Alaska Logo
Department of Commerce, Community, and Economic Development
Alaska Oil and Gas Conservation
Commission
Loading...
HomeMy WebLinkAboutGMC Data Report No. 005 PYROLYSIS-FLUORESCENCE AND VITRINITE REFLECTANCE STUDY PAN AMERICAN NAPATUK CREEK NO. 1 WrLL SECTION 34 T7N R78W S.B.M., BETHEL BAS IN, ALASKA P__~_ro!ys is-Fluorescence Study.. Ditch and core samples from the Pan American Napatuk Creek No. 1 well were examined for source rock potential using the pyrolysis-fluorescence method. The results are summarized on the attached source rock log and data sheet; some 65 samples were analyzed. The attached Patent Disclosure by R. L. Heacock, et al., "Process for Measuring the Live Carbon ·Content of Organic Samples" provides the background needed to interpret the basic data. The pyrolysis-fluor¢~jcence technique differs from the non-carbonate carbon content in that p-f measures only the therr.~ally reactive organic matter. On the data sheet and source rock log is the notation "STD = 37 ~ 2." A glass ~rod having a fluorescence of 37 ~ 2 units is used to standardize the fluorometers; the values shown in the l~aten't Disclosure and in the current study' are calibrated in this manner. Vi~rinite Reflectance Study ~ A total of 21 ditch and core samples were prepared for vitrinite reflectance study. The vitrinite was concentrated by non-oxidative acid solution of the inorganic matrix. Standard A.S.T.M. procedut-es are followed for polishing and examining the specimens. The results of the examination are sunnnarized on the individual sample histograms and in the table presented below. On the histogra~ns, each vitrinite reflectance reading is shown to the nearest 0.01% reflectance in oil (%Ro), and the values are summed up for each 0.1% Ro group, i.e., 0.30 to 0.39, 0.40 to 0.49, etc. In the table, the maximum and minimum reflectance values give the range in readings; the (arithmetic) mean Ro is given with the limits of un- certainty calculated for 95% confidence limits. The mean values include a correction for anisotropy; the correction factor is added to tt~e sum of the "random" readings to arrive at a mean "maximum" value. The correction factor is very small ~for mean values below 1.50% Ro, but becomes larger as mean Ro increases. · This means that the mean Ro presented below is a higher value than if the arithmetic mean is taken of the reflectances shown on the histograms. Where the confidence limits are ~broad, such as in the deepest sample, the results are considered to be less reliable than where the limits are narrow, such as in the ~ 82 . ' ~.700 to 2 0 foot sample Inasmuch as these are mostly ditch samples, there is apt to be a certain amount of cavings present~ further inter- prctation would be required to discriminate between cavings and in-place material. Depth, ft Sample Type Max, Ro% Min, Ro% Mean Ro · 95% Confidence Limits 1,420-1,600 Ditch 0.97 0.62 0.79 ± 0.02 2,020-2,370 " 1.01 ~ 0.75 0.90 ~ 0.02 2,700-2,820 " 1.03 0.70 0.89 ± 0.02 3,450-3,460 " 0.90 0.54 0.75 ~ 0.02 3,960-3,980 ~" 2.30 1.19 1.90 ~ 0.07 4,320-.4,430 " 2.30 0.62 1.61 ~ 0.12 5,370-5,470 " 3.04 0.58 1.46 · 0.13 5,759-5,762 Core 2.20 1.57 2.04 · 0.05 6,110-6,150 Ditch · 1.63 0.71 1.37 · 0.06 6,500-6,570 " 1.63 0.73 1.43 ~ 0.05 7,110-7,230 " 1.64 0.72 1.34 ~ 0.06 7,710-7,800 " 1.70 0.89 1.36 ± 0.06 8,250-8,360 " 1.95 1.21 1.66 ~ 0.05 8,650-8,720 " 2.05 1.12 1.71 ~ 0.07 9,580-9,660 " 2.45 1.50 2.16 · 0.08 10,180-10,420 " 2.34 1.04 1.92 · 0.10 11,670-11,750 " 2.70 1.31 2.31 ~ 0.10 12,150-12,250 " 2.60 1.64 2.27 ~ 0.09 13,260-13,280 " 2.53 1.56 2.27 ~ 0.07 13,510-13,700 " 2.99 1.09 2.11 ~ 0.14 14,560-14,650 " 3.45 1.70 2.61 ~ 0.15 Some of the methods used to determine the burial metamorphic history are su~narized ~n the attached table taken from a forthcoming publication by Hood and Casta~o. These methods are related through the use of the LOM (level of organic metamorphism) scale reported by Hood, et al.. (in press). The techniques for measur- ~ ing the level of organic metamorphism reflect the irreversible effects of tempera- ture and time - hence, of thermal history. Therefore, the reflectance data presented above can be readily tied into LOM on the coal rank scale, which for many years has been the standard for changes in organic matter during burial. COMPANY: LOC^T,ON: ,~/- '7'~ -- 7~.-' "~PYR'OLYSiS-FLUORESCENCE DA~' SHEET ; ! " co..T.,~ ~.-~Z~~ ~T~,T~= DATE: T ECHN:C:^N ~~~ ~ COMPANY: tOCAT, O.: PYi~OLYSlS-FLUORESCENCE DATA SHEET / NO': SAMPLE DEPTH LITHOLOGY /:Eh ._~'70 - PO .. TECHNICIAN GI , COMPANY: LOCATION: -,~. PYI~O LYSIS-FLUOR ESCENCE DA~ SHEET COUNTY: STATE SPL, SAMPLE DEPTH LITHOLOGY NO. y~ /.x/~6 -~ .0 ~ ~ ~1oo w~ >fcO >i~~,~., ~/": ~ : i ~ ,.,~-_~'?' ~z~-~ ,/ I ~ ..oi ~ ~.~ _ _ . r i' i I ,, ,,, ,,. ~ , "' .....  .. ,., ----i ~ I 't'?' I ~1 .i..l! .I .... :.:-i ¢-.'-q--i i ;:- :? ~."-~- I i I I I · -, (,: I I ,, . _. i I I I I i I I I i ' ~1 I ' I ] i I t.j I i i I i 09 ~ 'Z: {9 ! lr ~ 1_.....C._1%1! I ! I : I -~i ' 1-- 22. I '20. iq. - 1'7. i~. 4 - -. 4. 2. O. 6 I I ""] I I " t ' I i · I d d d d 6 ,, ,$ PEF?_ENT ! t t i I F t .! F ! F i ,4. - 3. -'1 0 "*N ' I i 1 "i I i T ..... I' PEE:=.___.ENT I I I I N STATE - AKA , I I (1'1 i ; I I i l l- 03 ~r r.i ~',i O. l .... o 6 I I I I I ' '1 i I d 6 d .!~j~J.., ,, l~ ,'-- O) lr 0 d d d d .-, 4 I PEF'~E;EI"4T L I I I I I ~ 2 I I i I i I i --I ~.i .4 d I L t ! F · [ · ,-4 S. 3. I 6 PER£ENT I I I r .] PEF;:EENT ; 1 ----1 d "1 F 2. .4. '1 i 6 I 'I I I 6 ~ EO T · PER'CEI:.IT '' I I i ] i I i I i O --, -6 6 d I i i' ' I I" 6 6 6 ' I '1 d 6 O -"' N ffJ 't ii) F'EF~:CEI,.'T 1 E,r~!,,.iPAl'.l"r - PAN 7. LS. 13. IR. 11. J · 3. 1 o D) T D c; 6 - d d 6 d I 1 I I I : I I 'I ' I d d 6 d d d I I f ; I i PEE:CENT . -- ',' I__i,~,~..., / I_,z,~Tlt'.:.iN- 3'i 7J".d 7E:'fl ,CJTATE - AL'.:5; '1. '0 ¸2. , ! . .0. PF-$?,.qJEI-.IT I ,L ' J t I ' f----- oar,,,,,--La lq,% i i...g 1 '~ - . F;O i0420 J V~'-I-,q'.'!'I'.]TT~ F'K-~I_ E E'T.^ ",!"_.F.- ' F-I T.'S-I-C:CT. ~.AM I . O. ~l. 8. 7. E~. S. 3. 2. 1. O. I ! I i'9 q' U~ 'iD ,'-. [O o PEF~£ENT STATE - ALF; I - - · · O '-' [',' ~') ,,1- :~l PEF~CEIqT VZTR'.T.N_TTE F'~F-I_EE.'.TAr,I['E.'_ . H'~l'~''~'-~'-,'r'r-'', .L:, , .:-~.._.m%,¢.,'~, ''~ i 1 L --0 COAL SPORE THERMAL VITRINITE. ..... - .... CARBON- ALTERATION REFLECTANCE RANK BTU %VM IZATION INDEX SUG6ATE 3 .STAPLIN (19G9, 1973)., (1959) X 10- GUTJAHR (19~6) SEE ALSO CORREIAC67)J ................. ' ' INTERN'AT. CASTA~o, 1 - N 0 N E ilDBK. OF THISPUBL. COAL ( Ro~x} (Y E L L 0 W ) ~E~O~,~., LIGN. 2-SLIGHT (BROWN- __ 8 YELLOW) ~ , · SuB_C --9 · BIT. B~10 . - , - '-11 - --2.5 C Z_. 12--(45)_ YELLOW 0.,5~- HIGH ---- 13 - '- -VOL. B- ---(4.0) _ BIT.A- - YELLOW _ - --15 --(35) TO DARK 1.0 1.0 - -- --_--- 30 BROWN 3-MODERATE -_ .-- MV Bli~ .Z=- 25 -3.5 (BROWN)-__. 1.5 1,S ~ 20 ~'~-~ _ - " - LV BIT. : ~'~'---~ - - · =_ L-' 15 ~'~- 3.7 "2.0 2.0 " SEMI- --10 -- -ANTH. - - 2.5~ ' _ _ BLACK -- + 4- STRONG .~ 2.5 -- - _ (BLACK) - -- - :3.0 ANTH --5 3.5--~-~- - 4.0' - , , , , 2 4 6 8 10 12 14 1 18 20 74- .k Aprll 28, 1970 R. L. HEACOCK El' AL 3,50~,,877 I"ROCESS FOR :,IEASURItIO TIlE LIVE CARSON CO:ITENT OF ORGANIC SAbOt'LES Filed Nov. 13. 1967 Sheets-Sheet 1 100 80 60 ~ ';0 2O / ~.L-! i ! I ! ! ! 04 0.6 !.0 ~.0 4.-.0 10T/,L O~Ct~IIICCARBON, FIG. I .- $0 10 100 200 ~00 600 EXTRACTABLE HEAVY HYDROCARGOI;S,PPH FIG. 4. IO00 20O INVENTORS: ROBERT L. HEACOCK ARCHIE HOOD BY: 'I'HEIR ATTORNEY April 28, 1970 u.u. HEACOCK Er^u 3,508,877 P[~OCESS FOR 14EASURI~:G I!~E LIVE CARl;ON CONTFNT OF ORGANIC SA...tLES ~"iled Nov. 1~. 1967 ~ Shoo,s-Sheet Z (l]]l ttl) ll/d]O INVENTORS: ROBERT L. ~HEACOCK ARCHIE IiOOD April 28, 1970 R.L. HEACOCK ET AL 3,508,877 ['R,~CESS FOR b'.CASURII;G TI!~Z LIVE Ct, F,[',O,'I CO:IYE:;T OF ORGAI~C SA:.~FLES Fi.l(d [~u'l. 15, 1967 3 [~hee~s-Shee~ ~ ~000 ~000 4000 I00 0 I00 [LUOP, Oi~ETET{ UNIIS FIG. 6 · 200 ' 2620 ]01'0 ~,~$0 3OO E 448S F4~G$ i INVENTORS: ROBERT L. HEACOCK ARCHIE HOOD 3,,5,08,877 Patented Apt'. 28, 1970 1 ' 2 leal. .'l. StlS,S77 .',Itch s:m~l.!O~, prcfcrably comprisi,::.: bit cltltin.,:x released l'll(ll'l"4'q; (~ll .Xl!' \~41 I;l\f; Till] l. IVl.'. Ct)\ I 1.x, i' (ii' Oi:(;.\Nl',: t,;.\.'Xl Pl.l.;S t.y drillilL,.: it l,!ur.tlity ot' well horcholc% arc m:.:slncd .~o I{.,ll,cll I . Ilv.lt'**tk. ! illlt-D,II. ('n!~L. :lntl ;\rchi¢ llnnd, ns to Ill;ti* [hc li'~c gal'bOll contents of Ibc subtcrrancart Ill,ti'dr,Il, It'x.. a--i::m,r', to $1u'il (.Iii Conilnlt~y, New 5 Ca/ill fOlllliltiOns. i i!c,I :',o,. 13. 1':,7. Ncr..N~,. 6.'12.466 Int. ('L (~{lll~ 21/2.1, 31/12, 35/24 U.S. Cl. 23--230 All:;TI:.kcr OF Till'; DISCI'.OSUItE A process for me;l~,tt~h~f: tile live carl,on content of an ort,.anic sample by Iw;tti:~,.. lit: .'..l:npl¢ It) l',yrolyzing ten't- pe;'i, ture so t!t:~t x';~:~ors are ,[yen o11. The vapors are con- 15 dcn.:cd, rite lluorc,cct:,zc lhc~cof i~ ~t:'a,.urcd and the live carbon co;ltcnt of the s:lmple nutt.:rial is d.:'lermincd by corrclatin.q, tim mca.'.ttrcd M,o;~.:,, cng v, ifi~ thc fluorescence from a matcri:ll o," kno:: n cat b~m content. 20 · BACKGROUND OF 'FllI". INVENTION FicM of' the inventkm ' Tl,ls invention relates to a proccs-s for measuring the .".25 live carbon conl...'nt of organic samples ay.d, more par- ticul:lrly, Ibc live carbon content of bit cuttings obtained in drilling a well ia suN. err;mcan carlh forln:ttions so as to map Ihe distlibt:tion of live organic Cal'bo:~ content the subterranean formations. 30 Description of the prior att Various geochemical methods Imve been suggested previously for determining tl~e 1.ocation o{ underground petrolcun) re,crveh's. Thc~e metho.ls are h)lendcd to de- tect the Fre~ence of pctrolcum co~lMitt~enls in surface or underground form:ti[oas in greater than normal quantity. St)ci~ anomalies are'taken :ts an indication of thc prox- imily of a petroleum reservoir or oliver concentration petroleum-type l~ydro-carbons, it ix thus possible, by de- 40 lcclir:g the presence of pclrolcum con~titucnll in earlh z;tmploa such as ~o{1 or rock sitnlplcs. loc:~tion and proximity of petroleum deposits by corre- lating the relative amounts tff ix'lroleum present in the earth >amFlc> with thc locations from x~ hi;h .!5 Ibc ~amp!cs were l:d;cn. It l:as been suggested previously that thc presence p,tro~eunl con~lituents in itn earth sample may t'e de- tected by extracting ory:tnic conqilttcnts from the earth sample nnd lhcn evah~:tting [ho lh~ore:,ccnce of the ex- 50 It':icl or a concentration thereof trader ultraviolet li3ht. certain [-clrolcI~:ll constituent% especially aromatics. ()ac such method i, d;'s:zribcd in U.S. l'atcnt No. 2.,151.883. llo~xevcr, sud~ prior art techniques are 55 rel:ttivcly elaborate a,d complex. SUMXlARY OF TIlE INVENTION . It is an object or /his im'cnthm to rapidly and cco- nomicalty detcrmh;e ll~c live ca,ben content of an organic ~amplc. Il i~ a f, rlher object or lhi~ invcnlMn to rapidly a,:d economically map Ibc di,t~ibulkm of live erg:role carbt,n t'onCcnlrallon in ~:tmlqe~. such ~ bit d~ill/a:: a wcll. rrom subl.'rrancaa carlh formations. 65 sample lo a sclcclcd py~olyzing lCml~cr;tlurc itt x~hicl~ vapo~ ~ :fie ~ivcn oil 'l'l,c~e vapors ;~rc condcflxed 'll~e live ca;l,on Conlc::t tff Iht s;,n,l~!e BR1EI: I)I!SCR. IPTION O1"' TIIE DRAWING FIGUI.[I!S I through 6 -are graphical presentations co,np;uiug the t'cst~lls obtained t,y thc process of the 10 vcnlJo~l with k,m~n tests. DESCRII'TION OF TIlE PREFERRED EMDODIMEN'F There are ll~rec types of carbon of organic matter. Total carbon im-hMcs all of the organic (i.e., noncar- boa:dc) carl~on ia a sample. 1.ire carbon is ~hat Fortion of the lo~al crabon which, on pyrolysis at 500~ C. in the l:tboratory or during future buriM lo grcaler depths and temperatures in the Subsurface. yields aFprcciablc qhantl- lies of hydrocarbons :md other volatile organic matter. Dead ca~ boa is thc remaining I'm lion of tolal carbon, i.e., that v. hich, on heating, yields essentially no hydrocarbon~ or other vokdile organic matter. In earth formations, mixture of both dead and live carbon commonly occur. It is mainly the linc carbon fine-grained n~ks with which we arc concerned in tke in~umt discloxure, since it represents the somce of the carboa of l~Vtrol~un~ molecules. After expOsure to labora- tory tcmpcratu}es of about 500~ C. or to subsurface" tcmp~ratm'cs of about 25fl° to 300' C., lite live carbon is destroyed theme:lily, and the remaining carbon is dead carbon. The organic live carbon conten~s of subterranean earth formations are determined by sampling bit cmlings lca~cd by drilling at known dcFths and location~ within th~ earth formalions. A sample of lh~ bit cutdngs t~rcferably healed in a small container, such as a glass le~t tube, hckt over the fi:mm of a heating device, such a Btm<eh burn:r, until the clot,cd end of tl~e lest lube rcachc~ a se!coted pyrolyring lemp:ratu;c and vapors are given off. This tcml~rature is api, roxim:dclY 500~ C. or the point when th: closed end t,f the test ~ube turns red (i.e., "red ho:d"}. Such a Icmpcr;dures insures lhe pyrol- ysis of subq:tntkdly all of the organic matter within a reiatively short Ireatm:nt dine. The amount of bit cutti~[::; placed in lhe lest l{~be for sampli~tg is relatively ~m:dl, as. for example, about lea small drill c~lllin..~s or apl~roxhnatcly onc4cnth of a gram. 'lhe t:'sl lube is held 2chorally horizomalty while being heated, with the clo~cd end over the he:dine dcxice. The open cad of ill: tribe rcm:tins cool and tbuq thc pyrolylic the lube. When the sample is cool, a sm:dl qu::ntity c[ so!vent is :tddcd to obtain :t nearly transp:~rcnt For cx:,mple. Ihrce mi!lililers of chlorolhcne i.; :tddcd t,~ ~hc one-tenth gr:~m sample, and thc solution obtained . traffsfcrred ~o a clean lest lube. Thc lest tube containing ll,c solution N th:nl, laced a convcnlionat fltmromctcr { for example, a Tu:ncr Model I I0 fluoromclcr, p~c[c~;ddy mod[lied l,y Ihe mldi:it,n of a 99% op:,q,w nct,lr:,l dcn,ity filter Io bring the of ll,e fluoromclcr within lhe ~angc typicat[y nccdcd for 0.1 gram samp!cs) for mcaxming lhe light intensity thc soh,tion. A~ discussed above. Iht sohdion must be nearly ir:ms- parent ia o:'dcr to t~],l;t[~l :~1 ncctlrale re:Ming. ~amples givim: a fire, re,ce,ce reading Freater lhan 20 on Ibc ~m~lilicd Turner lltk~omclc~', or havin~: a colt~rctl st}Infirm, mi,y, tm {'t~llbcl tlilt:llt)ll wiih gi~c l:~rl'cr meter rcadin::~ t*f Iluorc..ccnce i~r m~;t t, original ~:t~llplc [this i., believed 1o be due Io llrl,t py~oly,i'; p;t,duets flora ot,:anic rich rock~, v. hiI~ the anom:~hnh ll;..l,t ah,.OrlqiOn dccrc:~,.c~ whh dihttion). tai~w,t. '1 I:,' Ii:l.,l :c.:din~' f,~r the diluted samiqc is multi- plied by the dil~:tkm f.:cl~,r to ol,t;lin thc corrected fluo~ o.ccnce. 'lU~e al,;,roxim:,lc FO0' C. pyroly/ing tcmper:du,'c i~ conq,lcr,,bly ~ca~cr th.~, Ibc icmp<'raturc al which oil is forlucd from o{'C;,n;J In:dl<r in sc'dimenls in {he sub- 10 surface. '11~:: cflccts t,f s~u:h a hijh tcrnl~'rat~irc On Ifc organic ,;,a:l.zr ufa li,~c-~taincd s~diment may i'c l:dcd as fellows: Firq. part of thc organic matter is convcrtc,l to :L no:ix()JatHc, c;trbon.iciot~s I'e~iduc (i.e., dead cart'o:~). Second, sinmlt:meously, the other part of 15 tlie or'gu,it matter is convcrlt'd to vol:,til: hyd;ocarL'ons and rclut,'d compot)nds which :uc rnpklly d~stil]cd from l]~c rock. The highcr-bn~li~:g products are ccmdenscd on 1h¢ cool walls of the lo:t lube. 'l'i~i~d, the of molecules by size and type in the volatile pyrolysis 20 j}roduclg may dilTcr co;~>Llcrably from lhc tol:d trit',ut~on of molecules which would be released from lbo rook IiH.]cr n:ttural conditions of increasing dc?th of burial whhh~ Ibc caNh. 1 loxvevcr, althouffh Ih.: Froportion of volatile pyrc)lysis l'ro,!c, cls exh~billng flt)orcSccnce is probably sm'all, the fluorescence of thc volatile pyrolysis products is related Io tl,.a sum of Ca) the small amount of heavy hydrocarb~es in lbo rock L-cf ore pyiolysis ned Cb) tlm addhional oil' which could be geeeratcd in the rock under nat~ral conditiong of incrcash~g ten~perature. 30 The following discussion of tho figures of the drawing will briug out Ibis relationship more clearly. Samples used in developing a~d checking lhe method discussed above and thc int.ar~rctations following were taken from central Wyoming core holes drilled in 1963. 35 These sa~nplcs are alt Cretaceous rocks that ~ave not been cxFoscd 1o h;gh tcn:per:tturcs and are immature geochemically, as dctermin:d from the predominance of odd-c:srbon-nund~cred normal' paraffins, low navhthene ring ind.:x and low ratio of extractable hbdrocarbons 40 to total organic el[ri:on. F'IGURE I shoxvs tl~e relation- ship of extractable heavy hydrocarbons 1o tol:,l organic carbon contents in the Wyoming core holes. These rc- sul~s wcrc obtained by routine source rock analysis. The dead carbon contents of lhe Wyoming core hole 45 samples are in all ca~s close ~o I% wt. lie,ce lhe rela- tionship involving total organic carbon in I:IGURES I lhrougl~ 3 can ['e convcrteJ approximately to a basis o[ live carbon simply by considering live c:u'kon to be-l% wt. less lhan Ihe total organic carbon. 50 The correlation bctx'.'ccn total organic carbon conent and pyrolysN-fiuorcsccnce values is shown in FIGURES 2 and 3. I':IGURE 2 shows the relationship of pyrolysis- fiilorcsccncc values to total oruanic cart'on contenls in the W)o~uing cmo holes of FIGURE 1. FIGURI~ 3 is a sir:digraphic comp:u'i~on of the lo~al org.tnic carbon con- lents and pyrolv~N ]luore<cncc values in thc Wsoming core ho!cs. The right-hand portion of thc graph includes data for samples analyzed by thc tc~t luke pyrolys[s- fluorc~cc~wc process of thc invention: lhe left-hand FOr- 60 lion of the graph includeg data analyzed for total or- ganic catbon. The t)'l~; of fro:nations Iravcrscd 1,y the well borcholc arc indicated I,v the lollers to thc cx/rcm¢ right of ibc graph of I':IGURE 3. These formations are ns follows: 65 A~Steele shale B~Niobrara lhny shale C~Carlile shale D--Frontier formation E--hlowry ah:de 70 F--I.. 'i'lwrmopo!is shale G~Ctovcl ly roi matlon ]:I(.;1.JRI~ 4 shows a compari,on of ~¢ncc x'alt~cs Io cxtraclablc I~cavy hydlo4:ffl.ons in thc oOS, S77 \Vyomir~g core h,%~. ,.% in I:I(.;IJRI'~ 3, thc portioa of FI(iURI:. 5 inclmlcs data for $;tmplc:; :,n:,l>,'cd t,y lbo tc-.t tul-c plyrolyn;s-lluorc~ccncc procc,s of. the x'cution; the left-h.~ml 1'O1'[[O:10[ t}!.2 ?r.q'h tlcpiCl'; thc cortical Of cxtr.~ct,d.,Ic he:try hy,lroc;,rl'tmn. 'lite lyf'ch of f(.,r[~t:tt~ons-t~axcr>cd by Ill; well b,,rvhnle ;uc indi- caf:'d by thc lettcs~ to thc extreme r;,:},t t,f thc r~.,i'h of ]'}(.;UIU: 5 :tpd c,~r~eslN~ml to lilt lcttcr~ dcscttsscd :shove x~[~h rc.,yct to I:ICiURI~ 3. }:I()URE 6 i, a strati~r:~phic disti'ibulion of hole elf FI(iURILN I throt;~:h 5 x~i;h drill cull[;~,.:'/ froin a n,:arby well (al, proximately 10 mile, :,way). qhe right- h:tnd Forlion of tl:e gt;tph cor~cspotl,.Tn to the dr;Il tings; thc left-hand !v~rlion of tl;e ct, c hole s:tmplcn. '1 types of fOl'lII3lit~llS or,countered arc Ibte,! to Ibc cxlrc;nc right cf FIGUI(E 6 and s$mil:tr l,:~:crg corre,~ml I Ik,l.,kI: 3. 'D,i, nral,h tho..e li~tcd abo,'c whh rc,,.x'ct to .... ' ' sho'.vs that there ix a good correlation belWCell th: core hole samples and th: drill cutth~gs flora il~c nearby borcho!c. FIGURE 6 also ~hows llsnt pyroly~i>-Ihmrcs- cence data for good cuttings can l,e used intcrchangc;:b~y x~i;h tl~: rarely :tvail.tbl: data for cores il; thc cvalu.ttion of the hydrocarbon potential of a soL, ice formation. Ia sum:u:try, the test tube pyrolysis fluorescence method of our inventim~ glvcs good cerr~l:dioas wi:h more el.t,, ..... c chemDM JuclhoJs ft)r dc:crmin{ng concenlra- lions of live cr<:tnic, c:tr~on nnd cxt ~.ec..t.h~-.c heavy hyth'o- carbons in a subtcrrcan formation. It provides one way Of co:lduclhlg a sampling and znap;,~ng procedure Ih.ti utilizes we!Is tl~:tt may [,c drilled for Durposcs o:hcr than map?lng procedure. Thc sarnplh~g anJ mapping proce- dure comprises: sampling thc bit cullings from corrclala- t,le depti~s in a l:htr:dity of wcllx: py~olyzing s::tni-lcs of the cult{acs at a commo~l selected tcmFcratm'c; uring a common selected ~ropcrty of each pyro!yz:tte that is in,!ic:ttive of thc live orga~[c carbon content of thc bit cull[rg material: and indic:~tine the x'ariaticn v. hh thc areal location of lhe live organic cat'boa contcl~t earth forma!io:xs fcotn which bit cutth:gs x~cre Thc .-- p)to.5.j;.,. apd meast;ricg proc~dttres can be of any of a v. ide x'aric:y of pro:edurcs, such as c!cctric pyrolysis, flame ioniznlion delcctor analysis, m::tric analysis or the like, th:tl !~rox'[dc adequate rai~M[ty' and economy wi;h adcqunle accm';tcy. ' q'he mclhod of our involution has lhe advant:tgcs excellent reproducibility of rcqult% Speed and simplicity of oTeration, small size rcqttiremcn~, and low analytical cosl. On: aF, i,~ic:~tion of ot,r invcnllon wot}k[ be a process of classifyi,~g l-ht,mhtm~s s]l;t[e wh,an n:3ny samlqCq muat [~ eXalll[tl,?d a::d :;CI'dClICt[ for ihe con~:rt:clion of rork" map~. Thus. our method is cq,ccially uqcful in idcr:tifying and cvah~:tt/ng thc (Itm!hy of both oil ,' ' and l~lroleum sOUrCe rocks. Comp:~r:'tb!~ melhods may yic[d somev.'hnt more accurate rcquhs but goner:ally ~c- quire much l:.ger samples and much longer analytical lime. For examl,D, the Fischcc As~:,y mctho:t requhes (.0-gram sampl:s and {n cxccss of two hours an;tty~ical time. The p)roly~N-liuorcscence analvd~ of our invert- lion requires ordy 0.1 gr:tms of sample and three to m;nulcs ~r analysis. Ahhoul:h our invention h:m b6en described with rela- I~o;! lo live organic carbon in subtcrr;mcan earth forma- l[oas, substantially any material having a pyrolyzabIe of ~at;[c cart, oh content can l,e analyzed by our method, as, for cxnmpla, rc~[ns, paint% elc. In respect tt) mapping the t{istriln:l[on of livc orl2;tnic carl,on content% lhc tl:d;t obt;t;ncd fzo;n a lqurality of wcll~ in :t given Ioc:dlon can bc u,cd to indi- cate both Ibc vcrt[c;tl ;t~l,[ areal di~trlbut[on of live x~hldn the location. O[ courx-, other methods for heating a snmp[e may occur lo one sk/llcd in the ntt. I:or ex:tropic. conl:dncr~ and other t~l~S of healing dcvlcc~ m.~y Il'Ct]. llm~cx'cr, our method gix'cs excellent rc~ttlis x~ilh 3,a08,877 $ for f~tl~cr mea,.ttrcn~cat% if dc>i~cd. 1. A pm;'c,~ fo;' mc.~,n~int: Thc carl.on ¢onlcnt of an 5 t~rc unfit I,)rob't~c vaFors arc gixcn off by said co,~dcn,ing thc pS'~ol~t;c vapors; 10 mc;s,u~in:: thc ll;:o:c,;'cn~e dmt is cxhibi;cd by thc dc:crmlnin3 tl~: c.ir',,on con:cat of sam s;tmpl: by cor- ~'elaling the n:~a,u:cd lluorc~?cncc with lhtorcsccut vMucs of m:ttcri:ds whose or~;tnic carbon content is known. 2. The process of ok, ha I inch~ding, p~ior Io heating said sample, thc slop of: disI'udng approximatcl7 one.tenth of a gram of said sample in thc c!o~cd end of :~tl open ended test tube. 3. 'I'h~ process of el;tim 2 whcrcia thc .step of heating said s;tmldC includes holdin3 said test lube subs::tnti;tliy htw{;',.mt:tliy over thc [i.~;ne of a hc:tting device, the closet{ end of said list tube containing said sa;apSe being directly in contact with said flame. - 25 4. 'l'l~a pro:ess of cl:tistl 3 including, after condensing thc vapt~rs, Ihe step, of: co,fling saki adding: ;t solvent to s:l[d sample until said sample is substantially t]an,pareut; and gO Irausrcrring sakl coo!cd s:tmple to a second test tube. 5. 'l'he process o[ claim 4 ;vhcrsin the step o[ rotator- lng th.2 fluorescence includes the step o~ placing tho sec- ond lest tube containing the cooled sample in a light- intensity measuring device. 6. '! he pt'o:ess of ;n:q?ing tlm distribution of organic carbon contcn~ o[ bit cullings released in drilling a well in a subterrang:tn t'armntkm comprising Ihe s:eps of: removing :t sample of s;dd bit cutlin~ffs at a known depth and locatioa xvithia smd subterranean formation; 40 he:ding said s:tmp~e to a selected pyrolyzing tempera- lure unfit pyrolytic vapors are given off by said sample; . conden~h~g the pyrolytic a'almrs; meaquring the liuorcsccnce' that is exhibited by the con- 45 dcnsed vapt~rx of :t unit of said sample; dctern~iuin&: the c:ukon content of s:tid s:tmp]e by cor- relating the measurvd fluorescence with l!uorcs:ent values of nlatcrhds whose organic carbon content is known; a nd corbel:ding lhe rcl:ttionship between the known depth mxd location of saki sample wilh the determined citr- boa comcnt of said s:~mple, llltls dclcrmining both Ibc dcpll~ ;ti ;~hich live organic mailer disapl~ars and the depth at which source rocks for liquid hsdro- C;tl'l.'C~llq Citll be found isl a t:ivcn area. 7. 'l'ha pro:c,s of claitn 6 iucltkti?g tl:e ~tcps of: dOle{'lllillill~] l!lC carl,un ctmtcnt of ;t plarality ¢~f ,am.- depths ami locations xt-ithin =aid subterranean for- rccor,liug the c:trbOIl con,eat of $:t[d s:tmplcx wiflt rela- man th: distributiua of all of said s:t~plc~ xvithi~l said su[':c~ ram'att form:dion. 8. A pro.:e,s for mcasuri:~:; the carbon cot:tent of relatively 5re:ti{ portion of :tn ori?anic x:lmple, i,t, lmling a lir>t test tubg h;tving an open cml :tad a closed cml, 15 hcatin.j device having a Il:tree to hsat said l',~ilitm. ~ccoad test It:l,c baviug an opeu cml and a closgd end. and a ligl~t-intcnsity measuring device, said process including -thc steps of: dist-osing said pottlon in the clo:;cd cad of sidd first les: lube; holding said first test tube sul~stantially horiTonIally with Ibc closed end of saki first test tube bciui: ali- reedy 'itt contact ;vith the llamo of saki heating vice; heating said portion to :t selcclcd p)rolyzing tempera- tt,rc un~il pyrolytic vaFors are given olr by salt tion; condcnsh~g thc pyrolylic vapors on the walls of smd first test tube; cculing said ~rtion within saki first test tube; adJing a solvent to s:dd coo!cJ Fortion until saki is a subilantially transparent solution; transferring s:dd solution lo thc closed end of the sec- ..... ond text tube; measuring the lluorescence lhat is exhibited by thc con- dcnsed vapors oF a unit of s:~;d portion by placing said second lc;t tube itt said light-intensity ing device; and determining th: carbon co:dent of ~qid sample by cor- rclatinp., thc measured fluorescence witl~ lmm', ..... ~>~cnt values o[ materials whose organic c2rt, on content is knowm References Ci{cd . ' UNI'FED STATES PATENTS ~ ~S3.954 12/1939 l-lorvitz. 2.451,$33 10/1948 Squh'cs. 3,322,504 5/1967 Capuano. 60 MOI',.RI50. V,"O[.iC,' lhhnary Examiner ROI-:F.I~.T M. RF:I-'.SI:.. Assist:t:~t Examiner U.S. Cl. X.R. RM 100 (4 71) SHELL OIL COMPANY SOURCE ROCK. LOG ~'~=~ COMPANY T. R. ./ I I -- -- -- I i -D- -I-' I SURVEY , BLK. ELEV. COMM. COMP. E LEC. LOG T.D. RADIOACTIVE MICROLOG LATEROLOG PRODUCTION ' ' , , REMARKS .  SAMPLED BY: ~ DATE DATE ~ _~/__7~ : ~ PLOTTED BY: , ~ DATE ~- ~ > TOTAL FLUORESCENT UNITS O DEPTH O SCALE ~ AND O o o ~ o ~ ~o o . ~ ~ ~ ~ o REMARKS :..1 .... , ~ i f- -- - ' ~1 ~ ~ ' { /', ~,: .. ~. - ~ ....... 1-~.~ ,1 4-- 1~ ;, ., ~ ~ . ~' , t ,~ i ......... ~ ..... ~I ', - ~. , i , , Iii~ i ---~- ' ~ . ! J i ! [.;~;--'t ..... lil~,' ............ ,, ' ...... i:,:~ , .......1!~ i- tl., -- 1,!~,~ .... I-! ~ ............ z o _J o rr 0 r~ rr f~ _ [] .... ',~1 I -" . .I..LE ......... l II~ ~ -'~'.I - i~ ..... ......... ~ 'Il '' I j tl ......... !i , ,1', ,. ,.. ~ ~ i iI, Iii ":,. -' · i' . l. li~li[i L_ .,. , ,, --, i ,; j ~.1 , 1,, , I [i t:' i~:::' ................. :~:,~ .... ,.~t'.,--t.-j-~j~:.~ ,...:~ . , ~,~:~:;~ , . ,. '-~~ ..... · ~ _ . .... . _ i;; ._. B..I l :ii .... I_.!.I].',L:;:--¢.l_..-L ~ - ", ,~ ...... · - '- - --r'li-'-J-' I J; ' J" "J ~' '' ,/~ J,, ....... , ..... , ,,, ....... -. ~" t ~' "':_ ._ . i.~ ...... [I - ' I ' i:, ~ ~';~ { L[~[i.l.'J . t/~ ., , .... ~ ~ B~ ~ ,. ~.,.. .... ~,] --~-, l,,, .... .... . ~!,! l lli,. ~,~J ~ ~;~' ~ ~ , ,~:':, i. ::." ,,i:. ~r 0 0 0 0 0 0 0 o