cements: Minor pyrite; trace to minor thin quartz overgrowths; trace dolomite Pore Types: Poorly sorted; extensive bioturbation; faint lamination Framework Grains: Accessory Grains: Lithology: Glauconitic Argillaceous Sandstone Structures: PLATE 16 (cont.) Thin Section Petrography Sample Description Quartzarenite Poor P2 Qtz Cht Pyr GlauPF Pm Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6976.1 Grain Size (mm): 0.153 (L. fine sand) Sample ID: 16 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi Several large quartz grains (Qtz) are seen forming an intergranular pore located at the center right of Photo D. Most of this pore is occluded with authigenic kaolinite (Kaol), leaving small micropores between the kaolinite platelets (yellow arrows). Mixed-layer clays (MXL) are seen between quartz grains in the upper left of Photo D. Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Glauconitic Argillaceous Sandstone PLATE 16 (cont.) Scanning Electron Microscopy Sample Description Quartzarenite Poor 65.8 1.5 0.9 0.0 0.8 0.0 1.3 29.7 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 14.4 10.8 2.0 2.5 0 2 4 6 8 10 12 14 16 18 20 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz MXL Kaol Qtz Qtz Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6986.5 Grain Size (mm): 0.088 (U. very fine sand) Sample ID: 17 Sorting: Photomicrograph Caption Note the disrupted and chaotic fabric in this high–resolution thin section scan. Many of the lighter areas appear to be burrows. The dark zones are concetrated stringers of detrital clay (yellow arrows). Some dark structures are completely pyritized (red arrows). Only a few moldic pores (blue epoxy) are visible in this sample. Very Well Sample Description Quartzarenite PLATE 17 High–Resolution Thin Section Scan Lithology: Argillaceous Sandstone Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6986.5 Grain Size (mm): 0.088 (U. very fine sand) Sample ID: 17 Sorting: A B Quartz 63.9 Dolomite 3.1 K-Feldspar 1.5 Siderite 0.0 Plagioclase 2.0 Pyrite 4.0 Calcite 0.9 Total Clay 24.6 Illite / Smectite 9.8 Kaolinite 5.1 Illite & Mica 7.1 Chlorite 2.6 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi Evident in Photo A is the massively disrupted fabric of this sample. The dark mass near the top of the photo is pyrite (Pyr). Photo B shows details of the framework, matrix, and cement. Most of the white grains are quartz. The yellow- stained grains are K-feldspar. Note the uniformity of grain size in Photo B. Detrital clay (brown) serves as matrix. Slightly ferroan dolomite (Fe-dol; stained light blue) and calcite are seen as cement. Authigenic chlorite (Chl) is observed in the large pore near the bottom of Photo B. Few pores are present. A small moldic pore (Pm) is seen near the top of Photo B. Abundant quartz; minor plagioclase and K-feldspar Trace micas; rare glauconite grains Trace moldic and secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Matrix: Abundant detrital clay, except in some burrows Cements: Minor slightly ferroan dolomite, pyrite, and kaolinite; trace calcite; some chlorite observed Pore Types: Very faint lamination mostly disrupted by bioturbation and burrowing Framework Grains: Accessory Grains: Lithology: Argillaceous Sandstone Structures: PLATE 17 (cont.) Thin Section Petrography Sample Description Quartzarenite Very Well Fe-dol Chl Cal Pyr Pm Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6986.5 Grain Size (mm): 0.088 (U. very fine sand) Sample ID: 17 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi This sample is bereft of pores as evidenced by Photo C and the photomicrographs on the previous plate. Small quartz grains (Qtz) are seen in Photo D, but most of the intergranular space is occupied by mixed-layer clays (MXL) that comprise the detrital clay matrix in this sample. Note the cluster of pyrite framboids (Pyr) near the bottom of Photo D. Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Argillaceous Sandstone PLATE 17 (cont.) Scanning Electron Microscopy Sample Description Quartzarenite Very Well 63.9 1.5 2.0 0.9 3.1 0.0 4.0 24.6 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 9.8 7.1 5.1 2.6 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz MXL Pyr Qtz Qtz MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6986.5 Grain Size (mm): 0.088 (U. very fine sand) Sample ID: 17 Sorting: E F Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% PLATE 17 (cont.) Epifluorescent Thin Section Petrography Sample Description *Core analysis data taken at N/A psi Quartzarenite Very Well Lithology: Argillaceous Sandstone Photomicrograph Caption In these supplemental, relatively high magnification, paired plane and UV light images, a subtle network of micropores is evident under the reflected UV light of Photo F that is not visible under plane transmitted light (Photo E). On close examination, these epifluorescent zones appear to equate to intergranular areas that are relatively rich in authigenic kaolinite. Kaolinite can exhibit microporous behavior between the leaves (platelets) of kaolinite booklets. Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6988.0 Grain Size (mm): 0.082 (L. very fine sand) Sample ID: 18 Sorting: Photomicrograph Caption The thin section scan illustrates the magnitude of bioturbation in this sample. The light "clean" areas are burrows that contain no detrital clay, are cemented with kaolinite, and contain mostly secondary intragranular pores. Most of the darker zones contains masses of framboidal pyrite. Lithology: Argillaceous Sandstone PLATE 18 High–Resolution Thin Section Scan Sample Description Quartzarenite Very Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6988.0 Grain Size (mm): 0.082 (L. very fine sand) Sample ID: 18 Sorting: A B Quartz 73.7 Dolomite 2.8 K-Feldspar 1.6 Siderite 0.0 Plagioclase 1.6 Pyrite 3.0 Calcite 0.8 Total Clay 16.5 Illite / Smectite 6.7 Kaolinite 2.8 Illite & Mica 5.4 Chlorite 1.6 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Trace to minor secondary intragranular pores; trace primary intergranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Photo A illustrates the contrasts between detrital clay–rich bioturbated zones in the sample (lower right of Photo A) compared with "cleaner" burrows (center of Photo A). This fabric is universal in the sample. Photo B shows the interface between burrow (upper part of Photo B) with the bioturbated areas (bottom part of Photo B). Notable are glauconite grains (Glau) and limestone rock fragments (LRF). The black grains are pyrite, although other areas of the sample contains concentrations of pyrite framboids. Both authigenic chlorite (Chl) and kaolinite (Kaol) are observed occluding pores. The pores that are visible are mostly secondary intragranular pores (P2). Trace glauconite grains; rare micas Matrix: Abundant detrital clay in bioturbated areas, not in burrows Cements: Minor pyrite (localized) and dolomite and ferroan dolomite; trace kaolinite; chlorite (exclusive of chlorite–replaced grains), and calcite Pore Types: Structures: Extensive bioturbation and burrowing Framework Grains: Abundant quartz; minor plagioclase and K–feldspar; trace limestone and dolostone rock fragments Accessory Grains: Quartzarenite Very Well Lithology: Argillaceous Sandstone PLATE 18 (cont.) Thin Section Petrography Sample Description Chl P2 Kaol Glau Dol LRF Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 6988.0 Grain Size (mm): 0.082 (L. very fine sand) Sample ID: 18 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption Note the variety of pore sizes as seen in SEM Photo C. A yellow arrow indicates one of the larger pores. In the high–magnification detail of Photo D, observe the large pore seen near the middle of the image that is mostly occluded with booklets of kaolinite. Detrital quartz grains surround this pore. Mixed-layer clays (MXL) is seen coating some of the framework grains. Mineralogy Determined by X-Ray Diffraction (Weight %) Quartzarenite Very Well Lithology: Argillaceous Sandstone PLATE 18 (cont.) Scanning Electron Microscopy Sample Description 73.7 1.6 1.6 0.8 2.8 0.0 3.0 16.5 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 6.7 5.4 2.8 1.6 0 2 4 6 8 10 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD KaolQtz MXL Qtz Qtz MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7006.0 Grain Size (mm): 0.091 (U. very fine sand) Sample ID: 19 Sorting: Photomicrograph Caption The high–resolution thin section scan demonstrates the extensively bioturbated and probably burrowed texture of the sandstone sample. Possible former clay–rich laminae have been disrupted, leaving little of the former fabric visible. The brown areas are detrital clay-rich zones. Although a few small pores exist in this sample, they are not very evident in the scan. Well Sample Description Quartzarenite PLATE 19 High–Resolution Thin Section Scan Lithology: Argillaceous Sandstone Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7006.0 Grain Size (mm): 0.091 (U. very fine sand) Sample ID: 19 Sorting: A B Quartz 70.8 Dolomite 4.1 K-Feldspar 0.8 Siderite 1.2 Plagioclase 1.1 Pyrite 2.0 Calcite 1.1 Total Clay 19.0 Illite / Smectite 7.8 Kaolinite 2.5 Illite & Mica 7.0 Chlorite 1.7 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi The dark, detrital clay–rich zones seen in Photo A may represent a more uniformly laminated sample before bioturbation. In Photo B, quartz (Qtz), plagioclase (PF), and K–feldspar (Ksp; stained yellow) are all visible. A glauconite grain (Glau) is also observed. A ductile stringer of organic matter (Om) is deformed between rigid framework grains. Slightly ferroan dolomite represents the bulk of the visible cement in this sample, but dolomite (Dol), calcite, siderite (Sid), and kaolinite are also seen. Black framboids of pyrite (Pyr) are observed scattered throughout the sample. Some pyrite replaces grains. Mostly moldic pores (Pm) are observed, or secondary intragranular pores (P2) are seen where feldspar has experienced incomplete dissolution. The pores in this sample are small and observed in trace amounts. Photo B represents a more porous zone in the sample. Abundant quartz; minor plagioclase and K-feldspar Trace micas; rare glauconite grains Trace moldic and secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Matrix: Abundant detrital clay, especially in some elongate, stringy zones Cements: Minor slightly ferroan dolomite, dolomite, calcite, siderite, pyrite, and kaolinite Pore Types: Extensive bioturbation and burrowing Framework Grains: Accessory Grains: Lithology: Argillaceous Sandstone Structures: PLATE 19 (cont.) Thin Section Petrography Sample Description Quartzarenite Well Sid Fe-dol Om P2 Dol Qtz Pyr Glau Ksp PF Pm Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7006.0 Grain Size (mm): 0.091 (U. very fine sand) Sample ID: 19 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi The scarcity of pores in this sample is evident in SEM Photo C. In the detail of Photo D, quartz (Qtz) and plagioclase (PF) grains are identified by EDS (Energy Dispersive Spectroscopy). The space between the grains is occupied by mixed–layer clays (MXL) that completely occlude the former pore space. Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Argillaceous Sandstone PLATE 19 (cont.) Scanning Electron Microscopy Sample Description Quartzarenite Well 70.8 0.8 1.1 1.1 4.1 1.2 2.0 19.0 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 7.8 7.0 2.5 1.7 0 2 4 6 8 10 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz MXL PF Qtz MXL MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7010.0 Grain Size (mm): 0.067 (L. very fine sand) Sample ID: 20 Sorting: Photomicrograph Caption Similar to the previous sample, this sample has also experienced bioturbation and burrowing. Again, the burrows are "clean" in that they lack much detrital clay as well as containing more pores. Bioturbated areas are more clay–rich. Pores are visible as blue epoxy, but many pores in this sample are small and not visible in the thin section scan. Black areas are pyrite masses. Lithology: Argillaceous Sandstone PLATE 20 High–Resolution Thin Section Scan Sample Description Quartzarenite Very Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7010.0 Grain Size (mm): 0.067 (L. very fine sand) Sample ID: 20 Sorting: A B Quartz 76.5 Dolomite 2.7 K-Feldspar 0.9 Siderite 0.0 Plagioclase 1.1 Pyrite 2.1 Calcite 0.7 Total Clay 16.0 Illite / Smectite 8.1 Kaolinite 1.0 Illite & Mica 5.4 Chlorite 1.5 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Trace to minor secondary intragranular pores and moldic pores; rare primary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Contrasts between burrows (white zones) and other bioturbated portions of the sample are evident in Photo A. Some burrows appear cored with more argillaceous material. Photo B shows the interface between burrow (upper right) and the rest of the bioturbated sample (lower left), which is rich in detrital matrix (Dc). Note the lack of detrital clay in the burrow and the presence of small, partially occluded mostly secondary intragranular pores with much smaller primary intergranular pores. A few dolostone (Dol) and limestone (LRF) rock fragments are also observed. Trace glauconite grains; rare micas Matrix: Abundant detrital clay in bioturbated areas, mostly not in burrows Cements: Minor dolomite and ferroan dolomite, pyrite, kaolinite, and pyrite Pore Types: Structures: Extensive bioturbation and burrowing Framework Grains: Abundant quartz; minor plagioclase; trace K–feldspar, limestone and dolostone rock fragments Accessory Grains: Quartzarenite Very Well Lithology: Argillaceous Sandstone PLATE 20 (cont.) Thin Section Petrography Sample Description Dol Dc LRF Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7010.0 Grain Size (mm): 0.067 (L. very fine sand) Sample ID: 20 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption Pores are not plentiful or large in these SEM images. Photo D shows quartz detrital grains (Qtz) along with dolomite (Dol) and mixed–layer clays (MXL) that appear to coat and fill pores. Pyrite (Pyr) is also observed as small finely disseminated framboids. Mineralogy Determined by X-Ray Diffraction (Weight %) Quartzarenite Very Well Lithology: Argillaceous Sandstone PLATE 20 (cont.) Scanning Electron Microscopy Sample Description 76.5 0.9 1.1 0.7 2.7 0.0 2.1 16.0 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 8.1 5.4 1.0 1.5 0 2 4 6 8 10 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Pyr Qtz Qtz Dol Dol MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7013.9 Grain Size (mm): 0.076 (L. very fine sand) Sample ID: 21 Sorting: Photomicrograph Caption Extensive bioturbation and some burrowing characterize the sample in this thin section scan. Possible hints to the former rock fabric can be seen in the porous zone indicated by the orange arrow. Stringers and zones of detrital clay (brown) are seen scattered randomly across the sample. Small pores can be glimpsed as blue epoxy. The red arrows indicate zones of enhanced pyrite cementation. Lithology: Argillaceous Sandstone PLATE 21 High–Resolution Thin Section Scan Sample Description Quartzarenite Very Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7013.9 Grain Size (mm): 0.076 (L. very fine sand) Sample ID: 21 Sorting: A B Quartz 72.4 Dolomite 3.6 K-Feldspar 0.9 Siderite 0.0 Plagioclase 1.9 Pyrite 1.6 Calcite 0.9 Total Clay 18.7 Illite / Smectite 8.0 Kaolinite 2.1 Illite & Mica 6.9 Chlorite 1.7 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Minor secondary intragranular pores, primary intergranular pores, and moldic pores in subequal amounts XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption This distinguishing feature of this sample other than burrows are several zones of enhanced pyrite (Pyr) emplacement that surrounds framework grains. Pyrite was a late diagenetic product as evidenced by an earlier generation of quartz overgrowths that surround some quartz grains, whereas the remaining pore areas in these zones are filled with pyrite. Also evident in Photo A may be indications of the samples former texture as seen in the bottom half of the photo, which appears to be nondescript massive fabric. Evidence suggests that the detrital clay may have been introduced by bioturbation. In addition to typical framework grains, limestone (LRF) and dolostone (Dol) rock fragments are seen in Photo B. Detrital matrix (brown) and some ferroan dolomite cement (Fe-dol) are also seen in Photo B. Note the non-uniform distribution of detrital clay. A few small mostly secondary intragranular pores are observed in the photo. Trace glauconite grains; rare micas Matrix: Abundant detrital clay in bioturbated areas; burrows contain none or less detrital clay Cements: Minor dolomite and ferroan dolomite, pyrite, kaolinite, and pyrite Pore Types: Structures: Extensive bioturbation and burrowing Framework Grains: Abundant quartz; minor plagioclase; trace K–feldspar, limestone and dolostone rock fragments Accessory Grains: Quartzarenite Very Well Lithology: Argillaceous Sandstone PLATE 21 (cont.) Thin Section Petrography Sample Description Pyr Fe-dol Dol LRF Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7013.9 Grain Size (mm): 0.076 (L. very fine sand) Sample ID: 21 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption SEM Photo C expresses the typical lack of pores in this sample. When the sample is examined under higher magnification (Photo D), small pores are observed (red arrow). Quartz (Qtz) is abundant and appears surrounded or coated with mixed–layer clay (MXL). Note the concoidal fracture in the quartz on the left edge of Photo D (yellow arrow). Mineralogy Determined by X-Ray Diffraction (Weight %) Quartzarenite Very Well Lithology: Argillaceous Sandstone PLATE 21 (cont.) Scanning Electron Microscopy Sample Description 72.4 0.9 1.9 0.9 3.6 0.0 1.6 18.7 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 8.0 6.9 2.1 1.7 0 2 4 6 8 10 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz Qtz Qtz MXL Qtz Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7027.0 Grain Size (mm): 0.088 (U. very fine sand) Sample ID: 22 Sorting: Photomicrograph Caption This sample in notable for its thoroughly bioturbated character as seen in this high–resolution thin sections scan. Observe the brown detrital clay–rich zones and their non–uniform distribution across the sample. The more discrete black zones are mostly masses of pyrite framboids. The lighter, less argillaceous areas appear to be burrows. A few pores are visible (blue epoxy), but most pores are small and not visible in this wide field-of-view scan. Lithology: Slightly Argillaceous Sandstone PLATE 22 High–Resolution Thin Section Scan Sample Description Quartzarenite Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7027.0 Grain Size (mm): 0.088 (U. very fine sand) Sample ID: 22 Sorting: A B Quartz 79.1 Dolomite 2.6 K-Feldspar 0.8 Siderite 0.0 Plagioclase 1.3 Pyrite 1.7 Calcite 0.4 Total Clay 14.1 Illite / Smectite 7.3 Kaolinite 1.2 Illite & Mica 4.6 Chlorite 1.0 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Minor to moderate primary intergranular, secondary intragranular, and moldic pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption The low magnification of Photo A captures the non–uniform distribution of the detrital clay (dark brown) in this sample that is the result of bioturbation. A few larger moldic pores are seen in this photo. Photo B illustrates one of the areas that is rich in detrital clay (brown) that is matrix between the framework grains. In addition to the usual framework grains, dolostone (Dol) is seen. Small grains of glauconite (Glau) are observed across the sample. Ferroan dolomite (Fe-dol) appears throughout the sample. Note the larger mass of pyrite (Pyr) in the upper left of Photo B. When examined closely, this mass appears to be an aggregation of individual pyrite framboids. Obvious moldic pores (Pm) are visible as well as a secondary intragranular pore (P2) that results from feldspar leaching. Note the accumulation of authigenic chlorite around the periphery of the moldic pore (red arrow). Trace micas and glauconite; a few phosphatic fragments; rare echinoderm debris Matrix: Abundant detrital clay confined to stringers and small zones Cements: Minor dolomite and ferroan dolomite, pyrite, kaolinite, and pyrite; trace calcite Pore Types: Structures: Widespread bioturbation; some burrowing Framework Grains: Abundant quartz; minor plagioclase; trace K–feldspar, limestone and dolostone rock fragments Accessory Grains: Quartzarenite Well Lithology: Slightly Argillaceous Sandstone PLATE 22 (cont.) Thin Section Petrography Sample Description Pyr Glau Fe-dol P2 Dol Pm Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7027.0 Grain Size (mm): 0.088 (U. very fine sand) Sample ID: 22 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption Small pores are apparent between grains in SEM Photo C. In Photo D, EDS analysis confirms that the grain that is central in the image is composed of calcium carbonate (Cal) and based on its shape, it probably represents a detrital limestone rock fragment. Quartz (Qtz) is also visible. Kaolinite (Kaol) is observed occluding the intergranular space, whereas mixed clay (MXL) coats grains and appear to be part of the detrital clay matrix in this sample. Mineralogy Determined by X-Ray Diffraction (Weight %) Quartzarenite Well Lithology: Slightly Argillaceous Sandstone PLATE 22 (cont.) Scanning Electron Microscopy Sample Description 79.1 0.8 1.3 0.4 2.6 0.0 1.7 14.1 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 7.3 4.6 1.2 1.0 0 2 4 6 8 10 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Cal Kaol Qtz Kaol MXL MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7030.0 Grain Size (mm): 0.077 (L. very fine sand) Sample ID: 23 Sorting: Photomicrograph Caption Bioturbation and burrowing characterize this argillaceous sandstone. Note the apparent random distribution of dark brown detrital clay contrasted with "cleaner" burrowed zones in this thin section scan. The original fabric of this sample has been destroyed by bioturbating or burrowing organisms. Black zones indicate areas of coalesced pyrite framboids. Only a few pores are visible in this scan and they are confined to the "cleaner", less argillaceous burrowed zones. Lithology: Argillaceous Sandstone PLATE 23 High–Resolution Thin Section Scan Sample Description Quartzarenite Very Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7030.0 Grain Size (mm): 0.077 (L. very fine sand) Sample ID: 23 Sorting: A B Quartz 75.9 Dolomite 4.1 K-Feldspar 0.7 Siderite 0.0 Plagioclase 1.3 Pyrite 2.0 Calcite 0.5 Total Clay 15.5 Illite / Smectite 6.8 Kaolinite 1.4 Illite & Mica 5.7 Chlorite 1.6 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Trace micas and glauconite; rare phosphatic fragments Matrix: Abundant detrital clay, although generally absent in burrows Cements: Pore Types: Minor dolomite and ferroan dolomite, kaolinite, chlorite, and pyrite Minor to moderate primary intergranular and secondary intragranular pores (confined to burrows); rare moldic pores in argillaceous portion of sample Photo A is representative of the fabric for most of the non–burrowed portions of the sample. Dark brown detrital clay fills most intergranular areas and destroys pores. Photo B is a higher–magnification view of the center of Photo A within one of the "cleaner", less argillaceous zones. The grains are mostly very well sorted and exhibit no preferred orientation as evidenced by the random orientation of the elongate grains. Although dolostone rock fragments (Dol) are observed, late diagenetic dolomite cement is prevalent in this sample. Dolomite and ferroan dolomite (Fe-dol; stained blue) either replace grains or fill former open pore space. Several stages of dolomite cementation is apparent, where the original rhombic dolomite crystal is surrounded by blue-stained ferroan dolomite, lending a zoned character to some of the cement. Authigenic chlorite (Chl) is also observed lining or filling pores. In this sample, pyrite (Pyr) tends to replace grains and subsequently fill the surrounding pores. Note the small intergranular pores and the slightly larger moldic pores (Pm) that result from grain dissolution. Structures: Extensive bioturbation and burrowing Framework Grains: Abundant quartz; minor plagioclase; trace K-feldspar and dolostone rock fragments Accessory Grains: Quartzarenite Very Well Lithology: Argillaceous Sandstone PLATE 23 (cont.) Thin Section Petrography Sample Description Fe-dol Chl Dol Pyr Pm Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7030.0 Grain Size (mm): 0.077 (L. very fine sand) Sample ID: 23 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption Pores tend to be small and not plentiful in this sample as evidenced by the low magnification SEM Photo C (yellow arrows). Photo D is a magnified view of the center of Photo C. Although pores are present in Photo D, they are very small (red arrows) and mostly occluded by pyrite (Pyr), but particularly by mixed layer clays (MXL), which comprise the detrital matrix in the sample (see Photo A on previous plate). Quartz (Qtz) is identified by EDS, and forms the large grain at the center of Photo D. Mineralogy Determined by X-Ray Diffraction (Weight %) Quartzarenite Very Well Lithology: Argillaceous Sandstone PLATE 23 (cont.) Scanning Electron Microscopy Sample Description 75.9 0.7 1.3 0.5 4.1 0.0 2.0 15.5 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 6.8 5.7 1.4 1.6 0 2 4 6 8 10 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Pyr MXL Qtz Qtz Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7048.0 Grain Size (mm): 0.078 (L. very fine sand) Sample ID: 24 Sorting: Photomicrograph Caption The majority of the sample is an argillaceous sandstone that is extensively bioturbated and probably burrowed. However, the lighter zone just above the middle of the high–resolution scan contains no argillaceous material. The grain sizes are larger here (0.106 mm; upper very fine sand), very well sorted, and mostly lack argillaceous material. This zone may be one large burrow because of the contrasts in fill material, cement, and grain size. Pores are very scarce in this sample. Well Sample Description Quartzarenite PLATE 24 High–Resolution Thin Section Scan Lithology: Argillaceous Sandstone Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7048.0 Grain Size (mm): 0.078 (L. very fine sand) Sample ID: 24 Sorting: A B Quartz 65.1 Dolomite 4.0 K-Feldspar 1.5 Siderite 0.0 Plagioclase 2.4 Pyrite 2.8 Calcite 0.7 Total Clay 23.5 Illite / Smectite 10.6 Kaolinite 3.4 Illite & Mica 8.1 Chlorite 1.4 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi In Photo A, the boundary between the probable burrow (white zone in bottom half of photo) and the argillaceous sandstone lithology that represents the bulk of the sample is clearly seen. Photo B details the lithologies of both burrow and host rock. At the top of Photo B, larger grain sizes are noted compared with the argillaceous sandstone at the bottom of the photo. Small zones of pyrite are seen in the upper zone (blue arrows). A few crushed ostracods are also observed in this zone (not pictured). Cement in the light zone is mostly quartz overgrowths and kaolinite, with some ferroan dolomite and pyrite. The quartz overgrowths are in optical continuity with the host quartz grain. Dust rims between the grains and overgrowths are not apparent. Dolomite cement (Dol) is observed in the argillaceous portions of the sample. A small secondary intragranular pore is seen (red arrow). Abundant quartz; minor plagioclase; trace K-feldspar Trace micas; several mollusk and ostracod fragments A few secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Matrix: Abundant detrital clay Cements: Abundant quartz overgrowths (in siliceous lamina); minor ferroan dolomite (some zoned), pyrite, and kaolinite; rare siderite Pore Types: Extensive bioturbation and burrowing Framework Grains: Accessory Grains: Lithology: Argillaceous Sandstone Structures: PLATE 24 (cont.) Thin Section Petrography Sample Description Quartzarenite Well Dol Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7048.0 Grain Size (mm): 0.078 (L. very fine sand) Sample ID: 24 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi SEM Photo C illustrates the lack of pores in this sample. The portion of the sample imaged in these photos represents the more argillaceous lithology. Photo D (the field-of-view of the yellow box in Photo C) shows a large quartz grain (Qtz) and a K–feldspar grain (Ksp). Mixed–layer clays (MXL) coat and obscure framework grains (except on broken grains as seen at the left of the photo). Note the subconcoidal fracture of the quartz grain. The mixed-layer clays are detrital, and fill most former pore space in the sample. Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Argillaceous Sandstone PLATE 24 (cont.) Scanning Electron Microscopy Sample Description Quartzarenite Well 65.1 1.5 2.4 0.7 4.0 0.0 2.8 23.5 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 10.6 8.1 3.4 1.4 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz MXL Ksp MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7077.5 Grain Size (mm): 0.056 (coarse silt) Sample ID: 25 Sorting: Photomicrograph Caption Apparent burrows and bioturbation characterize this argillaceous siltstone in this high–resolution thin section scan. The burrows (Bur) contain coarser sand–size detrital grains cemented with kaolinite and ferroan dolomite. The dark brown zones are concentrations of organic matter-rich detrital clay. The black blobs are zones that have been pyritized (yellow arrows). Pores are small and scarce in this sample. Well Sample Description Quartzarenite PLATE 25 High–Resolution Thin Section Scan Lithology: Argillaceous Siltstone Bur Bur Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7077.5 Grain Size (mm): 0.056 (coarse silt) Sample ID: 25 Sorting: A B Quartz 65.3 Dolomite 3.3 K-Feldspar 1.0 Siderite 0.0 Plagioclase 2.6 Pyrite 1.9 Calcite 0.0 Total Clay 25.8 Illite / Smectite 10.3 Kaolinite 3.2 Illite & Mica 10.0 Chlorite 2.3 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi Photo A shows the typical fabric of the sample with what appears to be an intact lamina near the center of the photo. Part of the lamina has been pyritized (black grains). In Photo B, the detrital grains average in the coarse silt–size category and are mostly quartz. Note the abundant detrital clay matrix (brown) that infill's between the framework grains. The predominant cements are zoned ferroan dolomite (Fe-dol; stained blue) and kaolinite (Kaol) that fills some pores between framework grains. Pyrite (black specks) are typically seen as small framboids, but pyrite does occasionally replace grains or whole zones (see previous plate). Few pores are observed in this sample. The pores in Photo B (blue epoxy) are secondary intragranular pores that result from feldspar leaching. Abundant quartz; minor plagioclase; trace K-feldspar Trace micas; rare glauconite grains Rare secondary intragranular and moldic pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Matrix: Abundant detrital clay Cements: Minor ferroan dolomite, pyrite, and kaolinite; trace calcite Pore Types: Extensive bioturbation and burrowing Framework Grains: Accessory Grains: Lithology: Argillaceous Siltstone Structures: PLATE 25 (cont.) Thin Section Petrography Sample Description Quartzarenite Well Fe-dol Kaol Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7077.5 Grain Size (mm): 0.056 (coarse silt) Sample ID: 25 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi SEM Photo C demonstrates the lack of pores in this siltstone sample. In Photo D, quartz grains (Qtz) are small and mostly surrounded by mixed–layer clays (MXL) that fill all the intergranular spaces in the image, with the exception of a euhedral and rhombic calcite cement crystal (Cal). Calcite is rare in this sample and was not detected by X-ray diffraction, but a few crystals are observed in thin section and identified by EDS in SEM. Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Argillaceous Siltstone PLATE 25 (cont.) Scanning Electron Microscopy Sample Description Quartzarenite Well 65.3 1.0 2.6 0.0 3.3 0.0 1.9 25.8 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 10.3 10.0 3.2 2.3 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz MXL Cal MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7236.5 Grain Size (mm): 0.088 (U. very fine sand) Sample ID: 26 Sorting: Photomicrograph Caption The original fabric of this sample is completely obscured by large amounts of bioturbation and burrowing. A "clean" burrow is indicated by the yellow arrow near the top of the high–resolution thin section scan. The burrow contains no detrital clay and is largely cemented with kaolinite. Small "clean" zones are seen distributed about the sample. A pyritic zone is indicated by the red arrow. Almost no pores are visible in the scan. Well Sample Description Quartzarenite PLATE 26 High–Resolution Thin Section Scan Lithology: Argillaceous Sandstone Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7236.5 Grain Size (mm): 0.088 (U. very fine sand) Sample ID: 26 Sorting: A B Quartz 60.3 Dolomite 3.1 K-Feldspar 0.7 Siderite 0.0 Plagioclase 1.7 Pyrite 2.0 Calcite 0.0 Total Clay 32.2 Illite / Smectite 11.9 Kaolinite 4.3 Illite & Mica 11.4 Chlorite 4.6 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi Typical chaotic sample fabric is seen in the low–magnification of Photo A. Note the confused and disordered distribution of framework grains and matrix. The larger black zones are areas of pyrite (Pyr) replacement. Photo B reinforces the impression of the chaotic nature of the sample. The elongate grains exhibit no apparent sub- parallel orientation. Some zones contain concentrations of grains whereas other zones contain almost no grains. Although abundant detrital clay matrix (brown) is nearly ubiquitous in this sample, several cement examples are observed, including kaolinite (Kaol) and rhombs of dolomite (Dol). A few moldic pores (Pm) are visible in Photo B. Abundant quartz; minor plagioclase; trace K-feldspar Trace micas; rare glauconite grains Rare secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Matrix: Abundant detrital clay Cements: Minor ferroan dolomite, pyrite, and kaolinite Pore Types: Bioturbation and burrowing; original rock fabric destroyed Framework Grains: Accessory Grains: Lithology: Argillaceous Sandstone Structures: PLATE 26 (cont.) Thin Section Petrography Sample Description Quartzarenite Well Kaol Dol Pyr Pm Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7236.5 Grain Size (mm): 0.088 (U. very fine sand) Sample ID: 26 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi The prevalence of detrital matrix and lack of open pores is obvious in SEM Photo C. In the high–magnification Photo D, a few quartz grains are identified by EDS, but they mostly have been subsumed by the abundant mixed–layer clays (MXL) the comprises the detrital clay matrix in this sample. No pores are observed in these SEM images. Note the pyrite framboid (Pyr) just above the center of Photo D. Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Argillaceous Sandstone PLATE 26 (cont.) Scanning Electron Microscopy Sample Description Quartzarenite Well 60.3 0.7 1.7 0.0 3.1 0.0 2.0 32.2 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 11.9 11.4 4.3 4.6 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz MXL Pyr Qtz MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7250.0 Grain Size (mm): 0.154 (L. fine sand) Sample ID: 27 Sorting: Photomicrograph Caption This high–resolution thin section scan illustrates the bioturbated and burrowed nature of this argillaceous sandstone. The darker brown areas represent detrital clay–rich zones. In the case of the broader, more ambiguous dark brown zones (red arrows), detrital clay has infiltrated between framework grains, probably as the result of bioturbation. A few of the larger moldic pores (blue epoxy) are visible in the wide field- of-view of the thin section scan. Lithology: Argillaceous Sandstone PLATE 27 High–Resolution Thin Section Scan Sample Description Quartzarenite Well Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7250.0 Grain Size (mm): 0.154 (L. fine sand) Sample ID: 27 Sorting: A B Quartz 69.2 Dolomite 2.9 K-Feldspar 1.0 Siderite 0.0 Plagioclase 1.2 Pyrite 1.5 Calcite 0.6 Total Clay 23.7 Illite / Smectite 11.4 Kaolinite 3.7 Illite & Mica 7.1 Chlorite 1.5 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Trace to minor moldic pores; trace very small secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption In Photo A, brown detrital clay is non–uniformly distributed. The burrows (an example is seen near the top middle of Photo A) lack detrital clay and are cemented with kaolinite. Note the lack of consistent fabric. Photo B is of a very high magnification in order to capture the nature of the pores and authigenic material that partially occludes them. A small undifferentiated calcitic skeletal fragment (Skel) is seen on the left side of Photo B. Its interior is cemented with ferroan calcite (Fe-cal; stained purple. Brown detrital clay (Dc) surrounds the framework, whose packing is not dense. Note the authigenic kaolinite (Kaol) between some of the grains. Thin quartz overgrowths are indicated by the red arrows. Small framboids of pyrite (black) replace grains or matrix. The pores in Photo D are mostly small secondary intragranular pores, whereas the pores seen in Photo A are moldic pores. Trace micas Matrix: Abundant detrital clay Cements: Minor dolomite and ferroan dolomite, pyrite, chlorite, and kaolinite; trace thin quartz overgrowths Pore Types: Structures: Extensive bioturbation and burrowing Framework Grains: Abundant quartz; minor plagioclase; trace K-feldspar; a few dolostone and foliated metamorphic rock fragments Accessory Grains: Quartzarenite Well Lithology: Argillaceous Sandstone PLATE 27 (cont.) Thin Section Petrography Sample Description Fe-cal Kaol Dc Skel Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7250.0 Grain Size (mm): 0.154 (L. fine sand) Sample ID: 27 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption Pores are scarce in this sample as evidenced by these SEM images. Quartz (Qtz) comprises most of the framework grains. Although calcite is only seen in trace amounts (0.6% by XRD), thin section analysis reveals that in addition to rare calcitic skeletal fragments, limestone rock fragments are also observed. The two grains of calcite (Cal) near the top of Photo D are probably limestone rock fragments as evidenced by their rounded detrital character. Further, authigenic calcite cement is not observed in this sample. Mixed-layer clay (MXL) is ubiquitous in the sample and represents the detrital matrix. Mineralogy Determined by X-Ray Diffraction (Weight %) Quartzarenite Well Lithology: Argillaceous Sandstone PLATE 27 (cont.) Scanning Electron Microscopy Sample Description 69.2 1.0 1.2 0.6 2.9 0.0 1.5 23.7 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 11.4 7.1 3.7 1.5 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRDCal MXL Cal MXL Qtz Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7256.5 Grain Size (mm): 0.094 (U. very fine sand) Sample ID: 28 Sorting: Photomicrograph Caption A chaotic bioturbated and burrowed fabric characterize this argillaceous sandstone as seen in the thin section scan. No trace of the original rock fabric remains. Brown stringy and discontinuous zones of argillaceous matrix (brown) traverse the sample. Clean burrows lack detrital clay and contain most of the sample's pores. The black areas indicated by the red areas are pyritized zones. Lithology: Argillaceous Sandstone PLATE 28 High–Resolution Thin Section Scan Sample Description Quartzarenite Moderate Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7256.5 Grain Size (mm): 0.094 (U. very fine sand) Sample ID: 28 Sorting: A B Quartz 63.3 Dolomite 1.5 K-Feldspar 1.0 Siderite 0.0 Plagioclase 1.8 Pyrite 4.2 Calcite 0.0 Total Clay 28.3 Illite / Smectite 13.7 Kaolinite 3.5 Illite & Mica 8.5 Chlorite 2.6 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Minor to moderate moldic pores with fewer secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Chaotic and disrupted fabric is again visible under the low magnification of Photo A. Brown detrital clay infills as matrix between grains, but its distribution and organic matter content (black – sometimes pyritized) are variable. The cleaner zones in Photo A do not exhibit detrital clay but are cemented with mostly kaolinite. Photo B shows an example of typical and widespread argillaceous zones in the sample. Note the medium to coarse silt-size grains seen in the detrital matrix (yellow arrows) as well as the better sorted larger sand-size grains. A loose, open fabric suggest reworking of grains by organisms. Kaolinite (Kaol) is observed where detrital clays have not infiltrated or framework grains have undergone dissolution. Black pyritized zones (red arrows) represent organic matter diagenesis in a reducing environment. Most pores are moldic pores that typically contain small amounts of authigenic clay such as kaolinite or chlorite. Trace micas; a few phosphatic fragments (possible bone material) Matrix: Abundant detrital clay Cements: Minor dolomite and ferroan dolomite, pyrite, chlorite, and kaolinite Pore Types: Structures: Chaotic bioturbated and burrowed fabric; zones of pyritization Framework Grains: Abundant quartz; minor plagioclase; trace K-feldspar Accessory Grains: Quartzarenite Moderate Lithology: Argillaceous Sandstone PLATE 28 (cont.) Thin Section Petrography Sample Description Kaol Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7256.5 Grain Size (mm): 0.094 (U. very fine sand) Sample ID: 28 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption SEM Photo C shows the molds of many of the framework grains (red arrows). Such areas can be seen in detail in Photo D. The large quartz grain (Qtz) that is central in the photo has been fractured during sample preparation. Mixed–layer clay (MXL) surrounds the grains (representing detrital matrix). A small pyrite framboid is indicated by the yellow arrow. The clay infiltration is complete, leaving no visible pores in these SEM images. Mineralogy Determined by X-Ray Diffraction (Weight %) Quartzarenite Moderate Lithology: Argillaceous Sandstone PLATE 28 (cont.) Scanning Electron Microscopy Sample Description 63.3 1.0 1.8 0.0 1.5 0.0 4.2 28.3 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 13.7 8.5 3.5 2.6 0 5 10 15 20 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD MXL Qtz MXL MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7261.2 Grain Size (mm): 0.114 (U. very fine sand) Sample ID: 29 Sorting: Photomicrograph Caption This argillaceous sandstone exhibits widespread bioturbation, and the obvious burrows (Bur) appear relatively clean and well defined. Throughout the bulk of the sample, detrital clay (brown) forms elongate discontinuous zones and infiltrates between framework grains. The darker zones near the right edge of the scan are zones of pyritization. Pores are rare in this sample and small enough to not be visible in the scan. The fracture seen near the bottom does not appear natural. Lithology: Argillaceous Sandstone PLATE 29 High–Resolution Thin Section Scan Sample Description Quartzarenite Very Well Bur Bur Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7261.2 Grain Size (mm): 0.114 (U. very fine sand) Sample ID: 29 Sorting: A B Quartz 65.7 Dolomite 2.0 K-Feldspar 0.6 Siderite 0.0 Plagioclase 1.3 Pyrite 2.5 Calcite 0.0 Total Clay 27.9 Illite / Smectite 12.7 Kaolinite 3.8 Illite & Mica 8.2 Chlorite 3.2 %smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi 0 XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Photo A illustrates the disrupted and inconsistent fabric of this argillaceous sandstone. The burrow (Bur) near the top of the photo contains little of the detrital clay that is abundant in the rest of the sample. The bulk of the sample contains detrital clay (Dc), but its distribution is not uniform, nor are the framework grains uniformly distributed. Photo B is of a very high magnification in order to capture the nature of the pores and authigenic material that partially occludes them. Although most of the sample contains well sorted grains, those seen in Photo B are poorly sorted. Note the subhedral crystal of ferroan dolomite (Fe-dol) that may be a late diagenetic grain replacement. Larger masses of pyrite (Pyr) are observed as well as smaller framboids that replace matrix. A rare moldic pore is seen in Photo D, however much of it is occluded by authigenic kaolinite (Kaol). 0 Matrix: 0 Cements: 0 Pore Types: Structures: 0 Framework Grains: Abundant quartz; minor plagioclase; trace K-feldspar Accessory Grains: Quartzarenite Very Well Lithology: Argillaceous Sandstone PLATE 29 (cont.) Thin Section Petrography Sample Description Fe-dol Bur Kaol Pyr Dc Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7261.2 Grain Size (mm): 0.114 (U. very fine sand) Sample ID: 29 Sorting: C D *Smectite in mixed-layer illite/smectite is '20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: 0.00 Minor 1-5%Permeability (md)*: 0 Moderate 5-10%Grain Density (g/cc): 0.00 Common 10-20% Abundant >20% *Core analysis data taken at psi Photomicrograph Caption These SEM images reflect the lack of pores and the argillaceous nature of this sample. Large quartz grains (Qtz) are seen in Photo D. They appear to have a well rounded character. The only other constituent of note is the presence of mixed–layer clay (MXL) that is representative of the abundant detrital matrix in this sample. No pores are observed in SEM. Mineralogy Determined by X-Ray Diffraction (Weight %) Quartzarenite Very Well Lithology: Argillaceous Sandstone PLATE 29 (cont.) Scanning Electron Microscopy Sample Description 65.7 0.6 1.3 0.0 2.0 0.0 2.5 27.9 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 12.7 8.2 3.8 3.2 0 5 10 15 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz Qtz Qtz MXL MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7270.0 Grain Size (mm): 0.102 (U. very fine sand) Sample ID: 30 Sorting: Photomicrograph Caption Large burrows, small burrows, and repetitive burrowing impart a confused and disordered appearance to this sample. The scan shows abundant framework grains and slightly less detrital clay than was seen in slightly shallower samples. Some of the cleaner burrows (red arrows) lack detrital clay, but are cemented with calcite, dolomite, and kaolinite. No pores are visible in the scan. Moderately Well Sample Description Quartzarenite PLATE 30 High–Resolution Thin Section Scan Lithology: Argillaceous Sandstone Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7270.0 Grain Size (mm): 0.102 (U. very fine sand) Sample ID: 30 Sorting: A B Quartz 72.1 Dolomite 1.2 K-Feldspar 0.8 Siderite 0.0 Plagioclase 1.2 Pyrite 1.9 Calcite 0.0 Total Clay 22.9 Illite / Smectite 9.1 Kaolinite 3.5 Illite & Mica 7.5 Chlorite 2.8 %smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi A burrow (Bur) is prominent in Photo A. It is surrounded by mostly brown detrital clay that contains few grains. The burrow is "clean", but cemented with kaolinite, calcite, and slightly ferroan dolomite. Photo B shows a portion of typical sample fabric, with quartz (Qtz) and plagioclase grains (PF) as framework. Brown detrital clay surrounds the grains, which crowds out cement opportunities. Some kaolinite (Kaol) is seen near the bottom right of Photo D. Ferroan dolomite (Fe-dol; stained blue) is also present. A moldic pore (Pm) is visible in Photo D that is lined with authigenic chlorite. The fracture is not natural. Abundant quartz; minor plagioclase; trace K-feldspar Trace micas; rare organic matter and mollusk fragments Trace moldic pores; rare secondary intragranular pores XRD-Whole Rock Mineralogy (Weight %) Clay Abundance (Weight %) Photomicrograph Caption Matrix: Abundant detrital clay Cements: Minor ferroan dolomite, pyrite, and kaolinite; rare calcite (in burrows) Pore Types: Extensive bioturbation and burrowing Framework Grains: Accessory Grains: Lithology: Argillaceous Sandstone Structures: PLATE 30 (cont.) Thin Section Petrography Sample Description Quartzarenite Moderately Well Fe-dol Bur Kaol Qtz PF Pm Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7270.0 Grain Size (mm): 0.102 (U. very fine sand) Sample ID: 30 Sorting: C D *Smectite in mixed-layer illite/smectite is 20-30% Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% *Core analysis data taken at N/A psi Abundant mixed–layer clays (MXL) serve as detrital matrix in this argillaceous sandstone. The framework grains seen in SEM Photo C appear inundated by mixed–layer clays. This is obvious in the high–magnification of Photo D where quartz grains (Qtz) are glimpsed, but appear attenuated by the abundance of the clays. Kaolinite (Kaol) is also visible near the top of the image. A small framboid of pyrite (Pyr) is identified by EDS and is seen near the bottom of the image. Mineralogy Determined by X-Ray Diffraction (Weight %) Photomicrograph Caption Lithology: Argillaceous Sandstone PLATE 30 (cont.) Scanning Electron Microscopy Sample Description Quartzarenite Moderately Well 72.1 0.8 1.2 0.0 1.2 0.0 1.9 22.9 0 10 20 30 40 50 60 70 80 90 100 Qu a r t z K- F e l d s p a r Pl a g i o c l a s e Ca l c i t e Do l o m i t e Si d e r i t e Py r i t e To t a l C l a y Pe r c e n t ( % ) Bulk XRD 9.1 7.5 3.5 2.8 0 1 2 3 4 5 6 7 8 9 10 Il l i t e / Sm e c t i t e Il l i t e & Mi c a Ka o l i n i t e Ch l o r i t e Pe r c e n t ( % ) Clay XRD Qtz MXL Kaol Pyr Qtz Qtz MXL Company: Repsol Well: Qugruk #3 Location: North Slope, Alaska Formation: Unknown Classification (Folk, 1980): Depth (ft): 7270.0 Grain Size (mm): 0.102 (U. very fine sand) Sample ID: 30 Sorting: E F Relative Abundances:Core Analysis Data: Trace <1%Porosity (%)*: N/A Minor 1-5%Permeability (md)*: N/A Moderate 5-10%Grain Density (g/cc): N/A Common 10-20% Abundant >20% PLATE 30 (cont.) Epifluorescent Thin Section Petrography Sample Description *Core analysis data taken at N/A psi Quartzarenite Moderately Well Lithology: Argillaceous Sandstone Photomicrograph Caption These are supplemental, high magnification, paired plane and UV light images included to illustrate the nature of subtle micropores that characterize this sample. The red arrows point to correlative positions in each of the paired images. Note the slight greenish haze between framework grains in Photo E that is a hallmark of micropores. Photo F shows a subtle and convolute network of micropores in the areas between the framework grains. The argillaceous zone near the bottom of Photo E shows no micropores under the UV light of Photo F. REPSOL USA - MULTI-STAGE SEPARATOR TEST Prepared for REPSOL USA - By Weatherford Laboratories (USA) Ltd. 8845 Fallbrook Drive Houston, Texas 77064 (832) 237-4000 (Phone) www.weatherfordlabs.com July 24, 2013 MULTI-STAGE SEPARATOR TEST MULTI-STAGE SEPARATOR TEST TABLE OF CONTENTS i List of Tables ii RESULTS AND DISCUSSION 1 SUMMARY 2 APPENDIX A Sample Validation 11 APPENDIX B Multi-Stage Separator Test - Material Balance 15 APPENDIX C Multi-Stage Separator Test - Liberated Gas Analyses 17 i MULTI-STAGE SEPARATOR TEST LIST OF TABLES TABLE 1 SAMPLE COLLECTION DATA 3 TABLE 2 COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID 4 TABLE 3 MULTI-STAGE SEPARATOR OIL PROPERTIES 5 TABLE 4 MULTI-STAGE SEPARATOR GAS PROPERTIES 6 TABLE 5 COMPOSITIONAL ANALYSIS OF RESIDUAL OIL 7 TABLE A1 COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID 12 TABLE A2 COMPOSITIONAL ANALYSIS OF FLASHED OIL 13 TABLE A3 COMPOSITIONAL ANALYSIS OF FLASHED GAS 14 TABLE B1 MULTI-STAGE SEPARATOR - MATERIAL BALANCE 16 TABLE C1 MULTI-STAGE SEPARATOR GAS COMPOSITION @ 215 psia (1.48 MPa) AND 70.0 F (21.1 C) 18 TABLE C2 MULTI-STAGE SEPARATOR GAS COMPOSITION @ 55 psia (0.38 MPa) AND 70.0 F (21.1 C) 19 TABLE C3 MULTI-STAGE SEPARATOR GAS COMPOSITION @ 15 psia (0.10 MPa) AND 60.0 F (15.6 C) 20 ii MULTI-STAGE SEPARATOR TEST LIST OF FIGURES FIGURE 1 DIFFERENTIAL LIBERATION OIL FORMATION VOLUME FACTOR @ 108.0 F (315.4 K) 9 FIGURE 2 DIFFERENTIAL LIBERATION GAS-OIL RATIOS @ 108.0 F (315.4 K) 10 iii MULTI-STAGE SEPARATOR TEST RESULTS AND DISCUSSION The multi-stage separator test was conducted on a S008 sample prepared from separator oil and separator gas collected from Well QUGRUK-3 of reservoir. The sample collection data is provided in Table 1 and the sample validation data is given in Appendix A . Table 2 provides the compositional analysis of the S008 sample. Table 3 contains various oil property measurements performed on the multi-stage separator test including live oil density, oil formation volume factor and gas-oil ratios. Table 4 contains a summary of the gas properties including gas gravities, deviation factors, gas formation volume factors and gas expansion factors. Table 5 presents the compositional analysis of the residual oil at completion of the experiment. Appendix B contains the material balance check performed for this experiment. It is displayed as formation volume factors so that the balance can be checked on a point by point basis. Appendix C contains the compositional analyses of the liberated gases from the multi-stage separator test. 1 MULTI-STAGE SEPARATOR TEST SUMMARY INITIAL RESERVOIR CONDITIONS Reservoir Pressure 1890 psia 13.03 MPa Reservoir Temperature: 108.0 F 315.4 K MULTI-STAGE SEPARATOR TEST Saturation Pressure 1611 psia 11.11 MPa At Saturation Pressure Oil Formation Volume Factor 1.1596 res.bbl/STB 1.1596 res.m 3/m 3 Solution Gas-Oil Ratio 348.92 scf/STB 62.14 m3/m 3 Oil Density 0.7904 g/cm 3 790.4 kg/m 3 At Ambient Pressure Residual Oil Density 0.8623 g/cm 3 862.3 kg/m 3 At Tank Conditions Residual Oil Density 0.8623 g/cm 3 862.3 kg/m 3 API Gravity 32.60 32.60 SINGLE-STAGE SEPARATOR TEST At Saturation Pressure Oil Formation Volume Factor 1.2063 res.bbl/STB 1.2063 res.m 3/m 3 Solution Gas-Oil Ratio 423.70 scf/STB 75.46 m3/m 3 At Tank Conditions Residual Oil Density 0.8698 g/cm 3 869.8 kg/m 3 API Gravity 31.18 31.18 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST MAIN PVT RESULTS 2 MULTI-STAGE SEPARATOR TEST Project File: HH-64974 Operator Name: REPSOL USA Pool or Zone: . Field or Area: Well Location: QUGRUK-3 Fluid Sample: S008 Sampling Company: . Name of Sampler: . Sampling Date: . Sampling Point: DOWNHOLE Sampling Temperature: 108.0 F 315.4 K Sampling Pressure: 1450.0 psia 10.00 MPa Reservoir Temperature: 108.0 F 315.4 K Reservoir Pressure: 1890.0 psia 13.03 MPa Initial Reservoir Pressure (Pi) N/A psia N/A MPa Depth of Reported Pi N/A mMD N/A mss TABLE 1 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST SAMPLE COLLECTION DATA 3 MULTI-STAGE SEPARATOR TEST Component Chemical Mole Mass Name Symbol Fraction Fraction Nitrogen N2 0.0022 0.0005 Total Sample Carbon Dioxide CO 2 0.0006 0.0002 Hydrogen Sulphide H2S 0.0000 0.0000 Molecular Weight 137.18 Methane C1 0.3161 0.0370 Ethane C2 0.0536 0.0118 Propane C3 0.0386 0.0124 C6+ Fraction i-Butane i-C 4 0.0072 0.0030 n-Butane n-C 4 0.0194 0.0082 Molecular Weight 232.60 i-Pentane i-C 5 0.0093 0.0049 Mole Fraction 0.5397 n-Pentane n-C 5 0.0133 0.0070 Density (g/cc) 0.8581 Hexanes C6 0.0218 0.0137 Heptanes C7 0.0405 0.0296 Octanes C8 0.0535 0.0446 C7+ Fraction Nonanes C9 0.0405 0.0379 Decanes C10 0.0365 0.0379 Molecular Weight 238.77 Undecanes C11 0.0340 0.0365 Mole Fraction 0.5178 Dodecanes C12 0.0281 0.0330 Density (g/cc) 0.8614 Tridecanes C13 0.0282 0.0359 Tetradecanes C14 0.0256 0.0355 Pentadecanes C15 0.0228 0.0343 C12+ Fraction Hexadecanes C16 0.0196 0.0318 Heptadecanes C17 0.0173 0.0299 Molecular Weight 313.61 Octadecanes C18 0.0159 0.0291 Mole Fraction 0.3127 Nonadecanes C19 0.0141 0.0271 Density (g/cc) 0.8925 Eicosanes C20 0.0122 0.0245 Heneicosanes C21 0.0112 0.0237 C36+ Fraction Docosanes C22 0.0101 0.0224 Tricosanes C23 0.0086 0.0199 Molecular Weight 676.22 Tetracosanes C24 0.0078 0.0189 Mole Fraction 0.0410 Pentacosanes C25 0.0071 0.0178 Density (g/cc) 0.9940 Hexacosanes C26 0.0061 0.0159 Heptacosanes C27 0.0058 0.0159 Octacosanes C28 0.0054 0.0153 Recombination Parameters Nonacosanes C29 0.0051 0.0149 Tricontanes C30 0.0046 0.0139 Gas-Oil Ratio (cc/cc) 75.46 Hentriacontanes C31 0.0039 0.0122 Dead Oil Density (g/cc) 0.8698 Dotriacontanes C32 0.0037 0.0119 Dead Oil MW (g/mol) 230.83 Tritriacontanes C33 0.0033 0.0110 Tetratriacontanes C34 0.0029 0.0101 Pentatriacontanes C35 0.0023 0.0081 Hexatriacontanes plus C36 +0.0410 0.2019 1.0000 1.0000 TABLE 2 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID Calculated Properties 4 MU L T I - S T A G E S E P A R A T O R T E S T Oi l O i l F o r m a t i o n T o t a l F o r m a t i o n De n s i t y V o l u m e F a c t o r V o l u m e F a c t o r S o l u t i o n L i b e r a t e d S olution Liberated (M P a ) ( F ) ( C ) (g / c m 3 ) [1 ] [ 2 ] ( s c f / S T B ) ( s c f / S T B ) (m 3 /m 3 ) (m 3 /m 3 ) 16 1 1 Ps a t 11 . 1 1 10 8 42 . 2 0. 7 9 0 4 1. 1 5 9 6 1. 1 5 9 6 34 8 . 9 2 0. 0 0 62.14 0.00 21 5 1. 4 8 70 21 . 1 0. 8 4 6 3 1. 0 3 6 0 4. 1 3 7 70 . 9 7 27 7 . 9 5 12.64 49.50 55 0. 3 8 70 21 . 1 0. 8 5 5 5 1. 0 1 5 0 13 . 2 6 23 . 9 5 32 4 . 9 7 4.27 57.88 15 0. 1 0 60 15 . 6 0. 8 6 2 3 1. 0 0 0 1 31 . 5 2 0. 0 0 34 8 . 9 2 0.00 62.14 De n s i t y o f R e s i d u a l O i l = 0 . 8 6 2 3 g / c m 3 ( 8 6 2 . 3 k g / m 3 ) @ 6 0 F ( 2 8 8 . 7 K ) AP I G r a v i t y o f R e s i d u a l O i l = 3 2 . 6 [1 ] B a r r e l s ( C u b i c m e t e r s ) o f o i l a t i n d i c a t e d pr e s s u r e a n d t e m p e r a t u r e p e r b a r r e l ( c u b i c m e t e r ) o f r e s i d u a l o i l @ 6 0 F ( 2 8 8 . 7 K ) . [2 ] T o t a l b a r r e l s ( c u b i c m e t e r s ) o f o i l a n d l i b er a t e d g a s a t t h e i n d i c a t e d p r e s s u r e a n d t e m p e r a t u r e p e r b a r r e l ( c u b i c m e t e r ) o f r e s i d u a l o i l @ 6 0 F ( 28 8 . 7 K ) . Ps a t - S a t u r a t i o n P r e s s u r e - T a n k c o n d i t i o n s : 6 0 F ( 2 8 8 . 7 K ) @ 1 3 p s i a (0 . 0 8 9 6 M P a ) ; S t a n d a r d c o n d i t i o n s : 6 0 F ( 2 8 8 . 7 K ) @ 1 4 . 6 9 6 p s i a ( 0 . 1 0 1 3 2 5 M P a ) . (p s i a ) Pr e s s u r e T e m p e r a t u r e Ga s - O i l R a t i o G a s - O i l R a t i o TA B L E 3 RE P S O L U S A - WE L L Q U G R U K - 3 - . - S A M P L E S 0 0 8 MU L T I - S T A G E S E P A R A T O R T E S T MU L T I - S T A G E S E P A R A T O R O I L P R O P E R T I E S 5 MU L T I - S T A G E S E P A R A T O R T E S T Ga s G a s D e v i a t i o n G a s F o r m a t i o n G a s E x p a n s i o n In c r e m e n t a l C u m u l a t i v e D e n s i t y F a c t o r V o l u m e F a c t o r F a c tor (M P a ) ( F ) ( C ) ( A i r = 1 ) ( A i r = 1 ) (g / c m 3 ) (- ) [ 1 ] [ 2 ] 16 1 1 Ps a t 11 . 1 1 10 8 42 . 2 21 5 1. 4 8 70 21 . 1 0. 6 5 2 4 0. 6 5 2 4 0. 0 1 1 8 1 0. 9 6 0 6 0. 0 6 2 6 15.963 55 0. 3 8 70 21 . 1 0. 8 2 1 7 0. 6 7 6 9 0. 0 0 3 6 1 0. 9 8 4 5 0. 2 1 1 6 4.726 15 0. 1 0 60 15 . 6 1. 1 3 8 9 0. 7 0 8 6 0. 0 0 1 2 0. 9 9 2 4 0. 4 9 1 1 2.036 [1 ] C u b i c f e e t ( m e t e r s ) o f g a s a t i n d i c a t e d p r e ss u r e a n d t e m p e r a t u r e p e r c u b i c f e e t ( m e t e r ) @ s t a nd a r d c o n d i t i o n s [2 ] C u b i c f e e t ( m e t e r s ) o f g a s @ s t a n d a r d c o n d i ti o n s p e r c u b i c f e e t ( m e t e r ) @ i n d i c a t e d p r e s s u r e a nd t e m p e r a t u r e . Ps a t - S a t u r a t i o n p r e s s u r e - S t a n d a r d c o n d i t i o n s : 6 0 F ( 2 8 8 . 7 K ) @ 1 4 . 69 6 p s i a ( 0 . 1 0 1 3 2 5 M P a ) (p s i a ) TA B L E 4 RE P S O L U S A - WE L L Q U G R U K - 3 - . - S A M P L E S 0 0 8 MU L T I - S T A G E S E P A R A T O R T E S T MU L T I - S T A G E S E P A R A T O R G A S P R O P E R T I E S Pr e s s u r e T e m p e r a t u r e Ga s G r a v i t y 6 MULTI-STAGE SEPARATOR TEST Component Chemical Mole Mass Name Symbol Fraction Fraction Nitrogen N2 0.0000 0.0000 Total Sample Carbon Dioxide CO 2 0.0000 0.0000 Hydrogen Sulphide H2S 0.0000 0.0000 Molecular Weight 223.35 Methane C1 0.0000 0.0000 Ethane C2 0.0000 0.0000 Propane C3 0.0052 0.0010 C6+ Fraction i-Butane i-C 4 0.0035 0.0009 n-Butane n-C 4 0.0139 0.0036 Molecular Weight 232.67 i-Pentane i-C 5 0.0130 0.0042 Mole Fraction 0.9443 n-Pentane n-C 5 0.0201 0.0065 Density (g/cc) 0.8189 Hexanes C6 0.0366 0.0141 Heptanes C7 0.0699 0.0314 Octanes C8 0.0912 0.0466 C7+ Fraction Nonanes C9 0.0722 0.0414 Decanes C10 0.0642 0.0409 Molecular Weight 238.58 Undecanes C11 0.0580 0.0382 Mole Fraction 0.9077 Dodecanes C12 0.0488 0.0352 Density (g/cc) 0.8243 Tridecanes C13 0.0494 0.0387 Tetradecanes C14 0.0453 0.0385 Pentadecanes C15 0.0416 0.0384 C12+ Fraction Hexadecanes C16 0.0336 0.0334 Heptadecanes C17 0.0313 0.0332 Molecular Weight 311.86 Octadecanes C18 0.0284 0.0319 Mole Fraction 0.5522 Nonadecanes C19 0.0253 0.0297 Density (g/cc) 0.8674 Eicosanes C20 0.0225 0.0277 Heneicosanes C21 0.0194 0.0252 C36+ Fraction Docosanes C22 0.0177 0.0242 Tricosanes C23 0.0160 0.0227 Molecular Weight 676.22 Tetracosanes C24 0.0137 0.0203 Mole Fraction 0.0691 Pentacosanes C25 0.0127 0.0196 Density (g/cc) 0.9940 Hexacosanes C26 0.0111 0.0178 Heptacosanes C27 0.0105 0.0176 Octacosanes C28 0.0099 0.0172 Nonacosanes C29 0.0089 0.0160 Tricontanes C30 0.0081 0.0151 Hentriacontanes C31 0.0070 0.0135 Dotriacontanes C32 0.0065 0.0129 Tritriacontanes C33 0.0059 0.0120 Tetratriacontanes C34 0.0051 0.0108 Pentatriacontanes C35 0.0046 0.0101 Hexatriacontanes plus C36 +0.0691 0.2093 1.0000 1.0000 TABLE 5 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST COMPOSITIONAL ANALYSIS OF RESIDUAL OIL Calculated Properties 7 MU L T I - S T A G E S E P A R A T O R T E S T PV T F l a s h A d j u s t e d P V T F l a s h A d j u s t e d (M P a ) (s c f / S T B ) ( s c f / S T B ) (m 3 /m 3 ) ( m 3 /m 3 ) 30 1 5 20 . 7 9 1. 1 7 0 6 1. 1 4 8 5 37 0 . 7 9 34 8 . 9 0 66 . 0 4 62.14 28 1 5 19 . 4 1 1. 1 7 2 3 1. 1 5 0 0 37 0 . 7 9 34 8 . 9 0 66 . 0 4 62.14 26 1 5 18 . 0 3 1. 1 7 4 1 1. 1 5 1 4 37 0 . 7 9 34 8 . 9 0 66 . 0 4 62.14 24 1 5 16 . 6 5 1. 1 7 5 9 1. 1 5 3 0 37 0 . 7 9 34 8 . 9 0 66 . 0 4 62.14 22 1 5 15 . 2 7 1. 1 7 7 7 1. 1 5 4 5 37 0 . 7 9 34 8 . 9 0 66 . 0 4 62.14 20 1 5 13 . 8 9 1. 1 7 9 7 1. 1 5 6 2 37 0 . 7 9 34 8 . 9 0 66 . 0 4 62.14 18 9 0 Pr e s 13 . 0 3 1. 1 8 0 9 1. 1 5 7 2 37 0 . 7 9 34 8 . 9 0 66 . 0 4 62.14 16 1 1 Ps a t 11 . 1 1 1. 1 8 3 8 1. 1 5 9 6 37 0 . 7 9 34 8 . 9 0 66 . 0 4 62.14 14 6 5 10 . 1 0 1. 1 7 2 4 1. 1 5 0 0 33 3 . 3 0 31 3 . 6 2 59 . 3 6 55.86 12 6 5 8. 7 2 1. 1 5 8 5 1. 1 3 8 3 29 5 . 0 6 27 7 . 6 3 52 . 5 5 49.45 10 6 5 7. 3 4 1. 1 4 4 1 1. 1 2 6 2 25 6 . 5 5 24 1 . 4 0 45 . 6 9 43.00 86 5 5. 9 6 1. 1 3 0 0 1. 1 1 4 3 21 6 . 9 6 20 4 . 1 5 38 . 6 4 36.36 66 5 4. 5 9 1. 1 1 6 5 1. 1 0 2 9 17 7 . 8 2 16 7 . 3 2 31 . 6 7 29.80 46 5 3. 2 1 1. 1 0 0 9 1. 0 8 9 7 13 8 . 9 7 13 0 . 7 7 24 . 7 5 23.29 26 5 1 . 8 3 1 . 0 8 4 1 1 . 0 7 5 5 9 4 . 7 6 8 9 . 1 6 1 6 . 8 8 1 5 . 8 8 15 0 . 1 0 1 . 0 2 9 4 1 . 0 2 9 4 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 Pr e s - R e s e r v o i r P r e s s u r e Ps a t - S a t u r a t i o n P r e s s u r e (p s i a ) PV T F l a s h A d j u s t e d TA B L E 6 RE P S O L U S A - WE L L Q U G R U K - 3 - . - S A M P L E S 0 0 8 MU L T I - S T A G E S E P A R A T O R T E S T FL A S H A D J U S T E D D I F F E R E N T I A L L I B E R A T I O N D A T A Oi l F o r m a t i o n V o l u m e F a c t o r S o l u t i o n G a s - O i l R a t i o S o lu t i o n G a s - O i l R a t i o Pr e s s u r e 8 MULTI-STAGE SEPARATOR TEST FIGURE 1 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST DIFFERENTIAL LIBERATION OIL FORMATION VOLUME FACTOR @ 108.0 F (315.4 K) 1.00 1.06 1.12 1.18 1.24 0 640 1280 1920 2560 3200 Oi l F o r m a t i o n V o l u m e F a c t o r ( r b b l / S T B ) Pressure (psia) PVT Flash Adjusted 1.00 1.06 1.12 1.18 1.24 0.0 4.4 8.8 13.2 17.6 22.0 Oi l F o r m a t i o n V o l u m e F a c t o r ( m 3 / m 3 ) Pressure (MPa) PVT Flash Adjusted 9 MULTI-STAGE SEPARATOR TEST FIGURE 2 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST DIFFERENTIAL LIBERATION GAS-OIL RATIOS @ 108.0 F (315.4 K) 0 105 210 315 420 0 640 1280 1920 2560 3200 Ga s - O i l R a t i o s ( s c f / S T B ) Pressure (psia) PVT Flash Adjusted 0 15 30 44 59 74 0.0 4.4 8.8 13.2 17.6 22.0 Ga s - O i l R a t i o s ( m 3 / m 3 ) Pressure (MPa) PVT Flash Adjusted 10 MULTI-STAGE SEPARATOR TEST APPENDIX A SAMPLE VALIDATION 11 MULTI-STAGE SEPARATOR TEST Component Chemical Mole Mass Name Symbol Fraction Fraction Nitrogen N2 0.0022 0.0005 Total Sample Carbon Dioxide CO 2 0.0006 0.0002 Hydrogen Sulphide H2S 0.0000 0.0000 Molecular Weight 137.18 Methane C1 0.3161 0.0370 Density (g/cc) 0.7770 Ethane C2 0.0536 0.0118 Propane C3 0.0386 0.0124 C6+ Fraction i-Butane i-C 4 0.0072 0.0030 n-Butane n-C 4 0.0194 0.0082 Molecular Weight 232.60 i-Pentane i-C 5 0.0093 0.0049 Mole Fraction 0.5397 n-Pentane n-C 5 0.0133 0.0070 Density (g/cc) 0.8581 Hexanes C6 0.0218 0.0137 Heptanes C7 0.0405 0.0296 C7+ Fraction Octanes C8 0.0535 0.0446 Nonanes C9 0.0405 0.0379 Molecular Weight 238.77 Decanes C10 0.0365 0.0379 Mole Fraction 0.5178 Undecanes C11 0.0340 0.0365 Density (g/cc) 0.8614 Dodecanes C12 0.0281 0.0330 Tridecanes C13 0.0282 0.0359 C12+ Fraction Tetradecanes C14 0.0256 0.0355 Pentadecanes C15 0.0228 0.0343 Molecular Weight 313.61 Hexadecanes C16 0.0196 0.0318 Mole Fraction 0.3127 Heptadecanes C17 0.0173 0.0299 Density (g/cc) 0.8925 Octadecanes C18 0.0159 0.0291 Nonadecanes C19 0.0141 0.0271 C36+ Fraction Eicosanes C20 0.0122 0.0245 Heneicosanes C21 0.0112 0.0237 Molecular Weight 676.22 Docosanes C22 0.0101 0.0224 Mole Fraction 0.0410 Tricosanes C23 0.0086 0.0199 Density (g/cc) 0.9940 Tetracosanes C24 0.0078 0.0189 Pentacosanes C25 0.0071 0.0178 Hexacosanes C26 0.0061 0.0159 Recombination Parameters Heptacosanes C27 0.0058 0.0159 Octacosanes C28 0.0054 0.0153 Gas-Oil Ratio (cc/cc) 75.46 Nonacosanes C29 0.0051 0.0149 Dead Oil Density (g/cc) 0.8698 Tricontanes C30 0.0046 0.0139 Dead Oil MW (g/mol) 230.83 Hentriacontanes C31 0.0039 0.0122 Dotriacontanes C32 0.0037 0.0119 Tritriacontanes C33 0.0033 0.0110 Tetratriacontanes C34 0.0029 0.0101 Pentatriacontanes C35 0.0023 0.0081 Hexatriacontanes plus C36 +0.0410 0.2019 1.0000 1.0000 Physical Properties calculated based on GPA 2145-00 physical constants TABLE A1 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID Calculated Properties 12 MULTI-STAGE SEPARATOR TEST Component Chemical Mole Mass Name Symbol Fraction Fraction Nitrogen N2 0.0000 0.0000 Total Sample Carbon Dioxide CO 2 0.0000 0.0000 Hydrogen Sulphide H2S 0.0000 0.0000 Molecular Weight 230.83 Methane C1 0.0000 0.0000 Density (g/cc) 0.8567 Ethane C2 0.0000 0.0000 Propane C3 0.0016 0.0003 C6+ Fraction i-Butane i-C 4 0.0014 0.0003 n-Butane n-C 4 0.0066 0.0017 Molecular Weight 236.35 i-Pentane i-C 5 0.0085 0.0027 Mole Fraction 0.9673 n-Pentane n-C 5 0.0147 0.0046 Density (g/cc) 0.8601 Hexanes C6 0.0334 0.0125 Heptanes C7 0.0677 0.0294 C7+ Fraction Octanes C8 0.0876 0.0434 Nonanes C9 0.0716 0.0398 Molecular Weight 241.71 Decanes C10 0.0671 0.0414 Mole Fraction 0.9339 Undecanes C11 0.0628 0.0400 Density (g/cc) 0.8629 Dodecanes C12 0.0519 0.0362 Tridecanes C13 0.0520 0.0394 C12+ Fraction Tetradecanes C14 0.0473 0.0389 Pentadecanes C15 0.0421 0.0376 Molecular Weight 313.61 Hexadecanes C16 0.0362 0.0348 Mole Fraction 0.5771 Heptadecanes C17 0.0320 0.0328 Density (g/cc) 0.8925 Octadecanes C18 0.0294 0.0320 Nonadecanes C19 0.0261 0.0297 C36+ Fraction Eicosanes C20 0.0226 0.0269 Heneicosanes C21 0.0206 0.0260 Molecular Weight 676.22 Docosanes C22 0.0186 0.0246 Mole Fraction 0.0756 Tricosanes C23 0.0158 0.0218 Density (g/cc) 0.9940 Tetracosanes C24 0.0145 0.0208 Pentacosanes C25 0.0130 0.0195 Hexacosanes C26 0.0112 0.0175 Heptacosanes C27 0.0108 0.0174 Octacosanes C28 0.0100 0.0168 Nonacosanes C29 0.0094 0.0163 Tricontanes C30 0.0085 0.0153 Hentriacontanes C31 0.0072 0.0134 Dotriacontanes C32 0.0068 0.0130 Tritriacontanes C33 0.0061 0.0121 Tetratriacontanes C34 0.0054 0.0111 Pentatriacontanes C35 0.0042 0.0089 Hexatriacontanes plus C36 +0.0756 0.2215 1.0000 1.0000 Physical Properties calculated based on GPA 2145-00 physical constants TABLE A2 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST COMPOSITIONAL ANALYSIS OF FLASHED OIL Calculated Properties 13 MULTI-STAGE SEPARATOR TEST Component Chemical Name Symbol As Analyzed Acid Gas Free STB/MMscf mL/m3 Nitrogen N2 0.0048 0.0048 Carbon Dioxide CO 2 0.0012 0.0000 Hydrogen Sulphide H2S 0.0000 0.0000 Methane C1 0.6899 0.6907 Ethane C2 0.1170 0.1172 Propane C3 0.0825 0.0826 53.877 302.492 i-Butane i-C 4 0.0141 0.0141 10.951 61.482 n-Butane n-C 4 0.0346 0.0347 25.902 145.427 i-Pentane i-C 5 0.0103 0.0103 8.911 50.029 n-Pentane n-C 5 0.0117 0.0117 10.031 56.319 Hexanes C6 0.0082 0.0082 7.955 44.665 Heptanes C7 0.0084 0.0084 9.208 51.701 Octanes C8 0.0132 0.0132 16.054 90.133 Nonanes C9 0.0037 0.0037 4.931 27.686 Decanes C10 0.0003 0.0003 0.496 2.784 Undecane C11 0.0000 0.0000 0.063 0.355 Dodecanes Plus C12+ 0.0000 0.0000 0.000 0.000 Total 1.0000 1.0000 148.378 833.072 Propanes Plus C3+ 1.3040 1.3044 296.757 1666.144 Butanes Plus C4+ 1.1870 1.1872 296.757 1666.144 Pentanes Plus C5+ 1.0904 1.0905 231.930 1302.170 Calculated Gas Properties @ Standard Conditions Calculated Pseudocritical Properties Molecular Weight 26.25 kg/kmol 26.25 lb/lb-mol Ppc 648.5 psia 4.47 MPa Specific Gravity 0.9063 (Air = 1) 0.9063 (Air = 1) Tpc 446.6 R 248.1 K MW of C7+ 2.72 kg/kmol 2.72 lb/lbmol Ppc* 648.1 psia 4.47 MPa Density of C7+ 0.7407 g/cc 740.7 kg/m3 Tpc* 446.3 R 247.9 K Calculated Gross Heating Value @ Standard Conditions Calculated Net Heating Value @ Standard Conditions Dry 1,547.9 Btu/scf 57.78 MJ/m3 Dry 1,411.9 Btu/scf 52.70 MJ/m3 Wet 1,520.9 Btu/scf 56.77 MJ/m3 Wet 1,387.3 Btu/scf 51.78 MJ/m3 Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa) TABLE A3 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST COMPOSITIONAL ANALYSIS OF FLASHED GAS Mole Fraction Liquid Volume 14 MULTI-STAGE SEPARATOR TEST APPENDIX B MULTI-STAGE SEPARATOR TEST - MATERIAL BALANCE 15 MULTI-STAGE SEPARATOR TEST Measured Calculated Absolute Oil FVF Oil FVF Relative Error [1] [1] (%) 1611 Psat 11.11 1.1596 1.1591 0.0430 215 1.48 1.0360 1.0358 0.0186 55 0.38 1.0150 1.0148 0.0167 15 0.10 1.0001 1.0000 0.0101 [1] (res bbl/STB) (res m 3/m 3) Psat - Saturation Pressure - Tank conditions: 60 F (288.7 K) @ 13 psia (0.09 MPa) (psia) (MPa) TABLE B1 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST MULTI-STAGE SEPARATOR - MATERIAL BALANCE Pressure 16 MULTI-STAGE SEPARATOR TEST APPENDIX C MULTI-STAGE SEPARATOR TEST - LIBERATED GAS ANALYSES 17 MULTI-STAGE SEPARATOR TEST Component Chemical Name Symbol As Analyzed Acid Gas Free STB/MMscf mL/m 3 Nitrogen N2 0.0033 0.0033 Carbon Dioxide CO 2 0.0012 0.0000 Hydrogen Sulphide H2S 0.0000 0.0000 Methane C1 0.8632 0.8642 Ethane C2 0.0885 0.0886 Propane C3 0.0307 0.0308 20.068 112.671 i-Butane i-C 4 0.0028 0.0028 2.157 12.112 n-Butane n-C 4 0.0058 0.0058 4.305 24.168 i-Pentane i-C 5 0.0011 0.0011 0.991 5.564 n-Pentane n-C 5 0.0013 0.0013 1.078 6.054 Hexanes C6 0.0009 0.0009 0.837 4.698 Heptanes C7 0.0005 0.0005 0.535 3.003 Octanes C8 0.0005 0.0005 0.552 3.102 Nonanes C9 0.0003 0.0003 0.407 2.286 Decanes C10 0.0001 0.0001 0.101 0.565 Undecane C11 0.0000 0.0000 0.021 0.118 Dodecanes Plus C12+ 0.0000 0.0000 0.004 0.023 Total 1.0000 1.0000 31.056 174.366 Propanes Plus C3+ 0.0438 0.0439 31.056 174.366 Butanes Plus C4+ 0.0131 0.0131 10.988 61.694 Pentanes Plus C5+ 0.0046 0.0046 4.526 25.414 Calculated Gas Properties @ Standard Conditions Calculated Pseudocritical Properties Molecular Weight 18.90 kg/kmol 18.90 lb/lb-mol Ppc 667.6 psia 4.60 MPa Specific Gravity 0.6524 (Air = 1) 0.6524 (Air = 1) Tpc 377.2 R 209.6 K MW of C7+ 108.07 kg/kmol 108.07 lb/lbmol Ppc* 667.1 psia 4.60 MPa Density of C7+ 0.7432 g/cc 743.2 kg/m3 Tpc* 376.9 R 209.4 K Calculated Gross Heating Value @ Standard Conditions Calculated Net Heating Value @ Standard Conditions Dry 1,154.9 Btu/scf 43.11 MJ/m3 Dry 1,044.7 Btu/scf 39.00 MJ/m3 Wet 1,134.8 Btu/scf 42.36 MJ/m3 Wet 1,026.6 Btu/scf 38.32 MJ/m3 Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa) Mole Fraction Liquid Volume TABLE C1 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST MULTI-STAGE SEPARATOR GAS COMPOSITION @ 215 psia (1.48 MPa) AND 70.0 F (21.1 C) 18 MULTI-STAGE SEPARATOR TEST Component Chemical Name Symbol As Analyzed Acid Gas Free STB/MMscf mL/m 3 Nitrogen N2 0.0016 0.0016 Carbon Dioxide CO 2 0.0018 0.0000 Hydrogen Sulphide H2S 0.0000 0.0000 Methane C1 0.6542 0.6553 Ethane C2 0.2031 0.2035 Propane C3 0.0958 0.0959 62.537 351.113 i-Butane i-C 4 0.0104 0.0104 8.052 45.206 n-Butane n-C 4 0.0193 0.0194 14.473 81.258 i-Pentane i-C 5 0.0038 0.0038 3.313 18.598 n-Pentane n-C 5 0.0043 0.0044 3.737 20.984 Hexanes C6 0.0030 0.0030 2.931 16.456 Heptanes C7 0.0015 0.0015 1.631 9.159 Octanes C8 0.0007 0.0007 0.825 4.634 Nonanes C9 0.0003 0.0003 0.385 2.160 Decanes C10 0.0001 0.0001 0.205 1.153 Undecane C11 0.0000 0.0000 0.042 0.237 Dodecanes Plus C12+ 0.0000 0.0000 0.004 0.022 Total 1.0000 1.0000 98.135 550.982 Propanes Plus C3+ 0.1393 0.1395 98.135 550.982 Butanes Plus C4+ 0.0435 0.0436 35.599 199.869 Pentanes Plus C5+ 0.0138 0.0138 13.074 73.405 Calculated Gas Properties @ Standard Conditions Calculated Pseudocritical Properties Molecular Weight 23.80 kg/kmol 23.80 lb/lb-mol Ppc 664.8 psia 4.58 MPa Specific Gravity 0.8217 (Air = 1) 0.8217 (Air = 1) Tpc 435.9 R 242.1 K MW of C7+ 104.20 kg/kmol 104.20 lb/lbmol Ppc* 664.2 psia 4.58 MPa Density of C7+ 0.7363 g/cc 736.3 kg/m3 Tpc* 435.4 R 241.9 K Calculated Gross Heating Value @ Standard Conditions Calculated Net Heating Value @ Standard Conditions Dry 1,420.1 Btu/scf 53.01 MJ/m3 Dry 1,292.2 Btu/scf 48.24 MJ/m3 Wet 1,395.4 Btu/scf 52.09 MJ/m3 Wet 1,269.8 Btu/scf 47.40 MJ/m3 Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa) TABLE C2 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST MULTI-STAGE SEPARATOR GAS COMPOSITION @ 55 psia (0.38 MPa) AND 70.0 F (21.1 C) Mole Fraction Liquid Volume 19 MULTI-STAGE SEPARATOR TEST Component Chemical Name Symbol As Analyzed Acid Gas Free STB/MMscf mL/m 3 Nitrogen N2 0.0320 0.0320 Carbon Dioxide CO 2 0.0018 0.0000 Hydrogen Sulphide H2S 0.0000 0.0000 Methane C1 0.3063 0.3068 Ethane C2 0.3224 0.3230 Propane C3 0.2227 0.2231 145.424 816.485 i-Butane i-C 4 0.0267 0.0268 20.744 116.466 n-Butane n-C 4 0.0505 0.0506 37.795 212.200 i-Pentane i-C 5 0.0103 0.0104 8.996 50.508 n-Pentane n-C 5 0.0113 0.0113 9.715 54.543 Hexanes C6 0.0077 0.0077 7.486 42.030 Heptanes C7 0.0041 0.0041 4.449 24.978 Octanes C8 0.0029 0.0029 3.466 19.458 Nonanes C9 0.0010 0.0010 1.293 7.259 Decanes C10 0.0004 0.0004 0.588 3.299 Undecane C11 0.0000 0.0000 0.072 0.403 Dodecanes Plus C12+ 0.0000 0.0000 0.006 0.033 Total 1.0000 1.0000 240.032 1347.660 Propanes Plus C3+ 0.3376 0.3382 240.032 1347.660 Butanes Plus C4+ 0.1149 0.1151 94.608 531.175 Pentanes Plus C5+ 0.0377 0.0377 36.069 202.510 Calculated Gas Properties @ Standard Conditions Calculated Pseudocritical Properties Molecular Weight 32.99 kg/kmol 32.99 lb/lb-mol Ppc 646.7 psia 4.46 MPa Specific Gravity 1.1389 (Air = 1) 1.1389 (Air = 1) Tpc 530.7 R 294.8 K MW of C7+ 104.81 kg/kmol 104.81 lb/lbmol Ppc* 646.2 psia 4.46 MPa Density of C7+ 0.7379 g/cc 737.9 kg/m3 Tpc* 530.3 R 294.6 K Calculated Gross Heating Value @ Standard Conditions Calculated Net Heating Value @ Standard Conditions Dry 1,863.9 Btu/scf 69.58 MJ/m3 Dry 1,707.5 Btu/scf 63.73 MJ/m3 Wet 1,831.5 Btu/scf 68.36 MJ/m3 Wet 1,677.7 Btu/scf 62.63 MJ/m3 Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa) TABLE C3 REPSOL USA - WELL QUGRUK-3 - . - SAMPLE S008 MULTI-STAGE SEPARATOR TEST MULTI-STAGE SEPARATOR GAS COMPOSITION @ 15 psia (0.10 MPa) AND 60.0 F (15.6 C) Mole Fraction Liquid Volume 20 2013-4-10 Company Repsol USA Well Name Qugruk-3 Field Name North Slope Field Field Location X= 412876 ft Y= 5972219 ft State Alaska Engineer's Name B. Bruns/C. Elowe Date 26-Mar-2013 Report Date 29-Mar-2013 Prepared By Jeffrey Wu UWID N/A Run Number 1C Modular Formation Dynamics Tester Interpretation Report Innovations in Formation Testing PTS InSitu Pro* 2.3.0 * Mark of Schlumberger 2013-4-10 EXECUTIVE SUMMARY................................................................................................................................................................ 4 1 INTERPRETATION SUMMARY ............................................................................................................................................ 5 2 FLUID AND SAMPLING SUMMARY ..................................................................................................................................... 6 2.1 SAMPLING AND FLUIDS PROFILING SUMMARY TABLE ......................................................................................................................... 6 2.2 FLUIDS ANALYSIS RESULTS TABLE ................................................................................................................................................... 6 3 FLUID GRADIENTS ............................................................................................................................................................. 7 4 PRESSURE PRETEST SUMMARY ......................................................................................................................................... 8 5 PRESSURE PRETESTS VS. DEPTH DISPLAYS ......................................................................................................................... 9 6 WELL AND JOB DATA ....................................................................................................................................................... 10 6.1 WELL HEADER .......................................................................................................................................................................... 10 6.2 TOOL STRING ........................................................................................................................................................................... 11 6.3 WELL SURVEY ........................................................................................................................................................................... 12 7 TEST POINT TABLE ........................................................................................................................................................... 13 8 STATIONS ........................................................................................................................................................................ 14 8.1 MDT_OFA_012LTC ............................................................................................................................................................... 14 8.1.1 Pressure vs. Time Plot .................................................................................................................................................... 14 8.2 MDT_OFA_013LTC ............................................................................................................................................................... 15 8.2.1 Pressure vs. Time Plot .................................................................................................................................................... 15 8.3 MDT_OFA_014LTC ............................................................................................................................................................... 16 8.3.1 Pressure vs. Time Plot .................................................................................................................................................... 16 8.4 MDT_OFA_016LTC ............................................................................................................................................................... 17 8.4.1 Pressure vs. Time Plot .................................................................................................................................................... 17 8.5 MDT_OFA_017LTC ............................................................................................................................................................... 18 8.5.1 Pressure vs. Time Plot .................................................................................................................................................... 18 8.6 MDT_OFA_018LTC ............................................................................................................................................................... 19 8.6.1 Pressure vs. Time Plot .................................................................................................................................................... 19 8.7 MDT_OFA_019LTC ............................................................................................................................................................... 20 8.7.1 Pressure vs. Time Plot .................................................................................................................................................... 20 8.8 MDT_OFA_020LTC ............................................................................................................................................................... 21 8.8.1 Pressure vs. Time Plot .................................................................................................................................................... 21 8.9 MDT_OFA_021LTC ............................................................................................................................................................... 22 8.9.1 Pressure vs. Time Plot .................................................................................................................................................... 22 8.10 MDT_OFA_022LTC ............................................................................................................................................................ 23 8.10.1 Pressure vs. Time Plot ................................................................................................................................................. 23 8.11 MDT_OFA_023LTC ............................................................................................................................................................ 24 8.11.1 Pressure vs. Time Plot ................................................................................................................................................. 24 8.12 MDT_OFA_027LTC ............................................................................................................................................................ 25 8.12.1 Pressure vs. Time Plot ................................................................................................................................................. 25 8.13 MDT_OFA_028LTC ............................................................................................................................................................ 26 8.13.1 Pressure vs. Time Plot ................................................................................................................................................. 26 8.14 MDT_OFA_029LTC ............................................................................................................................................................ 27 8.14.1 Pressure vs. Time Plot ................................................................................................................................................. 27 8.15 MDT_OFA_030LTC ............................................................................................................................................................ 28 8.15.1 Pressure vs. Time Plot ................................................................................................................................................. 28 8.16 MDT_OFA_031LTC ............................................................................................................................................................ 29 8.16.1 Pressure vs. Time Plot ................................................................................................................................................. 29 8.17 MDT_OFA_032LTC ............................................................................................................................................................ 30 8.17.1 Pressure vs. Time Plot ................................................................................................................................................. 30 8.18 MDT_OFA_038LTC ............................................................................................................................................................ 31 8.18.1 Pressure vs. Time Plot ................................................................................................................................................. 31 8.18.2 FRID, Spherical and Radial Specialized Plots ............................................................................................................... 32 8.19 MDT_OFA_045LTC ............................................................................................................................................................ 33 8.19.1 Pressure vs. Time Plot ................................................................................................................................................. 33 8.19.2 FRID, Spherical and Radial Specialized Plots ............................................................................................................... 34 8.20 MDT_OFA_046LTC ............................................................................................................................................................ 35 8.20.1 Pressure vs. Time Plot ................................................................................................................................................. 35 8.20.2 FRID, Spherical and Radial Specialized Plots ............................................................................................................... 36 1 2013-4-10 8.21 MDT_OFA_047LTC ............................................................................................................................................................ 37 8.21.1 Pressure vs. Time Plot ................................................................................................................................................. 37 8.21.2 FRID, Spherical and Radial Specialized Plots ............................................................................................................... 38 8.22 MDT_OFA_048LTC ............................................................................................................................................................ 39 8.22.1 Pressure vs. Time Plot ................................................................................................................................................. 39 8.22.2 FRID, Spherical and Radial Specialized Plots ............................................................................................................... 40 8.23 MDT_OFA_049LTC ............................................................................................................................................................ 41 8.23.1 Pressure vs. Time Plot ................................................................................................................................................. 41 8.23.2 FRID, Spherical and Radial Specialized Plots ............................................................................................................... 42 8.24 MDT_OFA_050LTC ............................................................................................................................................................ 43 8.24.1 Pressure vs. Time Plot ................................................................................................................................................. 43 8.24.2 FRID, Spherical and Radial Specialized Plots ............................................................................................................... 44 8.25 MDT_OFA_051LTC ............................................................................................................................................................ 45 8.25.1 Pressure vs. Time Plot ................................................................................................................................................. 45 8.26 MDT_OFA_052LTC ............................................................................................................................................................ 46 8.26.1 Pressure vs. Time Plot ................................................................................................................................................. 46 8.26.2 FRID, Spherical and Radial Specialized Plots ............................................................................................................... 47 8.26.3 Fluids Analysis ............................................................................................................................................................. 48 8.26.3.1 Station Fluids Summary ............................................................................................................................................................... 48 8.26.3.2 LFA Log Analysis .......................................................................................................................................................................... 50 8.26.3.3 Interval Analysis (7514.8 s - 7959.8 s) ........................................................................................................................................ 51 2 2013-4-10 DISCLAIMER ANY INTERPRETATION, RESEARCH, ANALYSIS, DATA, RESULTS, ESTIMATES, OR RECOMMENDATION FURNISHED WITH THE SERVICES OR OTHERWISE COMMUNICATED BY SCHLUMBERGER TO CUSTOMER AT ANY TIME IN CONNECTION WITH THE SERVICES ARE OPINIONS BASED ON INFERENCES FROM MEASUREMENTS, EMPIRICAL RELATIONSHIPS AND/OR ASSUMPTIONS, WHICH INFERENCES, EMPIRICAL RELATIONSHIPS AND/OR ASSUMPTIONS ARE NOT INFALLIBLE, AND WITH RESPECT TO WHICH PROFESSIONALS IN THE INDUSTRY MAY DIFFER. ACCORDINGLY, SCHLUMBERGER CANNOT AND DOES NOT WARRANT THE ACCURACY, CORRECTNESS OR COMPLETENESS OF ANY SUCH INTERPRETATION, RESEARCH, ANALYSIS, DATA, RESULTS, ESTIMATES OR RECOMMENDATION. CUSTOMER ACKNOWLEDGES THAT IT IS ACCEPTING THE SERVICES "AS IS", THAT SCHLUMBERGER MAKES NO REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, OF ANY KIND OR DESCRIPTION IN RESPECT THERETO. SPECIFICALLY, CUSTOMER ACKNOWLEDGES THAT SCHLUMBERGER DOES NOT WARRANT THAT ANY INTERPRETATION, RESEARCH, ANALYSIS, DATA, RESULTS, ESTIMATES, OR RECOMMENDATION IS FIT FOR A PARTICULAR PURPOSE, INCLUDING BUT NOT LIMITED TO COMPLIANCE WITH ANY GOVERNMENT REQUEST OR REGULATORY REQUIREMENT. CUSTOMER FURTHER ACKNOWLEDGES THAT SUCH SERVICES ARE DELIVERED WITH THE EXPLICIT UNDERSTANDING AND AGREEMENT THAT ANY ACTION TAKEN BASED ON THE SERVICES RECEIVED SHALL BE AT ITS OWN RISK AND RESPONSIBILITY AND NO CLAIM SHALL BE MADE AGAINST SCHLUMBERGER AS A CONSEQUENCE THEREOF. 3 2013-4-10 Executive Summary This report presents the evaluation and interpretation of the MDT (Modular Formation Dynamics Tester) pretests and sampling data for Repsol USA well Qugruk-3. Run 1C was performed with MDT Large Diameter probe and Extra Large Diameter probe to conduct pressure pretests and collect fluid samples from 26-Mar-2013 to 27-Mar-2013. LFA (Live Fluid Analyzer) was used as downhole fluid analysis tool. Totally 26 pressure points were successfully performed, of which only 5 pretests were high quality pressures. No pressure gradient was estimated based on these pressures. One sampling station at 4204.0 ft MD was attempted. LFA indicates oil with oil/water emulsion. Totally 4 bottles of fluid samples were taken in this station. 4 2013-4-10 1 Interpretation Summary This report presents the evaluation and interpretation of the MDT pretests and DFA data from well Qugruk-3. Totally 26 stations were attempted resulting in 5 high, 3 medium quality formation pressure, 2 Tight tests and 16 No Seal/Lost Seal tests. One downhole fluid analysis stations was successfully completed, and 4 bottles of samples were filled. MDT Run 1C was with 1 Large Diameter probe and 1 Extra Large Diameter probe. Sampling station summary: 1. 4204.0 ft MD (Nanushuk): LFA indicates oil with GOR of 533 ft3/bbl and a portion of oil/water emulsion. All the MDT pressure and DFA data were processed using InSitu-Pro 2.3.0. TVD depths were calculated from well survey data provided by client. Openhole logs used to display with pressure and DFA results in InSitu-Pro. Successful test pressures may have been obtained from the radial-time or spherical-time function plot of the pretests. If no radial/spherical flow regime is recognized, the final build-up pressure of the pretest is presented. Please see individual Pressure vs. Time plots for test comments. Tests in the test point table are presented in order of increasing depth. Test plots are presented in order of increasing file number. 5 20 1 3 -4 -10 2 F l u i d a n d S a m p l i n g S u m m a r y 2. 1 S a m p l i n g a n d F l u i d s P r o f i l i n g S u m m a r y T a b l e No . We l l N a m e Ru n N o . Fi l e I D MD ( f t ) TV D ( f t ) Ty p e Bo t t l e Mo d u l e Bo t t l e Se r i a l N o . Bo t t l e Ty p e Bo t t l e Vo l u m e (c m 3 ) Cl o s i n g Pr e s s u r e (p s i ) Fo r m a t i o n Pr e s s u r e (p s i ) Flowline Temperature (degF) Maximum Drawdown Pressure (psi) Pump Time (s) Pump Volume (cm3) Remarks 1 Q u g r u k - 3 1 C M D T _ O F A _ 0 5 2 L T C 42 0 4 . 0 3 4 1 2 6 . 2 9 S a m p l i n g S C _ 1 5 8 9 . 1 G a l 3 7 8 5 2 3 7 8 . 7 1 1 8 9 0 . 1 1 2 1 0 8 . 4 2 7 4 9 . 6 3 2 5 5 6 2 . 6 4 5 0 4 7 . 6 6 2 Q u g r u k - 3 1 C M D T _ O F A _ 0 5 2 L T C 42 0 4 . 0 3 4 1 2 6 . 2 9 S a m p l i n g MS _ 1 Bo t t l e 5 49 2 8 . M P S R 4 5 0 4 2 0 9 . 0 4 1 8 9 0 . 1 1 2 1 0 8 . 5 7 4 9 . 6 3 2 6 6 2 1 . 6 50735.78 3 Q u g r u k - 3 1 C M D T _ O F A _ 0 5 2 L T C 42 0 4 . 0 3 4 1 2 6 . 2 9 S a m p l i n g MS _ 1 Bo t t l e 6 49 2 3 . M P S R 4 5 0 2 1 0 7 . 7 3 6 1 8 9 0 . 1 1 2 1 0 8 . 5 1 7 4 9 . 6 3 2 6 6 5 3.4 50894.86 4 Q u g r u k - 3 1 C M D T _ O F A _ 0 5 2 L T C 42 0 4 . 0 3 4 1 2 6 . 2 9 S a m p l i n g MS _ 1 Bo t t l e 3 45 1 . S P M C 2 5 0 6 5 8 8 . 5 7 8 1 8 9 0 . 1 1 2 1 0 8 . 6 1 7 4 9 . 6 3 2 7 2 6 4 .2 53685.48 2. 2 F l u i d s A n a l y s i s R e s u l t s T a b l e No . We l l N a m e Ru n N o . Fi l e I D MD ( f t ) TV D ( f t ) GO R ( f t 3 / b b l ) C1 ( w t % ) C2 ( w t % ) C3 - C 5 (w t % ) C2 - C 5 (w t % ) C6 + ( w t % ) CO 2 ( w t % ) DV-Rod Dens. Contaminat ion (%) Water Frac. Oil Frac. 1 Q u g r u k - 3 1 C M D T _ O F A _ 0 5 2 L T C 42 0 4 . 0 3 4 1 2 6 . 2 9 5 3 3 < 10% 0.11 0.97 6 2013-4-10 3 Fluid Gradients Mud Before Formation Gradient Summary Well Name Gradient Top TVD Bottom TVD Density Color Gradient Comments Density Statistical Error Density Theoretical Error R2 Chi2 Probability STD Primary Gauge Repeata bility Contact Depth SS psi/ft ft ft lbm/gal lbm/gal lbm/gal psi psi ft Qugruk-3 0.544 4005.73 7120.64 10.475 0.035 0.006 0.99994 0 5.545 BQP1 0.3 7 2013-4-10 4 Pressure Pretest Summary Qugruk-3 Total Pretest Type Volumetric Drawdown Pretest 25 Normal Pretest 1 Pretest Status Valid Test 5 Tight Test 2 Lost Seal 3 No Seal 13 Unstabilized 3 Gauge BQP1 22 PQQP1 4 Runs Color 1C (26-Mar-2013) 26 Formation Pressure Quality Color High 5 Medium 3 Ungraded 18 Drawdown Mobility Quality Color High 5 Medium 3 Ungraded 18 8 2013-4-10 5 Pressure Pretests vs. Depth Displays Figure 1 Depth View 9 2013-4-10 6 Well and Job Data 6.1 Well Header 10 2013-4-10 6.2 Tool String 11 2013-4-10 6.3 Well Survey -1500 -1000 -500 0 500 1000 1500 -300 -200 -100 0 100 200 300 Survey Top View View Azimuth: 90 S < - - - - > N ( f t ) W <----> E (ft) Figure 2 Survey Top View 7000 6000 5000 4000 3000 2000 1000 -0 -300 -200 -100 0 100 200 300 Survey Side View View Azimuth: 90 TV D ( f t ) ft Figure 3 Survey Side View 12 20 1 3 -4 -10 7 T e s t P o i n t T a b l e Fi l e No . Te s t No . Pr o b e MD Pr o b e TV D Pr e t e s t Du r a t i o n Pr e t e s t Fl o w r a t e Pr e t e s t Vo l u m e DD Mo b i l i t y La s t B U Pr e s . Mu d P r e s . Be f o r e Te m p . Af t e r Fo r m a t i o n Pr e s . Pa c k e r / P r o b e T y p e Comments f t f t s c m 3 / s c m 3 m D / c P p s i p s i d e g F p s i 50 4 5 4 2 0 1 . 0 9 4 1 2 3 . 5 2 4 . 2 0 . 6 3 2 . 6 6 0 . 1 2 1 9 0 2 . 0 2 3 2 25 5 . 2 1 4 1 0 7 . 2 5 1 9 0 2 . 0 2 3 X L a r g e - D i a m e t e r p r o b e U n s t a ble test. Possible supercharged. 52 5 0 4 2 0 4 . 0 3 4 1 2 6 . 2 9 1 0 . 2 0 . 8 9 9 . 1 2 2 3 . 9 9 1 8 8 9 . 9 9 4 2 2 5 7 . 1 2 3 1 0 9 . 5 8 1 8 9 0 . 1 1 2 X L a r g e - D i a m e t e r p r o b e S a m pling station. Good test. Radial flow achieved. 51 4 8 4 2 0 5 . 1 1 4 1 2 7 . 3 1 1 4 . 1 0 . 6 4 9 . 0 5 2 2 5 7 . 0 6 2 2 2 5 7 .6 5 9 1 0 7 . 1 7 X L a r g e - D i a m e t e r p r o b e L o s t s e a l . 49 4 1 4 2 0 9 . 1 2 4 1 3 1 . 0 7 1 3 . 2 0 . 3 8 5 . 0 3 1 1 . 8 3 1 8 8 9 . 5 2 4 2 2 5 8 . 1 3 8 1 0 8 . 0 6 1 8 8 9 . 5 2 4 L a r g e - D i a m e t e r p r o b e G o o d test. 48 3 7 4 2 2 8 . 0 2 4 1 4 8 . 8 2 2 . 1 0 . 2 1 0 . 4 4 0 . 1 7 1 9 0 1 . 2 1 2 2 67 . 9 9 1 1 0 8 . 4 5 1 9 0 1 . 2 1 L a r g e - D i a m e t e r p r o b e S l i g h t l y unstable test. Possible supercharged. 47 3 5 4 2 7 3 . 0 3 4 1 9 1 . 0 9 2 . 7 0 . 3 4 0 . 9 3 0 . 8 6 1 9 1 8 . 5 5 6 2 29 1 . 3 3 3 1 0 8 . 9 6 1 9 1 8 . 5 5 6 L a r g e - D i a m e t e r p r o b e U n s t a b le test. Possible supercharged. 46 3 2 4 3 4 0 . 6 2 4 2 5 4 . 5 8 2 . 7 0 . 3 5 0 . 9 3 1 . 7 4 1 9 3 5 . 2 4 8 2 32 5 . 7 2 4 1 0 9 . 5 3 1 9 3 6 . 1 7 3 L a r g e - D i a m e t e r p r o b e G o o d t est. Radial flow achieved. 45 2 7 4 3 7 8 . 3 7 4 2 9 0 . 0 6 6 0 . 8 8 5 . 2 6 2 . 4 8 1 9 4 9 . 1 6 1 2 3 4 6. 3 0 5 1 1 0 . 8 1 1 9 5 0 . 0 3 7 L a r g e - D i a m e t e r p r o b e G o o d t e s t. Radial flow achieved. 38 2 4 5 9 7 7 . 9 4 5 7 9 7 . 3 4 1 1 . 4 0 . 9 1 0 . 2 4 3 . 4 6 2 6 0 6 . 8 8 0 31 6 4 . 8 8 3 1 3 6 . 6 5 2 6 0 7 . 1 4 1 L a r g e - D i a m e t e r p r o b e G o o d test. Spherical flow achieved. 28 1 7 6 9 5 2 . 0 7 6 7 1 8 . 0 2 1 1 . 4 0 . 5 3 6 . 0 5 3 6 6 3 . 2 0 3 3 6 6 3 .3 9 2 1 5 3 . 0 7 L a r g e - D i a m e t e r p r o b e L o s t s e a l . 29 1 8 6 9 8 8 . 0 3 6 7 5 1 . 9 1 2 2 . 5 0 0 8 1 8 . 3 9 3 6 8 7 . 0 7 1 1 5 4 .2 5 L a r g e - D i a m e t e r p r o b e T i g h t t e s t . 32 2 2 7 0 0 4 . 8 2 6 7 6 7 . 7 1 1 1 . 4 0 . 5 4 6 . 2 1 3 6 8 8 . 9 9 9 3 6 9 0 .4 5 1 1 5 7 . 3 7 L a r g e - D i a m e t e r p r o b e N o s e a l . 23 1 5 7 0 0 5 . 9 8 6 7 6 8 . 8 0 1 1 . 4 0 . 5 5 6 . 2 9 3 6 8 8 . 8 5 2 3 6 8 8 .2 9 3 1 5 8 . 3 8 L a r g e - D i a m e t e r p r o b e N o s e a l . 31 2 1 7 0 1 1 . 0 5 6 7 7 3 . 5 8 7 . 5 0 . 8 5 6 . 3 8 3 6 9 4 . 5 9 4 3 6 9 4 . 98 6 1 5 7 . 0 5 L a r g e - D i a m e t e r p r o b e N o s e a l . 21 1 3 7 0 1 3 . 8 9 6 7 7 6 . 2 5 5 . 1 0 . 9 5 4 . 8 5 3 6 8 5 . 8 9 9 3 6 9 2 . 13 6 1 5 8 . 4 2 L a r g e - D i a m e t e r p r o b e L o s t s e a l . 22 1 4 7 0 1 3 . 9 7 6 7 7 6 . 3 3 2 4 . 9 0 . 7 8 1 9 . 3 6 3 6 9 5 . 6 8 6 3 6 9 6. 2 5 5 1 5 8 . 1 5 X L a r g e - D i a m e t e r p r o b e N o s e a l . 27 1 6 7 0 1 3 . 9 9 6 7 7 6 . 3 5 1 1 . 4 0 . 5 3 6 . 0 5 3 7 1 3 . 0 0 8 3 7 1 8 .1 6 6 1 4 8 . 7 9 L a r g e - D i a m e t e r p r o b e N o s e a l . 30 1 9 7 0 1 4 . 1 3 6 7 7 6 . 4 8 7 . 8 0 . 7 6 5 . 9 6 3 6 9 7 . 6 5 9 3 6 9 8 . 77 6 1 5 6 . 0 8 L a r g e - D i a m e t e r p r o b e N o s e a l . 19 1 0 7 0 2 5 . 9 7 6 7 8 7 . 6 2 1 1 . 4 0 . 5 3 6 . 0 1 3 7 0 0 . 8 1 5 3 7 0 0 .7 7 5 1 5 8 . 6 0 L a r g e - D i a m e t e r p r o b e N o s e a l . 18 9 7 0 2 7 . 0 2 6 7 8 8 . 6 1 1 1 . 4 0 . 5 5 6 . 3 2 3 7 0 1 . 6 2 2 3 7 0 2 . 63 8 1 5 8 . 8 5 L a r g e - D i a m e t e r p r o b e N o s e a l . 20 1 1 7 0 3 0 . 0 6 6 7 9 1 . 4 7 1 1 . 4 0 . 5 3 6 . 0 7 3 7 0 2 . 6 4 2 3 7 0 2 .2 7 0 1 5 8 . 4 2 L a r g e - D i a m e t e r p r o b e N o s e a l . 17 7 7 2 4 7 . 5 1 6 9 9 5 . 9 3 1 1 . 4 0 . 5 3 6 . 0 6 3 8 1 3 . 6 5 4 3 8 1 3 . 59 3 1 5 9 . 3 4 L a r g e - D i a m e t e r p r o b e N o s e a l . 16 6 7 2 4 7 . 9 9 6 9 9 6 . 3 8 1 1 . 1 0 . 5 4 5 . 9 9 3 8 1 3 . 3 7 1 3 8 1 3 . 30 0 1 5 8 . 8 4 L a r g e - D i a m e t e r p r o b e N o s e a l . 14 5 7 2 4 9 . 9 5 6 9 9 8 . 2 2 4 . 2 0 . 6 5 2 . 7 2 1 4 7 8 . 1 7 7 3 8 1 4 . 7 13 1 5 8 . 3 4 L a r g e - D i a m e t e r p r o b e T i g h t t e s t . 13 4 7 2 6 8 . 9 3 7 0 1 6 . 0 8 1 1 . 4 0 . 5 4 6 . 1 2 3 8 2 8 . 1 5 4 3 8 2 9 . 31 9 1 5 6 . 8 2 L a r g e - D i a m e t e r p r o b e N o s e a l . 12 2 7 2 6 9 . 9 5 7 0 1 7 . 0 3 1 1 . 7 0 . 5 2 6 . 1 4 3 8 3 5 . 9 1 7 3 8 4 1 . 36 0 1 5 2 . 4 7 L a r g e - D i a m e t e r p r o b e N o s e a l . 13 20 1 3 -4 -10 8 S t a t i o n s 8. 1 M D T _ O F A _ 0 1 2 L T C 8. 1 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 2 P r o b e M D : 7 2 6 9 . 9 5 f t P r ob e T V D : 7 0 1 7 . 0 3 f t Mu d B e f o r e ( 3 8 4 1 . 3 6 p s i ) St a r t D r a w d o w n ( 3 8 3 6 . 4 7 4 p s i ) St a r t B u i l d u p ( 3 8 3 5 . 8 5 9 p s i ) La s t B u i l d u p ( 3 8 3 5 . 9 1 7 p s i ) Mud After(3834.564psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 30 0 35 0 400 450 38 3 4 38 3 6 38 3 8 38 4 0 38 4 2 38 4 4 38 4 6 0.0 2.5 5.0 01000 2000 14 7 . 5 15 0 . 0 15 2 . 5 38 3 5 38 4 0 38 4 5 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 8 3 5 . 9 1 7 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3841.36 (psi) Mu d P r e s s u r e A f t e r : 3 8 3 4 . 5 6 4 ( p s i ) T e m p e r a t u r e B e f or e : 1 4 7 . 4 2 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 2 . 4 7 ( d e g F) Pr e t e s t R a t e : 0 . 5 2 ( c m 3 / s ) P r e t e s t V o l u m e : 6 . 1 4 ( cm 3 ) C o m m e n t s : 14 20 1 3 -4 -10 8. 2 M D T _ O F A _ 0 1 3 L T C 8. 2 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 4 P r o b e M D : 7 2 6 8 . 9 3 f t P r ob e T V D : 7 0 1 6 . 0 8 f t Mu d B e f o r e ( 3 8 2 9 . 3 1 9 p s i ) St a r t D r a w d o w n ( 3 8 2 8 . 3 5 3 p s i ) St a r t B u i l d u p ( 3 8 2 7 . 9 1 2 p s i ) La s t B u i l d u p ( 3 8 2 8 . 1 5 4 p s i ) Mud After(3827.333psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 500 550 37 4 0 37 5 0 37 6 0 37 7 0 37 8 0 37 9 0 38 0 0 38 1 0 38 2 0 38 3 0 0.0 2.5 5.0 01000 2000 15 4 15 5 15 6 15 7 37 5 0 38 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 8 2 8 . 1 5 4 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3829.319 (psi) Mu d P r e s s u r e A f t e r : 3 8 2 7 . 3 3 3 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 4 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 6 . 8 2 ( d e g F ) Pr e t e s t R a t e : 0 . 5 4 ( c m 3 / s ) P r e t e s t V o l u m e : 6 . 1 2 ( cm 3 ) C o m m e n t s : 15 20 1 3 -4 -10 8. 3 M D T _ O F A _ 0 1 4 L T C 8. 3 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 5 P r o b e M D : 7 2 4 9 . 9 5 f t P r ob e T V D : 6 9 9 8 . 2 2 f t Mu d B e f o r e ( 3 8 1 4 . 7 1 3 p s i ) St a r t D r a w d o w n ( 3 7 6 9 . 0 0 6 p s i ) St a r t B u i l d u p ( 1 0 3 0 . 4 3 4 p s i ) La s t B u i l d u p ( 1 4 7 8 . 1 7 7 p s i ) Mud After(3814.334psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 10 0 20 0 30 0 40 0 50 0 60 0 700 10 0 0 15 0 0 20 0 0 25 0 0 30 0 0 35 0 0 40 0 0 0.0 2.5 5.0 01000 2000 15 7 15 8 10 0 0 12 0 0 14 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : T i g h t T e s t Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 1 4 7 8 . 1 7 7 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3814.713 (psi) Mu d P r e s s u r e A f t e r : 3 8 1 4 . 3 3 4 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 7 . 0 5 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 8 . 3 4 ( d e g F) Pr e t e s t R a t e : 0 . 6 5 ( c m 3 / s ) P r e t e s t V o l u m e : 2 . 7 2 ( cm 3 ) C o m m e n t s : 16 20 1 3 -4 -10 8. 4 M D T _ O F A _ 0 1 6 L T C 8. 4 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 6 P r o b e M D : 7 2 4 7 . 9 9 f t P r ob e T V D : 6 9 9 6 . 3 8 f t Mu d B e f o r e ( 3 8 1 3 . 3 p s i ) St a r t D r a w d o w n ( 3 8 1 3 . 3 2 1 p s i ) St a r t B u i l d u p ( 3 8 1 2 . 6 3 3 p s i ) La s t B u i l d u p ( 3 8 1 3 . 3 7 1 p s i ) Mud After(3813.253psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 300 38 1 3 38 1 4 38 1 5 38 1 6 38 1 7 38 1 8 0.0 2.5 5.0 01000 2000 15 8 . 4 15 8 . 6 15 8 . 8 38 1 2 . 5 38 1 5 . 0 38 1 7 . 5 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 8 1 3 . 3 7 1 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3813.3 (psi) Mu d P r e s s u r e A f t e r : 3 8 1 3 . 2 5 3 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 8 . 6 1 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 8 . 8 4 ( d e g F) Pr e t e s t R a t e : 0 . 5 4 ( c m 3 / s ) P r e t e s t V o l u m e : 5 . 9 9 ( cm 3 ) C o m m e n t s : 17 20 1 3 -4 -10 8. 5 M D T _ O F A _ 0 1 7 L T C 8. 5 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 7 P r o b e M D : 7 2 4 7 . 5 1 f t P r ob e T V D : 6 9 9 5 . 9 3 f t Mu d B e f o r e ( 3 8 1 3 . 5 9 3 p s i ) St a r t D r a w d o w n ( 3 8 1 3 . 6 2 9 p s i ) St a r t B u i l d u p ( 3 8 1 2 . 8 7 p s i ) La s t B u i l d u p ( 3 8 1 3 . 6 5 4 p s i ) Mud After(3813.371psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 300 38 1 3 38 1 4 38 1 5 38 1 6 38 1 7 38 1 8 38 1 9 38 2 0 0.0 2.5 5.0 01000 2000 15 8 . 7 5 15 9 . 0 0 15 9 . 2 5 38 1 2 . 5 38 1 5 . 0 38 1 7 . 5 38 2 0 . 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 8 1 3 . 6 5 4 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3813.593 (psi) Mu d P r e s s u r e A f t e r : 3 8 1 3 . 3 7 1 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 8 . 9 8 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 9 . 3 4 ( d e g F) Pr e t e s t R a t e : 0 . 5 3 ( c m 3 / s ) P r e t e s t V o l u m e : 6 . 0 6 ( cm 3 ) C o m m e n t s : 18 20 1 3 -4 -10 8. 6 M D T _ O F A _ 0 1 8 L T C 8. 6 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 9 P r o b e M D : 7 0 2 7 . 0 2 f t P r ob e T V D : 6 7 8 8 . 6 1 f t Mu d B e f o r e ( 3 7 0 2 . 6 3 8 p s i ) St a r t D r a w d o w n ( 3 7 0 1 . 6 1 1 p s i ) St a r t B u i l d u p ( 3 7 0 0 . 5 8 5 p s i ) La s t B u i l d u p ( 3 7 0 1 . 6 2 2 p s i ) Mud After(3701.2psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 10 0 20 0 30 0 40 0 50 0 60 0 700 36 2 0 36 3 0 36 4 0 36 5 0 36 6 0 36 7 0 36 8 0 36 9 0 37 0 0 37 1 0 0.0 2.5 5.0 01000 2000 15 8 . 5 15 9 . 0 15 9 . 5 36 2 5 36 5 0 36 7 5 37 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 7 0 1 . 6 2 2 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3702.638 (psi) Mu d P r e s s u r e A f t e r : 3 7 0 1 . 2 ( p s i ) T e m p e r a t u r e B e f o r e: 1 5 9 . 5 6 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 8 . 8 5 ( d e g F ) Pr e t e s t R a t e : 0 . 5 5 ( c m 3 / s ) P r e t e s t V o l u m e : 6 . 3 2 ( cm 3 ) C o m m e n t s : 19 20 1 3 -4 -10 8. 7 M D T _ O F A _ 0 1 9 L T C 8. 7 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 1 0 P r o b e M D : 7 0 2 5 . 9 7 f t P ro b e T V D : 6 7 8 7 . 6 2 f t Mu d B e f o r e ( 3 7 0 0 . 7 7 5 p s i ) St a r t D r a w d o w n ( 3 7 0 0 . 7 6 5 p s i ) St a r t B u i l d u p ( 3 6 9 9 . 6 6 3 p s i ) La s t B u i l d u p ( 3 7 0 0 . 8 1 5 p s i ) Mud After(3700.061psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 30 0 35 0 400 36 3 0 36 4 0 36 5 0 36 6 0 36 7 0 36 8 0 36 9 0 37 0 0 37 1 0 0.0 2.5 5.0 01000 2000 15 8 . 4 15 8 . 6 15 8 . 8 36 2 5 36 5 0 36 7 5 37 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 7 0 0 . 8 1 5 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3700.775 (psi) Mu d P r e s s u r e A f t e r : 3 7 0 0 . 0 6 1 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 8 . 7 7 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 8 . 6 ( d e g F ) Pr e t e s t R a t e : 0 . 5 3 ( c m 3 / s ) P r e t e s t V o l u m e : 6 . 0 1 ( cm 3 ) C o m m e n t s : 20 20 1 3 -4 -10 8. 8 M D T _ O F A _ 0 2 0 L T C 8. 8 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 1 1 P r o b e M D : 7 0 3 0 . 0 6 f t P ro b e T V D : 6 7 9 1 . 4 7 f t Mu d B e f o r e ( 3 7 0 2 . 2 7 p s i ) St a r t D r a w d o w n ( 3 7 0 2 . 3 5 8 p s i ) St a r t B u i l d u p ( 3 7 0 0 . 2 1 3 p s i ) La s t B u i l d u p ( 3 7 0 2 . 6 4 2 p s i ) Mud After(3702.153psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 30 0 35 0 400 37 0 0 37 0 1 37 0 2 37 0 3 37 0 4 37 0 5 37 0 6 37 0 7 37 0 8 37 0 9 0.0 2.5 5.0 01000 2000 15 8 . 2 5 15 8 . 5 0 37 0 0 37 0 5 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 7 0 2 . 6 4 2 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3702.27 (psi) Mu d P r e s s u r e A f t e r : 3 7 0 2 . 1 5 3 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 8 . 5 2 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 8 . 4 2 ( d e g F) Pr e t e s t R a t e : 0 . 5 3 ( c m 3 / s ) P r e t e s t V o l u m e : 6 . 0 7 ( cm 3 ) C o m m e n t s : 21 20 1 3 -4 -10 8. 9 M D T _ O F A _ 0 2 1 L T C 8. 9 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 1 3 P r o b e M D : 7 0 1 3 . 8 9 f t P ro b e T V D : 6 7 7 6 . 2 5 f t Mu d B e f o r e ( 3 6 9 2 . 1 3 6 p s i ) St a r t D r a w d o w n ( 3 6 9 2 . 2 3 9 p s i ) St a r t B u i l d u p ( 3 6 3 2 . 5 2 1 p s i ) La s t B u i l d u p ( 3 6 8 5 . 8 9 9 p s i ) Mud After(3692.689psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 500 35 0 0 35 5 0 36 0 0 36 5 0 37 0 0 0.0 2.5 5.0 01000 2000 15 8 . 2 15 8 . 4 36 2 5 36 5 0 36 7 5 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : L o s t S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 6 8 5 . 8 9 9 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3692.136 (psi) Mu d P r e s s u r e A f t e r : 3 6 9 2 . 6 8 9 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 8 . 4 4 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 8 . 4 2 ( d e g F) Pr e t e s t R a t e : 0 . 9 5 ( c m 3 / s ) P r e t e s t V o l u m e : 4 . 8 5 ( cm 3 ) C o m m e n t s : 22 20 1 3 -4 -10 8. 1 0 M D T _ O F A _ 0 2 2 L T C 8. 1 0 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 1 4 P r o b e M D : 7 0 1 3 . 9 7 f t P ro b e T V D : 6 7 7 6 . 3 3 f t Mu d B e f o r e ( 3 6 9 6 . 2 5 5 p s i ) St a r t D r a w d o w n ( 3 6 9 5 . 7 1 8 p s i ) St a r t B u i l d u p ( 3 6 9 5 . 3 5 5 p s i ) La s t B u i l d u p ( 3 6 9 5 . 6 8 6 p s i ) Mud After(3695.565psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 300 36 9 4 36 9 6 36 9 8 37 0 0 37 0 2 37 0 4 37 0 6 37 0 8 010 20 01000 2000 15 8 . 0 15 8 . 1 15 8 . 2 36 9 5 37 0 0 37 0 5 PQ Q P 1 ( p s i ) , M R P Q 1 Q u a r t z G a u g e P r e s s u r e , S a m p l e L i n e P r e s s u r e PQ P T V 1 ( c m 3 ) , M R P Q 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d PQ 1 T R ( d e g F ) , M R P Q 1 R e s i s t i v i t y C e l l T e m p e r a t u r e PQ Q P 1 ( p s i ) , M R P Q 1 Q u a r t z G a u g e P r e s s u r e , S a m p l e L i n e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : N o r m a l P r e t e s t P r e t e s t Status: No Seal Pa c k e r / P r o b e T y p e : X L a r g e - D i a m e t e r p r o b e P r i m a r y G a ug e : P Q Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 6 9 5 . 6 8 6 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3696.255 (psi) Mu d P r e s s u r e A f t e r : 3 6 9 5 . 5 6 5 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 8 . 0 9 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 8 . 1 5 ( d e g F) Pr e t e s t R a t e : 0 . 7 8 ( c m 3 / s ) P r e t e s t V o l u m e : 1 9 . 3 6 (c m 3 ) C o m m e n t s : 23 20 1 3 -4 -10 8. 1 1 M D T _ O F A _ 0 2 3 L T C 8. 1 1 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 1 5 P r o b e M D : 7 0 0 5 . 9 8 f t P ro b e T V D : 6 7 6 8 . 8 f t Mu d B e f o r e ( 3 6 8 8 . 2 9 3 p s i ) St a r t D r a w d o w n ( 3 6 8 8 . 7 8 3 p s i ) St a r t B u i l d u p ( 3 6 8 7 . 2 9 3 p s i ) La s t B u i l d u p ( 3 6 8 8 . 8 5 2 p s i ) Mud After(3688.509psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 30 0 35 0 400 450 36 8 7 36 8 8 36 8 9 36 9 0 36 9 1 36 9 2 36 9 3 36 9 4 36 9 5 36 9 6 0.0 2.5 5.0 01000 2000 15 8 . 1 15 8 . 2 15 8 . 3 15 8 . 4 36 8 7 36 8 8 36 8 9 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 6 8 8 . 8 5 2 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3688.293 (psi) Mu d P r e s s u r e A f t e r : 3 6 8 8 . 5 0 9 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 8 . 3 6 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 8 . 3 8 ( d e g F) Pr e t e s t R a t e : 0 . 5 5 ( c m 3 / s ) P r e t e s t V o l u m e : 6 . 2 9 ( cm 3 ) C o m m e n t s : 24 20 1 3 -4 -10 8. 1 2 M D T _ O F A _ 0 2 7 L T C 8. 1 2 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 1 6 P r o b e M D : 7 0 1 3 . 9 9 f t P ro b e T V D : 6 7 7 6 . 3 5 f t Mu d B e f o r e ( 3 7 1 8 . 1 6 6 p s i ) St a r t D r a w d o w n ( 3 7 1 4 . 7 2 6 p s i ) St a r t B u i l d u p ( 3 7 1 3 . 4 5 2 p s i ) La s t B u i l d u p ( 3 7 1 3 . 0 0 8 p s i ) Mud After(3711.52psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 30 0 350 37 1 2 37 1 4 37 1 6 37 1 8 37 2 0 37 2 2 37 2 4 0.0 2.5 5.0 01000 2000 14 7 14 8 37 1 5 37 2 0 37 2 5 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 7 1 3 . 0 0 8 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3718.166 (psi) Mu d P r e s s u r e A f t e r : 3 7 1 1 . 5 2 ( p s i ) T e m p e r a t u r e B e f o re : 1 4 6 . 4 5 ( d e g F ) T e m p e r a t u r e A f t e r : 1 4 8 . 7 9 ( d e g F ) Pr e t e s t R a t e : 0 . 5 3 ( c m 3 / s ) P r e t e s t V o l u m e : 6 . 0 5 ( cm 3 ) C o m m e n t s : 25 20 1 3 -4 -10 8. 1 3 M D T _ O F A _ 0 2 8 L T C 8. 1 3 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 1 7 P r o b e M D : 6 9 5 2 . 0 7 f t P ro b e T V D : 6 7 1 8 . 0 2 f t Mu d B e f o r e ( 3 6 6 3 . 3 9 2 p s i ) St a r t D r a w d o w n ( 3 6 6 9 . 5 6 7 p s i ) St a r t B u i l d u p ( 3 6 2 1 . 0 6 9 p s i ) La s t B u i l d u p ( 3 6 6 3 . 2 0 3 p s i ) Mud After(3662.935psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 300 350 36 2 0 36 3 0 36 4 0 36 5 0 36 6 0 36 7 0 36 8 0 36 9 0 37 0 0 0.0 2.5 5.0 01000 2000 15 2 . 2 5 15 2 . 5 0 15 2 . 7 5 15 3 . 0 0 36 2 5 36 5 0 36 7 5 37 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : L o s t S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 6 6 3 . 2 0 3 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3663.392 (psi) Mu d P r e s s u r e A f t e r : 3 6 6 2 . 9 3 5 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 2 . 5 3 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 3 . 0 7 ( d e g F) Pr e t e s t R a t e : 0 . 5 3 ( c m 3 / s ) P r e t e s t V o l u m e : 6 . 0 5 ( cm 3 ) C o m m e n t s : 26 20 1 3 -4 -10 8. 1 4 M D T _ O F A _ 0 2 9 L T C 8. 1 4 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 1 8 P r o b e M D : 6 9 8 8 . 0 3 f t P ro b e T V D : 6 7 5 1 . 9 1 f t Mu d B e f o r e ( 3 6 8 7 . 0 7 1 p s i ) St a r t D r a w d o w n ( 3 6 8 2 . 6 8 1 p s i ) St a r t B u i l d u p ( 4 2 8 . 9 5 p s i ) La s t B u i l d u p ( 8 1 8 . 3 9 p s i ) Mud After(3683.017psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 10 0 20 0 30 0 40 0 50 0 60 0 700 800 50 0 10 0 0 15 0 0 20 0 0 25 0 0 30 0 0 35 0 0 0.0 2.5 5.0 01000 2000 15 3 15 4 10 0 0 20 0 0 30 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : T i g h t T e s t Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 8 1 8 . 3 9 ( p s i ) D r a w d o w n M o b i l i t y : Mud Pressure Before: 3687.071 (psi) Mu d P r e s s u r e A f t e r : 3 6 8 3 . 0 1 7 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 3 . 2 1 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 4 . 2 5 ( d e g F) Pr e t e s t R a t e : 0 ( c m 3 / s ) P r e t e s t V o l u m e : 0 ( c m 3 ) Comments: 27 20 1 3 -4 -10 8. 1 5 M D T _ O F A _ 0 3 0 L T C 8. 1 5 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 1 9 P r o b e M D : 7 0 1 4 . 1 3 f t P ro b e T V D : 6 7 7 6 . 4 8 f t Mu d B e f o r e ( 3 6 9 8 . 7 7 6 p s i ) St a r t D r a w d o w n ( 3 6 9 7 . 9 8 6 p s i ) St a r t B u i l d u p ( 3 6 9 6 . 4 9 2 p s i ) La s t B u i l d u p ( 3 6 9 7 . 6 5 9 p s i ) Mud After(3696.333psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 10 0 20 0 30 0 40 0 50 0 60 0 70 0 800 27 0 0 28 0 0 29 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 0.0 2.5 5.0 01000 2000 15 5 15 6 30 0 0 35 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 6 9 7 . 6 5 9 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3698.776 (psi) Mu d P r e s s u r e A f t e r : 3 6 9 6 . 3 3 3 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 4 . 3 4 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 6 . 0 8 ( d e g F) Pr e t e s t R a t e : 0 . 7 6 ( c m 3 / s ) P r e t e s t V o l u m e : 5 . 9 6 ( cm 3 ) C o m m e n t s : 28 20 1 3 -4 -10 8. 1 6 M D T _ O F A _ 0 3 1 L T C 8. 1 6 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 2 1 P r o b e M D : 7 0 1 1 . 0 5 f t P ro b e T V D : 6 7 7 3 . 5 8 f t Mu d B e f o r e ( 3 6 9 4 . 9 8 6 p s i ) St a r t D r a w d o w n ( 3 6 9 4 . 9 0 2 p s i ) St a r t B u i l d u p ( 3 6 8 7 . 8 2 p s i ) La s t B u i l d u p ( 3 6 9 4 . 5 9 4 p s i ) Mud After(3694.072psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 10 0 20 0 30 0 40 0 50 0 60 0 700 800 26 0 0 28 0 0 30 0 0 32 0 0 34 0 0 36 0 0 0.0 2.5 5.0 01000 2000 15 6 . 0 15 6 . 5 15 7 . 0 15 7 . 5 30 0 0 35 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 6 9 4 . 5 9 4 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3694.986 (psi) Mu d P r e s s u r e A f t e r : 3 6 9 4 . 0 7 2 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 6 . 0 4 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 7 . 0 5 ( d e g F) Pr e t e s t R a t e : 0 . 8 5 ( c m 3 / s ) P r e t e s t V o l u m e : 6 . 3 8 ( cm 3 ) C o m m e n t s : 29 20 1 3 -4 -10 8. 1 7 M D T _ O F A _ 0 3 2 L T C 8. 1 7 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 2 2 P r o b e M D : 7 0 0 4 . 8 2 f t P ro b e T V D : 6 7 6 7 . 7 1 f t Mu d B e f o r e ( 3 6 9 0 . 4 5 1 p s i ) St a r t D r a w d o w n ( 3 6 9 0 . 4 4 7 p s i ) St a r t B u i l d u p ( 3 6 8 4 . 6 8 1 p s i ) La s t B u i l d u p ( 3 6 8 8 . 9 9 9 p s i ) Mud After(3690.203psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 550 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 0.0 2.5 5.0 01000 2000 15 7 . 0 15 7 . 5 30 0 0 32 5 0 35 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : N o S e a l Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 3 6 8 8 . 9 9 9 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 3690.451 (psi) Mu d P r e s s u r e A f t e r : 3 6 9 0 . 2 0 3 ( p s i ) T e m p e r a t u r e B e f or e : 1 5 6 . 9 2 ( d e g F ) T e m p e r a t u r e A f t e r : 1 5 7 . 3 7 ( d e g F) Pr e t e s t R a t e : 0 . 5 4 ( c m 3 / s ) P r e t e s t V o l u m e : 6 . 2 1 ( cm 3 ) C o m m e n t s : 30 20 1 3 -4 -10 8. 1 8 M D T _ O F A _ 0 3 8 L T C 8. 1 8 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 2 4 P r o b e M D : 5 9 7 7 . 9 4 f t P ro b e T V D : 5 7 9 7 . 3 4 f t Mu d B e f o r e ( 3 1 6 4 . 8 8 3 p s i ) St a r t D r a w d o w n ( 2 6 0 5 . 9 1 2 p s i ) St a r t B u i l d u p ( 1 9 5 4 . 0 9 5 p s i ) La s t B u i l d u p ( 2 6 0 6 . 8 8 p s i ) Mud After(3162.64psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 55 0 600 650 18 0 0 20 0 0 22 0 0 24 0 0 26 0 0 28 0 0 30 0 0 32 0 0 0510 01000 2000 13 8 14 0 20 0 0 22 5 0 25 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : V a l i d T e s t Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: 2607.141 (psi) La s t R e a d B u i l d u p P r e s s u r e : 2 6 0 6 . 8 8 ( p s i ) D r a w d o w n M o b i l i t y : 3 . 4 6 ( m D / c P ) M u d P r e s s u r e B e f o r e : 3 1 6 4 .883 (psi) Mu d P r e s s u r e A f t e r : 3 1 6 2 . 6 4 ( p s i ) T e m p e r a t u r e B e f o re : 1 4 0 . 0 4 ( d e g F ) T e m p e r a t u r e A f t e r : 1 3 6 . 6 5 ( d e g F ) Pr e t e s t R a t e : 0 . 9 ( c m 3 / s ) P r e t e s t V o l u m e : 1 0 . 2 4 ( cm 3 ) C o m m e n t s : 31 20 1 3 -4 -10 8. 1 8 . 2 F R I D , S p h e r i c a l a n d R a d i a l S p e c i a l i z e d P l o t s Fl o w R e g i m e I D P l o t Ru n N o : 1 T e s t N o : 2 4 P r o b e M D : 5 9 7 7 . 9 4 f t P r o be T V D : 5 7 9 7 . 3 4 f t De l t a T i m e 10 0 10 1 10 2 -1 10 0 10 1 10 2 10 3 10 Sp h e r i c a l D e r i v a t i v e ( p s i s) Ra d i a l D e r i v a t i v e ( p s i ) De l t a P r e s s u r e ( p s i ) Sp h e r i c a l S p e c i a l i z e d P l o t Spherical Time Function 1. 5 1.0 0.5 -0.0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 Sp h e r i c a l P r e s s u r e ( p s i ) La s t B u i l d u p P r e s s u r e : 26 0 6 . 8 8 ( p s i ) Extrapolated Pressure: 2607.141 (psi) Bu i l d u p M o b i l i t y : 3. 6 5 ( m D / c P ) Spherical Slope: -63.05 Ra d i a l S p e c i a l i z e d P l o t Radial Time Function 1. 5 1.0 0.5 -0.0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 Ra d i a l P r e s s u r e ( p s i ) Ac t u a l S p h e r i c a l S l o p e o n S p h e r i c a l D e r i v a t i v e : -0 . 0 2 Id e a l S l o p e 0 Ac t u a l S p h e r i c a l S l o p e o n R a d i a l D e r i v a t i v e : -0 . 4 7 Id e a l S l o p e -0 . 5 Ac t u a l R a d i a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0. 5 La s t B u i l d u p P r e s s u r e : 26 0 6 . 8 8 ( p s i ) Extrapolated Pressure: Ac t u a l R a d i a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e 0 Ho r i z o n t a l M o b i l i t y T h i c k n e s s : Radial Slope: 32 20 1 3 -4 -10 8. 1 9 M D T _ O F A _ 0 4 5 L T C 8. 1 9 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 2 7 P r o b e M D : 4 3 7 8 . 3 7 f t P ro b e T V D : 4 2 9 0 . 0 6 f t Mu d B e f o r e ( 2 3 4 6 . 3 0 5 p s i ) St a r t D r a w d o w n ( 1 9 5 1 . 3 3 3 p s i ) St a r t B u i l d u p ( 1 2 4 7 . 4 3 8 p s i ) La s t B u i l d u p ( 1 9 4 9 . 1 6 1 p s i ) Mud After(2344.686psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 10 0 20 0 30 0 40 0 50 0 60 0 70 0 80 0 90 0 10 0 0 1100 1200 12 0 0 14 0 0 16 0 0 18 0 0 20 0 0 22 0 0 24 0 0 0510 01000 2000 11 1 11 2 11 3 12 5 0 15 0 0 17 5 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : V a l i d T e s t Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: 1950.037 (psi) La s t R e a d B u i l d u p P r e s s u r e : 1 9 4 9 . 1 6 1 ( p s i ) D r a w d o wn M o b i l i t y : 2 . 4 8 ( m D / c P ) M u d P r e s s u r e B e f o r e : 2 3 4 6.305 (psi) Mu d P r e s s u r e A f t e r : 2 3 4 4 . 6 8 6 ( p s i ) T e m p e r a t u r e B e f or e : 1 1 2 . 9 ( d e g F ) T e m p e r a t u r e A f t e r : 1 1 0 . 8 1 ( d e g F ) Pr e t e s t R a t e : 0 . 8 8 ( c m 3 / s ) P r e t e s t V o l u m e : 5 . 2 6 ( cm 3 ) C o m m e n t s : 33 20 1 3 -4 -10 8. 1 9 . 2 F R I D , S p h e r i c a l a n d R a d i a l S p e c i a l i z e d P l o t s Fl o w R e g i m e I D P l o t Ru n N o : 1 T e s t N o : 2 7 P r o b e M D : 4 3 7 8 . 3 7 f t P r o be T V D : 4 2 9 0 . 0 6 f t De l t a T i m e 10 0 10 1 10 2 1 10 2 10 3 10 Sp h e r i c a l D e r i v a t i v e ( p s i s) Ra d i a l D e r i v a t i v e ( p s i ) De l t a P r e s s u r e ( p s i ) Sp h e r i c a l S p e c i a l i z e d P l o t Spherical Time Function 1.0 0.5 -0.0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 Sp h e r i c a l P r e s s u r e ( p s i ) La s t B u i l d u p P r e s s u r e : 19 4 9 . 1 6 1 ( p s i ) Extrapolated Pressure: Bu i l d u p M o b i l i t y : Spherical Slope: Ra d i a l S p e c i a l i z e d P l o t Radial Time Function 1.0 0.5 -0.0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 Ra d i a l P r e s s u r e ( p s i ) Ac t u a l S p h e r i c a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0 Ac t u a l S p h e r i c a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e -0 . 5 Ac t u a l R a d i a l S l o p e o n S p h e r i c a l D e r i v a t i v e : 0. 4 6 Id e a l S l o p e 0. 5 La s t B u i l d u p P r e s s u r e : 19 4 9 . 1 6 1 ( p s i ) Extrapolated Pressure: 1950.037 (psi) Ac t u a l R a d i a l S l o p e o n R a d i a l D e r i v a t i v e : -0 . 0 1 Id e a l S l o p e 0 Ho r i z o n t a l M o b i l i t y T h i c k n e s s : 0. 5 6 ( m D . f t / c P ) Radial Slope: -137.09 34 20 1 3 -4 -10 8. 2 0 M D T _ O F A _ 0 4 6 L T C 8. 2 0 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 3 2 P r o b e M D : 4 3 4 0 . 6 2 f t P ro b e T V D : 4 2 5 4 . 5 8 f t Mu d B e f o r e ( 2 3 2 5 . 7 2 4 p s i ) St a r t D r a w d o w n ( 1 9 3 1 . 9 3 6 p s i ) St a r t B u i l d u p ( 1 6 5 9 . 1 8 2 p s i ) La s t B u i l d u p ( 1 9 3 5 . 2 4 8 p s i ) Mud After(2324.975psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 20 0 40 0 60 0 80 0 10 0 0 12 0 0 1400 10 0 0 12 0 0 14 0 0 16 0 0 18 0 0 20 0 0 22 0 0 24 0 0 0.0 2.5 5.0 01000 2000 10 9 . 5 11 0 . 0 11 0 . 5 10 0 0 15 0 0 20 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : V a l i d T e s t Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: 1936.173 (psi) La s t R e a d B u i l d u p P r e s s u r e : 1 9 3 5 . 2 4 8 ( p s i ) D r a w d o wn M o b i l i t y : 1 . 7 4 ( m D / c P ) M u d P r e s s u r e B e f o r e : 2 3 2 5.724 (psi) Mu d P r e s s u r e A f t e r : 2 3 2 4 . 9 7 5 ( p s i ) T e m p e r a t u r e B e f or e : 1 1 0 . 2 5 ( d e g F ) T e m p e r a t u r e A f t e r : 1 0 9 . 5 3 ( d e g F) Pr e t e s t R a t e : 0 . 3 5 ( c m 3 / s ) P r e t e s t V o l u m e : 0 . 9 3 ( cm 3 ) C o m m e n t s : 35 20 1 3 -4 -10 8. 2 0 . 2 F R I D , S p h e r i c a l a n d R a d i a l S p e c i a l i z e d P l o t s Fl o w R e g i m e I D P l o t Ru n N o : 1 T e s t N o : 3 2 P r o b e M D : 4 3 4 0 . 6 2 f t P r o be T V D : 4 2 5 4 . 5 8 f t De l t a T i m e 10 0 10 1 10 2 2 10 3 10 Sp h e r i c a l D e r i v a t i v e ( p s i s) Ra d i a l D e r i v a t i v e ( p s i ) De l t a P r e s s u r e ( p s i ) Sp h e r i c a l S p e c i a l i z e d P l o t Spherical Time Function 1.0 0.5 -0.0 17 0 0 17 5 0 18 0 0 18 5 0 19 0 0 Sp h e r i c a l P r e s s u r e ( p s i ) La s t B u i l d u p P r e s s u r e : 19 3 5 . 2 4 8 ( p s i ) Extrapolated Pressure: Bu i l d u p M o b i l i t y : Spherical Slope: Ra d i a l S p e c i a l i z e d P l o t Radial Time Function 1. 0 0.5 -0.0 17 0 0 17 5 0 18 0 0 18 5 0 19 0 0 Ra d i a l P r e s s u r e ( p s i ) Ac t u a l S p h e r i c a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0 Ac t u a l S p h e r i c a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e -0 . 5 Ac t u a l R a d i a l S l o p e o n S p h e r i c a l D e r i v a t i v e : 0. 5 Id e a l S l o p e 0. 5 La s t B u i l d u p P r e s s u r e : 19 3 5 . 2 4 8 ( p s i ) Extrapolated Pressure: 1936.173 (psi) Ac t u a l R a d i a l S l o p e o n R a d i a l D e r i v a t i v e : 0. 0 4 Id e a l S l o p e 0 Ho r i z o n t a l M o b i l i t y T h i c k n e s s : 0. 1 9 ( m D . f t / c P ) Radial Slope: -157.51 36 20 1 3 -4 -10 8. 2 1 M D T _ O F A _ 0 4 7 L T C 8. 2 1 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 3 5 P r o b e M D : 4 2 7 3 . 0 3 f t P ro b e T V D : 4 1 9 1 . 0 9 f t Mu d B e f o r e ( 2 2 9 1 . 3 3 3 p s i ) St a r t D r a w d o w n ( 1 9 1 7 . 4 3 2 p s i ) St a r t B u i l d u p ( 1 4 9 9 . 8 5 7 p s i ) La s t B u i l d u p ( 1 9 1 8 . 5 5 6 p s i ) Mud After(2290.567psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 10 0 20 0 30 0 40 0 50 0 60 0 70 0 80 0 90 0 1000 1100 10 0 0 12 0 0 14 0 0 16 0 0 18 0 0 20 0 0 22 0 0 0123 01000 2000 10 8 . 7 5 10 9 . 0 0 10 9 . 2 5 10 9 . 5 0 10 0 0 15 0 0 20 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : U n s t a b i l i z e d Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: 1918.556 (psi) La s t R e a d B u i l d u p P r e s s u r e : 1 9 1 8 . 5 5 6 ( p s i ) D r a w d o wn M o b i l i t y : 0 . 8 6 ( m D / c P ) M u d P r e s s u r e B e f o r e : 2 2 9 1.333 (psi) Mu d P r e s s u r e A f t e r : 2 2 9 0 . 5 6 7 ( p s i ) T e m p e r a t u r e B e f or e : 1 0 9 . 4 ( d e g F ) T e m p e r a t u r e A f t e r : 1 0 8 . 9 6 ( d e g F ) Pr e t e s t R a t e : 0 . 3 4 ( c m 3 / s ) P r e t e s t V o l u m e : 0 . 9 3 ( cm 3 ) C o m m e n t s : 37 20 1 3 -4 -10 8. 2 1 . 2 F R I D , S p h e r i c a l a n d R a d i a l S p e c i a l i z e d P l o t s Fl o w R e g i m e I D P l o t Ru n N o : 1 T e s t N o : 3 5 P r o b e M D : 4 2 7 3 . 0 3 f t P r o be T V D : 4 1 9 1 . 0 9 f t De l t a T i m e 10 0 10 1 10 2 2 10 3 10 4 10 Sp h e r i c a l D e r i v a t i v e ( p s i s) Ra d i a l D e r i v a t i v e ( p s i ) De l t a P r e s s u r e ( p s i ) Sp h e r i c a l S p e c i a l i z e d P l o t Spherical Time Function 1.0 0.5 -0.0 15 0 0 15 5 0 16 0 0 16 5 0 17 0 0 17 5 0 18 0 0 18 5 0 19 0 0 Sp h e r i c a l P r e s s u r e ( p s i ) La s t B u i l d u p P r e s s u r e : 19 1 8 . 5 5 6 ( p s i ) Extrapolated Pressure: Bu i l d u p M o b i l i t y : Spherical Slope: Ra d i a l S p e c i a l i z e d P l o t Radial Time Function 1. 0 0.5 -0.0 15 0 0 15 5 0 16 0 0 16 5 0 17 0 0 17 5 0 18 0 0 18 5 0 19 0 0 Ra d i a l P r e s s u r e ( p s i ) Ac t u a l S p h e r i c a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0 Ac t u a l S p h e r i c a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e -0 . 5 Ac t u a l R a d i a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0. 5 La s t B u i l d u p P r e s s u r e : 19 1 8 . 5 5 6 ( p s i ) Extrapolated Pressure: Ac t u a l R a d i a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e 0 Ho r i z o n t a l M o b i l i t y T h i c k n e s s : Radial Slope: 38 20 1 3 -4 -10 8. 2 2 M D T _ O F A _ 0 4 8 L T C 8. 2 2 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 3 7 P r o b e M D : 4 2 2 8 . 0 2 f t P ro b e T V D : 4 1 4 8 . 8 2 f t Mu d B e f o r e ( 2 2 6 7 . 9 9 1 p s i ) St a r t D r a w d o w n ( 1 9 0 5 . 3 4 6 p s i ) St a r t B u i l d u p ( 1 2 1 1 . 7 7 4 p s i ) La s t B u i l d u p ( 1 9 0 1 . 2 1 p s i ) Mud After(2267.734psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 10 0 20 0 30 0 40 0 50 0 60 0 700 12 0 0 14 0 0 16 0 0 18 0 0 20 0 0 22 0 0 0.0 0.5 1.0 01000 2000 10 8 . 2 5 10 8 . 5 0 10 8 . 7 5 15 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : U n s t a b i l i z e d Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: 1901.21 (psi) La s t R e a d B u i l d u p P r e s s u r e : 1 9 0 1 . 2 1 ( p s i ) D r a w d o w n M o b i l i t y : 0 . 1 7 ( m D / c P ) M u d P r e s s u r e B e f o r e : 2 2 6 7 .991 (psi) Mu d P r e s s u r e A f t e r : 2 2 6 7 . 7 3 4 ( p s i ) T e m p e r a t u r e B e f or e : 1 0 8 . 8 7 ( d e g F ) T e m p e r a t u r e A f t e r : 1 0 8 . 4 5 ( d e g F) Pr e t e s t R a t e : 0 . 2 1 ( c m 3 / s ) P r e t e s t V o l u m e : 0 . 4 4 ( cm 3 ) C o m m e n t s : 39 20 1 3 -4 -10 8. 2 2 . 2 F R I D , S p h e r i c a l a n d R a d i a l S p e c i a l i z e d P l o t s Fl o w R e g i m e I D P l o t Ru n N o : 1 T e s t N o : 3 7 P r o b e M D : 4 2 2 8 . 0 2 f t P r o be T V D : 4 1 4 8 . 8 2 f t De l t a T i m e 10 0 10 1 10 2 1 10 2 10 3 10 4 10 Sp h e r i c a l D e r i v a t i v e ( p s i s) Ra d i a l D e r i v a t i v e ( p s i ) De l t a P r e s s u r e ( p s i ) Sp h e r i c a l S p e c i a l i z e d P l o t Spherical Time Function 1.0 0.5 -0.0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 Sp h e r i c a l P r e s s u r e ( p s i ) La s t B u i l d u p P r e s s u r e : 19 0 1 . 2 1 ( p s i ) Extrapolated Pressure: Bu i l d u p M o b i l i t y : Spherical Slope: Ra d i a l S p e c i a l i z e d P l o t Radial Time Function 0.5 -0.0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 Ra d i a l P r e s s u r e ( p s i ) Ac t u a l S p h e r i c a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0 Ac t u a l S p h e r i c a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e -0 . 5 Ac t u a l R a d i a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0. 5 La s t B u i l d u p P r e s s u r e : 19 0 1 . 2 1 ( p s i ) Extrapolated Pressure: Ac t u a l R a d i a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e 0 Ho r i z o n t a l M o b i l i t y T h i c k n e s s : Radial Slope: 40 20 1 3 -4 -10 8. 2 3 M D T _ O F A _ 0 4 9 L T C 8. 2 3 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 4 1 P r o b e M D : 4 2 0 9 . 1 2 f t P ro b e T V D : 4 1 3 1 . 0 7 f t Mu d B e f o r e ( 2 2 5 8 . 1 3 8 p s i ) St a r t D r a w d o w n ( 1 8 8 9 . 2 4 7 p s i ) St a r t B u i l d u p ( 1 8 0 1 . 7 8 8 p s i ) La s t B u i l d u p ( 1 8 8 9 . 5 2 4 p s i ) Mud After(2257.984psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 10 0 20 0 30 0 40 0 50 0 60 0 70 0 80 0 900 17 0 0 18 0 0 19 0 0 20 0 0 21 0 0 22 0 0 23 0 0 024 01000 2000 10 7 . 7 5 10 8 . 0 0 10 8 . 2 5 10 8 . 5 0 18 0 0 18 5 0 19 0 0 BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e PT V 1 ( c m 3 ) , M R P S 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d B1 T R ( d e g F ) , M R P S 1 R e s i s t i v i t y C e l l T e m p e r a t u r e BQ P 1 ( p s i ) , M R P S 1 Q u a r t z G a u g e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : V a l i d T e s t Pa c k e r / P r o b e T y p e : L a r g e - D i a m e t e r p r o b e P r i m a r y G a u ge : B Q P 1 Formation Pressure: 1889.524 (psi) La s t R e a d B u i l d u p P r e s s u r e : 1 8 8 9 . 5 2 4 ( p s i ) D r a w d o wn M o b i l i t y : 1 1 . 8 3 ( m D / c P ) M u d P r e s s u r e B e f o r e : 2 2 58.138 (psi) Mu d P r e s s u r e A f t e r : 2 2 5 7 . 9 8 4 ( p s i ) T e m p e r a t u r e B e f or e : 1 0 8 . 3 8 ( d e g F ) T e m p e r a t u r e A f t e r : 1 0 8 . 0 6 ( d e g F) Pr e t e s t R a t e : 0 . 3 8 ( c m 3 / s ) P r e t e s t V o l u m e : 5 . 0 3 ( cm 3 ) C o m m e n t s : 41 20 1 3 -4 -10 8. 2 3 . 2 F R I D , S p h e r i c a l a n d R a d i a l S p e c i a l i z e d P l o t s Fl o w R e g i m e I D P l o t Ru n N o : 1 T e s t N o : 4 1 P r o b e M D : 4 2 0 9 . 1 2 f t P r o be T V D : 4 1 3 1 . 0 7 f t De l t a T i m e 10 0 10 1 10 2 1 10 2 10 Sp h e r i c a l D e r i v a t i v e ( p s i s) Ra d i a l D e r i v a t i v e ( p s i ) De l t a P r e s s u r e ( p s i ) Sp h e r i c a l S p e c i a l i z e d P l o t Spherical Time Function 1. 5 1.0 0.5 -0.0 18 0 0 18 1 0 18 2 0 18 3 0 18 4 0 18 5 0 18 6 0 18 7 0 18 8 0 18 9 0 Sp h e r i c a l P r e s s u r e ( p s i ) La s t B u i l d u p P r e s s u r e : 18 8 9 . 5 2 4 ( p s i ) Extrapolated Pressure: Bu i l d u p M o b i l i t y : Spherical Slope: Ra d i a l S p e c i a l i z e d P l o t Radial Time Function 1. 5 1.0 0.5 -0.0 18 0 0 18 1 0 18 2 0 18 3 0 18 4 0 18 5 0 18 6 0 18 7 0 18 8 0 18 9 0 Ra d i a l P r e s s u r e ( p s i ) Ac t u a l S p h e r i c a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0 Ac t u a l S p h e r i c a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e -0 . 5 Ac t u a l R a d i a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0. 5 La s t B u i l d u p P r e s s u r e : 18 8 9 . 5 2 4 ( p s i ) Extrapolated Pressure: Ac t u a l R a d i a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e 0 Ho r i z o n t a l M o b i l i t y T h i c k n e s s : Radial Slope: 42 20 1 3 -4 -10 8. 2 4 M D T _ O F A _ 0 5 0 L T C 8. 2 4 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 4 5 P r o b e M D : 4 2 0 1 . 0 9 f t P ro b e T V D : 4 1 2 3 . 5 2 f t Mu d B e f o r e ( 2 2 5 5 . 2 1 4 p s i ) St a r t D r a w d o w n ( 1 9 5 1 . 9 5 4 p s i ) St a r t B u i l d u p ( 9 3 0 . 2 6 2 p s i ) La s t B u i l d u p ( 1 9 0 2 . 0 2 3 p s i ) Mud After(2254.813psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 20 0 40 0 60 0 80 0 10 0 0 12 0 0 1400 1600 10 0 0 12 0 0 14 0 0 16 0 0 18 0 0 20 0 0 22 0 0 24 0 0 010 20 01000 2000 10 7 . 0 0 10 7 . 2 5 10 7 . 5 0 10 0 0 15 0 0 20 0 0 PQ Q P 1 ( p s i ) , M R P Q 1 Q u a r t z G a u g e P r e s s u r e , S a m p l e L i n e P r e s s u r e PQ P T V 1 ( c m 3 ) , M R P Q 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d PQ 1 T R ( d e g F ) , M R P Q 1 R e s i s t i v i t y C e l l T e m p e r a t u r e PQ Q P 1 ( p s i ) , M R P Q 1 Q u a r t z G a u g e P r e s s u r e , S a m p l e L i n e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : U n s t a b i l i z e d Pa c k e r / P r o b e T y p e : X L a r g e - D i a m e t e r p r o b e P r i m a r y G a ug e : P Q Q P 1 Formation Pressure: 1902.023 (psi) La s t R e a d B u i l d u p P r e s s u r e : 1 9 0 2 . 0 2 3 ( p s i ) D r a w d o wn M o b i l i t y : 0 . 1 2 ( m D / c P ) M u d P r e s s u r e B e f o r e : 2 2 5 5.214 (psi) Mu d P r e s s u r e A f t e r : 2 2 5 4 . 8 1 3 ( p s i ) T e m p e r a t u r e B e f or e : 1 0 7 . 3 7 ( d e g F ) T e m p e r a t u r e A f t e r : 1 0 7 . 2 5 ( d e g F) Pr e t e s t R a t e : 0 . 6 3 ( c m 3 / s ) P r e t e s t V o l u m e : 2 . 6 6 ( cm 3 ) C o m m e n t s : 43 20 1 3 -4 -10 8. 2 4 . 2 F R I D , S p h e r i c a l a n d R a d i a l S p e c i a l i z e d P l o t s Fl o w R e g i m e I D P l o t Ru n N o : 1 T e s t N o : 4 5 P r o b e M D : 4 2 0 1 . 0 9 f t P r o be T V D : 4 1 2 3 . 5 2 f t De l t a T i m e 10 0 10 1 10 2 1 10 2 10 3 10 4 10 5 10 Sp h e r i c a l D e r i v a t i v e ( p s i s) Ra d i a l D e r i v a t i v e ( p s i ) De l t a P r e s s u r e ( p s i ) Sp h e r i c a l S p e c i a l i z e d P l o t Spherical Time Function 1.0 0.5 -0.0 90 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 Sp h e r i c a l P r e s s u r e ( p s i ) La s t B u i l d u p P r e s s u r e : 19 0 2 . 0 2 3 ( p s i ) Extrapolated Pressure: Bu i l d u p M o b i l i t y : Spherical Slope: Ra d i a l S p e c i a l i z e d P l o t Radial Time Function 1.0 0.5 -0.0 90 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 Ra d i a l P r e s s u r e ( p s i ) Ac t u a l S p h e r i c a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0 Ac t u a l S p h e r i c a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e -0 . 5 Ac t u a l R a d i a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0. 5 La s t B u i l d u p P r e s s u r e : 19 0 2 . 0 2 3 ( p s i ) Extrapolated Pressure: Ac t u a l R a d i a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e 0 Ho r i z o n t a l M o b i l i t y T h i c k n e s s : Radial Slope: 44 20 1 3 -4 -10 8. 2 5 M D T _ O F A _ 0 5 1 L T C 8. 2 5 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 4 8 P r o b e M D : 4 2 0 5 . 1 1 f t P ro b e T V D : 4 1 2 7 . 3 1 f t Mu d B e f o r e ( 2 2 5 7 . 6 5 9 p s i ) St a r t D r a w d o w n ( 2 2 5 6 . 8 5 5 p s i ) St a r t B u i l d u p ( 2 2 5 1 . 0 8 4 p s i ) La s t B u i l d u p ( 2 2 5 7 . 0 6 2 p s i ) Mud After(2257.082psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 50 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 500 550 22 1 0 22 2 0 22 3 0 22 4 0 22 5 0 22 6 0 22 7 0 22 8 0 0510 01000 2000 10 7 . 0 10 7 . 2 22 2 5 22 5 0 22 7 5 PQ Q P 1 ( p s i ) , M R P Q 1 Q u a r t z G a u g e P r e s s u r e , S a m p l e L i n e P r e s s u r e PQ P T V 1 ( c m 3 ) , M R P Q 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d PQ 1 T R ( d e g F ) , M R P Q 1 R e s i s t i v i t y C e l l T e m p e r a t u r e PQ Q P 1 ( p s i ) , M R P Q 1 Q u a r t z G a u g e P r e s s u r e , S a m p l e L i n e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : L o s t S e a l Pa c k e r / P r o b e T y p e : X L a r g e - D i a m e t e r p r o b e P r i m a r y G a ug e : P Q Q P 1 Formation Pressure: La s t R e a d B u i l d u p P r e s s u r e : 2 2 5 7 . 0 6 2 ( p s i ) D r a w d o wn M o b i l i t y : Mud Pressure Before: 2257.659 (psi) Mu d P r e s s u r e A f t e r : 2 2 5 7 . 0 8 2 ( p s i ) T e m p e r a t u r e B e f or e : 1 0 7 . 1 8 ( d e g F ) T e m p e r a t u r e A f t e r : 1 0 7 . 1 7 ( d e g F) Pr e t e s t R a t e : 0 . 6 4 ( c m 3 / s ) P r e t e s t V o l u m e : 9 . 0 5 ( cm 3 ) C o m m e n t s : 45 20 1 3 -4 -10 8. 2 6 M D T _ O F A _ 0 5 2 L T C 8. 2 6 . 1 P r e s s u r e v s . T i m e P l o t Pr e s s u r e v s . T i m e P l o t Ru n N o : 1 T e s t N o : 5 0 P r o b e M D : 4 2 0 4 . 0 3 f t P ro b e T V D : 4 1 2 6 . 2 9 f t Mu d B e f o r e ( 2 2 5 7 . 1 2 3 p s i ) St a r t D r a w d o w n ( 1 8 8 9 . 4 6 4 p s i ) St a r t B u i l d u p ( 1 8 3 2 . 0 2 7 p s i ) La s t B u i l d u p ( 1 8 8 9 . 9 9 4 p s i ) Mud After(2256.319psi) p s i cm3c/min d e g F p s i ET I M ( s ) 0 10 0 0 20 0 0 30 0 0 40 0 0 50 0 0 60 0 0 70 0 0 8000 12 0 0 14 0 0 16 0 0 18 0 0 20 0 0 22 0 0 0510 01000 2000 10 0 15 0 20 0 15 0 0 20 0 0 PQ Q P 1 ( p s i ) , M R P Q 1 Q u a r t z G a u g e P r e s s u r e , S a m p l e L i n e P r e s s u r e PQ P T V 1 ( c m 3 ) , M R P Q 1 P r e t e s t V o l u m e HM S 2 ( c / m i n ) , M R H Y 2 M o t o r S p e e d HM S 1 ( c / m i n ) , M R H Y 1 M o t o r S p e e d PQ 1 T R ( d e g F ) , M R P Q 1 R e s i s t i v i t y C e l l T e m p e r a t u r e PQ Q P 1 ( p s i ) , M R P Q 1 Q u a r t z G a u g e P r e s s u r e , S a m p l e L i n e P r e s s u r e To o l T y p e : M D T P r e t e s t T y p e : V o l u m e t r i c D r a w d o w n P r et e s t P r e t e s t S t a t u s : V a l i d T e s t Pa c k e r / P r o b e T y p e : X L a r g e - D i a m e t e r p r o b e P r i m a r y G a ug e : P Q Q P 1 Formation Pressure: 1890.112 (psi) La s t R e a d B u i l d u p P r e s s u r e : 1 8 8 9 . 9 9 4 ( p s i ) D r a w d o wn M o b i l i t y : 2 3 . 9 9 ( m D / c P ) M u d P r e s s u r e B e f o r e : 2 2 57.123 (psi) Mu d P r e s s u r e A f t e r : 2 2 5 6 . 3 1 9 ( p s i ) T e m p e r a t u r e B e f or e : 1 0 7 . 1 5 ( d e g F ) T e m p e r a t u r e A f t e r : 1 0 9 . 5 8 ( d e g F) Pr e t e s t R a t e : 0 . 8 9 ( c m 3 / s ) P r e t e s t V o l u m e : 9 . 1 2 ( cm 3 ) C o m m e n t s : 46 20 1 3 -4 -10 8. 2 6 . 2 F R I D , S p h e r i c a l a n d R a d i a l S p e c i a l i z e d P l o t s Fl o w R e g i m e I D P l o t Ru n N o : 1 T e s t N o : 5 0 P r o b e M D : 4 2 0 4 . 0 3 f t P r o be T V D : 4 1 2 6 . 2 9 f t De l t a T i m e 10 0 10 1 10 2 -1 10 0 10 1 10 2 10 Sp h e r i c a l D e r i v a t i v e ( p s i s) Ra d i a l D e r i v a t i v e ( p s i ) De l t a P r e s s u r e ( p s i ) Sp h e r i c a l S p e c i a l i z e d P l o t Spherical Time Function 1. 5 1.0 0.5 -0.0 18 4 0 18 5 0 18 6 0 18 7 0 18 8 0 18 9 0 Sp h e r i c a l P r e s s u r e ( p s i ) La s t B u i l d u p P r e s s u r e : 18 8 9 . 9 9 4 ( p s i ) Extrapolated Pressure: Bu i l d u p M o b i l i t y : Spherical Slope: Ra d i a l S p e c i a l i z e d P l o t Radial Time Function 1. 5 1.0 0.5 -0.0 18 4 0 18 5 0 18 6 0 18 7 0 18 8 0 18 9 0 Ra d i a l P r e s s u r e ( p s i ) Ac t u a l S p h e r i c a l S l o p e o n S p h e r i c a l D e r i v a t i v e : Id e a l S l o p e 0 Ac t u a l S p h e r i c a l S l o p e o n R a d i a l D e r i v a t i v e : Id e a l S l o p e -0 . 5 Ac t u a l R a d i a l S l o p e o n S p h e r i c a l D e r i v a t i v e : 0. 5 3 Id e a l S l o p e 0. 5 La s t B u i l d u p P r e s s u r e : 18 8 9 . 9 9 4 ( p s i ) Extrapolated Pressure: 1890.112 (psi) Ac t u a l R a d i a l S l o p e o n R a d i a l D e r i v a t i v e : 0. 0 5 Id e a l S l o p e 0 Ho r i z o n t a l M o b i l i t y T h i c k n e s s : 14 . 3 5 ( m D . f t / c P ) Radial Slope: -5.49 47 2013-4-10 8.26.3 Fluids Analysis 8.26.3.1 Station Fluids Summary File Number MDT_OFA_052LTC Formation Pressure 1890.112 psi MD 4204.03 ft Hydrostatic Pressure 2257.123 psi TVD 4126.29 ft Formation Temperature 108.78 degF Type Sampling + Scanning Number of Samples 4 Sa m p l e 1 Sa m p l e 2 Sa m p l e 3 Sa m p l e 4 All Probe Quartz Gauge Pressure and Pump Volume ps i cm 3 ETIM (s) 0 1000 2000 3000 4000 5000 6000 7000 8000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 PQQP1(psi), MRPQ 1 Quartz Gauge Pressure, Sample Li ne Pressure BQP1(psi), MRPS 1 Quartz Gauge Pressure POPV(cm3), MRPO Pump Output Volume POCV(cm3), MRPO Continuous Volume Figure 4 Summary Plot Event Table ETIM (s) Module Description 65.4 PQ_1 Open Isolation Valves 65.4 PQ_1 Open Bypass Valves 72.3 PQ_1 Recycle Pretest Pistons 94.8 PQ_1 Set Sequence 149.7 PQ_1 Close Isolation Valves 149.7 PQ_1 Automatic Reset Enabled 149.7 PQ_1 Probe Set 157.5 PQ_1 Open Bypass Valves 181.2 PQ_1 Pretest Start 199.5 PQ_1 Pretest End 293.1 PQ_1 Close Isolation Valves 307.8 PQ_1 Pretest Start 325.2 PQ_1 Pretest End 431.4 PS_1 Close Isolation Valves 439.5 PQ_1 Open Isolation Valves 439.5 PQ_1 Open Bypass Valves 447.3 PO Start Pump Out 482.1 PQ_1 Automatic Reset 554.4 PQ_1 Automatic Reset 1433.4 PQ_1 Automatic Reset 1866 PQ_1 Automatic Reset 6007.5 SC_1 Command Open Sample Chamber 6012.3 SC_1 Open Sample Chamber 6042 MS_1 Close USV 6587.7 SC_1 Command Close Sample Chamber 6590.1 SC_1 Close Sample Chamber 48 2013-4-10 ETIM (s) Module Description 6605.1 MS_1 Open USV 6621 PQ_1 Automatic Reset 7043.1 MS_1 Command Open Bottle 5 7071.3 MS_1 Open Bottle 5 7078.5 MS_1 Command Open Bottle 6 7103.1 MS_1 Open Bottle 6 7123.5 MS_1 Close USV 7286.7 MS_1 Bottle 5 is Filled 7293.9 MS_1 Command Close Bottle 5 7317 MS_1 Close Bottle 5 7320.9 MS_1 Command Close Bottle 6 7338.3 MS_1 Open USV 7344.3 MS_1 Close Bottle 6 7688.4 MS_1 Command Open Bottle 3 7713.9 MS_1 Open Bottle 3 7731 MS_1 Close USV 7777.8 MS_1 Bottle 3 is Filled 7818.3 MS_1 Bottle 3 is Over-Pressured 7845.6 MS_1 Command Close Bottle 3 7872.3 MS_1 Close Bottle 3 7883.1 MS_1 Open USV 8025.3 PO Stop Pump Out 8030.1 PS_1 Close Isolation Valves 8034 PQ_1 Close Isolation Valves 8048.4 PQ_1 Open Isolation Valves 8048.4 PQ_1 Open Bypass Valves 8055.9 PQ_1 Retracting 8096.7 PS_1 Open Isolation Valves 49 2013-4-10 8.26.3.2 LFA Log Analysis 0. 5 0 0 1. 5 0 0 Q_GOR_LFA LFA Gas Oil Ratio (GOR_LFA) 0 20000 ft3/bbl MRPO Pump Output Volume (POPV) 0 1000 cm3 MRPO Hydraulic Pressure (POHP) 0 5000 psi MRPO Motor Speed (POMS) 0 5000 c/min Elapsed Time (ETIM) POS3 Low Gas Mediu m Gas High Gas Water Hydrocarbo n Water Hydrocarbo n Overlap High Absorbing Fluid LFA Fluid Coloration (FCOL_LFA) 0.0001 0.001 LFA Fluid Coloration (FCOL_LFA) 0.001 0.01 LFA Fluid Coloration (FCOL_LFA) 0.01 0.1 LFA Fluid Coloration (FCOL_LFA) 0.1 1 -20 20 LFA Optical Density Data (FAOD_LFA[4]) -16 24 LFA Optical Density Data (FAOD_LFA[3]) -12 28 LFA Optical Density Data (FAOD_LFA[2]) -8 32 LFA Optical Density Data (FAOD_LFA[1]) -4 36 LFA Optical Density Data (FAOD_LFA[0]) 0 40 634 1902 3170 4438 5706 6974 1268 2536 3804 5072 6340 7608 Figure 5 LFA Log Plot 50 2013-4-10 8.26.3.3 Interval Analysis (7514.8 s - 7959.8 s) Identification Date 27-MAR-2013 Predicted Fluids Type Oil with oil/water emulsion Time 2:51:55 Formation Name Nanushuk File ID MDT_OFA_052LTC RDC Name Run Number 1 MD 4204.03 ft TVD 4126.29 ft Conditions Pump Out Time 7509.6 s DFA Window Begin 7514.8 s Pump Out Volume 54544.22 cm3 DFA Window End 7959.8 s Properties Resistivity 18.67 ohm.m Temperature 108.58 degF Density OCM Contamination Viscosity GOR 533 ft3/bbl Hydrocarbon Composition C1 C6+ C2 CO2 C3-C5 C2-C5 Volume Fraction Water Fraction 0.11 Hydrocarbon Fraction 0.97 High Absorbing Fraction 0 Formation Condition Formation Pressure 1890.112 psi Max. Drawdown Pressure 749.632 psi Formation Temperature 108.78 degF DD Pressure before Profile 460.011 psi 51