Department of Commerce, Community, and Economic Development
Alaska Oil and Gas Conservation
Commission
HOME
EVENTS
DATA
Data List
Drilling
Production
Orders
Data Miner
Document Search
REPORTS
Reports and Charts
Pool Statistics
FORMS
LINKS
Links
Test Notification
Data Requests
Regulations
Industry Guidance Bulletins
How to Apply
ABOUT US
History
Staff
HELP
Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
GMC Data Report No. 016
GEOCHEMICAL ANALYSIS PROCEDURES Source Rock Richness Study To evaluate the organic richness of the ditch samples, we determined both their organic carbon (Corg or non-carbonate carbon, NCC), and the effective carbon (Ceff) contents. Organic carbon, or acid-insoluble carbon, represents the total amount of organic matter in the rock, and it is determined by measuring the total amount of carbon dioxide evolved during combustion of an acid-treated sample. On the other hand, effective carbon reflects the fraction of organic carbon which is thermally convertible to petroleum. As estimates of effective carbon, we used two laboratory pyrolysis procedures. One method, pyrolysis-fluorescence (PF) is a rapid means of evaluating the petroleum generating potential, by measuring (in arbitrary PF units) the amount of fluorescing bitumen generated on heating. PF values in rocks can range from zero to several thousand units. For additional data, refer to Heacock and Hood (1970). The second method, pyrolysis-FID (P-FID) provides a measure of the amount of organic matter which can be convertedthermally to hydrocarbons. A small amount of sample (less than 200 milligrams) is heated in a flowing stream of pure nitrogen at temperatures increasing~from room temperature to 750°C at a rate of 25°C per minute. The volatile organic compounds are distilled at temperatures less than about 300°C..,~'A~ higher temperatures nonvolatile organic matter is pyrolyzed .~for fOrm volatile hydrocarbons. The distillation (D) and pyrolysis [P) prOducts are carried (by nitrogen) to a hydrogen flame ionization.detector (FID). The FID signal can be converted to percent hydrocarbons or percent carbon by calibration with a petroleum wax. For further~data on the method and instrumentation see Eggertsen and Stross (1972). Thermal History Some of the methods used to determine the burial metamorphic history are summarized in the attached table taken from a publication by Hood and Castano. These methods are related through the use of the LOM (Level of Organic Metamorphism) scale reported by Hood et al in the AAPG Bulletin. The techniques for measuring the level of organic metamorphism reflect the irreversible effects of temperature and time, hence, of thermal history. Therefore, the reflectance data can be tied reaidly into the LOM or coal rank scales. Vitrinite Reflectance Study A number of ditch samples were prepared for vitrinite reflectance study. For the shale samples, the vitrinite was concentrated by non-oxidative acid solution of the inorganic matrix. Standard A.S.T.M. procedures are followed for polishing and examining the specimens. For coals, the samples were prepared with acid maceration. RECEIVE Alaska Oil & 6as ~s, Com,~SSMr~ A~ch~age The results of the study are summarized on the individual histograms and on the depth-reflectance plot. On the histograms, each vitrinite reflectance reading is shown to the nearest 0.01% reflectance in oil (%Ro), and the values are summed up for each 0.1% Ro group. In the tables, the (arithmetic) mean Ro is given with the limits of uncertainty calculated for 95% confidence limits. All of the measurements are random Ro readings. Visual Kero~en Analysis (VKA) Visual kerogen analysis (an abbreviated form ofmaceral analysis) is run in conjunction with the vitrinite reflectance study. VKA consists of estimating the percentage of the major kinds of organic matter that are present in a sample. The percentages refer only to the relative proportions of the several kerogen types, and do not carry any implications as to organic richness. Visual kerogen analysis is especially valuable in relating optical methods of describing organic matter to organic geochemical analyses. VKA is also useful in identifying solid hydrocarbons, and high LOM "burned-out" source rocks. And, as lipid richmacerals can be identified readily up to LOM 11.5 or so, optical analysis can be used as a supplement to chemical typing methods. VKAaffords ameans of classifying organic rich rocks, and should enable us to map particular source rock facies. Five major subdivisions are used; they are: Amorphous. Many palynologists prefer to call amorphous kerogen structureless organic matter (SOM). Amorphous kerogen is lipid-rich, and it is the dominant component of most oil source rocks. Liptinite. In this category we have included all of the structured, lipid-richmacerals. The main ones are: exinite (spores and pollen), algae, plant cuticles, and resins. At LOM's of 11.5-12 liptinite loses its fluorescence, and attains a reflectance similar to that of vitrinite. As a result, liptinite cannot be distinguished from vitrinite at LOM's above 11.5-12. Bitumens. Often called solid hydrocarbons. At low LOM's bitumens fluoresce and have reflectivities lower than that of vitrinite. At LOM's of about 11, the solid hydrocarbons lose their fluorescence and attain a reflectance similar to that of vitrinite. At high LOM's, morphology and the typical grainy texture'help the identification. Vitrinite. We have also used the term humic (reactive) for the vitrinite group, as vitrinite is the principal component of reactive humic matter. Vitrinite can be subdivided into sub-macerals such as ulminite, corpohumite, telinite, etc., but these refinements are not normally of importance to us. Inertinite. In this category are included all of the macerals which are essentially inert or non-reactive. The inert category includes fusinite, semi-fusinite, altered vitrinite, reworked vitrinite, pseudo-vitrinite, sclerotinite and micrinite. -2- ]O0 AR'I~ICLE VII. HOOD and CASTA~IO COAL i~RINCIPAL STAGES OF LOM BTu PETROLEUM GENERATION RANK xlO=3 %VM ~/A$.SOYEViCH[iAi..i19701 MAi'Ui~i,i,~, 2- LIGN, - SUB_C 9 EARLY IMMATURE 6- BIT. .B-]0 METHANE - 11 - - :._14s) ,. 8-- .C -- 12 _ HIGH - 13 - -VOL B- ~OI BIT. : 14 _. OIL ZONE OF - IO- A _Z___13 5) INITIAL MATURITY __ . --15. ---=- 30 JOIL GENERATION) ~2 ~AV B~T. ~25 ,- ILV BIT. ~- 20 coNDENSATE MATURE - ~--_15 a WET GAS & 14~. : -POST-MATURE SEMI- , --10 HIGH- -;ANTH TEMPERATURE 16- METHANE -- /~NTH. --5 18- - 2D, , .... Figure VII-12. Principal organic-metamorphic stag~ of petroleum generation (Hood et al., in press). Depth or Sample No. 600-720 990-1050 1980-2160 1980-2160 4480-4530 4860-4890 4860-4890 6960-4980 5320-5340 5580-5600 5930-5980 6470-6510 6470-6510 Imb No. V- 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 REFLECTANCE ANALYSIS Sample Type m~ m Lithology Formation~ ABe o~ ~ Ditch Stepovak, V Oligocene-Eocene " Sink Tolstoi, Eocene Frac t ion " Float , Fr ac t ion Ditch " " ,Sink Fraction " Float , Fract ion " Float , Fr ac t ion " Sink , Fract ion " Float , Frac t ion V V V V V V V Mean + 95% Conf. Lmts. 0.46 _+ 0.04 0.45 _~ 0.03 0.78 -~ 0.03 2.03 + 0.16 0.83 Z 0.02 2.28 ~_ 0.22 1.05 Z 0.04 I. 21 + O.O4 1.32 -~ 0.03 1.50 + 0.04 1.33 + 0.03 1.39 + 0.04 1.48 _+ 0.04 2.31 _+ 0.11 1.60 _+ 0.04 1.64 Z 0.04 0 0 LOM B VISUAL KEROGEN ANALYSIS 6.8-8.0 95 2 6.8-7.7 9.6-9.9 ND 9.9-10.1 ND 10.8-11.2 11.4-11.6 11.8-11.9 12.1-12.3 11.8-11.9 11.9-12.1 12.1-12.3 ND 12.4-12.6 12.4-12.7 96 39 25 10 <1 2 55 2O 2 40 56 25 75 88 97 98 99 100 74 80 99 I RENARKS: <1 2 2 2 <1 1 <1 <1 ~o~ ! REFLECTANCE ANALYSIS Depth or Imb No. Sample Type ~ Mean + 95Z Sample No. V- Litholo~r . Forsation.~ ABe o~ ~ Conf.-laats. 6900-6940 30050 Ditch, Sink Tolstoi, Eocene V 1.78 _+ 0.05 Fraction 6900-6940 30051 " , Float " V 1.83 ~ 0.04 Fraction 7310-7330 30052 " " Chignik, V 2.10 ~ 0.05 U. Cretaceous 7710-7720 30053 " " " V 2.02_ + 0.06 8290-8300 30054 " , Picked coal " V 2.44 ~ 0.06 8360-8370 30055 ", Float " V 2.43 ~ 0.06 Fracti~ 8900-8950 30056 ", Picked Herendeen, V 2.40 ~ 0.06 Coal L. Cretaceous 9360-9420 30057 ", Sink ", V 2.-27 ~ 0.04 Fraction ' 9360-9420 30058 ", Float Staniokovich, V 2.60_ + 0.07 Fraction Naknek, Jurassic 9680-9720 30059 ", Sink " V 2.35_ + 0.04 Fraction 9680-9720 30060 ", Float " V 2.45_ + 0.06 Fraction 10000-10050 30061 ", Sink " V 2.26 ~ 0.04 Fraction ~ VISUAL KEROGEN ANALYSIS O ~ ~-' t'~ O c~ Kerogen ~ ~ m ~ o LOH B ~ ~ KI A L VI V I ~S: 12.8-13.2 ~0 30 <1 13.1-13.4 99 <1 14.2-16.7 99 < 1 13.8-14.3 99 <1 15.8-16.3 99 <I 15.7-16.3 99 < I 15.6-16.2 99 ,1 15.1-15.5 45 55 <1 15.5-16.2 99 <1 15.4-15.8 45 55 <1 15.8-16.4 15.0-15.4 35 65 99 <1 Depth or Sample No. 10000-10050 10500-10550 10500-10550 11000-11050 11000-11050 11320-11370 11320-11370 Lab No. V- 30062 30063 30064 30065 30066 30067 30068 REFLECTANCE ANALYSIS Sm-pie Type . Litholog~ Formatlon~ Age ~ ~ O ~-~ Ditch, Float Staniokovich- V Fraction Naknek, Jurassic O ~- Kerogen Mean + 95Z Conf. Lmts. LOM B KA KH ....... 2.44 __+ 0.05 15.8-16.3 VISUAL KEROGEN ANALYSIS " Sink , Fract ion " V 2.20 ~ 0.06 14.6-15.2 35 " Float , Fraction " V 2.30 _+ 0.04 15.2-15.6 " Sink , Fraction " V 2.14 __+ 0.07 14.3-14.9 50 ", Float Fraction ", Sink Fraction V 2.42 ~ 0.06 15.7-16.3 V 2.17 __+ 0.10 14.3-15.3 90 " Float , Fraction " V 2.14 ~ 0.07 ND · .. · Liptinite attains a reflectance similar to that of vitrinite at around LOM 11.5-12 and can no longer be distinguished from vitrinite. Visual kerogen analysis refers to the relative amounts of each type of kerogen to the total kerogen. It does not indicate quantitatively the amount of kerogen in the sample. b~ere two or more values are presented, the A mean is preferred and the X group refers to the entire spread of vitrinite vaIues seen in the sample. 100 65 100 5O 100 10 100 I REI~.RKS: <1 Four different types of sample preparation were analysed for this study. They include: Float fraction - light material (predominantly coal) separated from the bulk cuttings by heavy liquid separation ( ~ <2.0). Sink fraction - heavy material (shales, etc.) which was separated from the bulk cuttings by heavy liquid separation ( ~ >2.0) and acid macerated to obtain a kerogen concentrate. Ditch - a bulk cuttings sample, acid macerated. Picked coal - hand picked to obtain the in situ material. The samples at 1980-2160 and 5930-5980 contained coked vitrinite. This implies that they have been altered (naturally coked) by a thermal anomaly, such as an igneous intrusion. Furthermore, the reflectance of the sample at 1980-2160 is anomalously high, relative to the overall reflectance-depth trend. There is a significant change in the reflectance-depth gradient, changing from a rather high gradient above ~8250' (Tertiary and Upper Cretaceous) to virtually no gradient below ~ 8250' (Lower Cretaceous and Jurassic). JRC/AKK/PRJ:pv Attachments CC: J. R. Casta~o (w/attachments) Well File (w/attachments) Regional Geochemistry File (w/attachments) P. Herr (w/attachments) COUNTY STATE/PROV Alaska COUNTRY USA C~MPANY/WELL Phillips Big River No. A-1 SEC. 15 TWS. 49S RGE. 68W OTHER: BASIN: ALEUTIAN D = Ditch HLS = Heavy Liquid Seperation Coal is float fraction of HLS Rock is sink fraction of HLS HCL - HF = sample treated with acid to obtain an organic concentrate API · Heavy Picked Pellet NO. 50-251-20001-00 liquid has specific gravity of 2.0 coal - coal physically concentrated by hand = coal was crushed to <250 micrometer SAMPLE VR NO. DEPTH TYPE HCL 30037 600-720 30038 990-1050 30039 1980-2160 30040 1980-2160 30041 4480-4530 30042 4860-4890 30043 4860-4890 30044 4960-4980 30045 5320-5340 30046 5580-5600 30047 5930-5980 30048 6470-6510 30049 6470-6510 30050 6900-6940 30051 6900-6940 30052 7310-7330 30053 7710-7720 30054 8290-8300 30055 8360-8370 30056 8900-8950 30057 9360-9420 30058 9360-9420 30059 9680-9720 30060 9680-9720 30061 10000-10050 30062 10000-]0050 30063 10500-10550 30064 10500-10550 30065 11000-11050 30066 11000-11050 30067 11320-11370 30068 11320-11370 D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D HF X X X X X PELLET 'REMARKS 'X X X X X X X X X X X X Rock Rock HLS Rock HLS Goal Rock HLS Rock HLS Coal HLS Coal HLS Coal HLS Coal HLS Coal HLS Rock HLS Coal HLS Rock HLS Coal HLS Coal HLS Coal pick'ed coal HLS Coal picked coal HLS Rock HLS Coal HLS Rock HLS Coal HLS Rock HLS Coal HLS Rock HLS Coal HLS Rock HLS ~ Coal HLS Rock HLS Coal RECEIVED J U L 2 8 i982 Alaska Oil & Gas Cons. Commission Anchorage i VOgOOg?OOl. Pt.~¥ '~' VZTRINITE ~,IE& L DEVEL ~". lt'~ A'C ?AI~,~ iq. I~ T .......... [ i[i · i [ · ..%. .. . p:~.. , aL. 20. ,Lg. ,I.7. ,L6. ,I.E. ,I. 4. ,tg. ,[~. ,ti.. ,tO. 0.0 0.~ 0.4 0.6 0,~ PHZLLZP$ PETR~LEUH C~. PEROENT REFLEOT~NOE B~ RIVER AKA LOCATZON L~ 49 ~ 68 W 7 TOP 00600,00 BOT 00720,00 FT' N PLOT TYPE = V[TR[N[TE FU~:N[TE N H~X H[N RANG HEAN CONF 8TDV LOU REfeREED 28 0,67 0,30 0,37 0,46 ~0.037 0,09 7.40 8AP~OVITRIN t.4 OTHER MAOERAL~ 1.78 t.78 O,B4 0,84 0.16 0,~ tAKOTteSa¥OtS YZT&L YERSI:ON t, tl. ~' " vosoogeoot Pi.O? ,Lei. ,L7. ,id:. ,L$. LO. LL. · · · 0,0 0,~ 0.4 0.6 0,8 L.O X.2 X,4 X,6 L.B 2,0 PHXLLXP8 PETROLEUM O0, PEROENT REFLEOTANOE BXD R[¥ER A-l- OTHER AKA !.OCAT[ON [~ 49 8 68 W 7 TOP 00990,00 BOT 0~0~0,00 FT ' N H~N MAX PLOT TYPE = V~TR[N[TE BCLEEOTZNZTE N MAX M[N RAN~ HEAN CONF 8TDV LOt1 EX 0,70 0.88 0,4~ 0,45 ~0,0~7 0,09 7,34 XAKO7t2!82VOt6 ¥~:TAL VERBJ~t~N 1_ , t t ¥0B00~900[ 0,0 0.2 0,4 PHILLIPS PETROLEUM BE~ RIVER AKA LOOATEON [5 49 8 68 W 7 PLOT TYPE'= N MAX MtN RANG 50 0,~ 0,54 0,42 O,6 TOP VITRINITE ~AN CONF 0,7~ ~0,030 t ,0 t ,2 t ,4 PERCENT REFLEOTANCE BOT 02[GO,O0 FT' N 15~FED V~TR[N 50 8TDV LOt1 O,tO 9,7¢ OTHER HAOERALB M~N MAX 1,27 4.49 .., , · }:. 1 .B 19. t~. i7. tS. 14. .ia. ,iL. 10. tAKO7t282VO[7 VZ'TkL VERB£ON VO~IOO~$OOL · · PCe?-l'11~ · I~KED ¥~TRT., ,~'IEZ.'L DEVELBPf'fENT'".'RE,~'LEC?,4~ ~oo L,4 L.8 2,~ 2,6 ~,o PHILLIPS PETROLEUM b'~. PERCENT REFLECTANCE B[~ RIVER AKA I.OCAT[ON L5 49 8 68 W 7 TOP 01980,00 BOT O~[GO.O0 FT'' PLOT TYPE = ~[ED V[T~[N V[TRZNZTE 50 4.4~ [,~7 3.[6 2,03 D,4 5,8 4 , ::::' 4,6 5,0 $,4 $,B OTHER H~CERAL~ HZN MAX 0,54 0,96 22. 2t. 20. 19. ,t~. 17. ' 16. 15. 14. ,t~. tO. ?. ¢ ~ . 0 ~ .. ¥0~)040002 PLOT ~*'e* VZTRZHZTE ,~IEI:.L' DEYEL I}Plg'EHT".I~EI:'LEC?At~E PL B? .' tD.l~, . ~t,~tnoootoo m -. 15. ,t4. its. t~. · · · · · O. 0.0 0.8 0.4 0.6 PHZLL£P8 PETI~LEUN C~, PEROENT EEFLE~TAN~E B~ R~VER A-1 OTHER NA~ERAL8 ~Kk LOCAT£ON LE 49 B 68 W 7 TOP 01980,00 B~T 02t60,00 FT' N MZN MAX PLOT TYPE = VZTR~NITE 15'~KED V~TRZN ~0 1.27 E.~4 N MAX M[N RANG MEAH C:~NF 8TD¥ L~H BO t.O~ 0,70 0,~2 0,8~ ~0.022 0,07 tO.O0 ,o LAKOTt28::)YOOL ¥ZTAL YERS£ON 1, tt * ' .,, t i i iiii i ii ~- · ~ 0 £.4 L,8 2,~ 2,6 3.0 PHILLIPS PET~LEUM CO, PERCENT REFLECTANCE BIG RIVER A-[ AKA LOCATION [5 49 ~ 68 ~ 7 TOP 0[980,00 BOT 02t60,00 FT' PLOT TYPE = CORED VITEIN VITR[NITE N MAX MIN EANG MEAN CONF ~TOV 5.~4 1.27 4,07 2,~8 ~O,~t~ 0.73 ~.4 ~,8 4,2 4.6 ~.0 OTHER MACERALB MIN MAX 0,70 t.02 $.4 $ ,8 , 2L. ,~. 15o ,t4. ,t2. ,Lt. 0 ./ tAKOTt282¥OOt VZT~L YERg£~N t.tt ¥O~O04tOOL PLOT ~ i YZTRINZTE i iii Ill I~'- I I . ~fE~L DEVEL BI~IENT",'RE;'LEC?A~ ;~."-- Lo ,L~- , 0,0 O,a 0,4 0,6 PHILLZP~ PETROLEUH I~. PERCENT REFLECTANCE BIG RIVER A-I AKA LOCATION [5 49 8 68 W 7 TOP 04480.00 BOT 04~0.00 FT' N PLOT TYPE = V[TE[N[TE OXIDIZED N MAX M[N RANG MEAN C~NF 8TDV 5~ [,~9 0.69 0,70 I,OS ~0.0~9 O,t~ tt,O0 t.4 OTHER MACER~L8 MEN MAX ,t · ~MBO71282VO09 VITAL VERSION 1,11 ~ 1,9. ,rT. tS. tO. · · 0,0 0,2 0,4 0,6 0,8 t,O PHXLLZP8 PETt~I~LEUM ~, PERCENT REFLEOTANCE AK~ LOCATION tS 49 S 68 W 7 TOP 04~60,00 BOT 048P0,00 FT.' PLOT TYPE = ¥[TR[N[TE N MAX MIN RANG MEAN C~NF 8TDV LGM 7t L,57 0,80 0,77 i,21 ~0,038 0,16 tt,~2 V09004900~ PL~,T ~ · YXTRXNI:TE S/.IELL DEVELIV~PIEN't',*REFLECTAIV~.E Pl. DT ? gD.W. *SO~x~x~ ~ : .. ,1 ,I ,! t: / . , :, . : ..... : ; : ... :. : · ; : . , . - ,,. : , = ..~ ~ 0,0 0,2 ~ 0,4 0,~ 0,8 ~,0 ~,~ ~.4 ~,~ ~,~ 2,0 PH~LL~P~ PET~LEUH ~, PEROENT REFLEOTAN~E B~O R:'/ER ' ~-'t OTHER H~ERAL8 AKA I.~OAT~ON [B 49 8 68 W 7 TOP 04860,00 BOT 04890.00 FT PL~T TYPE = VITR[N~TE FU~N[TE N MAX M[N RANG MEAH CONF 8TDV 50 [,60 t,04 0.46 1.32 ~0.027 0,09 .~. ,re. LT. t6. tS- t4. L~. .t~. ', ~. ,Lt. ,tO. · · · U~ · · · LAKOTt282¥O02 vo~oo44ooa PLe? TT~'U-- VZ?RZNZ~E ~I:L DE¥~LDPlgENT".REFL~CTANCE PI. BT ,. ~D.W, ifR~s~C*O00~oO m) : ,L7. L$. /.4. .LO. · · 0,0 0,~ 0,4 0,6 PH£LLZP8 PETROLEUM ~, PEROENT REFLEOTANOE B£O R~¥ER AKA LOCkT[ON LS 49 8 68 W 7 TOP 04960,00 B~T 04960,00 FT" PLeT TYPE = N MAX MZN RANO MEAN CONF 8TDV LOH 62 t.9S t.09 0,86 t,50 ~0,0~ O,t4 ~,osoo4soot ~L~? ..TY~ '~ ¥;T~;.ITE .~I~LL D~V~L BPI~NT"'R;FL;CT'A~,,~ Pl.I)T '. ]~O.li). :l;OeSt~too I~ 0,0 0,~ O~ 0.6 0,8 t,O t.~ t.4 t.6 1,8 ~,0 PHILLIPS PETROLEUM CO, PERCENT REFLECTANCE BID RIVER AKA LOCAT£ON tS 49 9 68 W 7 TOP 05~20,00 BOT 05540.00 FT' PLOT TYPE = VITR[N[TE N MAX LAKO71.~EE~VO04 VITAL VERgION 1 , t ~. "' vosooa~oot P~r ~ / VZTnZ.ZTE i i I llli~ ~ -~- II I iii i iL , I I i i i DE YEL I)Pt~NT ",REFL EC TAflCE PL I) T 0.0 0.2 .. 0.4 0.6 0,8 1,0 PH]:LL]:P8 PETRO, LEUN I:~. PEROENT REFLEI~TANOE B[I~ RIVER AKA LOCATION 15 49 ~ 6B g 7 TOP 055;80.00 BOT 05600,00 FT" PLOT TYPE = V]:TRY. N]:TE N MAX MIN RANG MEAN C, ONF 8TDV LOM 52 i.71 1.05 0.66 1.'39 :t::0.058 0.15 l.~.,Oi ~t. ~0. ,tg. ,t~. rt. tO. · ~ I. AKO7t2~;~VO05 VITAL VERS:£ON 1 , 1 I. ' " ~tE&L DEVEL DPI~NT'**'t~,g'LEC ?ANCE PL D? 0,0 O,a 0,4 PHZLL[P8 PETROLEUM 15'0, ARA LOCATION L5 49 8 68 W 7 PL~T TYPE = N MAX M[N RANG 52 t,e8 t,O8 O,eO 0,6 0,8 1,0 [,2 :/,4 PERCENT REFLECTANCE T~P 059~0.00 BOT 05980.00 FT' N ¥[TR[N[TE b-'O[ED V[TR[N 50 MEAN C~NF 8TDV LOM [.4~ ~0,043 O,t5 tA,£g · .. i · ....... ~'~ III i i i , ii, OTHER MAOERAL8 H[N MAX ,at. 15. to. LAKO7taS:~VO0¢ VZTAL VER~:GN 1, tt ~ " ¥09004700~ ,, · J~LL D~¥~L I)P/~N'r'R~I:'L~C?ANP.~ Pl. ~7 I I I ii I i I I .....i III . o. 1.0 ~ .4 · , 2,2 2.6: PHILLZP8 PETROLEUM AKA LOO~TION ~ 4~ ~ ¢8 W 7 TOP 0~0,00 B~T OS~.O0 FT PLOT TYPE = ~KED ¥IT~IN ¥ITRIN~TE N MAX 60 5.~t 1.SS l.¢~ 2.~i ~O. llO 0.57 ~1.0 ~.4 ~1.8 4.2 4.6; E;,O E;.8 PEROENT REFLECTANCE OTHER Mk~ERAL8 N M T.t-I MAX .at: ,~0. t~. re. rT. 1.6.. tS:. t4. L~I. tO. ,~. . /AKOTL28~VO0~ VITkL VERB£ON t,ti " ,~IE,', L DEVE& I~I~NT".~LEC ?.41~_,E PL I)7' O,S 0,7 0,9 1,~ l,a 1,5 PHILLIP~ PETRC*LEUM ~, PERCENT REFLECTANCE B[~ RIVER A-[ AKA I_~CAT~ON [~ 49 ~ 68 W 7 TOP 06470,00 D~T 06~!.0.00 FT' PLeT TYPE = V[TEIN[TE N M~X MZN RAN~ tIE~.J C~NF ~TDV LqM 62 l.~8 t,2~ 0,70 t,~O ~0,04£ O,l~ t~,47 ]:D,I~, .. gOL)gtaOOOtO0 t,7 1,9 2,t ~,~ . !t. Lg. ,t6. t4. .Lt. tO. . LAKO7t~:8:2VOt9 VITAL YER~. vosoo49oo~. Pitt ~, VI~ZNZTE SI. IELL DEV'ELIV:~NT'*:REFLECTA~ PLBT ID.We. ~o'astm)oo~.oo we ,,. 20. 1.9. i8. i7. 14. 15. t~. · ,I,~. ,iL. ,LO. · · · · 0 . 0,$ 0,7 .. 0,9 l.,l, PHI:LL:[P8 PETI~LEUH C~, PERCENT REFLECTANCE 5]:0 RIVER AKA L~,C:ATI:ON 15; 49 ~ 68 W 7 TOP 06470,00 BOT 0~51.0,00 FT* PLOT TYPE = ¥I:TI~]:NT'TE FU~]:N:I:TE: N MAX M [ N R~N~ MEaN CONF 8TDV LOM 5;0 1.,9 OTHER MAI~ERAI. B MIN MAX 4,01 4,01 PLOT TYPE · YZTRZHZTE ~.I~LL D~I~'~I. BPI~NT' R~I:'L~C ?AN~,~ Pl. · . . . ,. , , . ,... 0.5 0,7 ; 0,9 ~.1 1,5 PHILLIPS PETR~LEUH CO,, PERCENT REFLECTANCE AKA L~OATION 1~ 49 B 68 W 7 TOP 06900 BOT 0¢940 FT PLOT TYPE = VZTRIN~TE FUBZN~TE N MAX MIN RANO MEAN CONF 8TDV LOM 80 2.07 1.~A 0.TS 1.7B i0.046 0.16 t3.03 OTHER MACERAL8 MIN MAX 2,48 ~,4B ,ti;. O. C LAK071282¥020 VITkL VERBION l,it ¥O~O0~lO0~ PLGT ~ .e ¥IT'RZNZTE . 2:). 2L. 20. 1.9. ,LT. ,L4. ,LS. 1,2. -: ,tL. 1,4)o ,4 · t ,0 ~..~ i. ,4 1,6 t .B ::',0 PHtLL~PSr PETRO, LE'[JH ~, PE~OENT REFLEOTAN~E B~ R~VER AKA LOOATION ~g 49 B ~B g 7 T~P 06900,00 B~T 0~940,00 FT PLOT TYPE : V~TEINITE FU~[N~TE N MAX 2,2 2,4 2.6 OTHER: MAOERAL~ HIN MAX 2,59 2,~9 LAKO7t282VO08 VZ'TAL VERS~GN 1,1[ ['"' L7. ,I,9. ,I,2. t ,0 t,. ,~: 1. ,4 t .6 t ,8 ::>,0 PH£LL[PeJ PETROLEUM 00, PEROENT REFLECTANCE BIG RIVER A-[ AKA LOOATEON tS 4~J B 68 W. 7 TOP 07~1.L0,00 BOT 07~)50,00 FT' PLOT TYPE = VZTR]:NITE FU8ZNT. TE N MAX MtN RANG MEAN CONF 8TDV LOt1 60 2,46 t.52: 0,~4 ::>.tO :!: 0,0~0 O,t~ 1.4,3e 2.2 ::', ~t 2.6 OTHER MAOERALB N MIN MAX tAKOTL~e~VO0~ YITkL YERB£ON [,[t ,, ,,~,IE&L DEVEL IJPI~NT'*,RE~'LEC?A~ PL B? ~.1.'. 20. 19. ,I, 7. ,I.$. 14. ,l. 9. ,i&. 10. t,O 1,~ L,4 t,6 1,8 2,0 PH[LLJP~ PETReLE'~JH b'~, PERCENT REFLECTANCE AlGA I.GOAT£eN [5 49 9 68 W 7 TeP 077t0,00 BeT 077~0,00 PLeT TYPE = V[TEINITE FU~N~TE N MAX MIN RAN~ HEAN CONF 8TDV 59 2,62 t,52 t,tO 2,0~ ~O,05a 0,20 2,4 ~THER I'IACERA, L~ N MIN MAX t 4,49 4,49 tAKOTl.~Sj:~¥OtO YJTAL VERg~:~N l,., tX ~ PL~T ~ I~ ,~,IEL. L DEVEL I)PI~NT "REI:'LEC ?ANCE Pl,. ~1' L,O 1,2 , 1.4 1,6 1,8 2.0 PHILLIPS PETROLEUM C~. PEROENT REFLEOTANOE AKA I.OOAT[ON tS 49 ~ 68 W 7 TOP OB~90,O0 I~T 00~00,00 FT' PLOT TYPE = V[TR[N[TE FU$~N[TE N MAX H[N RANG MEAN C~NF 8TDV LOM 5S 2,Se [,9[ 0,97 2,44 ~0,059 0,~0 2,2 ::',4 2.6 OTHER MkCERAL8 MIN MAX ~,4B ~,48 i7. tS. i4. ,La. tO. · · 7. O' · ~ LAKO7t~82VOtL VITkL VERB[ON :~.. .tS. ,t4. 12. 10o · · · ! t.O 1,2 1,4 i,6 PHILL£P8 PETReL~UM{~, B~ R~¥ER A-i AKA I.~CAT~ON t~ 49 8 68 W 7 TOP 08~60,00 PLOT TYPE = ¥:TR[N~TE N MAX MIN RANG MEAN CONF TS 2,9[ 1,9~ 0,98 2,4~ ~0.056 :l. ,8 2,0 2,2 2,4 ~:.6 2,8 PERCENT REFLECTANCE ., BeT OB~70,O0 FT' N FUS:N:TE [ ~TDV LOM 0,19 t6,00 OTHER MAOERAL8 HIN MAX 3,17 , [,$ [.7 : L,9 2,t 2,3 2,5 2,7 2,9 PHZLL[P8 PETROLEUH CO, PERCENT REFLECTANCE BED REVER k-[ OTHER HACER~L8 AKA I.OCAT[ON IS 49 8 ~8 W 7 TOP 08900,00 BOT 08~50,00 FT' N MIN MAX PLOT TYPE = V[TR~NITE FUSZNITE 1 4,48 4,48 N MAX MIN RANG HEArl CGNF 8TDV LOH 3,09 t,gS t,t4 2,40 ~0,059 0,~0 tS,gL . . .tS. t~. tr. tO. ,~L. 17. ,La;. ,L4. ,LO. L2. · · · ,L · ~.,0 ].,P' .. 1,4 1,6 L,13 ::>,0 2,::' P,4 P',6 R,EI 3,t) PHILLIP8 PETROLEUM CO, PERC~ENT REFLECTANC:E · OTHER NAOERALB H ]~ N MAX 4,14 4,L4 BIO RIVER A-L AKA LOOAT[ON ~5 49 8 G8 ff 7 TOP 9360 BOT 9420 FT PLOT TYPE = VITRINITE FUBINITE N MAX M[N RANO MEAN OONF 8TDV LOM 58 2,6S 1,97 0,6~ 2,27 ~0,.043 0,15 1S,23 ~MBOTI2B2VOtO V[T&L VER~£ON 1,I1 '' VOgOO$800t PLeT TT~ ~ ¥;TR[NITE i i i i i _ &: SAIl, L D~ VEl. I)Pi~N7' '. RE.eL EC 7'ANr~ Pg. B ? PHILLIPS PETROLE~UM RIVER 2,5 2,~ 2,7 2,9 PER~ENT REFLECTANCE AKA LOCATION 1~ 49 B 68 W 7 TOP 09~60,00 BOT 0~4~0,00 FT' PLOT TYPE = N MAX HIH RAN~ ~EAN ~ONF 8TD¥ ~,~L 1.74 L,~7 2.40 ~0.069 0,~9 f ,, tg. 1.8. 1.7. tS. 1.4. t~. 1,0. A. 0 LAKOTL282VOL4 VITAL V£RBION 1,Lt ¥O~O0~OOL ,~FEI~L DEVEL M)I~NT',~R~FL~CTA~ Pl. I) T ii i i · i iii i i i i i [.0 l.a , 1.4 PHELLEP8 PETR(~LEUH CO, PERCENT REFLECTANCE B~O RZVER k AKA LOCAT~eN IS 49 B 68 W 7 T~P 096~0.00 BGT 097~0,00 FT"'* PLOT TYPE = VZTR[N~TE ' X N MAX H[N RANG HEWN C~NF 8TDV 58 2 · 77 2 · O~ 0,7~ 2 · 2.6 2,8 , .o. ,~1o 18. 17. 14o ,tS. ,L4. ,t~. ,La. ,tL. 10. :~MBO7t28:2~VOt t YETAL VERBE(~N t · t [ DEll'EL BPI~NT",~R~I:'L ~C G'ANC~ Pl. B? ,-. t.5 1,7 , t,9 2,[ 2,3 2,$ PHILLIPS PETI~LEUN CO, PERCENT REFLECTANCE B[~ RtYER A-t AKA I.OOAT[ON L~ 49 8 68 W 7 TeP 08680,00 BeT O~7aO.O0 FT" PLOT TYPE = VETE[N[TE N HAX HEN RANG HEAN CONF 8TDV LeM EO 2.89 t.7~ t.t6 2.45 ~0.050 0.~0 re.tO 2.7 2.9 ~,t ,tS. ,t4. ,tS. ,tR. , ,tr. ,tO. · ~TAN Z U~OR ][ CH- N~I~ NEK / JUR AE"~ ]; ~ 3HBOT:L ~8~V004 VETAL VER~Et~N t, t [ ¥OgO0~O0~ ,~.IE~L DE'VEL IN:~f~VT'**.'REI:'LEC ?ANP.,E Pl.. B? ~t. ~). ,t~. ,tO. ,LT. ,t6. ,tS. ,t4. ,t~. ,tR. ,Lt. tO. · · · 4. · · L,O 1,~ 1,4 1,6 1,8 ~,0 ~,~ ~,4 ~,6 ~,B ~,0 PHiLLiPS PETROLEUM CO, PEROENT REFLEOTANCE BIG RIVER &-t OTHER Hk~ERAL~ AKA LOCATION [5 49 8 68 W 7 TOP 10000 BOT tOO50 FT N PLOT TYPE = VZTR[NZTE BZTUHEN. N HAX N[N RANG g9 2,$~ t,85 0,73 ~,a6 ~0,043 0,15 tS,t~ ~ PIBO7t28E~V~t~ YITAL YERI~ZON t, tt 1.7 L.9 2.1 2,5 2,5 2,7 2,9 · ,$ PHELLEP8 PETROLE~H CO, PERCENT REFLEOTAN~E RIVER LOCATION 15 49 B 68 W 7 TOP 10000,00 B~T ~0050.00 FT" PLOT TYPE = ¥ITRIN~TE N MAX MIN RANG MEaN ~NF 8TD¥ LOM ~,68 ~,87 0,8~ 2,44 i0,046 O.~S L¢,07 ~MBOTL282¥O05 ¥ITkL YERBION 1 , 1 i ii Jill ....' i · i Pl.. I~ ? ].,0 ].,2 : 1,4 1,6 ].,Er ;~,0 PHILLI~P8 PETI~LEUH C~, PEROENT REFLECTANCE BIG RIVER AKA LOCATION ~ 49 8 68 W 7 T~P LO~;O0 P,C~T tO~:50 FT PL(~T TYPE = ¥]:TRINITE N MAX HIN RANG BG; ;~, 88 ]., 8¢ ]., 0~' 2, ~,0:1: O, 059 O, ~0 L 4,87 '. ,I.~. ,LB. ,I. 7. ,L~;. J.4. 12. 10. · · 0 . 5.0 ~TAN T. Ur..(~R ~ OH- NA, E NEE/,JURA,81 ~ :~ PIBOTt282VO].~ VT. Tf~L VERgtGN 1,~]. vogooe4oo~, it.eT I~Z?[~ZNZT~ .~.I'~£L D~V';L BPI~NT';I~I:'L;C?A~ PLO1' · 16. 14. ~0. . · · C · ti · O. PH;LLZP5 PETRO, L~UH CG. PEROENT REFLECTANOE PL~T TYPE = N MAX H~N RAND HEAN $7 2,64 2.00 0.64 CH- N~kK HE~/JUR.a,~S ]: ~ ~HBO7L282VO06 YZTkL VER~]:~,FI 1 , 1.1. SI. IEI,'L DEVEL BPNENI'*,'~I:'LEC ?At~..E Pl. B I' 1.2 ~ 1.4 PHILLIPS PETROLEUH BIG RIVER ARA LOCATION t5 49 8 68 W 7 N HAX SO 2.70 .$ 2,0 PERCENT REFLECTANCE TOP [tO00.O0 BOT ttO~O.O0 FT' PLOT TYPE : V[TE[NZTE H[N RANO HEAN CONF ~TDV LOM t,¢O t.tO 2,t4 ~0,072 0,24 t4.~9 · .[9. .tO. .t7. ,tS. ,t4. L~. L2. tO. ,~ . i?' C tAKOTL28~V02[ ¥ITkL VERSION t,tt ~tE~'L' DEVEL I~:~ENT*;~I:'LEC?A~ ~ ~1' ., ,o,I.. 17o 1,$ '\ 1.7 ' 1.9 PH£LLZP8 PETRGLEUH C~, AKA LOCATZON 15 49 ~ 68 W 7 PLOT TYPE = N HAX H[N RANG P',L ;2,3 2,5; P',7 2,9 PERCENT REFLECTANCE ,t~. tr. tO. OTHER IqAOERAL8 TOP ttO00,O0 BOT ].[Ol;O.O0 FT"' N H];N MAX V]:TR]~N[TE FU~ZN1~TE I ;2,27 2,27 HEAN C~NF 8TDV LOH ~APROV[ TRION 1 0 , 71 0 , 71 2,4:::> =1=0,056 0,19 15,~;~ C ~TAN [ UK.~R T. C:H- NAE NEI~/,!URA~ Z CIP~J~P :~HBO7t28:2VO07 YZTkL VERg]:ON 1 , 11 V0~00~7001. t,O 1,2: L,4 1,6 t.8 2,0 PHILLIPS PETRO~LE~M 0~, PERCENT REFLECTANCE B~G RIVER PLOT TYPE = V~TR[NITE N MAX M[N RANO MEAN CONF 8TDV LeM 5[ 2.59 0.04 2:,55 2,17 ~0o£04 0,35 L4.77 2,2: 2.4 2,6: tS. ,t4. ,Lt. ,tO. , ',, 7090068001 PI.~? ' ¥~TRZHZTE ~ ii i i i II ~* ~1 ~ ii ii iii i SI. IEb L DE VEL Igaft~NT",'RE~'L Ec ?.4~ PI. BT 2.7 .:.-. ~ ~** 1.7 2.9 ~.~ PH£LL~P8 PETROLEUH OO, PERCENT REFLEOTkNOE BIG R[¥ER AKA LOCATZON iS 49 B 68 W 7 TOP LtS20.O0 BOT i~70o00 FTTM PL~T TYPE = YZTRLNZTE N MAX H[N RAN~ HEAH C~NF 8TD¥ 6 2,22 2,0~ b,L9 2,L4 ~0,068 0,06 .L4,6L 21. ,~. · · ,I. 7. -. · . .~. ',. ., Devth Ft. & - 390-420 420-450 1020-50 1980-2040 2040-70 5930-80 6470-6510 6470-6510 6900-40 7310-30 7710-20 8290-8300 8360-70 9370-90 Lab No. AKA-S-1944 F20888 AKA-S-1945 F20889 AKA-S-1946 F20890 AKA-S-1947 F20891 AKA-S-1948 F20892 AKA-S-1949 F20897 AKA-S-1950 F20898 ' AKA-S-1951 F20899 AKA-S-1952 F20900 AKA-S-1953 F20901 AKA-S-1954 F20902 AKA-S-1955 F20903 AKA-S-1956 F20904 Sample Type, Lithology Formation, Age PYROLYSIS FID Analysis ORGANIC Total CARBON D/P HC Yield NCC Ratio wt % LOM VRE wt % D, gry mudstone Oligocene 0.029 0.045 <11 <1.05 " " " Stepovak, Olig-Eoc. " "shale " " coal Tolstoi, Eocene "brn-gry shale " "coal from HLS " "brn-gry shale " "coal " Chign~k, UK " " from HLS " AKA-S-1957 " gry shale Staniukovich F20905 Naknek, Jur. 0.287 0.010 ND ND 0.092 0.041 <11 <1.05 0.032 10.010 <11 41.05 0.056 0.258 411 <1.05 0.016 6.063 12.6 1.66 0.025 0.966 13.2 1.83 0.070 0.023 13.9 2.00 0.004 1.119 13.7 1.94 0.029 1.089 15.2 2.25 0.023 0.811 14.9 2.20 0.009 0.944 16.9 2.67 0.014 0.690 16.6 2.58 0.970 0.010 ND ND 0.92 *0.4 0.4 0.76 44.7 3.84 60.4 25.6 1.27 37.0 33.3 71.8 54.0 0.48 Depth Ft. 9690-9720 9690-9720 10010-50 10520-40 11020-50 11350-60 Lab No. AKA-S-1958 F20906 AKA-S-1959 F20907 AKA-S-1960 F20908 AKA-S-1961 F20909 AKA-S-1962 F20910 AKA-S-1963 F20911 Sample Type, Lithology D, coaly shale "coal Format ion~ Ase St aniuko~ich Naknek, Jut. "gry-blk siltstone" II ti I! It Total D/P HC Yield Ratio wt % PYROLYSIS FID Analysis LOM VRE 0.291 0.087 17.1 2.76 0.019 0.358 17.0 2.71 0.849 0.021 ND ND 1.006 0.005 ND ND ORGANIC CARBON NCC wt % 6.23 '34.1 35.4 1.01 0.32 dv Ii 11 0,620 0.021 ND ND 1.03 "blk shale " 1.821 0.013 ND ND 0.39 * The samples was limited so that elemental carbon analysis was run rather than NCC. The analysis was run on the leached sample of AKA-S-1945 but the data is reported on the basis of the original sample. The leaching factor is 0.8].48. The anlaysis was run on the leached coal AKA-S-1959. Pyrolysis-fluorescence was run on the bulk ditch samples from the interval 34-11370 ft; the source rock log is attached. Refer to BRC Request Nos. 23604 & 23605. SAMPLE TYPE KEROGEN TYPE JRC/MLW:pv C= Core I, Lipid Attachments O= Picked Ditch II, Lipid M= Mine III, Humic cc: J. R. Casta~o {w/attachments) 0= Outcrop IV, Inert Well File (w/attachments) S= Sidewall core Regional Geochemistry File UO= Unpicked ditch (w/attachments) X= Extracted P. Herr {w/attachments) HLS = heavy liquid separaulon SOURCE ROCK qUAL.E= Excellent- F= Fair G= Good M= Marginal N= Non Source NA= Not applicable ND= No determination RM-IO0 (4-71} SHELL OIL COMPANY SOURCE ROCK LOG STATE OR PROV. Alaska Phillips COUNTY . ! ~River Aleutian FIELD OR AREA COMPANY NO. A-1 · ELEV. SURVEY BLK. COMM, COMP. T,D. E LEC, LOG RADIOACTIVE MICROLOG 'LATEROLOG ,¢Rem. Ue"~.e.N--Blank spaces re ia skip in intervals. REMARKS Std. 36 ± 2 units. is 1" = 100'. Zer~ to five is plotted as five by plotter. SAMPLED BY: DATE ANALYZED BY: F. Della-Rose,R. Rios DA~E5/20/82L. Mellon & K. Meaux PLOTTED BY: P. Valentine & N. Wes~ DATE 7/82 >" TOTAL FLUORESCENT UNITS co DEPTH o SCALE ~ o AND 0 o o o o ~ O O O O O O O ,.- . m ,-- m ,- m REMARKS L 0 0 0 _ i -il,ti I i i i TH; I ' i I Iii! I I I11.i , I ;*- ' ~ ~ I ! Hii ! ! I ! i I ill ~' I ~ i I t~ l ~ ~' I ~~~;i ~ ,r,, /uu ' ili~i i i il !~i~ I t I! I1[~~I 'G~~] I t11ii1!~1 i lJ~ .... ' I ''' I ~; ' i"~'l[' ' I~ls.~_ L , - ~,~ ,.-l' ~.~,-! ..... , ~ '~ I"~ I , ; , r, ' ~ '- i" ~ ~, , .ff.~.~ . , , HC YIELD /0.045% P NCC% 0.92 ~HC YIELD 0.010% ~CC% 0.4 P Z ~IELD o.o4 x ~q¢Cg 0.76 coal .~i'~~i.~',I. , t , UiJ' 1300 ~LHH: i, i ~t ill ~ ~ I . Iii ~I ~__~. il ' ' ',, ~1 ' - ',-~ - - .~,~Z n ~~ I ! { IiI Hi ~ '-m F' . ~,~i~ , ,ij,:, ~ i ;{,~ii i ', i{~;, 1500 , . ~ ~ , {~il~]l i ~ FUIm i { !I1' H i~l! I Lm,!~ I I ii!lift I I I t ~! I i!1i!iil i i ii!l',~l l 1!il i i~{ii{~ { I lil{i~l i i1!11{1 ~x,~[ ', il}i,; ! i i~i~]~~ 1600 ,.,-- .h ~~H,~~i , , F, ~i ~~1 ~~ I 'l',~ " ~]~, i } }i.{~'F~H]~ }~[it__t~]_[i~{ '~;J ji--LI-L{-i{i~ 1800 I T{~ *,{,~_i_H ~ ILL/~ I ., ,, t,~, IJ ::~ ,,,, lI, · /, ' lih ...... t-~i - TM '] I~, , Ti ' ,{~,, ~ ;{{ { { ~'{ ~~~; . ! ~ 2000 l~ ",1 i i ~{11~!~{,{~17~ Il ~~~~!.,.+ ..... , ....... ~oo ~~ i l~ ! il I~ { II/l!l' ii, it i { 111~,' ~ ~ ~,u" I ~ I~1 '{ . '~HC YIELD /ao..o q ~NCC% 44. ? fOr gas YIELD ~0.258% NCC% 3.84 .: rr O. >- 6' .d "'1 · 3900 4000 4100 4200 trace coal trace Coai'__ trace coal~ trace coal coal hulls & " LCM Walnut h__ul~ & LCM trace coal 4300 -- 4400 -- 4500 -- 4600 -- 4.70~ - 4800 4900 5100 5200 '5300 0 >- ~ m 0 trace coal i ii coal LCM ~ __ coal & LCM 4' coal & walnut hull trace coal ~'.__~ ~ ! ' : I ! , i . I i i I : trace coal & walnut hu walnut hulls walnut hulls~----- walnut hulls~ coal -- '5300 5400 -- 5500 -- 5600 570O 5800 coal & walnut hulls J , ~ : ~:i ! ?--~.4_!.iii:l_LJL4. iii:i 6100 i~', i .... : i i'l':! ~ I ill! .... :-~ I:~:~:'.:i' "i~ I , I~,: 6200 ...... ~ : :-~ ! ...... '..,. :._~ ,ll ! z z -- ,~ .. ., X6.063Z Is NCC% 82,5 "" for gas ~ . · .t coal coal coal coal coal coal coal & walnut hulls coal co,a,'li~ coal coal coal I i ' O~UU 6300-- 6400 -- 6500 6600 - 6700 68O0 6900 ~.HC YIELD Z0.966% NCC% 36.0 (corr.) for gas I from LS) HC YIELD 0.023% NCC% 1.59 (corr.) (brn-gry sh) rr o · ._l m =g,HC YIELD fl.ll9Z ~ NCCZ 57.5. ~ (corr) ~ p for gas -- coal coal coal coal 7300 HC YIELD (corr.) p'for gas 7600 - 7700 -- 7800 -- >,~C YIELD ~20.811% NCC% 57.6 (corr.) .p for gas · z f£ C~ U) ..J c] C) _ .5' I'I; coal coal caved coal 8200 8300 8400 8500 87OO 8800 8900 9000 __91001 YIELD .944% ~hcc%~-9o :corr~ p for gas YIELD .690% ~'NCC% 90 [](corr) Ifor gas coal 9200 -- 9300 -- 9400 -- 9500 -- 9600 -- 9700 9900 10000 7 10100-- 0 ~HC YIELD l 0.010x ~ 8NCC% 0.48 ,, /HC YIELD 0.087% NCC% 10.9 (corr.) ~ (9oaly sh)' ~ItC YIELD 0.358% NCC% 62.8 (corr.) ~ for gas, g'(coal) HC-YIELD /0.021% NCC% 1.42 ~(corr.) p coal NCC% 1.42 corr. ) ~ .. 10200 ,'-. 10300 10400 10500 10600 10700 10800 10900 ~HC YIELD /~0.005% ' ~NCC% 0.32 --I . HC YIELD 0.021% -'NCC%'lV46 ~(corr.) 9200 11100- 11200 ' 11300 -- -i ol~(c°rr') ~ O ~HC YIELD 0.013% NCC% 0.39 v 0 SHELL DEV DEPTH-REFLECTANCE ::PLS. T :'--."' PRG. DUC. ED BY' DEPTH PR6, BRAH VERSD3. N ~',01 ,.-: PHILLIPS PETRO. LEt. JM C:D,. '" ' BIB RIVER L~qAT!~N L5 4~ S 6:8: ;¥ 7 'Y LAT. LEND. · AREA ALEUTIAN BAS:IN ' ".'. DATE 7 · '-' ' , .-°'8LKB '. ' T,D, :L1"370 ,",-E ¢ REMARK~ e-Es=~LISeOENE-E~OENESTEP~¥AE LKh=L,ORETAOE~US NERENDEEN' Oe-n=VIJRASSIO STANIUK~¥IOH-NAKNEK Et=E6, OENE TO'LST~.. UKc=U,.6:RETAOEO'US 'OPIII~N[K ! . vr.T FIB BAR = ,_ I':!.,C, = PLO'TT ,7.. NP~' MEAN I -,'- O,C,N F .~ .... I ' I ' I ' I ' I ' I ' ,i " I '1'1'1' I ' 0,.4. -0.5 0,6 .. .t,O :'.,'- 2: 0 3 0 4 0 . .. ,. , ., - :.,... ,. o :./3 -:2 ' ~ !420 · , · · .'! . , -: %.. :-:'.~ '2 .z© . , . . ~0 LOM . . i.