Department of Commerce, Community, and Economic Development
Alaska Oil and Gas Conservation Commission
Loading...
HomeMy WebLinkAbout203-1033URSHUW\'HVLJQDWLRQ/HDVH1XPEHU
2SHUDWLRQV
3HUIRUPHG
2SHUDWRU1DPH
$GGUHVV
:HOO&ODVV%HIRUH:RUN3HUPLWWR'ULOO1XPEHU
$3,1XPEHU
:HOO1DPHDQG1XPEHU
/RJV/LVWORJVDQGVXEPLWHOHFWURQLFGDWDSHU$$&)LHOG3RROV
$EDQGRQ
6XVSHQG
3OXJIRU5HGULOO 3HUIRUDWH1HZ3RRO
3HUIRUDWH
3OXJ3HUIRUDWLRQV
5HHQWHU6XVS:HOO
2WKHU6WLPXODWH
)UDFWXUH6WLPXODWH
$OWHU&DVLQJ
3XOO7XELQJ
5HSDLU:HOO 2WKHU
&KDQJH$SSURYHG3URJUDP
2SHUDWLRQVVKXWGRZQ
3UHVHQW:HOO&RQGLWLRQ6XPPDU\
&DVLQJ /HQJWK 6L]H 0' 79' %XUVW &ROODSVH
([SORUDWRU\
6WUDWLJUDSKLF
'HYHORSPHQW
6HUYLFH
$WWDFKPHQWVUHTXLUHGSHU$$&
:HOO6WDWXVDIWHUZRUN
,KHUHE\FHUWLI\WKDWWKHIRUHJRLQJLVWUXHDQGFRUUHFWWRWKHEHVWRIP\NQRZOHGJH
2,/ *$6
:,1- :$* *,1-
:'63/
*6725 6XVSHQGHG 63/8*
$XWKRUL]HG1DPHDQG
'LJLWDO6LJQDWXUHZLWK'DWH
$XWKRUL]HG7LWOH
&RQWDFW1DPH
&RQWDFW(PDLO
&RQWDFW3KRQH
3%89
0LOO&HPHQW3OXJ
+LOFRUS1RUWK6ORSH//&
&HQWHUSRLQW'U6XLWH$QFKRUDJH$.
&RQGXFWRU
6XUIDFH
,QWHUPHGLDWH
3URGXFWLRQ
/LQHU
1RQH
1RQH
/
6WUXFWXUDO
%DNHU63DFNHU
6WDQ*ROLV
6U$UHD2SHUDWLRQV0DQDJHU
%URGLH:DJHV
'DYLG:DJHV#KLOFRUSFRP
358'+2(%$<%25($/,62,/
7RWDO'HSWK
(IIHFWLYH'HSWK
PHDVXUHG
WUXHYHUWLFDO
IHHW
IHHW
IHHW
IHHW
PHDVXUHG
WUXHYHUWLFDO
PHDVXUHG
PHDVXUHG
IHHW
IHHW
IHHW
IHHW
PHDVXUHG
WUXHYHUWLFDO
3OXJV
-XQN
3DFNHU
0HDVXUHGGHSWK
7UXH9HUWLFDOGHSWK
IHHW
IHHW
3HUIRUDWLRQGHSWK
7XELQJVL]HJUDGHPHDVXUHGDQGWUXHYHUWLFDOGHSWK
3DFNHUVDQG6669W\SHPHDVXUHGDQGWUXHYHUWLFDOGHSWK
6WLPXODWLRQRUFHPHQWVTXHH]HVXPPDU\
,QWHUYDOVWUHDWHGPHDVXUHG
7UHDWPHQWGHVFULSWLRQVLQFOXGLQJYROXPHVXVHGDQGILQDO
5HSUHVHQWDWLYH'DLO\$YHUDJH3URGXFWLRQRU,QMHFWLRQ'DWD
2LO%EO *DV0FI :DWHU%EO &DVLQJ3UHVVXUH 7XELQJ3UHVVXUH
3ULRUWRZHOORSHUDWLRQ
6XEVHTXHQWWRRSHUDWLRQ
:HOO&ODVVDIWHUZRUN
([SORUDWRU\ 'HYHORSPHQW 6HUYLFH 6WUDWLJUDSKLF'DLO\5HSRUWRI:HOO2SHUDWLRQV
&RSLHVRI/RJVDQG6XUYH\V5XQ
(OHFWURQLF)UDFWXUH6WLPXODWLRQ'DWD
6XQGU\1XPEHURU1$LI&2([HPSW
$'/
1R6669,QVWDOOHG
1$
1$
1$
67$7(2)$/$6.$
$/$6.$2,/$1'*$6&216(59$7,21&200,66,21
5(32572)681'5<:(//23(5$7,216
6U3HW(QJ 6U3HW*HR
)RUP5HYLVHG6XEPLW:LWKLQGD\VRU2SHUDWLRQV
6U5HV(QJ
By Samantha Carlisle at 3:13 pm, Dec 01, 2021
'LJLWDOO\VLJQHGE\6WDQ*ROLV
'1FQ 6WDQ*ROLV
RX 8VHUV
'DWH
6WDQ*ROLV
SFD 12/3/2021
RBDMS HEW 12/1/2021
DSR-12/1/21MGR18JAN2022
$&7,9,7<'$7(6800$5<
/56:HOO7HVW8QLW%HJLQ:65)&2$VVLVW&78,/92/9
6SRWXS8QLW58376%IRU:6'LYHUW:HOO7KUX7HVW8QLW&RQWLQXH:65RQ
)UHH]HSURWHFW)/IRUWHVWHUV3XPSEEOVGRZQ)/SUHVVXUH)/WRSVL
/56:HOO7HVW8QLW&RQWLQXH:65IURP)&2$VVLVW&78,/92/
9&RQWLQXH)ORZLQJ:HOO&RQWLQXH:65RQ
&78&7:7-RE2EMHFWLYH0LOO&HPHQW
7UDYHOIURP6/%\DUGWRORFDWLRQ
&RQWLQXHGRQ
/56:HOO7HVW8QLW&RQWLQXH:65IURP)&2$VVLVW&78,/92/
9&RQWLQXH)ORZLQJ:HOO)ORZLQJWRWDQNV3KDVH&RQWLQXH:65RQ
&78:77UDYHOIURP6/%EDVHWR958RQ96WDUW%23
7HVW%RQQHW6HDOOHDNLQJ:HDSKROHOHDNLQJRQXSSHUUDP&DOO6/%6&(DQG
UHTXHVWQHZ%RQQHW6HDODQGUHSODFHPHQW%23%23UHSDLUHGFRQWLQXHZLWK%23(
WHVWSVLSVL%RG\8SSHU%OLQG6KHDU5DP/RZHU%OLQG6KHDU5DP3LSH
5DPVDQG3XVK3XOO6OLS5DP&RQWLQXH:65RQ
&78&7:7-RE6FRSH0LOOWKURXJKEDODQFHGFHPHQWSOXJWR
DFFHVVORZHULQWHUYDOWRGRXEOHFXUUHQWRLOSURGXFWLRQRQZHOO5,+Z&7&
'%39*)RUFH-DU
7-'LVFREDONUXSWXUHGLVN
&HQWUDOL]HU;7UHPH0RWRU%L&HQWHU%LW'U\WDJWRSRI
EDODQFHGFHPHQWSOXJDW
&70'0LOOIURP
FWPGWR
FWPG)UHH]H
SURWHFWFRLOZLWK0H2+32+WRVXUIDFHDQGZDLWIRU3KDVH,,ZHDWKHUWRSDVV
&RQWLQXHGRQ
/56:HOO7HVW8QLW&RQWLQXH:65IURP)&2$VVLVW&78,/92/
9&RQWLQXH)ORZLQJ:HOO3KDVH&RQWLQXH:65RQ
&78&7:7-RE6FRSH0LOOWKURXJKEDODQFHGFHPHQWSOXJWR
DFFHVVORZHULQWHUYDOWRGRXEOHFXUUHQWRLOSURGXFWLRQRQZHOO:DLWIRU3KDVH,,
ZHDWKHUWRSDVV(QGZHDWKHUKROG5,+ZLWKVDPH[ELFHQWHUPLOOLQJ
DVVHPEO\5,+DQGWDJJHGDW
0LOOHGDWWRISPWR
ZKHUHWKHUH
ZHUHPXOWLSOHVWDOOV&RQWLQXHGWRPLOOWR
DYHUDJLQJISP%URNHWKURXJK
FHPHQWDW&70
-RE&RQWLQXHGRQ
&78&7:7-RE6FRSH0LOOWKURXJKEDODQFHGFHPHQWSOXJWR
DFFHVVORZHULQWHUYDOWRGRXEOHFXUUHQWRLOSURGXFWLRQRQZHOO
&LUFRXWJHOSLOOWRVXUIDFHDQGWKHQ5,+IRUGU\GULIW'ULIWHGWR7'DW&70
3XPSODUJHJHOSLOODQGVZHHSKHHOSULRUWR322+32+WRVXUIDFH&ORVH&URZQ
9DOYH5'02WR:
-RE&RPSOHWH
/56:HOO7HVW8QLW&RQWLQXH:65IURP)&2$VVLVW&78,/92/
9&RQWLQXH)ORZLQJ:HOO&78&RQWLQXH0LOOLQJ&78FRPSOHWHMRE6WDEOHZHOO
%HJLQKUZHOOWHVW$ERUWWHVWGLYHUWLQ:36KUSLJJ\EDFNZHOOWHVW%'5'
&RQWLQXHRQ:65
/56:HOO7HVW8QLW&RQWLQXH:65IURP)&2$VVLVW&78,/92/
9&RQWLQXH5'02(1'RQ:65-2%&203/(7(
'DLO\5HSRUWRI:HOO2SHUDWLRQV
3%89
Operator Name:2.
Exploratory Development
Service
5
Permit to Drill Number:203-103
6.API Number:50-029-23161-00-00
PRUDHOE BAY, BOREALIS OIL
Hilcorp North Slope, LLC 5.
Field/Pools:9.
Well Name and Number:
ADL 028240
Property Designation (Lease Number):10.
8.
PBU V-111
7.If perforating:
What Regulation or Conservation Order governs well spacing in this pool?
Will planned perforations require a spacing exception?
Stratigraphic
Current Well Class:4.
Type of Request:1.Abandon Plug Perforations Fracture Stimulate 5 Repair Well
Operations shutdown
Op Shutdown
GAS
GSTOR WAG
SPLUG
Abandoned
Oil 5 WINJ
Exploratory Development 5Stratigraphic Service
WDSPL
12. Attachments:
PRESENT WELL CONDITION SUMMARY
9850
Effective Depth MD:
L80
11.
4/30/2021
Commission Representative:
15.
Suspended
Contact Name:Aras Worthington
Contact Email:Aras.Worthington@hilcorp.com
Authorized Name: Stan Golis
Authorized Title:Sr. Area Operations Manager
Authorized Signature:
Plug Integrity BOP Test Mechanical Integrity Test Location Clearance
Other:
Yes No Spacing Exception Required?Subsequent Form Required:
Approved by:COMMISSIONER
APPROVED BYTHE
COMMISSION Date:
OtherAlter Casing
Pull Tubing
Conditions of approval: Notify Commission so that a representative may witness Sundry Number:
COMMISSION USE ONLY
17. I hereby certify that the foregoing is true and the procedure approved herein will not
be deviated from without prior written approval.
Detailed Operations Program
Packers and SSSV Type:
No SSSV Installed
Packers and SSSV MD (ft) and TVD (ft):
Perforation Depth MD (ft):Tubing Size:
Size
Total Depth MD (ft):Total Depth TVD(ft):
6694
Effective Depth TVD:Plugs (MD):Junk (MD):
Other Stimulate
Re-enter Susp Well
Suspend
Plug for Redrill
5Perforate
Perforate New Pool
7043, 6534
No SSSV Installed
Date:
Liner
Well Status after proposed work:
16. Verbal Approval:
Change Approved Program
29 - 2746 29 - 2741
14. Estimated Date for Commencing Operations:
BOP Sketch
30 - 108
Structural
7240
Proposal Summary 13. Well Class after proposed work:
4-1/2" Baker S3 Packer
7285 - 9772 6650 - 6699 3-1/2" 9.2#24 - 7103
Production
9813 6697 None None
30 - 108
9-5/8"
7"
Contact Phone:907.564.4763
Date:
5410
78 20"Conductor
3090
GINJ
5
Post Initial Injection MIT Req'd? Yes No
5
5
Comm.
STATE OF ALASKA
ALASKA OIL AND GAS CONSERVATION COMMISSION
APPLICATION FOR SUNDRY APPROVALS
20 AAC 25.280
Surface 2717 5750
Intermediate 7195 26 - 7221 26 - 6621
2714 4-1/2"7101 - 9815 6562 - 6696 8430 7500
Address:3800 Centerpoint Dr, Suite 1400,
Anchorage, AK 99503
3.
No 5Yes
Casing Length MD TVD Burst
Tubing Grade:Tubing MD (ft):Perforation Depth TVD (ft):
Collapse
MPSP (psi):
Wellbore Schematic
2340
Comm.Sr Pet Eng Sr Pet Geo Sr Res Eng
Form 10-403 Revised 03/2020 Approved application is valid for 12 months from the date of approval.
By Samantha Carlisle at 3:45 pm, Apr 09, 2021
321-185
Digitally signed by Stan Golis
(880)
DN: cn=Stan Golis (880),
ou=Users
Date: 2021.04.09 13:04:10 -08'00'
Stan Golis
(880)
MGR21APR21 DSR-4/12/21
X
DLB 04/16/2021
10-404
CDW 4/21/2021
Yesn Required?
Comm
4/21/21
dts 4/21/2021
RBDMS HEW 4/23/2021
Fracture Stimulation
Well: V-111
PTD: 203-103
Well Name:V-111 API Number:50-029-23161
Current Status:Kuparuk Injector Rig:N/A
Estimated Start Date:April 30, 2021 Estimated Duration:N/A
Reg.Approval Req’d?Yes
Regulatory Contact:Abbie Barker
First Call Engineer:Aras Worthington 907-440-7692 (M)
Second Call Engineer:David Wages 713-380-9836 (M)
AFE 212-00354
IOR 100
COST $430k
Current Bottom Hole Pressure:2951 psi @ 6600’ TVDss
Maximum Expected BHP:3000 psi @ 6600’ TVDss
Max. Anticipated Surface Pressure:2340 psi Gas Column Gradient (0.1 psi/ft)
BHST:146϶ F
MITIA:Passed to 3500 psi on 9/16/2003
History
V-111 is a un-frac'd horizontal Borealis producer completed with slotted liner.
Objective
The objective of this program is to perform a fracture stimulation to improve well performance.
The proposed work is to dummy the GLMs and obtain MITs, then isolate the heel with an IBP and
perforate the C4 just outside the window. Frac, a contingent coil FCO, install live GLVs and flow with
Portable-Well-Test-Unit to flowback any sand then pull the IBP.
WBL Steps:
1 S DRIFT FOR IBP/PERFS, SET TTP, DGLVs, MITs, PULL TTP
2 F A/SL; LOAD WELL, MITT & MITIA
3 F LOAD WELL PRE-IBP SET, MITIA
4 E PERFORATE, SET IBP
5 F FRAC
6 C CONTINGENT FCO
7 S RUN LGLVs
8 T PORTABLE TEST SEPARATOR FLOWBACK
9 S PULL IBP
Fracture Stimulation
Well: V-111
PTD: 203-103
Procedural steps
Slickline/Fullbore
1. Drift for IBP & Perf guns.
2. Set TTP.
3. DGLVs & Load IA. Max IAP & Tbg pressures 2500 psi:
¾~150 bbls 2% KCL with corrosion inhibitor
¾~70 bbls crude or diesel FP
4. Load tubing:
¾~70 bbls 2% KCL
¾~25 bbls crude or diesel FP
5. Set TTP.
6. MITT to 3500 psi (see tubing stress analysis below)
7. MITIA to 3500 psi (see tubing stress analysis below)
8. Pull TTP.
9. Injectivity test into slotted liner with crude or diesel to establish injectivity before setting IBP and
perforating the heel.
¾Max rate achievable with pump @ 2500 psi max WHP
Fullbore
1. No more than 2 days before setting IBP, Load tubing as follows. Max Tubing pressure 2500
psi.
¾~70 bbls 2% KCL
¾~25 bbls crude or diesel FP
E-Line
1. Perforate per attached tie-in log with 2-7/8” 175 MaxForce HMX guns (or similar) 6-spf, 60
deg phased.
2. Set 2-1/2” Baker IBP with ME @ 7272’ ELM.
Fullbore
1. Injectivity test into perforations with crude or diesel to establish injectivity after setting IBP and
perforating the heel (to verify IBP is set by difference in injectivity).
¾Max rate achievable with pump @ 2500 psi max WHP
Fracture Stimulation
Well: V-111
PTD: 203-103
Special Projects (Frac)
1. MIRU Frac Fleet
Pressure testing
Maximum Allowable Treating Pressure:5000 psi
Stagger Pump Kickouts between:4500 psi and 4750 psi (90% to 95% of MATP)
Global Kickout 4750 psi (95% of MATP)
Treating Line Test Pressure 6000 psi
Sand Requirement 85,000# 16/20 Carbolite, 50,000# CarboBond
Minimum Water Requirement 1500 bbls (pump schedule: 1370 bbls)
Min IA Hold Pressure 2400 psi (Tubing stress analysis)
Max IA Pop-Off Set Pressure 3200 psi (90% of MIT-IA)
OA Monitor and/or maintain open to atmosphere
2. Frac well per pump schedule
3. RDMO
Slickline
1. Drift & Tag TOS.
2. Run generic GLVs.
Coiled Tubing (Contingent FCO)
1. RIH w/ JSN, FCO as needed.
Test Separator
1. Flowback well as directed by OE/Ops.
Slickline
1. Pull IBP.
Fracture Stimulation
Well: V-111
PTD: 203-103
Fracture Stimulation
Well: V-111
PTD: 203-103
WELL NAME: V-111 60
Packer Pressure Loads
Notes:PKR
MD TVD Fluids Grad Press Fluid Grad Press Delta 10177
0 0 3500 0 3500 -8590
2500 2500 diesel 0.353 4383 diesel 0.353 883 3500 223778
6380 6200 seawater 0.444 6026 seawater 0.444 2526 3500
7040 6540 seawater 0.444 6177 seawater 0.444 2677 3500
dP 3500 PASS
Notes:
MD TVD Fluids Grad Press Fluid Grad Press Delta
0 0 0 3500 -3500
2500 2500 diesel 0.353 883 diesel 0.353 4383 -3500
6380 6200 seawater 0.444 2526 seawater 0.444 6026 -3500
7040 6540 seawater 0.444 2677 seawater 0.444 6177 -3500
dP -3500 PASS
Notes:
MD TVD Fluids Grad Press Fluid Grad Press Delta
0 0 5000 3000 2000
2500 2500 12 ppa Frac Fluid 0.684 6710 diesel 0.353 3883 2827
6380 6200 12 ppa Frac Fluid 0.684 9241 seawater 0.444 5526 3715
7040 6540 12 ppa Frac Fluid 0.684 9473 seawater 0.444 5677 3797
Force 80,658 PASS
dP 3797 PASS
MIT-T with 2500' freeze protect
Deviation at Packer
1
Tubing IA
2
MIT-IA with 2500' freeze protect
3
Frac (5000 tbg w/ 12 ppa frac fluid, 3000 IA)
P Rating Burst
p Rating Coll
Tensile Rating
0
1000
2000
3000
4000
5000
6000
7000
-10000 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000 10000
MIT-T with 2500' freeze protect MIT-IA with 2500' freeze protect Frac (5000 tbg w/ 12 ppa frac fluid, 3000 IA)Burst Envelope Collapse Envelope
Fracture Stimulation
Well: V-111
PTD: 203-103
Date: April 7, 2021
Subject: V-111 Fracture Stimulation
From: Aras Worthington
O: (907) 564-4763
C: (907) 440-7692
To: AOGCC
Estimated Start Date: 4/30/2021
Attached is Hilcorp’s proposal and supporting documents to perform a fracture stimulation on well V-
111 in the Kuparuk reservoir of the Prudhoe Bay Unit.
V-111 is an un-frac'd horizontal Borealis producer completed with slotted liner.
The objective of this program is to perform a fracture stimulation to improve well performance.
The proposed work is to dummy the GLMs and obtain MITs then isolate the heel with an IBP and
perforate the C4 just outside the window. Frac, a contingent coil FCO, install live GLVs and flow with
Portable-Well-Test-Unit to flowback any sand then pull the IBP.
Hilcorp requests a variance to sections 20 AAC 25. 283, a, 3- 4 which require identification of fresh -
water aquifers and a plan for base-water sampling.
Please direct questions or comments to Aras Worthington.
Affidavit of Notification (20 AAC 25. 283, a, 1):
Partners notified 04/ 01/ 2021:
ConocoPhillips
ExxonMobil
Chevron
Department of Natural Resources
Plat Identifying Wells (20 AAC 25. 283, a, 2):
Plat of wells within one-half mile of V-111 wellbore trajectory.
List of wells in Plat 20 AAC 25.283, a, 2
Well Name Well Classification Well Status V-202 Development Oil Producer Gas Lift
V-01 Development Oil Producer Shut-In V-202L1 Development Oil Producer Gas Lift
V-02 Development Oil Producer Gas Lift V-202L2 Development Oil Producer Gas Lift
V-03 Development Oil Producer Gas Lift V-203 Development Oil Producer Gas Lift
V-04 Development Oil Producer Gas Lift V-203L1 Development Oil Well
V-05 Service Water Injector Injecting V-203L2 Development Oil Well
V-07 Development Oil Producer Shut-In V-203L3 Development Oil Well
V-08 Development Oil Producer Shut-In V-203L4 Development Oil Well
V-08PB1 Development Plugged Back For Redrill V-204 Development Oil Producer Gas Lift
V-100 Service Water Injector Injecting V-204L1 Development Oil Well
V-101 Development Oil Producer Gas Lift V-204L1PB1 Development Plugged Back For Redrill
V-102 Development Oil Producer Gas Lift V-204L2 Development Oil Well
V-103 Development Oil Producer Gas Lift V-204L2PB1 Development Plugged Back For Redrill
V-104 Service Water Injector Injecting V-204L3 Development Oil Well
V-105 Service Water Injector Injecting V-204PB1 Development Plugged Back For Redrill
V-106 Development Abandoned V-204PB2 Development Plugged Back For Redrill
V-106A Development Oil Producer Gas Lift V-205 Development Oil Producer Shut-In
V-106APB1 Development Plugged Back For Redrill V-205L1 Development Oil Well
V-106APB2 Development Plugged Back For Redrill V-205L2 Development Oil Well
V-106APB3 Development Plugged Back For Redrill V-207 Development Oil Producer Gas Lift
V-107 Development Oil Producer Gas Lift V-207L1 Development Oil Well
V-108 Development Oil Producer Gas Lift V-207L2 Development Oil Well
V-109 Development Oil Producer Gas Lift V-207L3 Development Oil Well
V-109PB1 Development Plugged Back For Redrill V-207L4 Development Oil Well
V-109PB2 Development Plugged Back For Redrill V-207L4PB1 Development Plugged Back For Redrill
V-111 Development Oil Producer Gas Lift V-207L4PB2 Development Plugged Back For Redrill
V-111PB1 Development Plugged Back For Redrill V-207PB1 Development Plugged Back For Redrill
V-111PB2 Development Plugged Back For Redrill V-210 Service Miscible Injector Shut-In
V-111PB3 Development Plugged Back For Redrill V-211 Service Water Injector Shut-In
V-112 Service Water Injector Injecting V-212 Service Miscible Injector Operating
V-113 Development Oil Producer Gas Lift V-213 Service Water Injector Injecting
V-114 Development Abandoned V-213PB1 Service Plugged Back For Redrill
V-114A Service Water Injector Injecting V-214 Service Miscible Injector Operating
V-115 Development Oil Producer Gas Lift V-214PB1 Service Plugged Back For Redrill
V-115L1 Development Oil Well V-214PB2 Service Plugged Back For Redrill
V-115L2 Development Oil Well V-214PB3 Service Plugged Back For Redrill
V-115L2PB1 Development Plugged Back For Redrill V-214PB4 Service Plugged Back For Redrill
V-115PB1 Development Plugged Back For Redrill V-215 Service Miscible Injector Shut-In
V-117 Development Oil Producer Shut-In V-216 Service Water Injector Injecting
V-117PB1 Development Plugged Back For Redrill V-217 Service Water Injector Injecting
V-117PB2 Development Plugged Back For Redrill V-218 Service Water Injector Injecting
V-119 Service Suspended V-219 Service Water Injector Injecting
V-120 Service Water Injector Injecting V-220 Service Water Injector Injecting
V-121 Service Water Injector Injecting V-221 Service Miscible Injector Operating
V-122 Development Oil Producer Gas Lift V-222 Service Water Injector Injecting
V-122PB1 Development Plugged Back For Redrill V-223 Service Water Injector Injecting
V-122PB2 Development Plugged Back For Redrill V-224 Service Water Injector Injecting
V-123 Service Miscible Injector OperatingV-224PB1 Service Plugged Back For Redrill
V-200 Exploratory Abandoned V-225 Service Water Injector Injecting
V-201 Service Suspended V-227 Service Water Injector Shut-In
V-202 Development Oil Producer Gas Lift V-229 Service Water Injector Injecting
Exemption for Freshwater Aquifers (20 AAC 25. 283, a, 3- 4):
Well V-111 is in the West Operating Area of Prudhoe Bay. Per Aquifer Exemption Order No. 1 dated July
11, 1986 where Standard Alaska Production Company requested the Alaska Oil and Gas Conservation
Commission to issue an order exempting those portions of all aquifers lying directly below the Western
Operating Area and K Pad Area of the Prudhoe Bay Unit for Class II Injection activities. Findings 1- 4
state:
1. Those portions of freshwater aquifers occurring beneath the Western Operating and K pad areas
of the Prudhoe Bay Unit do not currently serve as a source of drinking water.
2. Those portions of freshwater aquifers occurring beneath the Western Operating and K pad areas
of the Prudhoe Bay Unit are situated at a depth and location that makes recovery of water for
drinking water purposes economically impracticable.
3. Those portions of freshwater aquifers occurring beneath the Western Operating and K pad areas
of the Prudhoe Bay Unit are reported to have total dissolved solids content of 7000 mg/ I or
more.
4. By letter of July 1, 1986, EPA- Region 10 advises that the aquifers occurring beneath the
Western Operating and K pad areas of the Prudhoe Bay Unit qualify for exemption. It is
considered to be a minor exemption and a non-substantial program revision not requiring notice
in the Federal Registrar.
Per the above findings, " Those portions of freshwater aquifers lying directly below the Western
Operating and K Pad Areas of the Prudhoe Bay Unit qualify as exempt freshwater aquifers under 20 AC
25. 440" thus allowing BP exemption from 20 AAC 25. 283, a, 3- 4 which require identification of
freshwater aquifers and establishing a plan for base-water sampling.
Detailed Casing and Cement Information (20 AAC 25. 283, a, 5- 6A):
Well V-111 was spudded 07/02/2003
The bore of well V-111 had a 12-1/4" hole drilled to 2763' MD where 9-5/ 8", 40#, L- 80, BTC casing was
run (casing shoe at 2746' MD) and cemented in place with 377 bbls of Permafrost “L” 10.7-ppg lead and
55 bbls of 15.8-ppg Class G cement with ~100 bbls of cement returned to surface. Prior to exiting the 9-
5/ 8" casing, a passing pressure test was performed (3500 psi for 30 min). 20' of formation was drilled
to 2783' MD and leak off testing was completed with 9.7-ppg mud to 450 psi surface pressure at 2740'
TVD (12.86 ppg LOT).
An 8-3/4" intermediate hole was drilled to 7560' MD where 7", 26#, L- 80, BTC-M casing was run (casing
shoe at 7546' MD) and cemented in place with 112 bbls of 12. 5-ppg lead Micro Lite cement and 33 bbls
of 15.8-ppg tail Class G cement. Casing was successfully pressure tested to 3500 psi for 30 min. An EZSV
bridge plug was set @ 7239’ MD and a whipstock was set @ 7221’ MD. A window was milled from
7221’ – 7233’ MD. New formation was drilled to 7249’ MD with a 6-1/8” Mill where a FIT was
performed with 9.0-ppg mud (860 psi surface pressure, 6634' TVD, 11.5 ppg EMW).
A 6-1/ 8" production hole was drilled to TD at 9850' MD. Uncemented 4-1/ 2", 12.6#, L- 80, IBT-M
slotted liner was run to 9815' MD.
The completion assembly consisting of 3-1/ 2", 9.2#, L-80 IBT-M tubing was run to 7103' MD with the
packer at 7043' MD.
See Mechanical report and cement evaluation
Table 4 in section "Location of Wells and Faults (20 AAC 25.283, a, 10- 11)" for conformance with 20 AAC
25.283, a, 6B)
Pressure Testing (20 AAC 25. 283, a, 7):
Table 1— Tubing and Production Casing Pressure Testing Tubing
Date Tubing Pressure
(psi)
Production Casing Pressure
(psi)
Differential Pressure
(psi)
TBD 3500 0 3500*
TBD 2000 3500 2500
*The tubing will be pressure tested to 3500 psi which is greater than 110% of max differential pressure
(2500 psi) during fracture stimulation per 20 AAC 25. 283, c, 2.
Accurate Pressure Ratings of Tubulars and Schematic (20 AAC 25. 283, a, 8):
Figure 1— Wellbore schematic for well V-111
Table 2— Tubular Ratings
Size/Name Weight Grade Connection ID Burst, psi Collapse, psi
9-5/8” Surface 40#L-80 BTC 8.835”5750 3090
7” Intermediate Casing 26#L-80 BTC-M 6.276”7240 5410
3-1/2” Production Tubing 9.2#L-80 IBT-M 2.992”10,160 10,530
4-1/2” Production Liner 12.6#L-80 IBT-M 3.958 8430 7500
Wellhead
FMC manufactured wellhead, rated to 5, 000 psi.
Figure 2— Well S- 44A FMC wellhead.
Tubing head adaptor: 11" 5, 000 psi x 4-1/16" 5,000 psi
Tubing Spool: 11" 5, 000 psi w/ 2-1/16" side outlets
Casing Spool: 11" 5, 000 psi w/ 1-1/16" side outlets
Tree: Cameron 4-1/16" 5,000 psi
Geological Frac Information (20 AAC 25. 283, a, 9):
Table 3— Geological Information Formation
Formation MD Top MD Bot TVDss
Top
TVDss
Bot TVD Thickness Frac Grad
psi/ft Lith. Desc.
THRZ*6682 7043 -6278 -6452 174 Shale
TKLB*7043 7205 -6452 -6532 80 Shale
TKUP*7205 7236 -6532 -6547 15 SS
TKC2D*7236 7250 -6547 -6554 7 SS
TKC2C*7250 7277 -6554 -6567 13 SS
TKC2B*7277 7312 -6567 -6585 18 SS
TKC2A*7312 7348 -6585 -6602 17 SS
TKC1C*7348 7383 -6602 -6620 18 SS
TKC1B*7383 7407 -6620 -6632 12 SS
TKC1A*7407 7421 -6632 -6639 7 SS
LCU*7421 -6639 -6665 26 Silts/SS
TKA5**Est. Top -6665 -6690 25 Silts/SS
TKA6**Est. Top -6690 -6738 48 Silts/SS
TMLV**Est. Top -6738 Shale
* Tops are from the V-111PB3
** Estimated from V-107
Location of Wells, Mechanical Information and Faults (20 AAC 25. 283, a, 10- 11):
Figure 3b— Plat of wells within one-half mile of V-111 wellbore reservoir trajectory and location of faults. The blue line
indicates the approximate fracture length and orientation in the toe of V-111.
Hilcorp’s technical analysis based on seismic, well and other subsurface information available indicates
that there are 6 mapped faults that transect the Kuparuk interval and enter the confining zone within
the ½ radius of the production and confining zone trajectory for V-111. Fracture gradients within the
confining zone (Kalubik and HRZ) will not be exceeded during fracture stimulation and would therefore
confine injected fluids to the pool. The HRZ and Kalubik in this area are predominately shale with some
silts with an estimated fracture pressure of ~13.5ppg.
There were no faults intersected when the production hole was drilled. Fault 1 is encountered in the
confining zone 230’ TVD above top Kuparuk.
Faults 1-6 intersect the production interval and confining zone within the ½ mile radius of the planned
fracs. Their displacements, sense of throw, and zone in which they terminate upwards are given below.
The wellbore trajectory is essentially NE/SW. maximum stress direction is estimated to be ~30 deg W of
N which will result in transverse fractures. The fracs should not reach any of the mapped faults.
Fault Throw Direction Top Bottom
1 60-100' DTSW Ugnu Ivishak
2 0-40' DTSW Colville Miluveach
3 0-70' DTSW Ugnu Basement
4 30' DTW Colville Basement
5 100' DTS Colville Basement
6 80-110' DTSW Sagavanirktok Basement
Mechanical report and cement evaluation
Table 4 – Mechanical Report and Cement Evaluation
Well Name Casing type Hole Size Vol cmt TOC est. via TOC TOC Top of pay Interval Zonal Isolation? Latest MITIACommentsin lbs/ft MD feet TVDss feet in Bbls MD feet TVDss feet TVDss feetV-111Intermediate 7 26# 7221 6539 8.75 145 Volumetric 3216 3126 6533 YesMITIA, 3500 psi,8/16/2003Production Liner 4.5 12.6# 9815 6615 6.125 0 N/A N/AV-02Intermediate 1st Stage 7 26# 9255 8677 8.75 130 Volumetric 5357 5271 6561 YesCMIT TxIA, 2500psi, 7/9/20162nd Stage 7 26# 4189 4104 8.75 52 Volumetric 2712 2627Second stage volumetrically brought cement upto SC shoe. FP'd OA after cement job.Production Liner 4.5 12.6# 15084 6.125 149 Volumetric 9076 8531Circ 30 bbls cement to surface; cmt'd to LinerHanger.V-03Intermediate 1st Stage 7 26# 9763 8645 8.75 125 Volumetric 6025 5656 6544 YesMITIA, 2000 psi,6/18/2007Intermediate 2nd Stage 7 26# 5102 4890 8.75 54 Volumetric 3487 3398Production Liner 4.5 12.6# 12589 6.125 82 Volumetric 9619 8536Circ 25 bbls cement to surface; cmt'd to LinerHanger.V-05Intermediate 7 26# 10344 8627 8.75 220 Bond Log 3300 2906 6509 YesMITIA, 3334 psi,3/28/2020Bond log shows TOC @ 3300' MD and stringersto 2650' MD.Production Liner 4.5 12.6# 12962 9054 6.125 72 Volumetric 10217 8519Circ 20 bbls cement to surface; cmt'd to LinerHanger.V-07Intermediate 7 26# 9927 8647 8.75 Bond Log 3270 2715 6490 YesMITIA, 3500 psi,12/9/2007Second stage volumetrically brought cement upto SC shoe. FP'd OA after cement job.Production Liner 4.5 12.6# 13316 8959 6.125 134 Volumetric 9770 8499Circ'd 36 bbls of contaminated cement tosurfaceV-100Intermediate 7 26# 8388 7038 8.75 200 Bond Log 6850 5580 6599 YesMITIA, 2709 psi,7/21/2019Bond log shows TOC @ 6850' MD.V-105Intermediate 1st stage 7 26# 8243 7041 8.5 35 Bond Log 7660 6466 6545 YesMITIA, 2814 psi,2/13/2021Bond log shows TOC @ 7660' MD.Intermediate 2nd Stage 7 26# 6011 4908 8.5 69 Bond Log 4404 3574V-107Intermediate/Production Liner5.5x3.515.5#/ 9.2#6630/7418 6289/ 70466.75 41 Volumetric 6150 5831 6505 YesCMIT TxIA, 2500psi, 7/28/2016V-109Intermediate 1st Stage 7 26# 7574 6595 8.75 21 Volumetric 6790 6096 6595 YesMITIA, 4000 psi,11/11/2012Intermediate 2nd Stage 7 26# 5573 4940 8.75 60 Volumetric 3780 3465V-115Intermediate 7 26# 8153 6610 8.75 Volumetric 3459 3069 6607 YesMITIA, 3500 psi,6/25/2008Production Liner 4.5 12.6# 10140 6626 6.125 Volumetric 7613 6401Casing SizeCasing Depth
Hydraulic Fracture Program (20 AAC 25.283, a, 12):
Fracture Stimulation Pump Schedule
A data frac will be pumped prior to the frac.
Total Fluid volume: 1020 bbls.
STEP STAGE AVERAGE COMMENTS FLUID PUMP CF DIRTY VOLUME DIRTY VOLUME PROPPANT
# # PPA TYPE RATE RATE STAGE CUM STAGE CUM STAGE CUM SIZE GROSS CUM
(BPM)(BPM)(BBL) (BBL) (GAL) (GAL) (LBS) (LBS) (BBL) (BBL)
0 28# X-Link 0.0 0 00 00
0 0.0
0 Step-Rate-Test N/A 40 40.0 0 00 00
1 Prime up, pressure test FreezeProt 5 5.0 10 10 420 420 10 10
2 ~KCl 5 5.0 10 0420 010
3 Injection test ~KCl 20 20.0 10 0420 010
Shut down and monitor pressure 0.0 10 0420 010
4 Calibration Test ~KCl 40 40.0 50 60 2,100 2,520 50 60
5 Flush ~KCl 40 40.0 64 124 2,667 5,187 64 124
HARD SHUTDOWN, MONITOR PRESSURE TILL CLOSURE.
FLUID PUMP CF DIRTY VOLUME DIRTY VOLUME PROPPANT CLEAN VOLUME
STEP STAGE AVERAGE COMMENTS TYPE RATE RATE STAGE CUM TOT JOB STAGE CUM STAGE CUM SIZE GROSS CUM
# # PPA (BPM)(BPM)(BBL) (BBL) (BBL) (GAL) (GAL) (LBS) (LBS) (BBL) (BBL)
Volume to Top Perf 63.5
6 1PAD28# X-Link 40 40.0 125 249 5,250 10,437 0 0 125 249
7 1 0.5 FLAT 28# X-Link 40 39.1 50 299 2,100 12,537 1,027 1,027 16/20 C-Lite 49 297
8 1PAD28# X-Link 40 40.0 125 424 5,250 17,787 0 1,027 125 422
9 1 1 FLAT 28# X-Link 40 38.3 80 504 3,360 21,147 3,218 4,245 16/20 C-Lite 77 499
10 1 2 FLAT 28# X-Link 40 36.7 50 554 2,100 23,247 3,859 8,103 16/20 C-Lite 47 546
11 1 3 FLAT 28# X-Link 40 35.3 50 604 2,100 25,347 5,562 13,665 16/20 C-Lite 45 591
12 1 4 FLAT 28# X-Link 40 34.0 50 654 2,100 27,447 7,137 20,802 16/20 C-Lite 43 634
13 1 5 FLAT 28# X-Link 40 32.8 50 704 2,100 29,547 8,598 29,400 16/20 C-Lite 42 676
14 1 6 FLAT 28# X-Link 40 31.6 50 754 2,100 31,647 9,957 39,357 16/20 C-Lite 40 716
15 1 7 FLAT 28# X-Link 40 30.5 50 804 2,100 33,747 11,224 50,581 16/20 C-Lite 39 755
16 1 8 FLAT 28# X-Link 40 29.5 50 854 2,100 35,847 12,408 62,989 16/20 C-Lite 38 793
18 1 9 FLAT 28# X-Link 40 28.6 80 934 3,360 39,207 21,628 84,616 16/20 C-Lite 58 851
19 1 10 FLAT 28# X-Link 40 27.7 80 1,014 3,360 42,567 23,294 107,910 16/20 CBL 56 907
20 1 11 FLAT 28# X-Link 40 26.9 80 1,094 3,360 45,927 24,861 132,771 16/20 CBL 55 962
22 1 FLUSH ~KCl 40 40.0 20 1,114 859 46,786 0 132,771 20 982
23 1 FLUSH FreezeProt 40 40.0 38 1,152 1,598 48,384 0 132,771 38 1,020
TOTALS 1152 132,771 1,020 Total Chems
CLEAN VOLUME
Anticipated Treating Pressures
Table 5 – Anticipated Pressures
Maximum Anticipated Treating Pressure:4500 psi
Maximum Allowable Treating Pressure:5000 psi
Stagger Pump Kickouts Between:4500 psi and 4750 psi (90% to 95% of MATP)
Global Kickout:4750 psi (95% of MATP)
IA Pop-off Set Pressure:3300 psi
IA Minimum hold Pressure:2400 psi
Treating Line Test Pressure:6000 psi
Sand Requirement:85,000 lbs CarboLite, 50,000 lbs CarboBOND
Minimum Water Requirements:1420 bbls (Pump Schedule: 1020 bbls)
OA Pressure:Monitor and maintain open to atmosphere
There are three overpressure devices that protect the surface equipment and wellbore from
overpressure. 1) Each individual frac pump has an electronic kickout that will shift the pumps into
neutral as soon as the set pressure is reached. Since there are multiple pumps, these set pressures are
staggered between 90% and 95% of the maximum allowable treating pressure. 2) A primary pressure
transducer in the treating line will trigger a global kickout that will shift all the pumps into neutral. 3)
There is a manual kickout that is controlled from the frac van that can shift all pumps into neutral. All
three of these shutdown systems will be individually tested prior to high pressure pumping operations.
Additionally, the treating pressure, IA pressure and OA pressure will be monitored in the frac van.
Based on a regional stress map, the maximum horizontal stress in the Kuparuk sands is determined to
run 30-45° W of N). The heel and lateral of the well are drilled perpendicular to the maximum horizontal
stress meaning the induced fracture will also be perpendicular to the wellbore.
Frac Dimensions:
Frac #MD Location, ft TVD top, ft TVD Bottom, ft Frac Half-Length, ft
1 7230’-7260’6533’6603’~250’
The above values were calculated using modeling software.
Maximum Anticipated Treating Pressure: 4500 psi
Surface pressure is calculated based on a closure pressure of ~0.6 psi/ ft or ~4000 psi. Closure pressure
plus anticipated net pressure to be built (500 psi) and friction pressure minus hydrostatic results in a
surface pressure of 5500 psi at the time of flush.
4000 psi (closure)+ 500 psi (net)+ 2900 psi (friction)- 2900 psi (hydrostatic)= 5500 psi (max surface press)
The difference in closure pressures of the confining shale layers determines height of the fracture.
Average confining layer stress is anticipated to be ~0.7 psi/ ft limiting fracture height to ~100 ft TVD.
4500 4500 4500
4500
Fracture half-length is determined from confining layer stress as well as leak-off and formation modulus.
The modeled frac is anticipated to reach a half-length of ~250 ft.
Pre-Job Anticipated Chemicals to be pumped:
42,840 gal
W5 -103
Up Date: 11/18/2019
Transmittal Number: 93714
r<
BPXA WELL DATA TRANSMITTAL
Enclosed is a disc with the requested core photos and analysis.
32002
If you have any questions please contact Merion Kendall: 907-564-5216; merion.kendall@bp.com.
APl_We1lNo
Wl_+ermit
Wei.UNm
Core
Photos
Core Analysis,
Description, etc
50029229780000
2001620
PRUDHOE BAY UN BORE Z-101
J
50029229880000
2001960
PRUDHOE BAY UN AURO S-104
50029229950000
2002080
PRUDHOE BAY UNIT Z-39
50029230080000
2010590
PRUDHOE BAY UN BORE V-100
50029231610000
2031030
PRUDHOE BAY UN BORE V-111
J
50029233880000
2080530
PRUDHOE BAY UN ORIN L-205
L-205PB1*
*Plug -back analysis located in BP archive database.
Please sign and email a copy of this transmittal to. G NNCPDCna bo365 onmicrosoft com
Thank you,
Mer
.Merion Xendaff
SIM Specialist
- SIM
BP Exploration AlaskaJ900 E. Benson B1vd.jRoom: 716BIAnchorage, AK
Subsurface Information Management
900 E. Benson Blvd. PO Box 196612
Anchorage, AK 99519-6612
�� lY'ay VR fYY. R 6t S4s
JAN 3 0 2020
1
AOGCC
Image ptject Well History File c.er Page
XHVZE
This page identifies those items that were not scanned during the initial production scanning phase.
They are available in the original file, may be scanned during a special rescan activity or are viewable
by direct inspection of the file.
~ 03 - t Q'3 Well History File Identifier
Organizing (done)
o Two-sided 111111111111111111I
o Rescan Needed 11111111I1111111111
RESCAN
DIGITAL DATA
~skettes, No. t+-
O Other, NolType:
OVERSIZED (Scannable)
o Maps:
o Other Items Scannable by
a Large Scanner
o Color Items:
o Greyscale Items:
o Poor Quality Originals:
OVERSIZED (Non-Scannable)
o Other:
o Logs of various kinds:
Date 1;)..1 ;:4 Ð5
o Other::
NOTES:
BY:
~
/5/
mfJ
Datel:J-j ß / oS
:3 X 30 = 00 +!l.tl = TOTAL PAGES II q
. j 7/..' '-" kount does not include cover sheet) IIIA.P·
Date: J ~ ¡~J (JI..<::) /5/ r r ~
1111111111111111111
11/1111111111111111
Project Proofing
BY:
~
/5/
mP
Scanning Preparation
BY: ( Maria)
Production Scanning
Stage 1 Page Count from Scanned File: I ~,n (Count does include cover sheet)
.page Count Matches Number in scannin¡ pre~aration: VYES
BY: ~ Date: 18--.[ 13/05
Stage 1 If NO in stage 1, page(s) discrepancies were found:
/5/
N~r
YES
NO
BY:
Maria
Date:
/5/
1/11111111111111111
Scanning is complete at this point unless rescanning is required,
ReScanned
1111111111111111111
BY:
Maria
Date:
/5/
Comments about this file:
Quality Checked
1111111111111111111
10/6/2005 Well History File Cover Page,doc
•
BP Exploration (Alaska) Inc. "~
Attn: Well Integrity Coordinator, PRB-20
Post Office Box 196612
Anchorage, Alaska 99519-6612
~,
. ,.~ ~ a fl' ~~J~S,
~, '1+i23~G~wla' `~,:''~ ~ .:
AUgUSt 14, 2009 '"~~ ~
Mr. Tom Maunder
Alaska Oil and Gas Conservation Commission
333 West 7ih Avenue
Anchorage, Alaska 99501
Subject: Corrosion Inhibitor Treatments of GPB V-Pad
Dear Mr. Maunder,
.
bp
~~~~~~~~
OCT 0 6 2009
~~ca pil & Gas Cons. Cammi~~inn
Anchorap~
~,,03:~~3
~ f -- t l l
Enclosed please find multiple copies of a spreadsheet with a list of wells from GPB V-
Pad that were treated with corrosion inhibitor in the surface casing by conductor
annulus. The corrosion inhibitor is engineered to prevent water from entering the
annular space and causing external corrosion that could result in a surface casing leak
to atmosphere. The attached spreadsheet represents the well name, API and PTD
numbers, top of cement depth prior to filling and volumes of corrosion inhibitor used in
each conductor.
As per previous agreement with the AOGCC, this letter and spreadsheet serve as
notification that the treatments took place and meet the requirements of form 10-404,
Report of Sundry Operations.
If you require any additional information, please contact me or my alternate, Anna Dube,
at 659-5102.
Sincerely,
Torin Roschinger
BPXA, Well Integrity Coordinator
~ ,
BP Exploration (Alaska ) Inc.
Surface Casing by Conductor Annulus Cement, Corrosion inhibitor, Sealant Top-off
Report of Sundry Operations (10-404)
Date
V-pad
8/13/2009
Well Name
PTD #
API #
Initial top of
cement
Vol. of cement
um ed
Final top of
cement
Cement top off
date
Corrosion
inhibitor Corrosion
inhibitod
sealant date
ft bbls ft na al
V-01 2040900 50029232t00000 NA 2 NA 17 6/30/2009
V-02 2040770 50029232090000 NA 3 NA 43.4 7/11/2009
V-03 2022150 50029231240000 Surf8C2 NA NA NA NA
V-04 2061340 50029233220000 NA 1.5 NA 20.4 6/29/2009
V-05 2080930 50029233910000 NA 1.75 NA 20.4 5/10/2009
V-07 2071410 50029233720000 NA 0.25 NA 1.7 6/29/2009
V-100 2010590 50029230080000 NA 1.5 NA 20.4 5/9/2009
V-101 2020560 50029230740000 NA 3.75 NA 32.3 7/10/2009
V-102 2020330 50029230700000 NA 7.75 NA 98.2 8/7/2009
V-103 2021860 50029231170000 NA 0.5 NA 9.4 7/12/2009
V-104 2021420 50029231030000 NA 1.5 NA 21.3 7/11/2009
V-105 2021310 50029230970000 NA 2.25 NA 23.8 6/29/2009
V-106A 2041850 50029230830100 NA 1.75 NA 17 6/29/2009
V-107 2021550 50029231080000 NA 1.75 NA 13.6 7/11/2009
V-108 2021660 5002923t120000 NA 1.5 NA 14.5 7/10/2009
V-109 2022020 50029231200000 NA 1.2 NA 10.2 6/30/2009
V-111 2031030 50029231610000 NA 1.5 NA 11.9 7/12/2009
V-112 2060200 50029233000000 NA 1.5 NA 15.3 5/10/2009
V-113 2022160 50029231250000 NA 2.5 NA 37.4 5/10/2009
V-114A 2031850 50029231780100 NA 2.5 NA 34 6/30/2009
V-115 2040270 50029231950000 NA 1.5 NA 13.1 5/9/2009
V-117 2030900 50029231560000 NA 1.25 NA 22.1 5/10/2009
V-119 2040410 50029232010000 NA 2 NA 18.7 6/30/2009
V-120 2041790 50029232250000 NA 1.5 NA S.5 7/12/2009
V-121 2070360 50029233480000 NA 1.9 NA 17 6/30/2009
V-122 2061470 50029233280000 NA 1.5 NA 6.8 5/10/2009
V-2o1 2012220 50029230540000 SC leak NA 4 NA 90.6 8/7/2009
V-202 2030770 50029231530000 NA 1.75 NA 12.8 7/11/2009
V-203 2051680 50029232850000 NA 2 NA 12.8 7/10/2009
V-204 2041310 50029232170000 NA 2 NA 22.1 6/30/2009
V-205 2061800 50029233380000 NA 1.8 NA 13.6 6/30/2009
V-207 2080660 50029233900000 NA 1.75 NA 18.28 1/9/2009
V-210 2042100 50029232310000 NA 2 NA 18.7 7/11/2009
V-211 2042200 50029232320000 NA 1.5 NA 13.6 7/10/2009
V-212 2051500 50029232790000 NA 12 NA 11.9 6/29/2009
V-213 2041160 50029232130000 NA 1.75 NA 6.3 5/9/2009
V-214 2051340 50029232750000 NA 0.5 NA 9.4 7/11/2009
V-215 2070410 50029233510000 NA 2.8 NA 30.6 6/30/2009
V-216 2041300 50029232160000 NA 1.5 NA 13.6 6/29/2009
V-217 2061620 50029233340000 NA 2.3 NA 25.5 6/30/2009
V-218 2070400 50029233500000 NA 2 NA 17.9 7/12/2009
V-219 2081420 50029233970000 NA 1 NA 16.2 7/12/2009
",-'~^ 2080200 50029233830000 NA 1.75 NA ~ 3/9/2008
V-221 2050130 50029232460000 NA 0.8 NA 8.5 6/29/2009
V-222 2070590 50029233570000 NA 2.5 NA 21.3 7/11/2009
V-223 2080220 50029233840000 NA 2 NA 20.5 9/7/2008
o2i2o/os
~~~I~mbe~~r
NO. 4590
Alaska Data & Consulting Services Company: State of Alaska
2525 Gambell Street, Suite 400 bed' tn) Alaska Oil & Gas Cons Comm
Anchorage, AK 99503-2838 ~~ ~ ~~~ ~ ~'"0~ Attn: Christine Mahnken
ATTN: Beth 333 West 7th Ave, Suite 100
Anchorage, AK 99501
Field: P.Bay,Milne Pt,Endicott,Borealis,Polaris,Lisburne
Well Job # Lea Descrietion Date Bl_ Cnlnr CD
18-32A 11968923 SCMT / - ! 02112/08 1
MPE-12 11978438 MEM INJ PROFILE UZL'-aU~ ~ C3Cv 02/08/08 1
4-141R-34 11996383 USIT L 02112/08 1
V-07 40016096 OH MWD/LWD EDIT "~ - G / C/C 12/04/07 2 1
L1~14 11626482 RST ~ '- / 1 9~l3 05/09/07 1 1
L2-18A 11657124 RST C 05/10/07 1 1
L2-33 11626484 RST ~ (o - ) 'nj C / 05111107 1 1
G-31A 11962778 RST - vS ~( ~~ 01/01/08 1 1
V-111 11978439 MEM GLS ~ 02/10108 1
W-216 12031441 CH EDIT PDC GR (USIT) 9 01111108 1
W-214 40016055 OH MWD/LWD EDIT V=, _ I 11/15107 2 1
Y-07A 11962576 USIT '' _ 12/18/07 1
C-358 11978432 MEM DDL _ / 01/02/08 1
PLEASE ACKNOWLEDGE RECEIPT BY SIGNING AND RET RNI,I~G..O~!t~`COPY EACH TO:
BP Exploration (Alaska) Inc. ~ ~ ~ T wi_r.
F~
Petrotechnical Data Center LR2-1
900 E. Benson Blvd.
Anchorage, Alaska 99508 s t a „ -, }
Date Delivered:
s ;;
Alaska Data & Consulting Services
2525 Gambell Street, Suite 400
Anchorage, AK 99503-283
ATTN. Beth
Received by:
•
/~
• •
-.-~ -_~
MICROFILMED
03/01/2008
DO NOT PLACE
~~,,
~N .
~~
ANY NEW MATERIAL
UNDER THIS PAGE
F:~LaserFiche\CvrPgs_Inserts~Microfilm_Marker. doc
02/12/2007
Schlumbergel'
NO. 4133
Schlumberger-DCS
2525 Gambell St, Suite 400
Anchorage, AK 99503-2838
A TTN: Beth
[XB-/63
"#¡¿¡s:XJ
Company: Alaska Oil & Gas Cons Comm
Attn: Christine Mahnken
333 West 7th Ave, Suite 100
Anchorage, AK 99501
Field:
Borealis
Orion
Well
Job#
Log Description
Date
BL
Color
CD
L-217 11212874 CH EDIT USIT IPDC-GR 07/13/06 1
Z-103 PB2 40011520 OH EDIT MWD/LWD 02115/05 2 1
V-111 PBI 40009265 OH EDIT MWD/LWD 07116/03 6 1
V-111 PB2 40009265 OH EDIT MWD/LWD 07126/03 2 1
.
PLEASE ACKNOWLEDGE RECEIPT BY SIGNING AND RETURNING ONE COpy EACH TO:
BP Exploration (Alaska) tne
Petrotechnical Data Center LR2~1
900 E Benson Blvd
Anchorage AK 99508-4254
Schlumberger-DCS
2525 Gambell St, Suite 400
Anchorage. AK 99503-2838
A TTN: Beth
Date Delivered:
Received by'
.
n ZnOJ
SCANNED FEB 2 1 2007
~
02/12/2007
Schlumberger
NO. 4133
Schlumberger-DCS
2525 Gambell St, Suite 400
Anchorage, AK 99503-2838
A TTN: Beth
Company: Alaska Oil & Gas Cons Comm
Attn: Christine Mahnken
333 West 7th Ave, Suite 100
Anchorage, AK 99501
Field:
Borealis
Orion
Well
Job #
Log Description
Date
BL
Color
CD
L-217 11212874 CH EDIT USIT IPDC-GRI 07/13/06 1
Z-103 PB2 40011520 OH EDIT MWD/LWD 02/15105 2 1
V·111 PB1 40009265 OH EDIT MWD/LWD 07/16103 6 1
V-111 PB2 40009265 OH EDIT MWDILWD 07/26103 2 1
-
.
PLEASE ACKNOWLEDGE RECEIPT BY SIGNING AND RETURNING ONE COpy EACH TO:
BP Exploration (Alaska) Inc.
Petrotechnicar Data Center LR2-1
900 E Benson Blvd.
Anchorage AK 99508-4254
Schlumberger·DCS
2525 Gambell St, Suite 400
Anchorage, AK 99503-2838
A TTN Beth
Date Delivered"
Received by·
.
~ fEB 2 () 2007
¿yð3 -/03
~ (¿¡L¡CJb
s
Permit to Drill 2031030
MD 9850 /'
REQUIRED INFORMATION
I r- j;j-
DATA SUBMITTAL COMPLIANCE REPORT
11/23/2005
Well Name/No. PRUDHOE BAY UN BORE V-111
Operator BP EXPLORATION (ALASKA) INC
TVD 6694 -----Completion Date 8/15/2003 ,..--- Completion Status 1-01L
Mud Log No
Samples No
DATA INFORMATION
Types Electric or Other Logs Run:
Well Log Information:
Log/
Data
Type
Electr
Digital Dataset
Med/Frmt Number
~
D Asc
~t
I3Pt
..EJr' D Asc
-RPt
ttPt
sr' D Asc
-R'pt
..r(pt
~
y(t
-Rf)t
.ED
-'ÍD
D Asc
C Lis
C Pds
/Log
.JED
~
C Lis
C Pds
12473
12473
12473
12473
MWD, GR, RES, PWD, PEX, NEU, DN, DIPOLE DT / CMR, USIT, AS
Name
Log Log Run
Scale Media No
Directional Survey
Directional Survey
Directional Survey
Directional Survey
Directional Survey
Directional Survey
Directional Survey
Directional Survey
Directional Survey
Directional Survey
Directional Survey
Directional Survey
Induction/Resistivity
I nd uction/Resistivity
Induction/Resistivity
Density
Density
25
25
Blu
1-15
1-15
1-15
13-15
13-15
25
Current Status 1-01L
sp~J... lJJ~ A)) 0.1
API No. 50-029-2316~-OO-OO
UIC N
~on:;urvey ~--..
(data taken from Logs Portion of Master Well Data Maint)
Interval OH I
Start Stop CH
o
o
o
108
108
108
7221
7221
o
9850
o
o
9850
9850
o
o
o
o
7635
7635
7635
7210
o
o
7210
7210
7560
7560
7560
9850
9850
9850
9850
9850
.
Received Comments
9/26/2003 Schlumberger
9/26/2003
9/26/2003
9/26/2003
9/26/2003
9/26/2003
9/26/2003
9/26/2003
9/26/2003
Open
Open
Open
Open
Open
9/26/2003
9/26/2003
9/26/2003
3/26/2004
3/26/2004
3/26/2004
3/26/2004
3/26/2004
Schlumberger
Anadrill
Schlumberger - PB1
Anadrill- PB1
Schlumberger - PB1
Schlumberger - PB2
Schlumberger - PB2
Anadrill - PB2
.
Schlumberger - PB3
Anadrill - PB3
Schlumberger - PB3
Vision Resistivity
Vision Resistivity
Vision Resistivity
Vision Density Neutron
Vision Density Neutron
DATA SUBMITTAL COMPLIANCE REPORT
11/23/2005
Permit to Drill 2031030 Well Name/No. PRUDHOE BAY UN BORE V-111 Operator BP EXPLORATION (ALASKA) INC API No. 50-029-23161-00-00
MD 9850 TVD 6694 Completion Date 8/15/2003 Completion Status 1-01L Current Status 1-01L UIC N
1;5 Density 25 Slu 13-15 7221 9850 Open 3/26/2004 Vision Density Neutron
ED C Lis 12473 Neutron 13-15 7221 9850 Open 3/26/2004 Vision Density Neutron
~ C Pds 12473 Neutron 25 13-15 7221 9850 Open 3/26/2004 Vision Density Neutron
J&g Neutron 25 Slu 13-15 7221 9850 Open 3/26/2004 Vision Density Neutron
/ÊD C Lis 12474 Gamma Ray 1-10 140 7490 Open 3/26/2004 PowerPulse Gamma Ray
./
ED C Pds 12474 Gamma Ray 25 1-10 140 7490 Open 3/26/2004 PowerPulse Gamma Ray .
.-/
Log Gamma Ray 25 Slu 1-10 140 7490 Open 3/26/2004 PowerPulse Gamma Ray
Well Cores/Samples Information:
Sample
Interval Set
Name Start Stop Sent Received Number Comments
ADDITIONAL INFORMATION
Well Cored? ~ N
Chips Received? (9N
Y@)
Daily History Received?
(1N
Q)N
Formation Tops
Analysis
Received?
Comments:
(\\.\\~ \uv. \~ ",,~~k ~ S~ L.{- y ~ ~8) rÀ ~ NI ,rH O~ UJ, It Stvl¿ C~V-L
G,~..... ~\A..J-\,,; \ ~~~II~ '\.~ t)JQ.}ð jt. ! ~ '3 q~
~ .¡(LoS ¡:.....,r
~ ~v\~dJ
.
Compliance Reviewed By:
Date:
~) N\ý~\ ~
S£~I.~epgøp
Alaska Data and Consulting Services
3940 Arctic Blvd, Suite 300
Anchorage, AK 99503-5711
ATTN: Beth
Well
V-111 ~
V-111
Y-11.· (l ~-'Ir:::"'-,
V-111
V-11/,
V-111 PB3)
V-111 PB3 gj().~·IO~
V-111 PB3
Job#
21006
21006
21006
21006
21006
40009265
40009265
40009265
Log Description
ADN,CDR,ARC & POWERPULSE
MD VISION RESISTIVITY
TVD VISION RESISTIVITY
MD VISION DENSITY NEUTRON
TVD VISION DENSITY NEUTRON
POWERPULSE GR & ROP
MD POWERPULSE-GR
TVD POWERPULSE-GR
PLEASE ACKNOWLEDGE RECEIPT BY SIGNING AND RETURNING ONE COPY EACH TO:
BP Exploration (Alaska) Inc.
Petrotechnical Data Center LR2-1
900 E. Benson Blvd.
Anchorage, Alaska 99508
Date Delivered:
"~~'br,\ ~
RECEIVED
[1.~ . 2 6 2004
'.!¡jska Oil & Gas Cons, Comm~.31!
Anchorage
dú3--IQ3
3/2/2004
NO. 3119
Company: Alaska Oil & Gas Cons Comm
Attn: Lisa Weepie
333 West 7th Ave, Suite 100
Anchorage, AK 99501
Field: Borealis
Date Color BL CD
08/13/03 1 J ;JJ../ '-:¡ ~~
08/13/03 1
08/13103 1
08/13/03 1
08/13/03 1
08/04/03
08104/03
08/04/03
J8Lf1i
1
1
1
Schlumberger DCS
3940 Arctic Blvd Suite 300
Anchorage AK 99503-5789
ATTN: Beth
.~J
~
ì
... -........;,
Received bY:~C) ~ \..t jy\'\" \ '- c....c"'\.'"~"\ e'~
f
, STATE OF ALASKA ~
ALASKA oiL AND GAS CONSERVATION COMM N
WELL COMPLETION OR RECOMPLETION REPORT A D LOG
-
1a. Well Status: !HI Oil 0 Gas 0 Plugged 0 Abandoned 0 Suspended 0 WAG
20MC 25.105 20MC 25.110
21, Logs Run:
MWD, GR, RES, PWD, PEX, NEU, DN, Dipole DT / CMR, USIT, ASM DENS, AIM
22. CASING, LINER AND CEMENTING RECORD
SE'TTING.Defltli HOLE
I OP BOTTOM SIZE CEMENTING RECORD
Surface 108' 42" 260 sx Arctic Set (Approx.)
29' 2746' 12-1/4" 510 sx PF 'L', 269 sx Class 'G'
26' 7221' 8-1/2" 266 sx Class 'G', 160 sx Class 'G'
7101' 9815' 6-1/8" Uncemented Slotted Liner
o GINJ 0 WINJ 0 WDSPL No. of Completions
2. Operator Name:
BP Exploration (Alaska) Inc.
3. Address:
P.O. Box 196612, Anchorage, Alaska 99519-6612
413. Location of Well (Governmental Section):
Surface:
4886' NSL, 1591' WEL, SEC. 11, T11N, R11E, UM
. Top of Productive Horizon:
571' NSL, 746'WEL, SEC. 02, T11N, R11E, UM
Total Depth:
1714' NSL, 1599' EWL, SEC. 01, T11N, R11E, UM
4b. Location of Well (State Base Plane Coordinates):
Surface: x- 590710 y- 5970134 Zone- ASP4
TPI: x- 591541 y- 5971110 Zone- ASP4
Total Depth: x- 593871 y- 5972282 Zone- ASP4
18, Directional Survey !HI Yes 0 No
GRADE
20" 91.5# H-40
9-5/8" 40# L-80
7" 26# L-80
4-1/2" 12.6# L-80
23. Perforations open to Production (MD + TVD of To,e and
Bottom Interval, Size and Number; if none, state' none"):
4-1/2" Slotted Section
MD TVD MD TVD
7285' - 7327' 6650' - 6664'
7407' - 7450' 6680' - 6680'
7543' - 7746' 6666' - 6639'
7830'-8031' 6641'-6649'
8040' - 8246' 6650' - 6658'
8379' - 8504' 6670' - 6677'
8514' - 8722' 6677' - 6684'
8846' - 8930' 6684' - 6688'
8939' - 9772' 6689' - 6699'
26.
One Other
5. Date Comp., Susp., or Aband.
8/15/2003
6. Date Spudded
7/2/2003
7. Date T.D. Reached
8/12/2003
8. Elevation in feet (indicate KB, DF, etc.)
RKB = 81.8'
9. Plug Back Depth (MD+ TVD)
9850 + 6694 Ft
10. Total Depth (MD+TVD)
9850 + 6694 Ft
11. Depth where SSSV set
(Nipple) 2209' MD
19. Water depth, if offshore
N/A MSL
24.
SIZE
3-1/2", 9.2#, L-80
25.
Revised: 11/17/03, Put on Production
1 b. Well Class:
!HI Development 0 Exploratory
o Stratigraphic 0 Service
12. Permit Number
203-103 303-214
13. API Number
50- 029-23161-00-00
14. Well Number
PBU V-111
15. Field and Pool
Prudhoe Bay Field / Borealis Pool
16. Lease Designation and Serial No.
ADL 028240
17. Land Use Permit:
20. Thickness of Permafrost
1900' (Approx.)
AMOUNT PULLED
ReCORD
DEPTH SET (MD)
7103'
PACKER SET (MD)
7043'
DEPTH INTERVAL (MD)
7239'
7221'
CEMENT. SQUEEZE,
AMOUNT & KIND OF MATERIAL USED
Set EZSV for Plug back Kickoff
Set Whipstock on top of EZSV
Freeze Protect with 130 Bbls of Diesel
Date First Production:
October 19, 2003
Date of Test Hours Tested PRODUCTION FOR
11/5/2003 6 TEST PERIOD ..
Flow Tubing Casing Pressure CALCULATED ........
Press. 345 24-HoUR RATE"'"
PRODUCTION TEST
Method of Operation (Flowing, Gas Lift, etc.):
Gas Lift
Oll-Bsl
2,533
Oll-Bsl
. 10,132
GAs-McF
3,122
GAs-McF
12,488
W A TER-BsL
-0-
WATER-BsL
-0-
CHOKE SIZE I GAS-OIL RATIO
176 1232
OIL GRAVITY-API (CORR)
27. CORE DATA
Brief description of lithology, porosity, fractures, apparent dips and presence of oil, gas or water (attach separate sheet, if necessary).
Submit core chips; if none, state "none".
Core Description Summary is attached.
RBOMSBfL
MO~ 2 1ntr3
Form 10-407 Revised 2/2003
CONTINUED ON REVERSE SIDE
01--
~..
28.'
"..
...
GEOLOGIC MARKERS
29.
,{MAnON TESTS
NAME
MD
TVD
Include and briefly summarize test results. List intervals tested,
and attach detailed supporting data as necessary. If no tests
were conducted, state "None".
Ugnu 2950'
Ugnu M Sands 4008'
Schrader Bluff N Sands 4247'
Schrader Bluff 0 Sands 4409'
Base Schrader / Top Colville 4771'
HRZ 6682'
Kalubik 7043'
Kuparuk C 7209'
Kuparuk C 9819'
2945'
None
3993'
4232'
4394'
4756'
6360'
6534'
6615'
6696'
30. List of Attachments: Summary of Daily Drilling Reports, Surveys, Core Description Summary
31. I hereby certify that the foregoing is true and correct to the best of my knowledge.
Signed Terrie Hubble ~~ ~ Title Technical Assistant Date II· / 7.. œ
PBU V-111 203-103 303-214 Prepared By NamelNumber: Terrie Hubble, 564-4628
Well Number Permit No. / Approval No. Drilling Engineer: Neil Magee, 564-5119
INSTRUCTIONS
GENERAL: This form is designed for submitting a complete and correct well completion report and log on all types of lands and leases in
Alaska.
ITEM 1a: Classification of Service Wells: Gas Injection, Water Injection, Water-Alternating-Gas Injection, Salt Water Disposal, Water
Supply for Injection, Observation, or Other. Multiple completion is defined as a well producing from more than one pool with
production from each pool completely segregated. Each segregated pool is a completion.
ITEM 4b: TPI (Top of Producing Interval).
ITEM 8: The Kelly Bushing elevation in feet above mean low low water. Use same as reference for depth measurements given in other
spaces on this form and in any attachments.
ITEM 13: The API number reported to AOGCC must be 14 digits (ex: 50-029-20123-00-00).
ITEM 20: True vertical thickness.
ITEM 22: Attached supplemental records for this well should show the details of any multiple stage cementing and the location of the
cementing tool.
ITEM 23: If this well is completed for separate production from more than one interval (multiple completion), so state in item 1, and in
item 23 show the producing intervals for only the interval reported in item 26. (Submit a separate form for each additional
interval to be separately produced, showing the data pertinent to such interval).
-
ITEM 26: Method of Operation: Flowing, Gas Lift, Rod Pump, Hydraulic Pump, Submersible, Water Injection, Gas Injection, Shut-In, or
Other (explain).
ITEM 27: If no cores taken, indicate "None".
ITEM 29: List all test information. If none, state "None".
Form 10-407 Revised 2/2003
.
eðC3-- /03
MWD/LWD Log Product Delivery
Customer BP Exploration (Alaska) Inc. Dispatched To: Lisa Weepie
Well No V-111 Date Dispatched: 2-May-03
I nstallation/Rig Nabors 9ES Dispatched By: Nate Rose
Data No Of Prints No of Floppies
Surveys
2
. ~ . ~. ',. Please sign and return to: James H. Johnson
Received By: «..\ ~ \ >\t.;-u"£,, l~\,,~~jV""'\... . BP Exploration (Alaska) Inc.
(' - ...: .. Petrotechnical Data Center (LR2-1)
900 E. Benson Blvd.
Anchorage, Alaska 99508
Fax: 907-564-4005
e-mail address:johnsojh@bp.com
(0
LWD Log Delivery V1.1, Dec '97
'~~~,\\~
.
.
19C,-==) ~. ) Q~
MWD/LWD Log Product Delivery
Customer BP Exploration (Alaska) Inc. Dispatched To: Lisa Weepie
Well No V-111PB1 Date Dispatched: 2-May-03
Installation/Rig Nabors 9ES Dispatched By: Nate Rose
Data No Of Prints No of Floppies
Surveys
2
Received By: ~~_~ )~~JV""'\...
Please sign and return to:
Anadrill LWD Division
3940 Arctic Blvd, Suite 300
Anchorage, Alaska 99503
nrose1 @slb.com
Fax: 907-561-8417
LWD Log Delivery V1.1, Dec '97
'K~'D ,V\~
·
.03- J03
MWD/LWD Log Product Delivery
Customer BP Exploration (Alaska) Inc. Dispatched To: Lisa Weepie
Well No V-117PB2 Date Dispatche 10-Jun-03
Installation/Rig Nabors 9ES Dispatched By: Nate Rose
Data No Of Prints No of Floppies
Surveys 2
'""~ _ \ ~. Please sign and return to: James H. Johnson
Received BY:~\ ~ J"" ~).,O C'1ì. ~~ BP Exploration (Alaska) Inc.
Petrotechnical Data Center (LR2-1)
900 E. Benson Blvd.
Anchorage, Alaska 99508
Fax: 907-564-4005
r e-mail address:johnsojh@bp.com
'\.,,1
LWD Log Delivery V1.1 , Dec '97
K~~r\\~
.
.
(Yn:-=3 - 10A- ~
MWD/LWD Log Product Delivery
Customer BP Exploration (Alaska) Inc. Dispatched To: Lisa Weepie
Well No V-111 PB3 Date Dispatched: 2-May-03
Installation/Rig Nabors 9ES Dispatched By: Nate Rose
Data No Of Prints No of Floppies
Surveys
2
"""~ \ ~ ~ Please sign and return to: James H. Johnson
Received By:'\~~\\..~!¥",,\ ..l \.sJ~_ BP Exploration (Alaska) Inc.
Petrotechnical Data Center (LR2-1)
900 E. Benson Blvd.
Anchorage, Alaska 99508
Fax: 907-564-4005
e-mail address:johnsojh@bp.com
LWD Log Delivery V1.1 , Dec '97
--~~~(\\~
.. STATE OF ALASKA _
ALASKA~L AND GAS CONSERVATION COMI\ì..\:)SION
WELL COMPLETION OR RECOMPLETION REPORT AND LOG
1a. Well Status: SOil 0 Gas 0 Plugged 0 Abandoned 0 Suspended 0 WAG
20MC 25.105 20MC 25.110
o GINJ 0 WINJ 0 WDSPL No. of Completions
2. Operator Name:
BP Exploration (Alaska) Inc.
. 3. Address:
P.O. Box 196612, Anchorage, Alaska 99519-6612
4a. Location of Well (Governmental Section):
Surface:
4886' NSL, 1591' WEL, SEC. 11, T11 N, R11 E, UM
Top of Productive Horizon:
571' NSL, 746' WEL, SEC. 02, T11 N, R11 E, UM
Total Depth:
1714' NSL, 1599' EWL, SEC. 01, T11N, R11E, UM
4b. Location of Well (State Base Plane Coordinates):
Surface: x- 590710 y- 5970134 Zone- ASP4
TPI: x- 591541 y- 5971110 Zone- ASP4
Total Depth: x- 593871 y- 5972282 Zone- ASP4
18. Directional Survey S Yes 0 No
21. Logs Run:
MWD, GR, RES, PWD, PEX, NEU, DN, Dipole DT I CMR, USIT, ASM DENS, AIM
CASING, liNER AND CEMENTING RECORD
S!:TTINGDEPTH HOLE
lOP BOTTOM SIZE
Surface 108' 42"
29' 2746' 12-1/4"
26' 7221' 8-1/2"
7101' 9815' 6-1/8"
22.
CASING
SIZE
20"
9-5/8"
7"
4-112"
WT,PER FT.
91.5#
40#
26#
12.6#
GRADE
H-40
L-80
L-80
L-80
One Other
5. Date Comp., Susp., or Aband.
8/15/2003
6. Date Spudded
7/2/2003
7. Date T.D. Reached
8/12/2003
8. Elevation in feet (indicate KB, DF, etc.)
RKB = 81.8'
9. Plug Back Depth (MD+ TVD)
9850 + 6694 Ft
10. Total Depth (MD+TVD)
9850 + 6694 Ft
11. Depth where SSSV set
(Nipple) 2209' MD
19. Water depth, if offshore
NIA MSL
1b. Well Class:
S Development 0 Exploratory
o Stratigraphic 0 Service
12. Permit Number
203-103 303-214
13. API Number
50- 029-23161-00-00
14. Well Number
PBU V-111
15. Field and Pool
Prudhoe Bay Field I Borealis Pool
16. Lease Designation and Serial No.
ADL 028240
17. Land Use Permit:
20. Thickness of Permafrost
1900' (Approx.)
CEMENTING RECORD
260 sx Arctic Set (Approx.)
510 sx PF 'L" 269 sx Class 'G'
266 sx Class 'G', 160 sx Class 'G'
Uncemented Slotted Liner
23. Perforations open to Production (MD + TVD of Top and
Bottom Interval, Size and Number; if none, state "none"):
4-112" Slotted Section
MD
7285' - 7327'
7407' - 7450'
7543' - 7746'
7830' - 8031'
8040' - 8246'
8379' - 8504'
8514' - 8722'
8846' - 8930'
8939' - 9772'
TVD
6650' - 6664'
6680' - 6680'
6666' - 6639'
6641' - 6649'
6650' - 6658'
6670' - 6677'
6677' - 6684'
6684' - 6688'
6689' - 6699'
MD
26.
Date First Production:
Not on Production
Date of Test Hours Tested PRODUCTION FOR
TEST PERIOD ..
Flow Tubing Casing Pressure CALCULATED .....
Press. 24-HoUR RATE"""
27.
24.
SIZE
3-1/2", 9.2#, L-80
TVD
TUSING RECORD
DEPTH SET (MD)
7103'
PACKER SET (MD)
7043'
25.
ACID, FRACTURE, CEMENT SQUEEZE, ETC.
DEPTH INTERVAL (MD)
7239'
7221'
PRODUCTION TEST
Method of Operation (Flowing, Gas Lift, etc.):
NIA
OIL-BsL GAs-McF WATER-BsL
OIL-BsL
Form 10-407 Revised 2/2003
GAs-McF
WATER-BsL
CONTINUED ON REVERSE SIDE
RBDMS aft
Sf? 1 7 ?nn~
AMOUNT & KIND OF MATERIAL USED
Set EZSV for Plugback Kickoff
Set Whipstock on top of EZSV
Freeze Protect with 130 Bbls of Diesel
CHOKE SIZE I GAS-OIL RATIO
OIL GRAVITY-API (CORR)
..s.. Gas Con~L
CORE DATA kl-< ;[- ¡ Vi- t;
Brief description of lithology, porosity, fractures, apparent dips and presence of oil, gas or water (attach separate sheet, if necessary).
Submit core chips; if none, state "non::¿;:;;:.'¡:;";;;l SEP 1 5 Z003
: .,ct.".., .,,- .,..,'. r
Core Description Summary is attached. I-Ø.~%~ ¡
I i;Jm I ORIGINAL t/
,-_. J
?8.
r··......",
29.
.ORMATlON TESTS
Include and briefly summarize test results. List intervals tested,
and attach detailed supporting data as necessary. If no tests
were conducted, state "None".
GEOLOGIC MARKER:", ~
NAME
MD
TVD
Ugnu 2950'
Ugnu M Sands 4008'
Schrader Bluff N Sands 4247'
Schrader Bluff 0 Sands 4409'
Base Schrader / Top Colville 4771'
HRZ 6682'
Kalubik 7043'
Kuparuk C 7209'
Kuparuk C 9819'
2945'
None
3993'
4232'
4394'
4756'
6360'
6534'
6615'
6696'
SEP 1 ~
30. List of Attachments: Summary of Daily Drilling Reports, Surveys, Core Description Summary
31. I hereby certify that the foregoing is true and correct to the best of my knowledge.
Signed . .--,:::;.....~ LL. (] /Ja. r<\ l5 03
Terrie Hubble MVU\Lf ,~ Title Technical Assistant Date U""{ - .
PBU V-111 203-103 303-214 Prepared By Name/Number: Terrie Hubb/e, 564-4628
Well Number Drilling Engineer: Neil Magee, 564-5119
Permit No. I Approval No.
INSTRUCTIONS
GENERAL: This form is designed for submitting a complete and correct well completion report and log on all types of lands and leases in
Alaska.
ITEM 1a: Classification of Service Wells: Gas Injection, Water Injection, Water-Alternating-Gas Injection, Salt Water Disposal, Water
Supply for Injection, Observation, or Other. Multiple completion is defined as a well producing from more than one pool with
production from each pool completely segregated. Each segregated pool is a completion.
ITEM 4b: TPI (Top of Producing Interval).
ITEM 8: The Kelly Bushing elevation in feet above mean low low water. Use same as reference for depth measurements given in other
spaces on this form and in any attachments.
ITEM 13: The API number reported to AOGCC must be 14 digits (ex: 50-029-20123-00-00).
ITEM 20: True vertical thickness.
ITEM 22: Attached supplemental records for this well should show the details of any multiple stage cementing and the location of the
cementing tool.
ITEM 23: If this well is completed for separate production from more than one interval (multiple completion), so state in item 1, and in
item 23 show the producing intervals for only the interval reported in item 26. (Submit a separate form for each additional
interval to be separately produced, showing the data pertinent to such interval).
ITEM 26: Method of Operation: Flowing, Gas Lift, Rod Pump, Hydraulic Pump, Submersible, Water Injection, Gas Injection, Shut-In, or
Other (explain).
ITEM 27: If no cores taken, indicate "None".
ITEM 29: List all test information. If none, state "None".
ORIGINAL
Form 10-407 Revised 2/2003
Legal Name:
Common Name:
Test Date I
.........._.l
7/5/2003 LOT
8/8/2003 FIT
V-111
V-111
Test Type
Test Depth (TMD)
------..
2,745.0 (ft)
7,221.0 (ft)
BP
Leak-Off Test Summary
-.........._......_.._.._.._.~--...-
Test Depth (TVD)
---------...-..
2,740.0 (ft)
6,621.0 (ft)
AMW
.-...-----...-...-....
9.70 (ppg)
9.00 (ppg)
. .........................-
Suñace Pressure
450 (psi)
860 (psi)
Leak Off Pressure (BHP)
1,831 (psi)
3,956 (psi)
'"
Page 1 of 1
EMW
12.86 (ppg)
11.50 (ppg)
e
e
Printed: 8/18/2003 9:22:17 AM
,I
e
e
Page 1 of 22
BP
Operations Summary Report
legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRill +COMPlETE
NABORS ALASKA DRilLING I
NABORS 9ES
i
~a~~_~om - To Hours
7/1/2003
Task Code NPT: Phase
7/2/2003
18:00 - 22:00 4.00 RIGU P PRE
22:00 - 00:00 2.00 RIGU P PRE
00:00 - 03:30 3.50 RIGU P PRE
03:30 - 04:00 0.50 RIGU P PRE
04:00 - 05:30 1.50 BOPSURP PRE
05:30 - 06:00 0.50 BOPSURP PRE
06:00 - 07:00 1.00 BOPSURP PRE
07:00 - 07:30 0.50 BOPSURP PRE
07:30 - 09:30 2.00 DRILL P SURF
09:30 - 11 :30 2.00 DRILL P SURF
11 :30 - 12:00
12:00 - 22:30
0.50 DRILL P
10.50 DRILL P
SURF
SURF
22:30 - 23:00 0.50 DRILL P SURF
23:00 - 00:00 1.00 DRILL P SURF
7/3/2003 00:00 - 01 :00 1.00 DRILL P SURF
01 :00 - 02:00 1.00 DRILL P SURF
02:00 - 03:00 1.00 DRILL P SURF
03:00 - 05:00 2.00 DRILL P SURF
05:00 - 06:30 1.50 DRILL P SURF
06:30 - 11 :00 4.50 DRILL P SURF
11 :00 - 12:30 1.50 DRILL P SURF
12:30 - 13:00 0.50 DRILL P SURF
13:00 - 14:30 1.50 DRILL P SURF
14:30 - 15:00 0.50 DRILL P SURF
15:00 - 15:30 0.50 DRILL P SURF
15:30 - 17:00 1.50 DRILL P SURF
17:00 - 18:00 1.00 DRILL P SURF
18:00 - 20:30 2.50 DRILL P SURF
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
Description of Operations
. -..------------...
Move 9-ES off V-117. Move to and RIU over V-111. Spot and
level Pits and Sub. Ready rig for drilling operations.
ACCEPT RIG @ 22:00 HRS. Nipple up diverter system. Take
on water to mix spud mud.
Mix spud mud. Nipple up diverter system, riser and flowline.
Load pipeshed with surface tools and strap same.
Service topdrive. Continue to rig up floor and ready rig for spud.
P/U HWDP and jars. Stand back in derrick.
Function test diverter system.
Pick up and clean up rig. Remove trash generated from rig
move.
Pre-spud meeting discussing the surface hole plan, hazards
and fluid segregation objectives.
Build BHA with 12 1/4 Hughes MX-C1, 1.5 degree 4.5 stage
motor and MWD. Fill stack and test for leaks.
Drill surface hole from 108 to 355.
Drilling parameters: WOB=15K RPM=50 GPM= 600 @ 900
PSI on and 850 off TRQ= 2.2 on and 1.2 off
AST=O ART=1.15
POH to P/U stand from the derrick with jars.
Drill 12 1/4 surface hole from 355 to 1,653.
Drilling parameters: WOB=15 RPM=80 GPM=600 @ 1850 on
and 1,530 off TRQ.=4,500 on and 1,000 off
ART=5.99 AST=1.78
CBU x 1.5 prior to POH for wiper trip & bit change.
POH.
POH with no adverse hole condions. Wipe minor overpulls.
Break and grade bit M/U new Hughes MX-C1. Clear floor.
RIH to 1,560 and wash last stand to bottom. Began seeing
resistance on TIH at approx 500 ft. Worked several spots to
bottom. No pumps or rotating required.
Drill 12 1/4 surface hole from 1,653 to 1,933.
Run Gyro survey due to questionable survey. Magnetic
interference from close approach. Survey every 100 ft. on TOH
with gyro.
Drill 12 1/4 surface hole from 1,933 to 2,763. Hydrates seen
from 2,120 to 2,450:
Drilling parameters: WOB=25 -40 RPM=80 TRQ=5-7,000 on
and 2,000 off GPM=650 @ 2,350 off and 2,750 on
AST= 1.2 ART=2.3
Circulate 2.5 times bottoms up @ 80 RPM, 650 GPM.
POH to 2,600. Hole began to overpull and swab.
Backream out of the hole from 2,600 to 1,653 @ 650 GPM.
(Last bit run) CBU.
POH from 1,653 to HWDP @ 900 with no adverse hole
condions.
RIH to hole TD of 2,763 with no adverse hole conditons or fill.
Washed last stand to bottom as precautionary measure.
Circulate and condition mud.
POH to HWDP with no adverse hole conditons. Hole in good
shape.
Lay down BHA. Break and grade bit Clear floor of all vendors
excess equipment
Printed: 8/1812003 9:22:41 AM
e
.
Page 2 of 22
BP
Operations Summary Report
Legal Well Name: V-111
Common Well Name: V-111
Event Name: DRILL +COMPLETE Start:
Contractor Name: NABORS ALASKA DRILLING I Rig Release:
Rig Name: NABORS 9ES Rig Number:
Date I From - To i Hours Task, Code NPT ¡Phase
__-1-_.... . !
20:30 - 22:00 1.50 CASE P
7/3/2003
SURF
22:00 - 00:00
2.00 CASE
P
SURF
7/4/2003
00:00 - 02:30
2.50 CASE
P
SURF
02:30 - 03:00
03:00 - 05:00
0.50 CASE
2.00 CEMT
P
P
SURF
SURF
05:00 - 07:30
2.50 CEMT
P
SURF
07:30 - 08:30 1.00 CEMT P SURF
08:30 - 10:30 2.00 CEMT P SURF
10:30 - 15:30 5.00 CEMT P SURF
15:30 - 19:00 3.50 BOPSUR P SURF
19:00 - 19:30 0.50 BOPSURP SURF
19:30 - 00:00 4.50 DRILL P INT1
7/5/2003 00:00 - 03:00 3.00 DRILL P INT1
03:00 - 05:30 2.50 DRILL P INT1
05:30 - 06:00 0.50 CASE P INT1
06:00 - 07:30 1.50 DRILL P INT1
07:30 - 08:00 0.50 DRILL P INT1
08:00 - 08:30 0.50 DRILL P INT1
08:30 - 20:30 12.00 DRILL P INT1
7/2/2003
8/15/2003
Spud Date: 7/8/2003
End: 8/15/2003
Description of Operations
Rig up to run 9 5/8 surface casing. Dummy run landing joint
and hanger.
P/U shoe track and bakerlok bottom 3 connections. Fill pipe
and check floats. RIH to 350' with 9 5/8" L-80, BTC 40#
surface pipe. Average torque @ 8,000.
Continue to RIH with 66 jts 9 5/8" L-80, BTC 40# casing from
350 to 2746'. Torque each connection to 8,000. Saw some hole
resistance from 400 to 500 ft and nothing on the remaining
TIH. Circulate down last joint at 5 BPM @ 255 PSI.
RID Franks fillup tool and P/U cement head.
Break circulation and stage up to 8 BPM with full returns.
Circulate and conditon mud for cement job @ 8 BPM and 400
PSI. Lower Vis. to 70 to 90 and drop YP from 15 to 18.
Reciprocate pipe in 5 ft. strokes all while circulating and
conditioning. ( Hanger catching diverter spool on up stroke)
Pump 10 bbls. preflush and test lines to 3,500. Pump
remaining 20 bbls. of preflush followed by 75 bbls. of 10.5 ppg.
Alpha spacer. Drop bottom plug and pump 377 bbls. of 10.7
ppg. lead cement(510 sks. @ 4.15 yield) Switch to tail and
pump 55 bbls., class "G" 15.8 ppg. cement (270 sks. @ 1.15
yield) Kick out top plug with 10 bbls. water. Switch to rig
pumps and chase cement with 192 bbls. of mud, bumping plug
at 94 % eft. ( Casing was landed 93 bbls. from bumping the
plug due to sticky hole conditons) Pressure up to 1,800 and
hold 5 minutes. Release pressure and confirm floats are
holding.
C.I.P. @ 07:10. App. 100 bbls. of cement and 75 bbls spacer
circulated out of the hole during displacement
RID casing equipment Back out landing joint Flush and drain
stack. Flush cement returns into cellar pump. Remove 4"
valves in conductor.
NID surface diverter system.
N/U speed head and tubing spool. Install 5,000 # BOP stack
and riser / flowline.
Pressure test BOP's as per policy 250 low and 4,000 high.
Witness of test waived by AOGCC.
Install wear bushing and RID testing equipment
Pick up drillpipe 1x1 and rack back in derrick.
P/U used Hycalog 8 1/2" PDC bit, 1.15 degree motor,MWD
tools, jars and HWDP. Orient and shallow test same.
RIH 1 x 1 with 4" HT-40 drillpipe to app. 2550. Circulate and get
air out of system.
Pressure test casing to 3,500 for 30 minutes.
Wash down and tag F/C @ 2,609. Drill shoe track plus 20 ft. of
new hole to 2,783.
CBU @ 525 GPM, 1,830 PSI.
Perform LOT:===12.86 EMW
TVD==2,740 Test MW==9.7 Surface pressure==450
Clean and ready pits for "Oil base mud system". Flush all lines
and dry pits with rags and hot air heaters. Clean area under
rotary table. Isolate drip pans from running into drilling nipple.
Printed: 8/18/2003 9:22:41 AM
e
e
BP
Operations Summary Report
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Date I From - To Hours Task Code I N~T . Phase
I
~..__.... n___.__._..
7/7/2003 00:00 - 02:00 2.00 EVAL P INT1
02:00 - 04:00 2.00 EVAL P INT1
04:00 - 04:30 0.50 EVAL P INT1
04:30 - 05:30 1.00 EVAL P INT1
05:30 - 07:00 1.50 EVAL P INT1
07:00 - 08:30 1.50 EVAL P INT1
08:30 - 13:30 5.00 EVAL P INT1
13:30 -15:30 2.00 EVAL P INT1
15:30 - 16:30 1.00 EVAL P INT1
16:30 - 17:30
1.00 EVAL P
INT1
17:30 - 18:30 1.00 EVAL P INT1
18:30 - 19:00 0.50 EVAL P INT1
19:00 - 21 :00 2.00 EVAL P INT1
21 :00 - 22:00 1.00 EVAL P INT1
22:00 - 23:30 1.50 EVAL P INT1
23:30 - 00:00 0.50 EVAL P INT1
7/8/2003 00:00 - 00:30 0.50 EVAL P INT1
00:30 - 01 :00 0.50 EVAL P INT1
01 :00 - 02:00 1.00 EVAL P INT1
02:00 - 04:00 2.00 DRILL P INT1
04:00 - 04:30 0.50 DRILL P INT1
04:30 - 05:30 1.00 DRILL P INT1
05:30 - 06:00 0.50 DRILL P INT1
Page 1 of 4
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End:
7/8/2003
8/15/2003
Description of Operations
Hold PJSM. MU 60' core barrel per Baker coring tech. MU
coring stand and rack back in derrick. MU remaining coring
BHA.
RIH with core barrel at modest pace. Fill string every 20 stands
run. Hole in good shape.
At casing shoe (2,745) Up==86K Dwn.==79K
RIH and tag bottom at 4,042. Calculate number and length of
DP pups needed to start coring operation with a full stand.
POH and pick up space out pups.
Circulate mud around 1 circulation as per on site core
specialist Drop 1" ball and pump to seat above barrel. Observe
pressure increase as ball seats and puts barrel in coring mode.
Core from 4,042 to 4,102 with 200 GPM @ 640 PSI, 40-70
rotary, and torque at 1,100 off and 2-2,300 on.
Up==109K Dwn==105K Rotating==108K
Drop 1.125" ball to activate core catcher and divert flow. Stand
back kelly stand (used for coring) and rack back in derrick.
Drop Baker 2" circ. sub dart and shear open sub. CBU at 250
gpm @ 520 PSI.
POH at designated core tripping speeds. No adverse hole
condions. Hole taking proper fill.
Break down and layout core barrel. Recovered app. 55 ft. of
the 60 ft. cored.
PJSM / HACL P/U and dummy run 3 sections of core barrel to
confirm the rig is capable of suspending a 90 ft. barrel and
have room to M/U the coring bit Confirmed that a 90 ft. barrel
can be run.
P/U and stand back next core barrel to be run. (The first run in
the 2nd coring interval will start with 60 ft. barrel. If coring goes
well, with no jams or other problems, the next run will be with a
90 ft. section.)
Power vac. and clean floor of residual MOBM from trip and
laying down core.
Service topdrive.
P/U rotary assembly as per DD with RR 8 1/2 Hycalog bit
RIH to casing shoe @ 2745 and fill pipe.
Slip and cut 78' of drilling line. Check brakes and service
crown. Check crown saver.
RIH from 2,745 to 2,764.
RIH from 2764 to 3,950 and position bit for MAD pass.
Stage up pumps from 450 to 600 gpm to keep mud on shaker
screens.
MAD pass from 3,950 to 4,102 with 600 GPM @ 3,250. Began
taking wt app. 7 ft. off bottom. (Suspect missing section from
core trip laying on bottom)
Rotary drill from 4,102 to 4,340 with 600 GPM and 130 +
rota ry.
P/U off bottom and circulate while MWD logs are printed and
evaluated for picking next core point
Rotary drill from 4,340' to 4,380' at a controlled drilling rate of
<100 FPH as per geologist 120 klbs up, 112 klbs down, 117
klbs rotate. 600 gpm, 3230 psi.
Circulate and condition mud for core #2. 600 gpm, 3220 psi.
Printed: 8/18/2003 9:27:36 AM
e
e
BP
Operations Summary Report
Page 2 of 4
Legal Well Name: V-111
Common Well Name: V-111 Spud Date: 7/8/2003
Event Name: DRILL +COMPLETE Start: 7/8/2003 End:
Contractor Name: NABORS ALASKA DRILLING I Rig Release: 8/15/2003
Rig Name: NABORS 9ES Rig Number:
Date I Hours Task Code NPT Phase Description of Operations
I ~ro~.- To
7/8/2003 06:00 - 06: 15 0.25 DRILL P INT1 Monitor well - static
06:15 - 08:30 2.25 DRILL P INT1 Pump dry job and POH for core #2. 124 klbs up, 115 klbs
down.
08:30 - 09:00 0.50 DRILL P INT1 LD MWD, LWD, bit sub, bit
09:00 - 10:00 1.00 DRILL P INT1 Clean and clear rig floor
10:00 - 12:00 2.00 EVAL P INT1 PU & MU BHA #6, core barrel and bit
12:00 - 13:30 1.50 EVAL P INT1 RIH with BHA #6. Fill pipe at csg shoe. 89 klbs up, 80 klbs
down. Wash down and tag bottom at 4380'.
13:30 - 14:30 1.00 EVAL P INT1 CBU, 250 gpm, 750 psi. Drop 1" ball to divert fluid from inner
core barrel. MU kelly stand and pump to seat at 200 gpm, 445
psi.
14:30 - 16:00 1.50 EVAL P INT1 Cut core #2 from 4380' to 4440'. 115 klbs up, 107 klbs down,
114 klbs rotate. 200 gpm, 610 psi. 65-70 rpm, 4-5 klbs WOB,
1-3 klbs torque.
16:00 -17:30 1.50 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand to activate core
catcher. Pump to seat at 250 gpm, 910 psi. Stand back kelly
stand. Drop 2-1/4" dart to open circ sub. Pump to seat at 200
gpm, 710 psi. After circ sub opened CBU at 300 gpm, 855 psi.
17:30 - 17:45 0.25 EVAL P INT1 Monitor well -static.
17:45 - 22:00 4.25 EVAL P INT1 Pump dry job and POH per coring protocol. 117 klbs up, 111
klbs down.
22:00 - 22:30 0.50 EVAL P INT1 PJSM with Baker, Core Labs, BP, and all rig personnel on
laying down core barrels.
22:30 - 00:00 1.50 EVAL P INT1 LD core barrels. Recovered 57' of core from 60' cut
7/9/2003 00:00 - 00:30 0.50 EVAL P INT1 Clean and clear rig floor.
00:30 - 02:00 1.50 EVAL P INT1 MU BHA #7, core barrel #3
02:00 - 04:00 2.00 EVAL P INT1 RIH to core point at 4440'. Fill every 20 stands
04:00 - 04:30 0.50 EVAL P INn Wash down and tag up at 4440'. Space out DP for core #3.
04:30 - 05:00 0.50 EVAL P INT1 Circulate and condition mud for core #3. 200 gpm, 450 psi.
Drop 1" ball to divert fluid from inner core barrel. MU kelly stand
and pump to seat ball at 200 gpm @ 450 psi.
05:00 - 06:00 1.00 EVAL P INT1 Core from 4440' to 4500'. 113 klbs up, 110 klbs down, 115 klbs
rotate. WOB 2-5 klbs, torque 1-3 klbs. 200 gpm @ 630 psi.
06:00 - 07:00 1.00 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand and pump down
to activate core catcher. Stand back kelly stand. Drop 2-1/4"
dart to open circ sub, pump onto seat, sheared at 1900 psi.
07:00 - 07:45 0.75 EVAL P INn CBU, 250 gpm @ 617 psi.
07:45 - 08:00 0.25 EVAL P INn Monitor well - static.
08:00 - 12:30 4.50 EVAL P INT1 Pump dry job and POH per coring protocol. 119 klbs up, 111
klbs down.
12:30 -13:00 0.50 EVAL P INT1 PJSM with Baker, Core-lab, BP and all rig personnel on laying
down core barrels.
13:00 - 14:00 1.00 EVAL P INT1 LD core barrels and BHA.
14:00 - 14:30 0.50 EVAL P INT1 Clean and clear rig floor.
14:30 - 16:30 2.00 EVAL P INn MU BHA #8, Core run #4, RIH with HWDP and jar stand from
derrick.
16:30 - 18:00 1.50 EVAL P INT1 RIH with drill pipe 4446'. Fill pipe at csg shoe.
18:00 - 19:00 1.00 EVAL P INT1 Wash down to core point at 4500'. space out DP for core run
#4. Circulate and condition mud. 200 gpm, 500 psi. Drop 1" ball
to divert fluid from inner core barrel. MU kelly stand and pump
to seat
19:00 - 20:30 1.50 EVAL P INT1 Cut core #4 from 4500' to 4560'.116 klbs up, 110 klbs down,
114 klbs rotate. 200 gpm @ 655 psi. WOB 3-4 klbs.
Printed: 8/18/2003 9:27:36 AM
.
.
BP
Operations Summary Report
Page 3 of 4
legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRill +COMPlETE
NABORS ALASKA DRilLING I
NABORS 9ES
Start:
Rig Release:
Rig Number:
7/8/2003
8/15/2003
Spud Date: 7/8/2003
End:
Date From - To : Hours: Task Code NPT Phase Description of Operations
--.....--.... ----.-.
7/9/2003 20:30 - 22:00 1.50 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand and pump down
to activate core catcher, pump on seat at 250 gpm, 980 psi.
Stand back kelly stand. Drop 2-1/4" dart to open circ sub, pump
on seat at 200 gpm @ 710 psi. CBU, 250 gpm @ 670 psi.
22:00 - 22:15 0.25 EVAL P INT1 Monitor well - static.
22: 15 - 00:00 1.75 EVAL P INT1 POH per coring protocol. 118 klbs up, 110 klbs down.
7/10/2003 00:00 - 02:30 2.50 EVAL P INT1 Continue POH with core #4 per coring protocol
02:30 - 02:45 0.25 EVAL P INT1 PJSM with Baker, Core-lab, BP and all rig personnel on laying
down core barrels.
02:45 - 04:00 1.25 EVAL P INT1 LD core #4
04:00 - 04:30 0.50 EVAL P INT1 Clean and clear rig floor
04:30 - 05:30 1.00 EVAL P INT1 MU core barrels and BHA for core #5
05:30 - 08:00 2.50 EVAL P INT1 RIH to core point at 4560'. Fill every 20 stands
08:00 - 08:30 0.50 EVAL P INT1 Wash down and tag up at 4560'. Space out DP for core #5.
08:30 - 10:30 2.00 EVAL P INT1 Drop 1" ball to divert fluid from inner core barrel. MU kelly stand
and pump to seat ball. Core from 4560' to 4605'. 116 klbs up,
112 klbs down, 116 klbs rotate. WOB 2-5 klbs, torque 2 klbs.
200 gpm @ 650 psi.
10:30-11:00 0.50 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand and pump down
to activate core catcher. Stand back kelly stand. Drop 2-1/4"
dart to open circ sub, pump onto seat
11 :00 - 12:00 1.00 EVAL P INT1 CBU, 250 gpm @ 645 psi
12:00 - 12:15 0.25 EVAL P INT1 Monitor well - static.
12:15 - 16:30 4.25 EVAL P INT1 Pump dry job and POH per coring protocol. 119 klbs up, 110
klbs down.
16:30 - 17:00 0.50 EVAL P INT1 PJSM with Baker, Core-lab, BP and all rig personnel on laying
down core barrels.
17:00 - 18:00 1.00 EVAL P INT1 LD core barrels and BHA.
18:00 - 18:30 0.50 EVAL P INT1 Clean and clear rig floor
18:30 - 19:30 1.00 EVAL P INT1 MU BHA #10, Core run #6, RIH with HWDP and jar stand from
derrick.
19:30 - 21 :30 2.00 EVAL P INT1 RIH to 4557'. Fill every 20 stands
21 :30 - 22:00 0.50 EVAL P INT1 Wash down to core point, tag up at 4605'. Space out DP for
core #6.
22:00 - 22:30 0.50 EVAL P INT1 Circulate and condition mud for core #6. 200 gpm @ 530 psi.
Drop 1" ball to divert fluid from inner core barrel. MU kelly stand
and pump to seat ball.
22:30 - 00:00 1.50 EVAL P INT1 Core from 4605' to 4665'. 117 klbs up, 114 klbs down, 116 klbs
rotate. WOB 3-4 klbs, torque 2-3 klbs. 200 gpm @ 650 psi.
7/11/2003 00:00 - 00:30 0.50 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand and pump down
to activate core catcher. Stand back kelly stand. Drop 2-1/4"
dart to open circ sub, pump onto seat
00:30 - 01 :30 1.00 EVAL P INT1 CBU, 250 gpm @ 670 psi
01 :30 - 01 :45 0.25 EVAL P INT1 Monitor well - static.
01 :45 - 06:00 4.25 EVAL P INT1 Pump dry job and POH with core #6 per coring protocol. 120
klbs up, 112 klbs down.
06:00 - 06:30 0.50 EVAL P INT1 PJSM with Baker, Core-lab, BP and all rig personnel on laying
down core barrels.
06:30 - 07:30 1.00 EVAL P INT1 LD core barrels and BHA. 55' feet recovery on core run #6
07:30 - 08:00 0.50 EVAL P INT1 Clean and clear rig floor
08:00 - 09:00 1.00 EVAL P INT1 MU BHA #11, Core run #7. RIH with HWDP and jar stand from
derrick.
09:00 - 11 :30 2.50 EVAL P INT1 RIH with HWDP, jars and DP stands from derrick to 4655'. Fill
Printed: 8/18/2003 9:27:36 AM
e
.
BP
Operations Summary Report
Page 4 of 4
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Start:
Rig Release:
Rig Number:
7/8/2003
8/15/2003
Spud Date: 7/8/2003
End:
Date From - To Hours Task Code NPT Phase Description of Operations
---.-.-.... -... ..........-.--. ........--..-..----
7/11/2003 09:00 - 11 :30 2.50 EVAL P INT1 every 20 stands.
11 :30 - 12:00 0.50 EVAL P INT1 Wash down to core point Space out DP for core #7. Circulate
and condition mud 200 gpm @ 540 psi
12:00 - 14:00 2.00 EVAL P INT1 Drop 1" ball to divert fluid from inner core barrel. MU kelly stand
and pump to seat ball. Core from 4665' to 4723'. 120 klbs up,
108 klbs down, 115 klbs rotate. WOB 2-5 klbs, torque 2-3 klbs.
200 gpm @ 650 psi.
14:00 - 15:30 1.50 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand and pump down
to activate core catcher. Stand back kelly stand. Drop 2-1/4"
dart to open circ sub, pump onto seat
15:30 - 15:45 0.25 EVAL P INT1 Monitor well -static.
15:45 - 21 :30 5.75 EVAL P INT1 Pump dry job and POH with core #7 per coring protocol. 121
klbs up, 112 klbs down.
21 :30 - 22:00 0.50 EVAL P INT1 PJSM with Baker, Core-lab, BP and all rig personnel on laying
down core barrels.
22:00 - 00:00 2.00 EVAL P INT1 LD core barrels and BHA. 60+ feet recovery on core run #7.
Rig down core barrels and related equipment
7/12/2003 00:00 - 00:30 0.50 EVAL P INT1 Continue LD core #7
00:30 - 01 :00 0.50 EVAL P INT1 Clean and clear rig floor
01 :00 - 01 :30 0.50 EVAL P INT1 Pull wear ring. RU BOPE test equipment
01 :30 - 04:30 3.00 EVAL P INT1 Pressure test BOPE 250 psi low, 4000 psi high. Test Annular
to 250 psi low, 3500 psi high. Witness of BOPE test waived by
John Spaulding, AOGCC.
04:30 - 05:00 0.50 EVAL P INT1 Blow down stack and choke manifold. RD BOPE test
equipment Run wear ring. LD test joint
05:00 - 07:30 2.50 DRILL P INT1 PU & MU BHA #12, 8-1/2" drilling assembly to drill rathole for
e-line logs.
07:30 - 08:00 0.50 DRILL P INT1 Rig service, top drive, blocks and crown.
08:00 -10:30 2.50 DRILL P INT1 RIH. Fill DP and break circulation at the csg shoe. 94 klbs up,
85 klbs down.
10:30 -11 :00 0.50 DRILL P INT1 Wash last stand to bottom. Stage pumps up to drilling rate, 550
gpm @ 2960 psi. 122 klbs up, 115 klbs down, 120 klbs rotate.
11 :00 - 14:30 3.50 DRILL P INT1 Drill from 4723' to 4930'.121 klbs up, 116 klbs down, 120 klbs
rotate. 120 rpm, 5 klbs WOB, 2.5 klbs torque. 555 gpm @ 2950
psi.
14:30 - 15:00 0.50 DRILL P INT1 Circulate the hole clean, 555 gpm @ 2895 psi.
15:00 -15:15 0.25 DRILL P INT1 Monitor well - static.
15:15 - 17:30 2.25 DRILL P INT1 Pump dry job and POH for logs. 132 klbs up, 118 klbs down.
17:30 - 18:00 0.50 DRILL P INT1 Clean and clear rig floor.
18:00 - 18:30 0.50 EVAL P INT1 PJSM with SWS and all rig personnel on picking up and laying
down logging tools, nuclear sources and wireline safety.
18:30 - 19:30 1.00 EVAL P INT1 RU SWS. MU logging tools, load source, shallow test
19:30 - 00:00 4.50 EVAL P INT1 Run Platform ExpresslDSI (dipole sonic) log combo.
Printed: 8/18/2003 9:27:36 AM
e
e
BP
Operations Summary Report
Page 3 of 22
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
7/2/2003
8/15/2003
Spud Date: 7/8/2003
End: 8/15/2003
Start:
Rig Release:
Rig Number:
Date i From - To Hours Task Code NPT Phase Description of Operations
___L---.. o..._.____n_
7/5/2003 08:30 - 20:30 12.00 DRILL P INT1 Gel off pipe rack drains.
20:30 - 00:00 3.50 DRILL P INT1 Take on MOBM into rig pit system. Line up spacers from Vac.
trucks directly to mud pumps. Pump 50 bbls. Safekleen/NaCI
brine spacer, 60 bbl. Viscosified Brine spacer then 50 bbl.
Viscosified OBM spacer. Chase with new 10. ppg. MOBM @ 7
BPM with 800 PSI.
7/6/2003 00:00 - 02:00 2.00 DRILL P INT1 Complete displacement of MOBM. Remove all spacers from
slope tank. Clean out from under shakers, trough etc.
02:00 - 03:30 1.50 DRILL P INT1 Drill from 2783 to 2803. Circulate, shear and warm mud.
Screen down all shakers. Replaced 84's front and back on all
three shakers to 140's on the back and 110's on the front.
Record clean hole ECD's: 10.55 @ 600 GPM and 40 rotary.
03:30 - 15:00 11.50 DRILL P INT1 Drill ahead from 2,803 to 4,042. Control drill for first couple
circulations @ 200 to 225 fph. Backreaming each connection at
600 GPM @110 RPM on up stroke and 450 GPM with 100
RPM down. Maintain less than 1 ppg over calculated ECD
during all drilling, reaming and circulating. (Circulated at 3,900
and 4,000 while geologist reviewed MWD data)
Drilling parameters: WOB=5-10 RPM=100 GPM=600 @
3,340 on and 3,240 off TRQ=1.5k on and 1.25 off
ART=5.38 AST=O.
15:00 - 18:00 3.00 DRILL P INn CBU and clean hole at 600 GPM. Circ tracer into mud system
@ 450 GPM with 2065 PSI. Drop 2.25 rabbit.
18:00 - 20:00 2.00 DRILL P INT1 POH to BHA @ 930. No adverse hole conditions. Up wt. off
bottom ==125K DWN=110K Strap drillpipe on TOH with no
correction.
20:00 - 23:00 3.00 DRILL P INT1 Rack back and lay down BHA. Break and grade bit. Pipe
displacement correct for TOH.
23:00 - 00:00 1.00 DRILL P INT1 Clear and clean floor of all vendors excess equipment. Power
vac MOBM off floor. Wipe down and clean up oil from floor and
floor equipment.
00:00 - 00:30 0.50 EVAL P INT1 LD Platform Express/DSllogging tools
00:30 - 01 :00 0.50 EVAL P INT1 PU CMR+ logging tools
01 :00 - 04:00 3.00 EVAL P INT1 RIH to 4930. Tie in and log CMR+ from 4930' to 3850'.
04:00 - 07:00 3.00 EVAL N DFAL INT1 Tool failure, unable to complete logging run. Telemetry errors
while logging CMR+, unable to troubleshoot problem. Will rerun
CMR+ logs prior to running intermediate casing. POH with
logging tools.
07:00 - 07:30 0.50 EVAL P INT1 LD CMR+ logging tools. RD SWS.
07:30 - 08:00 0.50 EVAL P INT1 Clean and clear rig floor.
08:00 - 08:30 0.50 DRILL P INT1 PJSM with Anadrill and all rig personnel on picking up BHA and
loading nuclear sources.
08:30 - 10:30 2.00 DRILL P INT1 PU motor, adjust to 1.5 degree angle. MU bit, MWD/LWD.
Orient and load source. RIH with HWDP. MU ghost reamer.
Shallow test MWD/LWD, 450 gpm @ 850 psi.
10:30 - 11 :30 1.00 DRILL P INT1 RIH to csg. shoe, fill DP.
11 :30 -13:00 1.50 DRILL P INT1 SeNice top drive, blocks. Cut and slip 80' of drilling line.
13:00 - 13:30 0.50 DRILL P INT1 RIH to 4102'.98 klbs up, 90 klbs down.
13:30 - 14:00 0.50 DRILL P INT1 Stage pumps to drilling rate, 555 gpm @ 3450 psi.
14:00 - 18:00 4.00 DRILL P INT1 Shoot sUNeys from 4102' to 4410'. MAD pass from 4350' to
4876'.555 gpm @ 3450 psi. Baseline ECD 10.82 ppg,
calculated ECD 10.74 ppg.
18:00 - 00:00 6.00 DRILL P INT1 Directional drill from 4930' to 5304', sliding 60' per stand to
Printed: 8/18/2003 9:22:41 AM
e
e
Page 4 of 22
BP
Operations Summary Report
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
7/13/2003
Date i From - To Hours
18:00 - 00:00
INT1
7/14/2003
Task Code NPT Phase
..i____.....
..________________u
6.00 DRILL P
00:00 - 12:30
12.50 DRILL P
INT1
12:30 - 14:30 2.00 DRILL P INT1
14:30 - 14:45 0.25 DRILL P INT1
14:45 - 18:00 3.25 DRILL P INT1
18:00 - 18:30 0.50 DRILL P INT1
18:30 - 19:30 1.00 DRILL P INT1
19:30 - 20:00 0.50 DRILL P INT1
20:00 - 20:30 0.50 DRILL P INT1
20:30 - 20: 15 23.75 DRILL P INT1
20:15-21:30 1.25 DRILL P INT1
21 :30 - 22:30 1.00 DRILL P INT1
22:30 - 23:00 0.50 DRILL P INT1
23:00 - 00:00 1.00 DRILL P INn
7/15/2003 00:00 - 01 :00 1.00 DRILL P INT1
01 :00 - 01 :30 0.50 DRILL P INT1
01 :30 - 02:00 0.50 DRILL P INT1
02:00 - 00:00 22.00 DRILL P INT1
7/16/2003
00:00 - 06:30
6.50 DRILL P
INT1
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
Description of Operations
__..____u_n_..___...__.__
build angle. 135 klbs up, 121 klbs down, 129 klbs rotate. 555
gpm @ 3850 psi. WOB 5-10 klbs. Backream 60' per stand,
decrease pump rate on the down stroke.
AST last 24 hrs. = 2.07 hrs.
ART last 24 hrs. = 0.55 hrs.
Directional drill from 5304' to 6104', sliding 60-70' per stand to
build angle to 29 degrees. 150 klbs up, 131 klbs down, 140
klbs rotate. 555 gpm @ 3510 psi. WOB 10-15 klbs. Calculated
ECD 10.51 ppg, actual ECD 10.72 ppg. Backream 60' per
stand, decrease pump rate on the down stroke.
ROP's decreased from -130 ftIhr to <30 ftIhr and not able to
get 5 degrees per 100 build rate. Decision was made to make
a bit trip.
AST last 24 hrs. = 6.47 hrs.
ART last 24 hrs. = 1.86 hrs.
Circulate and condition hole. 555 gpm @ 3400 psi. Calculated
ECD 10.51 ppg, actual ECD 10.60 ppg.
Monitor well - static.
Pump dry job and POH for bit. 160 klbs up, 132 klbs down.
PJSM with Anadrill and all rig personnel on unloading nuclear
sources and LD BHA
Unload nuclear sources. Stand back BHA
MU bit #5, 8-1/2" Hycalog DS70 - short gauge. Download
MWD/LWD tools
Clean and clear rig floor.
PJSM with Anadrill and all rig personnel on loading nuclear
sources and MU BHA.
MU BHA #14. Load nuclear sources. Shallow test MWD/LWD.
RIH to csg shoe @ 2745'. Fill DP
Rig service - top drive
Continue RIH to 3530'
Continue RIH to 6013', 1-1/2 minutes per stand. Fill drill pipe
at shoe.
Wash down through tight spot at 6013' to TD @ 6104'
Stage pumps up to drilling rate, 540 gpm @ 3690 psi. Shoot
survey. Circulate and condition mud.
Directional drill from 6104' to 7035', sliding 100% per stand to
build angle, Inclination @ 7004' -70 degrees. 158 klbs up, 122
klbs down, 138 klbs rotate. 540 gpm @ 3700 psi. WOB 10-15
klbs, torque on bottom 6.5 klbs. Calculated ECD 10.58 ppg,
actual ECD 10.73 ppg. Backream each stand, decrease pump
rate on the down stroke.
AST=11.7 hrs
ART=1.02 hrs
Directional drill from 7035' to 7055', sliding 100% per stand to
build angle to 70 degrees. Continue drilling from 7055' t.......
rotating 100% per stand. 158 klbs up, 122 klbs down, 138 klbs
rotate. 540 gpm @ 3700 psi. WOB 10-15 klbs, torque on
bottom 6.5 klbs. Calculated ECD 10.59 ppg, actual ECD 10.73
Printed: 8/18/2003 9:22:41 AM
e
.
Page 5 of 22
BP
Operations Summary Report
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Date ! From - To
;
_...~_..
Hours : Task ; Code i NPT Phase
j
---------
6.50 DRILL P INT1
1.50 DRILL P INT1
0.50 DRILL P INT1
6.50 DRILL N STUC INT1
7/16/2003
00:00 - 06:30
06:30 - 08:00
08:00 - 08:30
08:30 - 15:00
15:00 - 20:00 5.00 DRILL N STUC INT1
20:00 - 22:00 2.00 FISH N STUC INT1
22:00 - 00:00 2.00 FISH N STUC INT1
7/17/2003 00:00 - 07:30 7.50 FISH N STUC INT1
07:30 - 10:30 3.00 FISH N STUC INT1
10:30 - 12:30 2.00 FISH N STUC INT1
12:30 - 14:30 2.00 FISH N STUC INT1
14:30 -15:30 1.00 FISH N STUC INT1
15:30 - 16:30 1.00 FISH N STUC INT1
16:30 - 18:30 2.00 FISH N STUC INT1
18:30 - 20:00
20:00 - 00:00
1.50 FISH
4.00 FISH
N
N
STUC INT1
STUC INT1
7/18/2003
00:00 - 01 :30
1.50 FISH
N
STUC INT1
01 :30 - 04:30 3.00 FISH N STUC INT1
04:30 - 05:00 0.50 FISH N STUC INT1
05:00 - 06:30 1.50 FISH N STUC INT1
06:30 - 07:30 1.00 FISH N STUC INT1
07:30 - 08:00 0.50 FISH N STUC INT1
08:00 - 10:00 2.00 FISH N STUC INT1
Start: 7/2/2003
Rig Release: 8/15/2003
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
Description of Operations
... ....-----------.
ppg. Backream each stand, decrease pump rate on the down
stroke.
ART=5.15 hrs
Circulate and condition mud. ECD 10.61 ppg.
POH. Tight hole at 7415', 20K over pull. Wipe spot clean and
continue POH.
POH to 7315', 25K over pull. Make up top drive and attempt to
establish circulation, hole packing off, resrticted upward motion
but full rotation while jarring down. Work pipe. Drilling jars
failure, no rotation.ptt·~ì~I'("'.tIt '1261'.
Working stuck pipe. Drilling jars not working. No progress.
Stand back top stand of drill pipe. Install full opening safety
valve and pump in sub. PJSM. Rig up Schlumberger E-line to
retrieve source in LWD tool (ADN).
Run in with Schlumberger E-line to retrive source in LWD tool
at 7164'
Run in with Schlumberger E-line to retrive RA source in LWD
tool at 7164' with mechanical pulling tool. RA source set to
release with 1500 Ibs pull, increase pull to 3500 Ibs. POH with
pulling tool, RA source not recovered. Rig up electrical pulling
tool. Change connectior unable to adapt to Schlumberger
E-line. Redress mechanical pulling tool and run in with spang
jars on E-line. Recover RA source and lay down tools.
Change out E-line connector. Rig up full opening safety valve,
swivel, side entry sub and pack off.
Make up free point indicator tool and RIH to 7020'.
Pump tools down to 7160' top of ADN tool. Take free point
readings. Readings in non-mag drill collars indicate partially
stuck. Readings in 5" HWDP above drill collars 100% free.
POH free point indicator tool.
Work left hand torque into string.
PJSM prior to picking up string shot Run string shot, apply left
hand torque to string, fire string shot Achieve successful back
off at top of 5" HWDP. T~òf~åt'705Q'. Left 195' of BHA
in the hole.
POH with string shot and tools. Rig down E-line unit
POH one stand. Break circulation and bring pumps up slowly.
Hole packing off. Reciprocate 90' and rotate pipe at 120 rpm.
Pull one stand. Continue working pipe and circulate, 490 gpm
at 2930 psi. Full returns.
Circulate three bottoms up and pump 20 bbl weighted sweep.
Significant sand and large pieces of shale over shakers with
weighted sweep return. Shakers clean up and mud weight
return to 10.2 ppg. Reciprocate 90' and rotate pipe at 120 rpm.
Working pipe and circulate, 490 gpm at 2930 psi. Full
returns.
POH. No over pull. Stand back 4" HWDP and lay down 5"
HWDP and jars.
Clear rig floor and clean up. PJSM for make up BHA.
Make up fishing BHA with screw in sub.
RIH to casing shoe at 2745'.
Service top drive, blocks and crown.
RIH. Tag up at 6973'.
Printed: 8/18/2003 9:22:41 AM
e
e
Page 6 of 22
BP
Operations Summary Report
legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
Date From - To
V-111
V-111
DRill +COMPlETE
NABORS ALASKA DRilLING I
NABORS 9ES
Hours I Task I Code NPT
-..--------
7/18/2003
10:00 - 13:00
3.00 FISH
N
STUC INT1
13:00 - 18:30
5.50 FISH
N
STUC INT1
18:30 - 19:00 0.50 FISH N STUC INT1
19:00 - 20:30 1.50 FISH N STUC INT1
20:30 - 23:00 2.50 FISH N STUC INT1
23:00 - 00:00 1.00 FISH N STUC INT1
7/19/2003 00:00 - 01 :00 1.00 FISH N STUC INT1
01 :00 - 01 :30 0.50 FISH N STUC INT1
01 :30 - 04:30 3.00 FISH N STUC INT1
04:30 - 05:00 0.50 FISH N STUC INT1
05:00 - 06:00 1.00 FISH N STUC INT1
06:00 - 12:00 6.00 FISH N STUC INT1
12:00 - 16:00 4.00 FISH N STUC INT1
16:00 - 17:30 1.50 FISH N STUC INT1
17:30 - 18:00 0.50 FISH N STUC INT1
18:00 - 19:30 1.50 FISH N STUC INT1
19:30 - 22:00 2.50 FISH N STUC INT1
22:00 - 23:30 1.50 FISH N STUC INT1
23:30 - 00:00 0.50 FISH N STUC INT1
7/20/2003 00:00 - 02:00 2.00 FISH N STUC INT1
02:00 - 02:30 0.50 EVAL N DFAL INT1
02:30 - 16:00 13.50 EVAL N DFAL INT1
16:00 - 19:30 3.50 EVAL N DFAL INT1
19:30 - 20:30 1.00 EVAL N DFAL INT1
20:30 - 21 :00 0.50 STKOH N STUC INT1
21 :00 - 22:30 1.50 STKOH N STUC INT1
22:30 - 23:30 1.00 STKOH N STUC INT1
23:30 - 00:00 0.50 STKOH N STUC INT1
7/21/2003 00:00 - 01 :00 1.00 STKOH N STUC INT1
01 :00 - 01 :30 0.50 STKOH N STUC INT1
Start:
Rig Release:
Rig Number:
Phase
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
Description of Operations
Circulate. Bring pumps up slowly. Attempt to wash down.
Hole packing off. Reciprocate 90' and rotate pipe at 120 rpm.
Working pipe and circulate, 500 gpm at 2500 psi. Full returns.
Pipe torquing up. No progress.
Circulate. Pumped around 20 bb113.2 ppg weighted sweep.
Noted a significant increase of small splintered shale (HRZ)
when sweep returned to surface. Increase mud weight to 10.5
ppg. Continue circulating at 500 gpm with 2820 psi with no
improvement in cavings. Increase mud weight to 10.8 ppg.
Reduction in cavings, shakers cleaned up.
Attempt to wash down. Hole packing off and torque increasing.
Pull back to 6911'.
Circulate and raise mid weight to 11.0 ppg prior to POH.
POH. No over pull. Monitor well at shoe. Continue POH to
BHA.
POH. Stand back HWDP and drill collars.
POH. Stand back HWDP, drill collars and rest of BHA Clear
rig floor
Pull wear bushing prior to test BOP.
Test BOP 250 psi low and 4000 psi high. Choke manifold
tested while POH. Witness of test waived by AOGCC Rep
Chuck Scheeve
Service top drive.
Pick up 8 1/2" bit and clean out BHA.
RIH. Tag up on fill at 6627'.
Wash down to 6944'. Pump at 500 gpm with 3140 psi. Rotate
at 60 rpm. Hole packinhg off and torque increasing.
POH. Work pipe, back reaming up to 6915'. Pump at 500 gpm
with 3140 psi. Rotate at 80 rpm. Pump around 20 bb112.5
ppg sweep. Noted a significant increase of splintered shale
and cavings when sweep returned to surface.
POH to 6610'. Slight swabbing and tight hole, 25K over pull.
RIH to 6720'
Circulate around 20 bb112.5 ppg sweep at 500 gpm with 3140
psi at 120 rpm. Shakers cleaned up.
POH to BHA.
Lay down clean out BHA and fishing tools.
RIH with excess drill collars from derrick.
RIH with excess drill collars from derrick. POH and lay down
same.
Rig up Schlumberger E-line unit PJSM.
Run CMR log. Tools not working. Trouble shoot Tune in
tools. Problems persist Wait on additional technical support
Change several components in tools.
Run CMR log from 4760' to 3820' with good results.
Rig down E-line unit
Rig up to run 3 1/2" tubing. PJSM.
Pick up 47 jts 3 1/2" L-80 9.2# NSCT cementing stinger tubing
with perforated nipple plug catcher.
RIH with stinger on 4" drill pipe to 9 5/8" casing shoe at 2745'.
Circulate. Bring pumps up slowly to circulate bottoms up.
RIH to 5000'.
Circulate bottoms up. 10.5 BPM, 2200 psi.
Printed: 8/18/2003 9:22:41 AM
e
e
Page 7 of 22
BP
Operations Summary Report
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Date
I ! ¡
i From - To Hours· Task ¡ Code ¡ NPT' Phase :
7/21/2003
01 :30 - 02:30
02:30 - 04:00
1.00 STKOH N
1.50 STKOH N
STUC INT1
STUC INT1
04:00 - 04:30
0.50 STKOH N
STUC INT1
04:30 - 05:00 0.50 STKOH N STUC INT1
05:00 - 06:00 1.00 STKOH N STUC INT1
06:00 - 07:00 1.00 STKOH N STUC INT1
07:00 - 08:30 1.50 STKOH N STUC INT1
08:30 - 10:30 2.00 STKOH N STUC INT1
10:30 - 12:30 2.00 STKOH N STUC INT1
12:30 - 14:00 1.50 STKOH N STUC INT1
14:00 - 15:00 1.00 STKOH N STUC INT1
15:00 - 16:00 1.00 DRILL N STUC INT1
16:00 - 17:30 1.50 DRILL N STUC INT1
17:30 -18:30 1.00 DRILL N STUC INT1
18:30 - 19:00 0.50 DRILL N STUC INT1
19:00-21:00 2.00 DRILL N STUC INT1
21 :00 - 21 :30 0.50 DRILL N STUC INT1
21 :30 - 23:00 1.50 DRILL N STUC INT1
23:00 - 00:00 1.00 DRILL N STUC INT1
7/22/2003 00:00 - 01 :30 1.50 DRILL N STUC INT1
01 :30 - 03:00 1.50 DRILL N STUC INT1
03:00 - 04:00 1.00 DRILL N RREP INT1
04:00 - 05:30 1.50 DRILL N RREP INT1
05:30 - 09:30 4.00 DRILL N RREP INT1
09:30 - 00:00 14.50 DRILL N STUC INT1
7/23/2003
00:00 - 19:00
19.00 DRILL N
STUC INT1
19:00 - 21 :00
2.00 DRILL N
STUC INT1
21 :00 - 22:00
1.00 DRILL N
STUC INT1
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
Description of Operations
.... ..-.--.---.---
RIH to 6900'. No hole problems.
Wash down last 2 stands t..... Circulate and condition
mud for cement job. 10 BPM with 3127 psi. PJSM.
Rig up cementing head and lines. Test cement lines to 3000
psi. Pump 40 bbl Alpha Spacer at 11 ppg. Mix and pump 72
bbl (414 sx) class "G" cement at 17 ppg at 4 BPM. Pump 7 bbl
Alpha Spacer.
Displace cement with 47 bbl mud to balance plug using rig
pumps at 6 BPM.
POH out of cement very slowly to calculated top of cement at
;-,Ø74)'.
Circulate bottoms up. Spacer to surface, dump 234 bbl
contaminated mud.
w-::;ffifif:\'í'ft:) &225', 10.5 BPM, 2800 psi.
Circulate bottoms up. 11 BPM, 3200 psi. Drop pipe wiper dart
Circulate one bottoms up.
POH with 4" drill pipe to 3 1/2" tubing stinger.
Rig up 3 1/2" tubing equipment POH. Lay down 3 1/2" tubing
stinger and perforated nipple plug catcher.
Rig down 3 1/2" tubing tools and clear rig floor.
Change out top drive quill.
Pick up new PDC bit and drilling BHA. Shallow test tools.
RIH to 9 5/8" casing shoe.
Service top drive, blocks and crown.
Slip and cut drilling line 78'. Inspect drawworks and brakes.
Circulate bottoms up with bit out of casing shoe.
RIH at 1 minute per stand, taking weight at 5776'. Break
circulation at 4600'.
Circulate at 5776'. Bring pumps up slowly.
Circulate and wash firm cement from top of plug to 6258'
Time drill with tool face oriented 150 deg left of high side. Start
side track. 530 GPM, 3600 psi.
Trouble shoot problem with mud pump #2. Leak in mud end.
POH to casing shoe.
Replace #3 mud end~?eump #2.
Time drill for~to'~61' to start side track. Drill from
6261' to 6432'. 530 GPM, 3670 psi, calculated ECD 11.58 psi,
actual ECD 11.59 psi.
Increase pump rate to 550 GPM and 120 RPM when back
reaming on connections.
AST=7.08
Drill from 6432' to 6,706'. Sliding 100% in an attempt to build
angle per program. Very difficult to get weight transfer to bit
Lots of wall hanging and stalling. Unable to get build needed to
stay within target
ART==O
AST==8.4
Circulate 30 bbL weighted sweep S-S with 555 GPM @ 3,840
while rotating and reciprocating string at 90 RPM. (Dogleg
would not allow faster rotation of string) Good increase of
undrilled shale splinters seen with sweep.
Backream out of hole from 6,706 to 6,148 with 550 GPM @
Printed: 8/18/2003 9:22:41 AM
e
e
BP
Operations Summary Report
Page 8 of 22
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Start:
Rig Release:
Rig Number:
7/2/2003
8/15/2003
Spud Date: 7/8/2003
End: 8/15/2003
Date From - To Hours ~ Task Code NPT: Phase Description of Operations
7/23/2003 21 :00 - 22:00 1.00 DRILL N STUC INT1 3,730 PSI and 90 RPM.
22:00 - 00:00 2.00 DRILL N STUC INT1 Bring bottoms up at 550 GPM while rotating and reciprocating
string at 120 RPM. Lots of undrilled cuttings seen with bottoms
up. (Shakers cleaned up at app. 1.5 times bottoms up. )
7/24/2003 00:00 - 02:00 2.00 DRILL N STUC INT1 Observe well. Pump dry job. POH to HWDP at 916.
02:00 - 04:00 2.00 DRILL N STUC INT1 Rack back HWDP. Inspect and grade bit (0 0 and in gauge)
Lay down stabalizer above float sub. (Stab is still in gauge)
Adjust motor to 1.83 degrees.
04:00 - 04:30 0.50 DRILL N STUC INT1 Service topdrive while downloading MWD tool in pipeshed.
04:30 - 06:00 1.50 DRILL N STUC INT1 P/U MWD and orient to motor. Build remaining BHA and
shallow test same.
06:00 - 08:30 2.50 DRILL N STUC INT1 RIH to 6608 filling pipe at 4,653. No adverse hole conditions.
08:30 - 10:30 2.00 DRILL N STUC INT1 Roll and warm mud prior to drilling. Very high viscosity.
10:30 - 00:00 13.50 DRILL N STUC INT1 Drilling 8 1/2 hole from 6,706 to 6,883. Sliding 100% in order to
build hole angle and turn well back to the east
ART==O
AST==5.52
WOB==5-35
GPM==540
7/25/2003 00:00 - 01 :00 1.00 DRILL N STUC INT1 Drilling from 6,883 to 6,887. Having difficulty getting weight
transfer to bottom. Suspect cuttings keeping string from
moving downhole.
01 :00 - 02:00 1.00 DRILL N STUC INT1 Pump 25 bbls. weighted sweep S-S @ 1 1/2 pds. over MW..
Rotate and reciprocate string at 60 RPMs. Lots of cavings and
cuttings seen at surface while circulating out sweep.
02:00 - 02:30 0.50 DRILL N STUC INT1 Drilling from 6,887 to 6,900. Lost 100 PSI pressure due to
swabs 2 & 3 going out in number one pump.
02:30 - 03:00 0.50 DRILL N STUC INT1 Replace number 2 and 3 pistons in mud pump #1. Clean pump
room of oil base mud.
03:00 - 08:00 5.00 DRILL N STUC INT1 Drill from 6,900 to 6,981 sliding 100% while building angle and
turning well back east
GPM==540 @ 3,890 on and 3,760 off
WOB==5-25
CaL ECD==11.49 Actual ECD==11.7
UP== 154K Dwn==120K String==136K (Pumps on)
08:00 - 09:00 1.00 DRILL N STUC INT1 Circulate 25 bbL weighted sweep S-S at 540 GPM and 40
RPM. (2 ppg. over system MW)
09:00 - 10:30 1.50 DRILL N STUC INT1 Drill from 6,981 to 7,058. Begin rotating at 6,981.
10:30-11:30 1.00 DRILL N STUC INT1 Change out # 1 piston, valve and seat in # 2 mudpump.
11:30-13:00 1.50 DRILL N STUC INT1 Drill from 7,074 to 7,150. Rotating ahead with ROP's at 100 fph
+
13:00 - 14:00 1.00 DRILL N STUC INT1 Circulate up sample for geologist at 7,150 with 540 GPM.
14:00 - 14:30 0.50 DRILL N STUC INT1 Drill from 7,150 to 7,190.
14:30 - 15:00 0.50 DRILL N STUC INT1 Circulate up sample for geologist at 7,190 with 540 GPM.
15:00 - 15:30 0.50 DRILL N STUC INT1 Drill from 7,190 to 7,210.
15:30 -16:30 1.00 DRILL N STUC INT1 Circulate up sample for geologist at 7,210 with 540 GPM.
Confirmed intermediate TD with Kup. sample.
16:30 - 19:00 2.50 DRILL N STUC INT1 Circulate 25 bbL weighted sweep S-S. (2 ppg. over MW)
Rotating and reciprocating string at 110 RPM. Good increase in
cuttings seen with sweep. Pump 25 bbL weighted sweep S-S. (
3 ppg. over MW) Some cuttings seen with sweep. Circulate
until shakers clean up.
Printed: 8/18/2003 9:22:41 AM
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
-
e
Page 9 of 22
BP
Operations Summary Report
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
-------
From - To Hours Task Code! NPT Phase
Date
7/25/2003
19:00 - 21 :00
2.00 DRILL N
STUC INT1
21 :00 - 22:00 1.00 DRILL N
22:00 - 22:30 0.50 DRILL N
22:30 - 00:00 1.50 DRILL N
7/26/2003 00:00 - 01 :00 1.00 DRILL N
01 :00 - 09:00
09:00 - 11 :00
11 :00 - 13:00
STUC INT1
STUC INT1
STUC INT1
STUC INT1
8.00 DRILL N
STUC INT1
2.00 DRILL N
STUC INT1
2.00 DRILL N
STUC INT1
13:00 - 15:30 2.50 DRILL N STUC INT1
15:30 - 17:00 1.50 DRILL N STUC INT1
17:00 - 17:30 0.50 DRILL N STUC INT1
17:30 - 18:00 0.50 DRILL N STUC INT1
18:00 - 18:30 0.50 BOPSURN STUC INT1
18:30 - 22:00 3.50 BOPSUR N STUC INT1
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
Description of Operations
. --------- --
Monitor well. POH with minor overpulls from 7,164 to 6,693.
Hole appears to be in good shape. Continue to pull to casing
shoe with no adverse hole conditions. Hole taking proper fill.
Slip and snip 78 ft. of drilling line.
Service topdrive and crown-o-matic.
RIH from casing shoe to 5,150 and fill pipe. No adverse hole
conditions.
RIH from 5,150 to 7,074. Saw one spot at 6,976 that set down
30K twice. The third time there was nothing there. Wash down
from 7,074 to 7,167 staging pump up to 450 GPM @ 3,200.
Began turning string at 80 RPM from app. 7,140 to 7,167.
Backreamed to 7,160 and prepared to make a connection
when the hole packed off.
Apply 5,000 right hand torque and shake pipe down to free
pack off. Make several attempts to stage up pumps to clean
hole, with and without string rotation. Hole packing off and
requiring 5,000 to 8,000 torque with downward string
movement to free up. Hole conditions deteriorating while
circulation is becoming very limited. Idle pump from 0 to 15
SPM while backreaming in an attempt to roll by cutting. Hole
packing off with 9 to 11,000 torque while slowly rotating
upward. Stand back stand and P/U single. Work pipe and
attempt to regain circulation, with very limited success.( Small
amount of intermittent returns, mostly due to swabbing on
upward pipe movement) Continue out while holding app. 300
PSI in drillpipe and rotating string at 25 to 40 RPM with 8 to
10,000 torque. Attempt to work back down hole and find short
section to work pipe and regain circulation. Packed off and
stalling string at 11,000 torque. String stalled with very limited
movement up or down. Apply 10K torque and attempt to chase
string down hole. Work app. 3 ft. of pipe movement and rotate
string free. Keep 300 to 400 PSI in drillpipe while backreaming
with 40 RPM. Work this technique while pumping 0 to 2 SPM.
Began seeing minimal returns and observed bleed off from
drillpipe at app. 6,900. Torque fell back from 10 to 8,000.
Increased pump rate, as hole allowed, maintaining app. 350 to
400 PSI in drill pipe. Began seeing more flow back and less
pack offs. Seeing 0 to 4% returns. Work out to 6,700.
Stage up pumps to 490 GPM at 3,560 with full returns.
Backream out of hole from 6,700 to 6,162 with 40 RPM. Lots of
cavings coming over shakers.
Circulate 25 bbls. weighted sweep S-S at 550 GPM @ 3,970
while rotating string 90 RPM with 2,700 torque. Lots of cavings
seen at surface. Pump second sweep around with additional
cuttings seen with sweep. Shakers cleaned up.
POH to 5,200. Monitor well. Pump dry job. POH. to BHA.
POH with BHA racking back as needed. Layout Directional
tools.
Clean floor of oil base mud.
Flush stack with ported sub on topdrive and prepare to test
BOP.
Pull wear ring and RIU to test BOP.
Test BOP as per policy. Witness of test waived by AOGCC
Printed: 8118/2003 9:22:41 AM
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
e
e
Page 1 0 of 22
BP
Operations Summary Report
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
I i
Date ! From - To . Hours' Task Code! NPT Phase
7/26/2003
...-.--------....-....
7/27/2003
18:30 - 22:00 3.50 BOPSURN STUC INT1
22:00 - 22:30 0.50 BOPSURN STUC INT1
22:30 - 00:00 1.50 DRILL N STUC INT1
00:00 - 02:30 2.50 DRILL N STUC INT1
02:30 - 04:30 2.00 DRILL N STUC INT1
04:30 - 05:30
05:30 - 06:30
06:30 - 07:00
07:00 - 08:00
08:00 - 09:00
09:00 - 10:00
10:00 - 11 :00
11 :00 - 12:00
12:00 - 16:00
16:00 - 16:30
1.00 DRILL N
STUC INT1
1.00 DRILL N
STUC INT1
0.50 DRILL N
1.00 DRILL N
STUC INT1
STUC INT1
1.00 DRILL N
INT1
1.00 DRILL N
STUC INT1
1.00 DRILL N
1.00 DRILL N
STUC INT1
STUC INT1
4.00 DRILL N
STUC INT1
0.50 DRILL N
STUC INT1
Description of Operations
Representative.
Install and lock down wear ring. Rig down test equipment.
Pick up and M/U clean out assembly with 1.5 motor and MWD.
Re-run Hughes MXC-3 MT bit. Orient and shallow test.
RIH from 250 to 6,150 filling pipe at casing shoe and 5,000 ft.
No adverse hole conditions.
88K up and 80K down at casing shoe.
CBU and wt system up to 11.6. Rotate and reciprocate string
at 110 RPM while pumping 530 GPM with 3,860 SPP. Cavings
and ground up shale coming over shakers.
Up 144K Dwn 125K String 130K TRQ 1,800
Ream from 6,150 to to 6,500 with one small bump at 6,315.
GPM==530 @ 3,890
RPM==110
TRQ==2,000
Pump 25 bbl weighted sweep around at 6,500 with 530 GPM
and 3,900 PSI. ( Dollar size cavings seen at shakers)
RPM==110
String wt==135K
TRQ==2,000
Ream from 6,500 to 6,675. Hole tight at 6,665.
Pump 25 bbl weighted sweep S-S with dollar size and larger
cavings and ground up shale seen at shakers.
GPM==530
RPM==110
Ream from 6,675 to 6,860. Tight with additional torque at
6,837.
Pump 25 bbl weighted sweep S-S with dollar size cavings
along with more, finer ground up shale, than last sweep.
GPM==530
RPM==110
Ream from 6,860 to 6,955. Hole tight with increased torque.
Pump 25 bbl weighted sweep S-S with dollar to lemon size
cavings along with ground up fines back at shakers. Hole
Packed off while pumping sweep at 6,885.
GPM==530
RPM==110
Ream and work hole in small increments to avoid packing off,
from 6,955 to 7,210.
GPM==530 @ 3,900
RPM==120
TRQ==2 to 10,000
Pump 25 bbl weighted sweep S-S with dollar to lemon size
cavings along with ground up fines back at shakers. Hole
torqued up with partial packoff. Stalled string at 7,150.
GPM==530
RPM==110
TRQ==3,500 to 11,000
Printed: 8/18/2003 9:22:41 AM
e
e
Page 11 of 22
BP
Operations Summary Report
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Date
i
From - To Hours I Task ¡Code NPT ¡ Phase
.._.._.n
_..·_____n.___..
7/27/2003
16:30 - 18:00
1.50 DRILL N
STUC INT1
18:00-21:00
3.00 DRILL N
STUC INT1
21 :00 - 00:00
3.00 DRILL N
STUC INT1
7/28/2003
00:00 - 01 :00
1.00 DRILL N
STUC INT1
01 :00 - 03:00
2.00 DRILL N
STUC INT1
03:00 - 05:30 2.50 DRILL N STUC INT1
05:30 - 11 :30 6.00 DRILL N STUC INT1
11:30-12:30 1.00 DRILL N STUC INT1
12:30 - 15:30 3.00 DRILL N STUC INT1
15:30 - 17:00 1.50 DRILL N STUC INT1
17:00 - 21 :00 4.00 REMCM-N STUC INT1
21 :00 - 23:00 2.00 REMCM-N STUC INT1
23:00 - 00:00 1.00 REMCM-N STUC INT1
7/29/2003 00:00 - 01 :30 1.50 REMCM-N STUC INT1
01 :30 - 02:00 0.50 REMCM-N STUC INT1
02:00 - 04:00 2.00 REMCM-N STUC INT1
04:00 - 05:00
1.00 REMCM-N
STUC INT1
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
Description of Operations
Work pipe and attempt to get full circulation back and rotate
string. Free up string and stage pumps back up. Hole packing
off and ugly. (All sizes and shapes of cavings back with
bottoms up)
Circulate 2 bottoms up followed by 2, 25 bbl. weighted sweeps.
Second sweep showed very minimal additional cavings back.(
Worked 10ft. section of hole until after 2 times bottoms up,
while rotating string at 110. Pump sweeps around while
working stand with same parameters.)
Back ream out of hole from 7,210 to 6,772 with packing off and
tight hole from 6,950. Stalled and packed off at 6,860. Work
string and rotate free with 12,000 torque. Establish full
circulation. Reduce backreaming RPM's from 120 to 70.
Backream to 6,100 with 500 GPM and 75 RPM. Lemon size
and smaller cavings flooding over shaker screens.
Rotate and reciprocate at reduced rate of 450 GPM and 60
RPM while hole unloaded cuttings. Deluge of cuttings at
shakers requiring shovels to assist in getting them down the
drag chain. Lots of fist size cavings along with the now
"NORMAL" lemon size seen until after first bottoms up.
Increase rate to 500 GPM and rotary to 100 and pump second
bottoms up. Pump until shakers clean up. Pump dry job.
***Shales are running and hole is very unstable***
Observe well and POH to casing shoe. Hole in good shape
from 6,100 and up. No adverse hole conditions.
Evaluate options with Anchorage team.
Pump dry job and POH from 2,700.
Layout BHA RIH with collars in derrick and UD same. Clear
and clean floor of trip mud and all excess vendors equipment
Load pipe shed with cement stinger string and strap same.
Pick up and M/U app. 1,500 ft. of 3 1/2 tubing for spotting
suspension plugs. RID casing equipment
RIH with 40 stands of DP to 5,290. Fill pipe at shoe. No
adverse hole conditions.
Break circulation and stage up pumps to 8 BPM at 1600 PSI.
Reciprocate pipe with no additional drag or packing off.
Circulate and condition mud for cement job @ 5,290. Pumping
at 8 bpm and 1,600 PSI.
PJSM for mixing, spotting, and laying Form-a-plug into open
hole.
Pressure test lines to 3,500. Work pipe while FAP Accelerator
is added to 25 bbls. Form-a-plug. Pump 9 bbls. mineral oil, 25
bbls. 12 ppg. plug, followed by 1.5 bbls. mineral oil. Switch to
rig pumps and displace to within 2 bbls. of balance point RID
halliburton equipment and break out TIW valve. Screw into
topdrive and POH with 3 stands while pumping 1 bbls. per
stand.( Calculated to leave app. 1.5 bbls. plug inside string so
as not to contaminate plug with mineral oil). POH 2 stands to
app. 4,800.
***FORM-A-PLUG IN PLACE AT 0300 HRS***
Plug bottom at 5290 Plug top at 4,970
CBU @ 4,800 with 100 SPM at 670 PSI. Saw a small amount
of Form-a-plug with bottoms up.
Printed: 8/18/2003 9:22:41 AM
e
.
Page 12 of 22
BP
Operations Summary Report
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Date From - To Hours i Task . Code NPT Phase
7/29/2003 05:00 - 05:30 0.50 REMCM-N STUC INT1
05:30 - 08:00 2.50 REMCM-N STUC INT1
08:00 - 09:00 1.00 REMCM-N STUC INT1
09:00 - 10:30 1.50 REMCM-N STUC INT1
10:30 - 12:00 1.50 REMCM-N STUC INT1
12:00 - 13:30 1.50 REMCM-N STUC INT1
13:30 - 15:00 1.50 REMCM-N STUC INT1
15:00 - 16:00 1.00 REMCM-N STUC INT1
16:00 - 18:00 2.00 REMCM-N STUC INT1
18:00 - 20:30 2.50 REMCM-N STUC INT1
20:30 - 22:00 1.50 REMCM-N STUC INT1
22:00 - 23:00 1.00 REMCM-N STUC INT1
23:00 - 00:00 1.00 REMCM-N STUC INT1
7/30/2003 00:00 - 01 :00 1.00 REMCM-N STUC INT1
01 :00 - 02:00 1.00 REMCM-N STUC INT1
02:00 - 05:30 3.50 REMCM-N STUC INT1
05:30 - 08:00 2.50 STKOH N STUC INT1
08:00 - 09:30 1.50 STKOH N STUC INT1
09:30 - 10:30 1.00 STKOH N STUC INT1
10:30 - 12:00 1.50 STKOH N STUC INT1
12:00 - 12:30 0.50 STKOH N STUC INT1
12:30 - 13:00 0.50 STKOH N STUC INT1
13:00 - 13:30 0.50 STKOH N STUC INT1
13:30 - 14:00 0.50 STKOH N STUC INT1
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
Description of Operations
POH to 4,300 to wait on plug.
Wait on Form-a-plug to set up.
Wash down from 4,300 to 5,000. Slight pressure increase @
4,900. Saw some indication of Form-a-Plug in returns from
bottoms up.
Circulate and condition mud for cement plug # 1. PJSM for
spotting plug #1.
Switch over to Halliburton and pump 5 bbls. spacer. Pressure
test lines to 3,500 and pump remaining 25 bbls. of 12 ppg.
spacer. Pump 93 bbls. (455 sks. 1.15 yield) of 15.8, "G"
cement and 4 bbls. spacer. Switch to rig and displace to plug
balance point
Cemented from 5,000 to 3,800. "'CIP @ 11 :30 HRS. ...
Pull out of cement plug very slowly to 3,518.
Drop DP wiper plug and circulate 2 X bottoms up with 360
GPM @ 1100 PSI. Dumped 95 bbls. of mud due to spacer
contamination.
POH to 3 1/2 cementing string @ 1,556.
RlU casing equipment and stand 3 1/2 back in derrick. Break
plug catcher and retrieve wiper dart. Clean floor of tripping mud
and layout all excess vendors equipment
RIH with cement stinger and DP to 3,518. Wash down to 3,800
and stage up pumps to 360 GPM @ 1,200 PSI.
CBU and dump 70 bbls. spacer contaminated mud with no
signs of cement PJSM for cement plug #2.
Switch over to Halliburton and pump 5 bbls. spacer. Pressure
test lines to 3,500 and pump remaining 25 bbls. of 12 ppg.
spacer. Pump 88 bbls. (460 sks. 1.08 yield) of 16.4 ppg "G"
cement and 4 bbls. spacer. Switch to rig and displace to plug
balance point
Cemented from 3,800 to 2,546
"'CIP @ 23:00 HRS"··
RID Halliburton and cementing manifold. Pick up out of
cement slowly while monitoring well for swabbing to 2,490.
CBU dumping app. 100 bbls. of spacer contaminated mud. No
signs of cement Drop wiper plug and chase to catcher.
POH to 31/2 cementing string @ 1556.
RlU casing equipment and layout 3 1/2 cementing string.
Break plug catcher and retrieve wiper dart. RID casing
equipment and clear and clean floor or trip mud.
Build cement clean out assembly with 8 3/4 MXC-1 mill tooth
bit
Slip and snip 52' of drilling line. Service drawworks.
RIH with cement clean out assembly to 2,300.
Wash from 2,300 to 2,656. Tag hard cement at 2,656 by
setting down 10K.
Roll mud and stage up to 500 GPM @ 2,000 so as to keep
mud on shakers.
Drill cement from 2,656 to 2,700 with 500 GPM and 80 RPM.
Drilled hard cement for app. 2 ft. before breaking through and
reaming down with no signs of cement
CBU seeing cement back at bottoms up.
Wash down from 2,700 to 2,722 with no indication of hard
Printed: 8/1812003 9:22:41 AM
e
.
BP
Operations Summary Report
Page 13 of 22
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Start:
Rig Release:
Rig Number:
7/2/2003
8/15/2003
Spud Date: 7/8/2003
End: 8/15/2003
Date From - To . Hours Task : Code NPT' Phase Description of Operations
.........-.---- . _ m___ .no___
7/30/2003 13:30 - 14:00 0.50 STKOH N STUC INT1 cement. Rotate down to 2,730 with no indication of hard
cement
14:00 - 16:30 2.50 STKOH N STUC INT1 Roll mud while waiting on cement to firm up.
16:30 - 17:30 1.00 STKOH N STUC INT1 Drill cement from 2,730 to 2,804. Drilled cement with 5-15k on
bit, 500 GPM with 60 rotary---Good cement Set down 20K with
no rotation, pumps on. No sign of plug washing away. Begin
circulating hole in preparation for mud swap.
17:30 - 18:00 0.50 STKOH N RREP INT1 Trouble shoot noise and smoke coming from gear end of
Mudpump # 2. Bearings failed due to broken oiling pump.
Pump determined to be inoperative.
18:00 - 19:00 1.00 STKOH N RREP INT1 POH to 2,500 and roll mud while discussing options.
19:00 - 00:00 5.00 STKOH N RREP INT1 Prepare to remove mud pump from skid and remove mud from
pit system.
7/3112000 00:00 - 00:30 0.50 STKOH N RREP INT1 RIH from 2,430 to 2804.
00:30 - 01 :00 0.50 STKOH N RREP INT1 Swap out 12 ppg. MOBM with 9.1 MOBM @ 300 GPM 600
PSI. (Pumped 210 bbls.) Monitor well.
01 :00 - 01 :30 0.50 STKOH N RREP INT1 POH to 2,523 and observe well while RIR mudpump.
01 :30 - 22:30 21.00 STKOH N RREP INT1 Remove all fluids from pits and prepare for pit complex to be
pulled away from substructure. Move pits out and swap mue
pumps,Re-spot pits and assemble/modify mud pump to fit rig~
plumbing and electrical configuratien. Roll check and confirm
pump is operationally ready.
22:30 - 23:00 0.50 STKOH N RREP INT1 Check pressures on annulus and DP and open up well. RIH
from 2,523 to 2,804.
21"00 -23:3IX 0.50 STKOH N DPRB INT1 Rotate and reciprocate string and begin displacement to 9.7
ppg LSND water based mud. Stage pumps up from 300 GPM
@ 450 and increae rate to 500 GPM with full returns. Pumped
1,540 (90 bbls.) strokes when gas bubble hit surface and blew
mud up through bushin~. Shut well in and record pressures.
Casing pressure=== 80 PSI
DP pressure======= 0
A 9.7 wt mud would have already reached the bit and had app.
1,025 ft. of the annulus covered.
The calculated bottoms up was 2881stksJ 168 bbls.
Gas at surface was 1,540 stksJ 90 bbls.
23:30 - 00:00 0.50 STKOH N DPRB INT1 Monitor and record pressures. Casing pressure built from 80 to
135 with no pressure on DP.
8/1/2003 00:00 - 02:00 2.00 STKOH N DPRB INT1 Circulate out gas with "Drillers Method" at 2 bbls. per minute.
Began seeing mist coming from Gas buster stack. Reduce rate
to 1.5 bpm to avoid blowing MOBM out of stack, and continue
9.7 mud around while taking returns through the choke. (Shut
down operation when reducing the rate from 34 spm to 25 and
let pressures build for 5 minutes. Pressure went from 75 PSI to
100) Continue "Drillers Method" until 9.7 mud was back to
surface. A total of 2185 stokes were circulated through the
choke with the first signs of 9.7 mud at 2,000 away. Shut dowla
pumps and allow well to flow with full open choke. No flow.'
Clear floor and open rams. Hydrateebreaking out of mud with
no flow.
02:00 - 03:00 1.00 STKOH N DPRB INT1 Monitor well for 1 hour while taking on mud from trucks.
Hydrates breaking out of mud in bell nipple. Fluid level dropped
1.5 bbls. in this 1 hour period.
03:00 - 04:00 1.00 STKOH N DPRB INT1 Zero all gain/loss equipment and stage rate up from 35 to 100
Printed: 8/18/2003 9:22:41 AM
e
e
Page 14 of 22
BP
Operations Summary Report
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Date
From - To Hours: Task Code NPT Phase
8/1/2003
03:00 - 04:00
1.00 STKOH N
DPRB INT1
04:00 - 05:00 1.00 STKOH N DPRB INT1
05:00 - 05:30 0.50 STKOH N DPRB INT1
05:30 - 09:00 3.50 STKOH N DPRB INT1
09:00 - 10:00 1.00 STKOH N DPRB INT1
10:00 - 11 :00 1.00 STKOH N DPRB INT1
11 :00 - 13:00 2.00 STKOH N DPRB INT1
13:00 - 13:30 0.50 BOPSURN DPRB INT1
13:30 - 17:30 4.00 BOPSURN DPRB INT1
17:30 - 18:00 0.50 BOPSURN DPRB INT1
18:00 - 21 :30 3.50 STKOH N DPRB INT1
21 :30 - 22:00 0.50 STKOH N DPRB INT1
22:00 - 23:00 1.00 STKOH N DPRB INT1
23:00 - 00:00 1.00 STKOH N DPRB INT1
8/2/2003
00:00 - 00:00
24.00 STKOH N
DPRB INT1
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
Description of Operations
SPM while watching hydrates break out of mud. Bring bottoms
up with 100 spm at 235 PSI. hydrates no longer breaking out.
Rotate string at 100 RPM and pump at 500 GPM @ 700 PSI.
No hydrates.
Shut down pumps and observe well. No flow. Monitor well. Wait
1 hour and check bottoms up for gas. Clean Iron ruffneck and
floor area of MOBM from gas burp.
CBU at 500 GPM @ 700 PSI watching for hydrates. No
hydrates during circulation or bottoms up.
Clean rig floor, cellar area, under rotary table etc., etc., of
MOBM. Flush choke and clean pit equipment of MOBM.
Position bit at 2,804 and CBU at 530 GPM @ 830 PSI. No gas.
Pump dry job. Observe well.
POH to BHA. Hole taking proper fill. Monitor well.
POH with BHA standing back HWDP and laying out steel DC
and remaining BHA. Clear and clean floor of all excess vendors
equipment and ready rig for BOP test.
Flush stack with ported sub and remove wear ring.
Pressure test BOP as per policy 250 low and 4,000 high.
Witness of test waived by AOGCC
RID test equipment and install wear bushing.
Build BHA with 8 3/4 Hycalog DS-70 PDC, 1.5 degree, 7 stage
motor and MWD/PWD/LWD. OrienUshallow test same.
Service top drive.
RIH to 2,609.
Fill pipe and CBU to check for hydrates. Some gas breaking
out with bottoms up, but very minimal.
GPM==400
PSI===940
RPM==60
Up==96K Dwn==91 K String==94K TRQ==2,500
ECD calculations: GPM RPM Calculated ECD
600 80 10.77
550 80 10.75
550 100 10.78
550 60 10.74
Kick off cement plug at 2,804 with 20 degrees to the right. Drill
from 2,804 to 5,316. Pumping 25 bbls. Hi-Vis sweeps every
300 ft. or as hole dictates. Backreaming each connection at full
drilling rate and 100 plus RPM (When possible). Ream down
with 475 GPM at max. RPM. Maintain ECD's < 1 ppg. over
calculated during all drilling and reaming operations. Average
ECD has been .5 ppg. over calculated.
GPM==600 @ 2,300 PSI on and 2,630 off
RPM==80
WOB==5-15
TRQ.== 5,500 on and 3,500 off
Printed: 8/18/2003 9:22:41 AM
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
e
e
Page 15 of 22
BP
Operations Summary Report
V-111
V-111
DRILL +COMPLETE Start: 7/2/2003
NABORS ALASKA DRILLING I Rig Release: 8/15/2003
NABORS 9ES Rig Number:
From - To Hours Task ¡ Code NPT I Phase
i '
Date
.-....
8/2/2003
00:00 - 00:00
8/3/2003
00:00 - 01 :30
01 :30 - 15:00
15:00 - 00:00
8/4/2003
00:00 - 19:00
19:00 - 21 :00
24.00 STKOH N
DPRB INT1
1.50 STKOH N
DPRB INT1
13.50 STKOH N
SFAL INT1
9.00 STKOH N
DPRB INT1
19.00 STKOH N
DPRB INT1
2.00 STKOH N
DPRB INT1
Spud Date: 7/8/2003
End: 8/15/2003
Description of Operations
n. ..___ __ _n._____
***Held Pre-Reservoir meeting with morning tour crew in the
"Day Care" prior to work:**
Heigthened awareness of kick tolerance and good drilling
practices were the focus of discussion.
Drill from 5,316 to 5,502. Backreaming each connection at full
drilling rate and 100 plus RPM (When possible). Ream down
with 475 GPM at max. RPM. Maintain ECD's < 1 ppg. over
calculated during all drilling and reaming operations. Average
ECD has been .5 ppg. over calculated.
GPM==600 @ 2,300 PSI off and 2,630 on
RPM==80
WOB==5-15
TRQ.== 5,500 on and 3,500 off
Number 1 mudpump leaking drilling mud. Flanged sweep and
high pressure discharge manifold connecting pump to
pulsation dampener washed out in API groove. Both the
discharge manifold and sweep will require RIR Remove
sweep and discharge manifold and replace with used spares.
Plumb and fit as needed.
(Evaluate hole conditions--Good. Discussed ST to shoe. To
much risk of needing to backream and not having both pumps.
Work pipe very slowly from 5,495 to 5,420 while pumping 30
SPM at 210 PSL)
Roll and pressure test mudpump #1.
Pump 25 bbl. Hi-Vis sweep S-S to remove any cuttings
generated while working string in open hole. Very minimal
amount of cutting seen back with sweep.
Drill from 5,502 to 6,062. Backreaming each connection at full
drilling rate and 100 plus RPM (When possible). Ream down
with 475 GPM at max. RPM. Maintain ECD's < 1 ppg. over
calculated during all drilling and reaming operations. Pump 25
bbl. sweep every 500 ft. or as hole dictates. Average ECD has
been .5 ppg. over calculated.
GPM==600 @ 2,480 PSI off and 2,720 on
RPM==80
WOB==5-15
TRQ.== 5,500 on and 3,700 off
AST==4.95 ART==1.64
Drill from 6,062 to 7,560. Backreaming each connection at full
drilling rate and 100 plus RPM (When possible). Ream down
with 475 GPM at max. RPM. Maintain ECD's < 1 ppg. over
calculated during all drilling and reaming operations. Pump 25
bbl. weighted sweeps, 2 ppg. over MW, every 200 to 500 ft. as
hole dictates. Increase MW from 10.3 to 10.8 while drilling
ahead from 6,840 ft.
GPM==600 @ 3,500 PSI off and 3,880 on
RPM==80-100
WOB==15-25
TRQ.== 8,000 on and 6,000 off
ART==7.88 AST==5.21
Pump 25 bbls. weighted sweep, 2 ppg over MW S-S with 3
Printed: 8/18/2003 9:22:41 AM
e
e
BP
Operations Summary Report
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Date
!
From - To ' Hours' Task Code NPT: Phase
..----.. --------...
8/4/2003
19:00 - 21 :00
2.00 STKOH N
DPRB INT1
21 :00 - 22:00
1.00 STKOH N
DPRB INT1
22:00 - 23:00
1.00 STKOH N
DPRB INT1
23:00 - 00:00
1.00 STKOH N
DPRB INT1
8/5/2003 00:00 - 02:30 2,50 STKOH P INT1
02:30 - 05:30 3.00 STKOH P INT1
05:30 - 08:00 2.50 STKOH P INT1
08:00 - 12:30 4.50 STKOH P INT1
12:30 - 14:00 1.50 STKOH P INT1
14:00 - 14:30
14:30 - 16:30
0.50 STKOH P
2.00 STKOH P
INT1
INT1
16:30 - 16:45
16:45 - 20:00
0.25 STKOH P
3.25 STKOH P
INT1
INT1
20:00 - 21 :30 1.50 STKOH P INT1
21 :30 - 22:00 0.50 CASE P INT1
22:00 - 22:30 0.50 CASE P INT1
22:30 - 23:30 1,00 CASE P INT1
23:30 - 00:00 0.50 CASE P INT1
8/6/2003 00:00 - 00:30 0.50 CASE P INT1
00:30 - 01 :00 0.50 CASE P INT1
01 :00 - 01 :30 0.50 CASE P INT1
01 :30 - 02:00 0.50 CASE P INT1
02:00 - 07:00 5,00 CASE P INT1
Page 16 of 22
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
Description of Operations
times bottoms up. Rotate and reciprocate string at 130 RPM
while pumping 600 GPM @ 3,580, Shakers cleaned up.
Calculated ECD==11.54 Actual ECD==11.91
POH 2 stands from 7,560 to 7,366 with no adverse hole
conditions, While picking up out of slips at 7,366 string became
differentially stuck in the Kuparuk. Pick up single and begin
techniques for freeing differentially stuck pipe. Break circulation
with 38 spm to comfirm ability to circulate. Trap 12,000 torque
in string and jar down. Would not jar free. Trap 16,000 in string
and work pipe moving torque down hole. String popped free
while working string on downstroke.
Stage up pumps to 600 GPM and brings bottoms up while
rotating string at 130 RPM. (Precautionary only--no signs of
cuttings beds)
Backream out of the hole to 7,116.( kuparuk @ 7,211)
Reaming with 600 GPM at 130 RPM with 5,500 to 6,500
torque. No packing off with occational increases in torque.
Minimize time in slips while setting back stands. No overpulls
while coming out of slips.
TOH from 7116'. 170 klbs up, 117 klbs down, 5-10 klbs
interminttent drag throughout trip to 9-5/8" csg shoe at 2745'.
Monitor well at shoe - static. Continue TOH to LD BHA #21
LD reamer. Stand back 7 stands HWDP. LD BHA #21
PU and MU BHA #22 for clean out trip. Shallow test MWD at
802'
RIH, for clean out trip to run 7" csg. Max running speed 1
minute per stand. Fill pipe at 2500' and 5000'. 160 klbs up, 110
klbs down at 7400'
Started taking weight at 7400'. POH to 7330' and MU top drive.
Stage up pumps to drlg rate, CBU at 600 gpm, 3620 psi and
100 rpm, 136 klbs rotating and 5 klbs torque. Hole cleaned up
no problems.
Wash down last 2 stands at 600 gpm, tag bottom at 7560.
Circulate hi-vis sweep around at 600 gpm, 3550 psi and 128
rpm. 137 klbs rotating, 5 klbs torque. Spot a 50 bbl pill with 8
ppb Resinex, 6 ppb Boreplate, 5 ppb SafeCarb 250, 5 ppb
SafeCarb 40 and 5% Lubetex across the Kuparuk.
Monitor well - static
POH to run 7" csg. 170 klbs up, 120 klbs down. Pulling 5-10
klbs over off bottom. POH to above the HRZ at 6500' and
pump dry job. Cont POH, monitor well at 9-5/8" csg shoe -
static. No hole problems on POH, hole taking correct fill.
Stand HWDP back in derrick and LD BHA #22
Clean and clear rig floor. Pull wear bushing,
Flush stack with ported sub, install test plug
-ft·.. .L·,~"ltt\.\1\),J;" r::t"'~\
Change over to long bails on top drive
Pressure test door seals to 3500 psi
Makde dummy run w/ 7" landing joint RU csg equipment
PJSM with Nabors Casing and rig personnel on running 7" 26#
casing.
PU and MU float euipment Fill and test floats.
Run 7" 26# L-80 casing to csg shoe at 2745'. Start running at 1
Printed: 8/18/2003 9:22:41 AM
e
e
Page 17 of 22
BP
Operations Summary Report
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Date
From - To i Hours Task Code NPT Phase
....-.----.--
8/6/2003
02:00 - 07:00 5.00 CASE P INT1
07:00 - 07:30 0.50 CASE P INT1
07:30 - 19:30 12.00 CASE P INT1
19:30 - 20:00 0.50 CASE P INT1
20:00 - 21 :30 1.50 CASE P INT1
21 :30 - 22:00 0.50 CEMT P INT1
22:00 - 22:10 0.17 CEMT P INT1
22: 1 0 - 22:20 0.17 CEMT P INT1
22:20 - 22:40 0.33 CEMT P INT1
22:40 - 22:50 0.17 CEMT P INT1
22:50 - 22:55 0.08 CEMT P INT1
22:55 - 23:40 0.75 CEMT P INT1
23:40 - 00:00 0.33 CASE P INT1
8/7/2003 00:00-00:15 0.25 CASE P INT1
00: 15 - 02:00 1.75 CASE P INT1
02:00 - 02:30 0.50 WHSUR P PROD1
02:30 - 03:00 0.50 BOPSUR P PROD1
03:00 - 04:00 1.00 BOPSURP PROD1
04:00 - 07:30 3.50 BOPSUR P PROD1
07:30 - 08:00 0.50 BOPSUR P PROD1
08:00 - 08:30 0.50 WHSUR P PROD1
08:30 - 09:00 0.50 STWHIP P PROD1
09:00 - 12:00 3.00 STWHIP P PROD1
12:00 - 12:30 0.50 STWHIP P PROD1
12:30 - 15:30 3.00 STWHIP P PROD1
15:30 - 18:30 3.00 STWHIP P PROD1
18:30 - 22:00 3.50 STWHIP P PROD1
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
Description of Operations
...--..---.-
minute per joint after 20 joints started pushing approximately 1
bbl of mud away for every 10 joints ran. Slowed running speed
to 6 minutes per joint and monitored displacement
Circulate 1.5 times bottoms up at the csg shoe. Stage pumps
to 6 bpm at 330 psi. 103 klbs up, 98 klbs down.
Continue running 7" csg. Circulate each joint down at 3 minutes
per joint and 4 bpm at 402 psi. Monitor displacement CBU
every 30 joints. at 7200' started running at 3 minutes per joint
without circulating. Landed at 7546'.
RD fill up tool. Blow down top drive. RU cement head and lines.
Break circulation at 2 bpm at 530 psi. Stage pumps up to 7
bpm at 890 psi. Circulate surface to surface to condition mud.
Reciprocate while circulating. 220 klbs up, 145 klbs down.
Displace 150 bbls 10.3 ppg mud, 6 bpm at 640 psi prior to
cement job.
PJSM with HALCO, MI, and rig personnel on cement job held
while circulating.
Pump 5 bbl KCI water and pressure test to 4000 psi
Pump 32 bbl 11.5 ppg Alpha viscosified spacer
Drop bottom plug and pump 112 bbls(265 sxs) 12.5 ppg
HOWCO Premium Micro Lite lead cemem,
Pump 33 bbls (160 sxs) 15.8 ppgHOWCO Premium S~
CBl. tail cement.
Flush cement lines through a Tee on the rig floor and switch to
rig pumps for displacement
Drop bottom plug and displace with rig pumps. Displace at 7
bpm for the first 250 bbls, reduce rate to 4 bpm for the next 30
bbls and 2 bpm to bump the plugs. Reciprocated csg until the
tail cement started around the shoe then landed csg. rU~
returns throughout displacement: Bump plugs on calculated
stroke&. CIP at 23:40.
Pressure test casing to 3500 psi for 30 minutes
Continue pressure test 7" csg to 3500 psi for 30 minutes.
RD csg equipment and LD landing joint
Install packoff and pressure test to 5000 psi.
Flush stack
Change 7" pipe rams to 3-1/2" to 6" VBR
Pressure test BOPE to 250 low, 4000 high. Witness of test
waived by Chuck Scheve with AOGCC
Pull test plug. Install wear bushing. Blow down lines.
Inject 20 bbls 10.5 ppg mud down 7" X 9-5/8" annulus at 2 bpm
and 750 psi. 800 psi shut in pressure.
PJSM with SWS and all rig personnel on wireline operations
RU and run GRlCCL with 6.151" gauge ring and junk basket
PJSM with SWS, HOWCO, and all rig personnel on running 7"
EZSV.
RIH with 7" EZSV on e-line. Tie in on depth and set at 7239'.
POH and RD SWS.
PU and MU 7" whipstock BHA Orient and shallow test MWD.
RIH to 7183' with whipstock, 1.5 - 2 minutes per stand. Fill pipe
at 4000'.
Printed: 8/18/2003 9:22:41 AM
e
e
Page 18 of 22
BP
Operations Summary Report
Start:
Rig Release:
Rig Number:
Phase
24 Ibs metal returns while milling window
Circulate 15 bbl Super Sweep followed by 25 bbl Hi-vis sweep.
Ciculate surface to surface at 300 gpm, 1415 psi until clean
returns. 145 klbs up, 120 klbs down, 137 klbs rotate.
Perform FIT to 11.5 ppg EMW. 860 psi pump pressure with 9.0
ppg mud.
Monitor well - static
Pump dry job and POH. Stand DP and HWDP back in derrick.
150 klbs up, 125 klbs down.
LD milling BHA. Clean and clear rig floor
Jet stack with ported sub.
PJSM with Anadrill and all rig personnel on picking up and
making up BHA
PU and MU 6-1/8" drilling BHA with 2.12 degree motor and
Smith XR20 insert bit
Cut and slip 91' of drilling line. Adjust brakes. Clean out
drawworks. Service top drive.
RIH picking up 81 jts of DP from pipe shed.
Continue RIH with stands from derrick.+
Repair low drum clutch and rotary seal on high clutch.
Continue RIH to 7200'
Circulate and condition mud. Circulate surface to surface to
warm and shear mud, couldn't keep the mud from flowing over
the shakers until it had warmed up.
Stage pumps to drilling rate, 300 gpm. Establish baseline ECD
of 10.03 ppg and orient tool face to exit window. RIH through
window to 7233'. Stage pumps to drilling rate, 300 gpm. Wash
down to TD at 7247'.
PROD1 Drill from 7247' to 7360', sliding 100% to build angle. 300 gpm
at 1810 psi. 148 klbs up, 126 klbs down. Calculated ECD =
10.03, actual ECD = 10.28
PROD1 Circulate Hi-vis sweep around.
Unable to build angle at directional plan rate with the current
BHA Directional plan called for 16.5 degree dog legs, & not
able to maintain 12's. Projecting the current build rate the well
would land 17' low to plan resulting in a loss of 62' of vertical
section. Conferred with Anch geologists and the decision
made to drill ahead attempting to maintain 12 degree dog legs
at a minimum. If that could not be attained, a trip to dial up the
motor angle to 2.38 degrees and a new bit would be made.
Legal Well Name: V-111
Common Well Name: V-111
Event Name: DRILL +COMPLETE
Contractor Name: NABORS ALASKA DRILLING I
Rig Name: NABORS 9ES
Date I From - To . Hours I Task Code NPT
__I I
8/7/2003 22:00 - 22:30 0.50 STWHIP P PROD1
22:30 - 23:00 0.50 STWHIP P PROD1
23:00 - 00:00 1.00 STWHIP P PROD1
8/8/2003 00:00 - 01 :00 1.00 STWHIP P PROD1
01 :00 - 04:00 3.00 STWHIP P PROD1
04:00 - 05:00 1.00 STWHIP P PROD1
05:00 - 05:30 0.50 DRILL P PROD1
05:30 - 05:45 0.25 STWHIP P PROD1
05:45 - 09:00 3.25 STWHIP P PROD1
09:00 - 11 :00 2.00 STWHIP P PROD1
11 :00 - 11 :30 0.50 BOPSURP PROD1
11 :30 - 12:00 0.50 DRILL P PROD1
12:00 - 14:30 2.50 DRILL P PROD1
14:30 - 16:00 1.50 DRILL P PROD1
16:00 - 18:00 2.00 DRILL P PROD1
18:00 - 19:30 1.50 DRILL P PROD1
19:30 - 21 :30 2.00 DRILL N RREP PROD1
21 :30 - 22:30 1.00 DRILL P PROD1
22:30 - 00:00 1.50 DRILL P PROD1
8/9/2003 00:00 - 00:30 0.50 DRILL P PROD1
00:30 - 04:00
3.50 DRILL P
04:00 - 05:00
1.00 DRILL P
7/2/2003
8/15/2003
Spud Date: 7/8/2003
End: 8/15/2003
Description of Operations
__n_.....__._.. .
Orient whipstock 30 degrees right of high side.
Tag bridge plug at 7183'. Set bottom anchor with 20 klbs down.
PU 10 klbs over string weight to verify anchor set Shear lug
pin with 35 klbs down.
Displace well to 9.0 ppg Flo-Pro mud at max rate of 345 gpm
and 2195 psi.
Clean mud pits, possum belly and under shakers.
Mill window from 7221' to 7233'. 110 rpm, 280 gpm at 1375 psi,
5.5 klbs torque. Dress window and drill new hole from 7233' to
7247'. 110 rpm, 280 gpm at 1306 psi, 4-5 klbs torque.
Circulate 15 bbl Super Sweep around at 7240'
Printed: 8/18/2003 9:22:41 AM
e
e
Page 19 of 22
BP
Operations Summary Report
PROD1 Directional drill from 7360' to 7392', sliding 100% attempting to
build angle at 12 degrees per 100'. 300 gpm @ 1810 psi. 148
klbs up, 126 klbs down. Calculated ECD = 10.03 ppg, actual
ECD = 10.28 ppg.
Unable to maintain 12 degree dog legs. Plan on trip to dial up
motor to 2.38 degrees and pick up HTC STX20 bit
Circulate hole clean for trip. 300 gpm @ 1720 psi.
Circulate out to the bottom of the window. 300 gpm @ 1720
psi. Shut down pumps to pull BHA into casing. Open circ sub.
Circulate sweep surface to surface at 450 gpm.
Monitor well - static. Pump dry job and blow down top drive.
POH to 370'
PJSM with Anadrill and all rig personnel on removing source
and handling BHA.
Stand back jars, LD NM flex collars. Unload source. Change bit
out to HTC STX20D. Dial motor up to 2.38 degrees. Download
MWD/LWD.
PJSM with Anadrill and all rig personnel on loading source and
handling BHA.
Load source. RIH with BHA and shallow test
RIH to 7200', above window. Orient tool face and exit window.
Continue RIH, tag bottom at 7392'.
Directional drill from 7392' to 7484', sliding 100%. Build angle
to 99 degrees to land build section. 280 gpm @ 1565 psi. 150
klbs up, 125 klbs down. Calculated ECD = 10.15 ppg, actual
ECD = 10.34 ppg.
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Date
i
From - To ! Hours Task Code NPT Phase
------ .. .-.---.-..
8/9/2003
05:00 - 05:30
0.50 DRILL P
05:30 - 06:30 1.00 DRILL P PROD1
06:30 - 07:00 0.50 DRILL P PROD1
07:00 - 08:00 1.00 DRILL P PROD1
08:00 - 08:15 0.25 DRILL P PROD1
08:15 -10:00 1.75 DRILL P PROD1
10:00 - 10:30 0.50 DRILL P PROD1
10:30 -12:00 1.50 DRILL P PROD1
12:00 -12:30 0.50 DRILL P PROD1
12:30 - 13:00 0.50 DRILL P PROD1
13:00 - 16:00 3.00 DRILL P PROD1
16:00 - 18:30 2.50 DRILL P PROD1
18:30 - 19:30 1.00 DRILL P PROD1
19:30 - 20:30 1.00 DRILL P PROD1
20:30 - 21 :00 0.50 DRILL P PROD1
21:00-21:15 0.25 DRILL P PROD1
21:15-00:00 2.75 DRILL P PROD1
8/10/2003 00:00 - 00:30 0.50 DRILL P PROD1
00:30 - 01 :30 1.00 DRILL P PROD1
01 :30 - 06:00 4.50 DRILL N RREP PROD1
06:00 - 08:00 2.00 DRILL P PROD1
08:00 - 10:30 2.50 DRILL P PROD1
10:30 - 11 :00 0.50 DRILL P PROD1
11 :00 - 12:00 1.00 DRILL P PROD1
12:00 - 00:00 12.00 DRILL P PROD1
Start:
Rig Release:
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
7/2/2003
8/15/2003
Description of Operations
--..----.------.-
.. - --- ---------.-----
AST 4.9 hrs.
Circulate hi-vis sweep surface to surface. 300 gpm @ 1675 psi.
POH making MAD pass from 7434' to 7255' at 5 ftImin. 275
gpm @ 1515 psi. Continue POH to put BHA in casing.
Open circ sub. CBU - 500 gpm @ 1500 psi.
Monitor well - static.
Pump dry job. POH to BHA. 150 klbs up, 125 klbs down.
PJSM with Anadrill and all rig personnel on unloading source
and handling BHA
Stand back jars. LD NM flex collars. Remove source. Adjust
motor to 1.5 degrees. Download MWD/LWD. MU new bit.
Remove and replace drawworks chain due to broken link.
PU BHA. Load source. MU NM flex collars. RIH with BHA,
shallow test. 255 gpm @ 800 psi.
RIH to 7200', filling pipe every 1500'.
Stage up pumps to 280 gpm. Orient tool to exit window
RIH through window to 7394'. Wash to bottom at 7484'
Drill from 7484 to 7745. Sliding 100% until the BHA is out of
the build section. 147 klbs up, 119 klbs down, 134 klbs rotate.
280 gpm @ 1740 psi. WOB 5-10 klbs. Calculated ECD = 10.25
ppg, actual ECD = 10.47 ppg. Backream each stand at 300
gpm and 40 rpm. Reduce flow rate to 270 gpm on the down
stroke.
AST last 24 hrs = 7.09 hrs
AST total = 11.99 hrs
Printed: 8/18/2003 9:22:41 AM
e
e
BP
Operations Summary Report
Page 20 of 22
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Start:
Rig Release:
Rig Number:
7/2/2003
8/15/2003
Spud Date: 7/8/2003
End: 8/15/2003
Date I From - To Hours Task Code NPT Phase
Description of Operations
8/10/2003
12:00 - 00:00
12.00 DRILL P
PROD1
8/11/2003
00:00 - 23:30
23.50 DRILL P
21 :00 Hrs. Freeze protect 7" X 9-5/8" annulus with 65 bbls
dead crude. Pump at 1/2 bpm to 950 psi - leak off point.
Increased rate to 2 bpm. FCP = 1150 psi. SIP = 1050 psi.
PROD1 Drill from 7745' to 8930'. Started droping 14' TVD at 8200' MD
in anticipation of projected fault. Drilled to 8780' MD, did not
cross fault. Starting turning up to regain the 14' TVD. Regained
contact with the zone and turned down to follow formation dip.
149 klbs up, 122 klbs down, 134 klbs rotate. 280 gpm @ 2100
psi. WOB 10-15 klbs. Calculated ECD = 10.30 ppg, actual ECD
= 10.65 ppg. Backream each stand at 300 gpm and 60 rpm.
Reduce flow rate to 270 gpm on the down stroke.
05:30 - 06:30
1.00 DRILL N
AST last 24 hrs = 7.72 hrs.
ART last 24 hrs = 4.42 hrs.
Total time on bit= 19.23 hrs.
PROD1 CBU for samples. Geologist needed to confirm formation to
avoid drilling out of the top of the Kuparuk into the Kalubik
PROD1 Drill from 8930' to 9286'. 151 klbs up, 117 klbs down, 136 klbs
rotate. 60 rpm and 280 gpm @ 2170 psi. 5.3 klbs torque.
WOB 10-15 klbs. Calculated ECD = 10.55 ppg, actual ECD =
10.89 ppg. Backream each stand at 300 gpm and 60 rpm.
Reduce flow rate to 270 gpm on the down stroke.
SFAL PROD1 Circulate sweep surface to surface at 300 gpm @ 2200 psi
while trouble shooting MWD display problems.
PROD1 Drill from 8286' to 9850'. 150 klbs up, 110 klbs down, 128 klbs
rotate. 60 rpm and 280 gpm @ 2019 psi. 4-8 klbs torque.
WOB 10-15 klbs. Calculated ECD = 10.55 ppg, actual ECD =
10.78 ppg. Backream each stand at 300 gpm and 60 rpm.
Reduce flow rate to 270 gpm on the down stroke.
23:30 - 00:00
0.50 DRILL P
8/12/2003
00:00 - 05:30
5.50 DRILL P
06:30 - 21 :00
14.50 DRILL P
21 :00 - 22:30
1.50 DRILL P
AST last 24 hrs = 6.93 hrs.
ART last 24 hrs = 3.75 hrs.
Total time on bit= 29.91 hrs.
PROD1 CBU X 2, with Hi-vis sweep at 300 gpm and 80 rpm while
reciprocating DP. Reduce rate to 270 gpm on down stroke.
Continue circulating until actual ECD is within 0.3 ppg of
calculated ECD. Calculated ECD = 10.50 ppg, Actual ECD =
10.74 ppg.
PROD1 POH backreaming to 9365. 300 gpm and 80 rpm. Calculated
ECD = 10.5 ppg, actual ECD = 10.63 ppg.
PROD1 Continue POH backreaming, 300 gpm and 80 rpm, to the end
of the build section at 7800'. At 7800' stop rotating and
continue POH pumping out at 300 gpm to the bottom of the
window at 7233'. Orient tool to exit window and POH to 7160'
Service top drive, blocks and crown. Cut and slip 70' of drilling
line.
RIH to the top of the Kuparuk at 9815'. Reduced risk of stuck
pipe by not entering Kalubik, will set the liner bottom at 9815'.
Stage pumps to 300 gpm @ 1830 psi, reciprocate DP at 80
rpm. Calculated ECD = 10.55 ppg, final circulating ECD =
10.61 ppg
Spot 100 bbl clean 9.0 ppg flo-pro liner running pill.
22:30 - 00:00
1.50 DRILL P
8/13/2003
00:00 - 02:30
2.50 DRILL P
02:30 - 04:00 1.50 DRILL P PROD1
04:00 - 05:00 1.00 DRILL P PROD1
05:00 - 07:30 2.50 DRILL P PROD1
07:30 - 08:00 0.50 DRILL P PROD1
Printed: 8/18/2003 9:22:41 AM
e
e
BP
Operations Summary Report
Page 21 of 22
legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
V-111
V-111
DRill +COMPlETE
NABORS ALASKA DRilLING I
NABORS 9ES
Start:
Rig Release:
Rig Number:
7/2/2003
8/15/2003
Spud Date: 7/8/2003
End: 8/15/2003
Date From - To ' Hours Task Code NPT Phase Description of Operations
...... ..--..---- ..._____..__._. ____ ____o_m_._ __.__...____.__...... ...__._m__n_____._.._.._..
8/13/2003 08:00 - 08: 15 0.25 DRILL P PROD1 Monitor well - static
08:15 -10:30 2.25 DRILL P PROD1 POH to place circ sub at the TOW @ 7221.
10:30 - 12:00 1.50 DRILL P PROD1 Drop ball and open circ sub. Pump sweep around at 400 gpm.
Continue POH until the bit is inside csg. Circulate 400 gpm @
1067 psi while reciprocating DP at 80 rpm. 150 klbs up, 121
klbs down, 130 klbs rotate.
12:00 - 12:15 0.25 DRILL P PROD1 Monitor well - static
12:15 - 14:30 2.25 DRILL P PROD1 Pump dry job. Drop 2-3/8" rabbit POH. 150 klbs up, 125 klbs
down. LD HWDP and continue POH to BHA
14:30 - 14:45 0.25 DRILL P PROD1 Monitor well on last stand prior to pulling BHA - static
14:45 - 15:00 0.25 DRILL P PROD1 PJSM with Anadrill and all rig personnel on unloading RA
source and LD BHA
15:00 - 16:30 1.50 DRILL P PROD1 POH to BHA Unload RA source. LD BHA.
16:30 - 17:00 0.50 DRILL P PROD1 Clean and clear rig floor.
17:00 - 17:30 0.50 CASE P COMP RU to run 4-1/2" 12.6# slotted liner.
17:30 - 18:00 0.50 CASE P COMP PJSM with Baker, Nabors Casing and all rig personnel on MU
and running of 4-1/2 slotted liner.
18:00 - 21 :00 3.00 CASE P COMP MU and Run 4-1/2" 12.6# slotted liner as per running orders
21 :00 - 21 :30 0.50 CASE P COMP MU liner hanger. Break circulation through liner and liner
hanger. 195 gpm @ 340 psi. 67 klbs up, 58 klbs down.
21 :30 - 00:00 2.50 CASE P COMP TIH with liner on DP to TOW @ 7221'
8/14/2003 00:00 - 00:30 0.50 CASE P COMP CBU at 7221', TOW. 3 bpm @ 397 psi. 134 klbs up, 113 klbs
down.
00:30 - 02:30 2.00 CASE P COMP RIH with 4-1/2" liner on DP @ 2 minutes/stand to 9815'. Set
liner on depth.
02:30 - 03:30 1.00 CASE P COMP Break circulation. Drop ball and pump onto seat Pressure up
to 2300 psi. Slack 10 klbs to verify set PU and rotate 20 RH
turns to unlatch. Pressure up to 2700 psi to blow ball seat
03:30 - 04:45 1.25 CASE P COMP Pump 25 bbl clean 9.0 ppg KCL spacer, followed by 25 bbl
Safe Clean pill. Displace well to 9.0 ppg filtered KCL water. 5.5
bpm @ 1060 psi.
04:45 - 05:00 0.25 CASE P COMP Monitor well - static
05:00 - 09:30 4.50 CASE P COMP POH, laying down DP.
09:30 - 10:00 0.50 CASE P COMP LD liner running tool.
10:00 - 13:30 3.50 CASE P COMP RIH with 23 stands of DP from derrick. POH laying down DP.
13:30 -14:00 0.50 BOPSURP COMP Pull wear bushing, make dummy run with hanger and landing
joint
14:00 - 14:30 0.50 RUNCOIIJP COMP RU to run 3-1/2" 9.3# tubing.
14:30 - 15:00 0.50 RUNCOIIJP COMP PJSM with Baker, Nabors Casing and all rig personnel on MU
and running tubing.
15:00 - 22:30 7.50 RUNCOIIJP COMP MU tail pipe assembly. RIH with 3-1/2" 9.3# L-80 tubing making
up jewelry as per running orders.
22:30 - 23:00 0.50 RUNCOIIJP COMP Space out WLEG in liner hanger tie back receptacle.
23:00 - 00:00 1.00 RUNCOIIJP COMP CO elevators to 4-1/2". MU circulating head, MU tubing hanger
and landing joint Land tbg hanger in tbg spool.
8/15/2003 00:00 - 02:00 2.00 RUNCOIIJP COMP Reverse circulate 54 bbl corrosion inhibited brine. Place brine
from #3 GLM mandrel to the WLEG.
02:00 - 04:00 2.00 RUNCOIIJP COMP Drop ball and rod. Pull landing joint Set packer. Pressure test
tbg to 4000 psi for 30 minutes. Bleed tbg pressure to 2500 psi.
Pressure test 3-1/2" X 7" annulus to 3500 psi for 30 minutes.
Bleed tbg and annular pressure to O. Pressure up annulus to
blow DCR shear valve. DCR sheared at 3400 psi.
04:00 - 05:00 1.00 BOPSURP COMP Set TWC valve and pressure test from below to 2700 psi.
Printed: 8/18/2003 9:22:41 AM
Legal Well Name:
Common Well Name:
Event Name:
Contractor Name:
Rig Name:
Date
e
e
Page 22 of 22
BP
Operations Summary Report
V-111
V-111
DRILL +COMPLETE
NABORS ALASKA DRILLING I
NABORS 9ES
Start: 7/2/2003
Rig Release: 8/15/2003
Rig Number:
Spud Date: 7/8/2003
End: 8/15/2003
....----.....
From - To Hours Task Code: NPT: Phase
__u n_..____________________________ ..._ ._______..
8/15/2003
05:00 - 05:30
05:30 - 06:30
06:30 - 09:00
09:00 - 13:00
13:00 - 13:30
13:30 - 15:00
15:00 -17:00
0.50 RUNCOMP COMP
1.00 BOPSURP COMP
2.50 BOPSURP COMP
4.00 WHSUR P COMP
0.50 WHSUR P COMP
1.50 WHSUR P COMP
2.00 WHSUR P COMP
Description of Operations
Blow down lines to ND BOP
Clean out below rotary table.
Remove rams from BOP's. ND BOPS. Clean cuttings tank and
mud pits
NU tree and adapter flange. Pressure test to 5000 psi
RU lubricator and pull TWC valve
RU little Red. Pressure test lines to 1000 psi. Pump 130 bbls
diesel down the 7" X 3-1/2" annulus and allow to U-tube to
freeze protect well.
Secure cellar and rig for move to W-Pad for summer
maintenance
Printed: 8/18/2003 9:22:41 AM
e
1
e
. \
BPX Exploration, Alaska
V-lIl Well
Core Description
Orion Field
Core #1: 4042' -4102' MD. Cut 60', recovered 53.7'. Schrader Bluff Zone Mb1. Well
bore inclination was 1.3 degrees from vertical.
4042'-4049' MD: Sandstone, medium-dark grayish brown, 85-95% quartz, 5-15% chert,
fine grained, well sorted, excellent porosity, with uniform dark brown oil stain.
4049' -4077' MD: Sandstone, light to medium brownish gray, 95% quartz, 5% chert, fine
grained, well sorted, excellent porosity, with weak even to patchy dark brown oil stain.
4077'-4088' MD: Thin-bedded sandstone and shale. Sandstone is medium grayish brown,
fine grained, well sorted, with excellent porosity and even to patchy dark brown oil stain;
shale is light gray, silty, firm-hard, and laminated.
4088'-4095.7' MD: Shale, light gray, soft, laminated.
Core #2: 4380' -4440' MD. Cut 60', recovered 60' . Schrader Bluff Zones Nc and OA.
Well bore inclination was 1.3 degrees from vertical.
4380-4397.5' MD (lower Zone Nc): Siltstone, light/medium grayish brown, heavily
burrowed, oil stained, grading downward to light gray shale in the basal foot.
4397.5-4426' (upper Zone OA): Sandstone, medium/dark brown, 95% quartz/5% chert,
fine grained, well sorted, excellent porosity, with uniform medium to dark brown oil
stain.
4426' -4434.5': Sandstone, with thin layers of light gray shale and siltstone. Sandstone is
medium grayish brown, burrowed, 95% quartz/5% chert, fine grained, well sorted, with
excellent porosity and even light yellowish brown oil stain.
4434.5' -4440': Shale, silty, light gray.
Core #3: 4440-4500' MD. Cut 60' , recovered 60'. Schrader Bluff lower Zone OA and
Zone OBa. Well bore inclination was 1.3 degrees from vertical.
4440' -4468' MD (lower Zone OA): Shale, light gray, silty, with thin beds of siltstone.
Siltstone is burrowed and has light/medium brown oil stain.
4468'-4478' MD (upper Zone OBa): Sandstone, medium/dark brown, quartzose, very
fine grained, well sorted, excellent porosity, with uniform medium/dark brown oil stain.
V-Ill State Core Desc .doc
9/11/2003
e
2
e
4478' -4489' MD: Sandstone, with thin beds of burrowed, light gray shale and siltstone.
Sandstone is medium grayish brown, quartzose, slightly argillaceous, very fine grained,
well sorted, with fair-good porosity, and even light brown oil stain.
4489' -4495' MD: Sandstone, medium/dark brown, quartzose and very slightly
argillaceous, very fine grained, well sorted, excellent porosity, with uniform medium
brown oil stain.
4495' -4500' MD (near zone OBa base): Shale, light gray, very silty, burrowed.
Core #4: 4500' -4560' MD, cut 60' , recovered 60' . Base of OBa Zone and OBb Zone.
Well bore inclination was 1.3 degrees from vertical.
4500' -4505' MD: Shale, light gray, very silty, burrowed.
4505'-4515' MD: (top ofOBb Zone): Sandstone, medium brown, quartzose, very fine
grained, well sorted, excellent porosity, even brown oil stain.
4515' -4517' MD: Siltstone, medium brownish gray, argillaceous and burrowed, oil
stained.
4517' -4521' MD: Sandstone, medium brown, quartzose, very fine grained, well sorted,
excellent porosity, with medium/dark brown oil stain.
4521' -4535' MD: Siltstone, light gray and medium grayish brown, very argillaceous,
burrowed, oil stained.
4535' -4543' MD: Shale, light gray, slightly silty.
4543' -4560' MD: Siltstone, light gray to medium grayish brown, very argillaceous,
burrowed, oil stained.
Core #5: 4560' MD-4605' MD. Cut 45', recovered 45'. Base of OBb Zone and OBc
Zone. Well bore inclination 1.3 degrees from vertical.
4560' -4563.5' MD: Shale, light gray, silty.
4563.5' -4572.5' MD (top of Zone OBc): Sandstone, medium/dark brown, quartzose, very
fine grained, well sorted, good to excellent porosity, uniform medium/dark brown oil
stain.
4572.5' -4592' MD: Siltstone, light gray and medium grayish brown, very argillaceous,
with clay content increasing downward, oil stained.
4592' -4605' MD: Shale, light gray, very silty, with silt laminations oil stained.
V-Ill State Core Desc .doc
9/11/2003
e
3
e
Core #6: 4605'-4665' MD. Base of Schrader Bluff Zone OBc and Zone OBd. Well bore
inclination 1.2 degrees from vertical.
4605-4613.5' MD: Shale, light gray, very silty, silt laminations are oil stained.
4613.5-4624' MD (top of Zone OBd): Sandstone, with thin light gray shale and siltstone
beds. Sandstone is medium/dark brown, quartzose, very fine grained, well sorted, fair to
excellent porosity, with medium/dark brown oil stain.
4624' -4625.5' MD; Siltstone, argillaceous, burrowed, oil stained.
4625.5' -4650.5' MD: Sandstone and siltstone, thin bedded. Sandstone is medium brown,
quartzose, very fine grained, well sorted, fair-good porosity, oil stained.
4650.5-4656.8' MD: Siltstone, light gray to medium grayish brown, oil stained.
4656.8' -4662.7' MD: Sandstone, medium grayish brown, silty and argillaceous, very fine
grained, well sorted, with calcite cement, fair-good porosity, oil stained.
4662.7' -4665' MD: Shale, light gray, very silty.
Core #7: 4665' -4723.5' MD. Cut 58.5', recovered 58.5'. Base of OBd Zone, whole of
OBe Zone, and top of OBf Zone.
4665' -4675.4' MD: Shale, light gray, silty
4675.4-4678.2' MD (top of Zone OBe): Siltstone, light gray an medium grayish brown,
sandy and argillaceous.
4678.2-4697.8' MD: Sandstone, light gray to medium brown, very fine grained, well
sorted, with laminations. Laminations alternate well cemented with moderately cemented
layers; porosity is poor-good (overall, fair), medium brown oil stain varies with
cementation in laminations.
4697.8-4717.3' MD: Siltstone and shale, light gray to medium grayish brown, burrowed.
4717.3-4723.5' MD (top ofOBfZone): Sandstone, medium grayish brown, very fine
grained, well sorted, laminated, fair porosity; moderate, even oil stain.
NOTE: Porosity and Permeability data are partial and preliminary, and they are not ready
for distribution. They should be ready before the end of 2003.
V-Ill State Core Desc .doc
9/1112003
:
V-111 PB1 Su rvey Report hlu PuOP
Report Date: 16-Jul-03 Survey / DLS Computation Method: Minimum Curvature / Lubinski
Client: BP Exploration Alaska Vertical Section Azimuth: 33.930'
Field: Prudhoe Bay Unit - WOA Vertical Section Origin: N 0.000 ft, E 0.000 ft
Structure / Slot: V-Pad / Plan V-111 (N-U) TVD Reference Datum: KB
Well: V-111 TVD Reference Elevation: 81.8 ft relative to MSL
Borehole: V-111PB1 Sea Bed / Ground Level Elevation: 53.30 ft relative to MSL
UWVAPI#: 500292316170 Magnetic Declination: 25.507'
Survey Name / Date: V-111PB1/ July 16, 2003 Total Field Strength: 57518.289 nT
Torti AHD / DDI/ ERD ratio: 116.721' /1880.31 ft/5.395/ 0.279 Magnetic Dip: 80.781'
Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feet Declination Date: July 11,2003
e Location Lal/Long: N 70 1941.296, W 14915 51.593 Magnetic Declination Model: BGGM 2003
Location Grid N/E Y/X: N 5970134.340 ftUS, E 590709.620 ftUS North Reference: True North
Grid Convergence Angle: +0.69273635' Total Corr Mag North -> True North: +25.507'
Grid Scale Factor: 0.99990935 Local Coordinates Referenced To: Well Head
Comments Measured Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (ltUS)
0.00 0.00 0.00 0.00 0.00 -81.80 0.00 0.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70 19 41.296 W 1491551.593
100.00 0.50 91.31 100.00 100.00 18.20 0.24 -0.01 0.44 0.44 91.31 0.50 5970134.34 590710.06 N 70 19 41.295 W 1491551.580
200.00 0.65 90.96 100.00 199.99 118.19 0.78 -0.03 1.44 1.44 91.17 0.15 5970134.33 590711.06 N 70 19 41.295 W 1491551.551
300.00 0.76 93.40 100.00 299.99 218.19 1.42 -0.08 2.67 2.67 91.68 0.11 5970134.29 590712.29 N 70 19 41.295 W1491551.515
400.00 1.06 96.98 100.00 399.97 318.17 2.18 -0.23 4.25 4.26 93.10 0.31 5970134.16 590713.87 N 70 19 41.293 W 1491551.469
500.00 1.31 101.81 100.00 499.95 418.15 3.03 -0.58 6.29 6.31 95.24 0.27 5970133.84 590715.91 N 70 19 41.290 W 1491551.410
600.00 1.73 103.02 100.00 599.92 518.12 4.00 -1.15 8.88 8.95 97.39 0.42 5970133.30 590718.51 N 70 19 41.284 W 1491551.334
700.00 1.72 100.58 100.00 699.87 618.07 5.13 -1.77 11.82 11.95 98.50 0.07 5970132.72 590721 .46 N 70 19 41.278 W 1491551.248
800.00 1.84 104.04 100.00 799.82 718.02 6.27 -2.43 14.85 15.05 99.29 0.16 5970132.09 590724.50 N 70 19 41.272 W 1491551.159
900.00 1.42 119.85 100.00 899.78 817.98 6.91 -3.44 17.49 17.82 101.12 0.61 5970131.11 590727.14 N 70 19 41.262 W 1491551.083
1000.00 0.75 196.62 100.00 999.77 917.97 6.37 -4.68 18.37 18.96 104.29 1.45 5970129.88 590728.05 N 70 19 41.250 W 1491551.057
1100.00 1.85 248.29 100.00 1099.74 1017.94 4.41 -5.91 16.69 17.70 109.49 1.50 5970128.64 590726.38 N 70 19 41.237 W 1491551.106
e 1200.00 3.15 261.17 100.00 1199.65 1117.85 1.22 -6.92 12.47 14.27 119.04 1.41 5970127.57 590722.17 N 70 19 41.227 W1491551.229
1300.00 3.89 266.10 100.00 1299.46 1217.66 -2.73 -7.58 6.37 9.90 139.93 0.80 5970126.84 590716.08 N 70 19 41.221 W 1491551.407
1400.00 4.17 263.62 100.00 1399.21 1317.41 -7.16 -8.21 -0.62 8.24 184.35 0.33 5970126.12 590709.09 N701941.215 W 1491551.611
1500.00 4.24 265.50 100.00 1498.94 1417.14 -11.81 -8.91 -7.92 11.92 221.66 0.15 5970125.34 590701.81 N 70 19 41.208 W1491551.824
1600.00 4.23 261.68 100.00 1598.67 1516.87 -16.59 -9.73 -15.26 18.10 237.48 0.28 5970124.43 590694.48 N 70 19 41.200 W 1491552.038
1700.00 4.70 264.43 100.00 1698.37 1616.57 -21.67 -10.66 -22.98 25.34 245.12 0.52 5970123.40 590686.77 N701941.191 W 149 1552.264
1800.00 5.76 267.76 100.00 1797.95 1716.15 -27.24 -11.25 -32.08 33.99 250.67 1.10 5970122.70 590677.68 N701941.185 W 1491552.529
1847.00 5.08 277.98 47.00 1844.74 1762.94 -29.55 -11.06 -36.49 38.13 253.14 2.51 5970122.84 590673.27 N701941.187 W 1491552.658
1873.77 4.85 281.20 26.77 1871.41 1789.61 -30.50 -10.67 -38.78 40.22 254.61 1.35 5970123.20 590670.98 N701941.191 W 14915 52.725
1966.13 6.24 282.06 92.36 1963.33 1881.53 -33.88 -8.87 -47.52 48.34 259.43 1.51 5970124.90 590662.22 N 70 19 41.208 W 14915 52.980
2058.26 6.50 280.72 92.13 2054.89 1973.09 -37.80 -6.85 -57.54 57.94 263.21 0.33 5970126.80 590652.17 N 70 1941.228 W 149 15 53.273
2153.25 6.37 280.92 94.99 2149.29 2067.49 -41.98 -4.85 -67.99 68.17 265.92 0.14 5970128.67 590641.70 N701941.248 W1491553.578
2245.73 5.06 284.09 92.48 2241.30 2159.50 -45.37 -2.89 -76.99 77.04 267.85 1.46 5970130.52 590632.68 N 70 1941.267 W 14915 53.841
Version DO 3.1 RT (d031 rL546) 3.1 RT-SP3.03
Plan V-111 (N-U)\V-111\V-111 PB1\V-111 PB1
Generated 9/15/2003 1 :48 PM Page 1 of 3
Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(II) (deg) (deg) (II) (II) (II) (II) (II) (II) (II) (deg) (degl100 II) (IIUS) (IIUS)
2339.83 2.86 279.64 94.10 2335.17 2253.37 -47.74 -1.48 -83.33 83.34 268.98 2.36 5970131.85 590626.32 N701941.281 W 1491554.026
2432.60 2.64 279.59 92.77 2427.84 2346.04 -49.58 -0.74 -87.72 87.72 269.52 0.24 5970132.54 590621.93 N 70 19 41.288 W 1491554.154
2525.85 1.40 286.00 93.25 2521.03 2439.23 -50.81 -0.07 -90.93 90.93 269.96 1.35 5970133.17 590618.71 N 70 19 41.295 W 14915 54.247
2618.84 0.52 320.88 92.99 2614.00 2532.20 -51.04 0.57 -92.29 92.29 270.36 1.09 5970133.80 590617.34 N 70 19 41.301 W 1491554.287
2682.69 0.42 312.45 63.85 2677.85 2596.05 -50.92 0.96 -92.64 92.65 270.59 0.19 5970134.18 590616.98 N 70 19 41.305 W 1491554.298
2703.23 0.41 310.50 20.54 2698.39 2616.59 -50.90 1.05 -92.75 92.76 270.65 0.08 5970134.27 590616.87 N 70 19 41 .306 W 1491554.301
2746.00 0.59 310.39 42.77 2741.16 2659.36 -50.86 1.30 -93.04 93.05 270.80 0.42 5970134.51 590616.58 N 70 19 41.308 W 1491554.309
2826.99 0.92 310.35 80.99 2822.14 2740.34 -50.74 1.99 -93.85 93.87 271.21 0.41 5970135.19 590615.76 N 70 19 41.315 W 1491554.333
2921.28 0.94 307.97 94.29 2916.42 2834.62 -50.60 2.95 -95.04 95.08 271.78 0.05 5970136.14 590614.56 N 70 19 41.325 W 1491554.367
3014.53 0.81 307.80 93.25 3009.66 2927.86 -50.50 3.83 -96.16 96.24 272.28 0.14 5970137.00 590613.43 N701941.333 W 1491554.400
3107.91 0.86 309.69 93.38 3103.03 3021 .23 -50.38 4.68 -97.22 97.34 272.76 0.06 5970137.84 590612.36 N 70 19 41.342 W 1491554.431
e 3199.89 0.82 298.93 91.98 3195.00 3113.20 -50.37 5.44 -98.33 98.48 273.17 0.18 5970138.59 590611.24 N 70 19 41.349 W 1491554.464
3294.17 0.76 295.23 94.28 3289.27 3207.47 -50.53 6.03 -99.49 99.67 273.47 0.08 5970139.17 590610.08 N 70 1941.355 W 1491554.497
3387.24 0.84 297.73 93.07 3382.33 3300.53 -50.69 6.61 -100.65 100.87 273.76 0.09 5970139.73 590608.91 N 70 1941.361 W 1491554.531
3481.14 0.91 299.01 93.90 3476.22 3394.42 -50.83 7.29 -101.91 102.17 274.09 0.08 5970140.40 590607.64 N 70 1941.367 W 1491554.568
3575.16 0.94 298.84 94.02 3570.23 3488.43 -50.96 8.03 -103.24 103.55 274.45 0.03 5970141.12 590606.30 N 70 19 41.375 W 1491554.607
3666.76 1.06 304.53 91.60 3661.81 3580.01 -51.02 8.87 -104.59 104.97 274.85 0.17 5970141.94 590604.94 N 70 19 41.383 W 14915 54.646
3759.37 1.12 308.10 92.61 3754.41 3672.61 -50.95 9.91 -106.01 106.47 275.34 0.10 5970142.97 590603.51 N 70 19 41.393 W 14915 54.688
3851.37 1.03 309.69 92.00 3846.39 3764.59 -50.80 11.00 -107.36 107.92 275.85 0.10 5970144.04 590602.15 N 70 19 41.404 W 1491554.727
3945.67 1.13 315.42 94.30 3940.68 3858.88 -50.53 12.20 -108.66 109.34 276.41 0.16 5970145.23 590600.83 N 70 19 41.416 W 1491554.765
3970.68 1.16 312.31 25.01 3965.68 3883.88 -50.44 12.55 -109.02 109.74 276.57 0.28 5970145.57 590600.47 N 70 19 41.419 W 1491554.776
4034.88 1.34 309.51 64.20 4029.86 3948.06 -50.27 13.46 -110.08 110.90 276.97 0.30 5970146.47 590599.39 N 70 19 41.428 W 1491554.807
4127.50 1.35 306.49 92.62 4122.46 4040.66 -50.12 14.80 -111.79 112.77 277.54 0.08 5970147.79 590597.67 N 70 19 41.441 W 1491554.857
4221.16 1.22 299.20 93.66 4216.10 4134.30 -50.15 15.94 -113.55 114.66 277.99 0.22 5970148.91 590595.90 N701941.452 W 1491554.908
4302.36 1.11 275.01 81.20 4297.28 4215.48 -50.61 16.43 -115.09 116.26 278.13 0.62 5970149.38 590594.35 N 70 19 41.457 W 1491554.953
4396.52 1.28 310.71 94.16 4391.42 4309.62 -50.92 17.20 -116.79 118.05 278.38 0.80 5970150.12 590592.64 N 70 19 41.465 W 1491555.003
4490.66 1.31 311.59 94.14 4485.54 4403.74 -50.65 18.60 -118.40 119.85 278.93 0.Q4 5970151.50 590591.02 N 70 19 41.478 W 1491555.049
4582.91 1.27 313.20 92.25 4577.76 4495.96 -50.35 20.00 -119.93 121.59 279.47 0.06 5970152.89 590589.47 N 70 19 41.492 W 1491555.094
4676.61 1.19 314.59 93.70 4671.44 4589.64 -50.00 21.39 -121.38 123.25 280.00 0.09 5970154.26 590588.00 N 70 19 41.506 W 1491555.136
4768.51 1.12 312.94 91.90 4763.32 4681.52 -49.68 22.67 -122.72 124.79 280.47 0.08 5970155.53 590586.65 N 70 19 41.519 W 1491555.176
e 4861.01 1.13 316.73 92.50 4855.80 4774.00 -49.34 23.95 -124.00 126.30 280.93 0.08 5970156.79 590585.35 N701941.531 W 1491555.213
4955.40 3.07 338.84 94.39 4950.13 4868.33 -47.69 26.99 -125.56 128.42 282.13 2.19 5970159.81 590583.76 N701941.561 W 149 1555.258
5048.19 6.44 348.97 92.79 5042.59 4960.79 -42.58 34.42 -127.45 132.01 285.11 3.73 5970167.21 590581.78 N701941.634 W 1491555.314
5141.18 9.68 355.07 92.99 5134.65 5052.85 -32.80 47.33 -129.12 137.52 290.13 3.60 5970180.10 590579.95 N 70 1941.761 W 149 1555.362
5233.84 13.55 357.84 92.66 5225.39 5143.59 -17.96 65.94 -130.20 145.94 296.86 4.22 5970198.70 590578.65 N701941.944 W 1491555.394
5326.65 18.26 357.85 92.81 5314.63 5232.83 2.59 91.35 -131.15 159.83 304.86 5.07 5970224.09 590577.38 N 70 1942.194 W 1491555.422
5420.17 22.69 356.70 93.52 5402.22 5320.42 28.81 124.02 -132.74 181.66 313.05 4.76 5970256.73 590575.40 N 70 19 42.515 W 1491555.468
5513.45 26.75 356.89 93.28 5486.93 5405.13 59.90 162.96 -134.92 211.56 320.38 4.35 5970295.64 590572.76 N 70 19 42.898 W 1491555.532
5606.63 25.89 356.44 93.18 5570.45 5488.65 92.78 204.20 -137.32 246.08 326.08 0.95 5970336.85 590569.86 N 70 19 43.304 W 1491555.602
5700.28 26.16 359.86 93.65 5654.61 5572.81 126.11 245.25 -138.64 281.73 330.52 1.63 5970377.88 590568.04 N 70 19 43.708 W 1491555.640
5793.84 26.37 4.64 93.56 5738.52 5656.72 161.32 286.59 -137.01 317.66 334.45 2.27 5970419.23 590569.17 N 70 19 44.114 W 149 15 55.593
5886.36 26.35 12.49 92.52 5821 .44 5739.64 198.36 327.13 -130.90 352.35 338.19 3.76 5970459.83 590574.78 N 70 19 44.513 W 14915 55.415
5979.56 27.65 18.37 93.20 5904.50 5822.70 238.45 367.86 -119.61 386.82 341.99 3.18 5970500.69 590585.58 N 70 19 44.913 W 1491555.085
6034.93 29.72 22.10 55.37 5953.08 5871.28 264.27 392.77 -110.40 407.99 344.30 4.94 5970525.71 590594.49 N 70 19 45.158 W 14915 54.816
Version DO 3.1 RT (d031rt_546) 3.1RT-SP3.03
Plan V-111 (N-U)\V-111\V-111PB1\V-111PB1
Generated 9/15/2003 1 :48 PM Page 2 of 3
Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (ltUS)
6072.52 30.33 22.64 37.59 5985.62 5903.82 282.70 410.17 -103.24 422.96 345.87 1.77 5970543.19 590601.44 N 70 19 45.330 W 1491554.607
6165.43 34.66 28.73 92.91 6063.99 5982.19 332.05 455.02 -81.49 462.26 349.85 5.84 5970588.30 590622.64 N 70 19 45.771 W 1491553.972
6258.12 39.96 34.96 92.69 6137.71 6055.91 388.12 502.57 -51.74 505.23 354.12 7.01 5970636.21 590651.82 N 70 19 46.238 W 1491553.103
6353.45 43.07 40.23 95.33 6209.11 6127.31 451.12 552.54 -13.15 552.70 358.64 4.90 5970686.63 590689.79 N 70 1946.730 W 1491551.977
6447.02 47.83 45.79 93.57 6274.75 6192.95 516.87 601.16 32.38 602.03 3.08 6.62 5970735.79 590734.73 N 70 19 47.208 W 1491550.648
6539.04 52.54 50.79 92.02 6333.68 6251.88 585.26 648.07 85.17 653.64 7.49 6.60 5970783.33 590786.95 N 70 19 47.669 W 1491549.106
6630.00 57.82 54.41 90.96 6385.61 6303.81 655.93 693.34 144.50 708.23 11.77 6.66 5970829.31 590845.72 N 70 19 48.114 W 1491547.374
6725.36 62.34 57.26 95.36 6433.17 6351.37 732.57 739.69 212.89 769.72 16.06 5.40 5970876.48 590913.53 N 70 19 48.570 W 1491545.378
6817.63 63.08 58.50 92.27 6475.48 6393.68 807.50 783.29 282.34 832.62 19.82 1.44 5970920.91 590982.44 N 70 19 48.999 W 1491543.350
6910.91 66.56 59.92 93.28 6515.16 6433.36 883.82 826.48 354.85 899.44 23.24 3.98 5970964.97 591054.42 N 70 19 49.424 W 1491541.233
7004.20 70.63 60.18 93.29 6549.20 6467.40 961.78 869.83 430.09 970.35 26.31 4.37 5971009.22 591129.12 N 70 19 49.850 W1491539.036
- 7096.88 71. 77 61.62 92.68 6579.07 6497.27 1039.97 912.49 506.75 1043.76 29.05 1.92 5971052.81 591205.25 N 70 19 50.270 W 1491536.798
7189.25 71.65 61.63 92.37 6608.06 6526.26 1117.63 954.17 583.92 1118.66 31.46 0.13 5971095.41 591281.90 N 70 19 50.680 W 1491534.545
7283.07 71.75 62.11 93.82 6637.52 6555.72 1196.32 996.17 662.47 1196.34 33.62 0.50 5971138.35 591359.94 N 70 19 51.093 W 1491532.251
7376.77 71.83 61.84 93.70 6666.80 6585.00 1274.87 1037.99 741.04 1275.37 35.52 0.29 5971181.12 591437.99 N 70 19 51.504 W 1491529.957
7470.34 71.77 61.96 93.57 6696.02 6614.22 1353.38 1079.86 819.45 1355.58 37.19 0.14 5971223.93 591515.88 N 70 19 51.915 W 1491527.667
7501.49 71.88 62.48 31.15 6705.74 6623.94 1379.44 1093.65 845.64 1382.45 37.71 1.62 5971238.03 591541.89 N 70 19 52.051 W 1491526.903
7532.45 71.92 62.62 30.96 6715.36 6633.56 1405.27 1107.22 871.75 1409.21 38.21 0.45 5971251.91 591567.84 N 70 19 52.184 W 1491526.140
7564.32 71.95 62.36 31.87 6725.24 6643.44 1431.89 1121.21 898.62 1436.89 38.71 0.78 5971266.23 591594.54 N 70 19 52.322 W 1491525.356
7635.00 71.95 62.36 70.68 6747.14 6665.34 1490.98 1152.39 958.16 1498.69 39.74 0.00 5971298.12 591653.69 N 70 19 52.629 W 1491523.617
Leqal Description:
Northinq (V) [nUS] Eastinq (X) [nus]
Surface: 4885 FSL 1591 FEL S11 T11 N R11 E UM 5970134.34 590709.62
BHL: 757 FSL 631 FEL S2 T11 N R11 E UM 5971298.12 591653.69
e
Version DO 3.1 RT ( d031 rt_546 ) 3.1 RT-SP3.03
Plan V-111 (N-U)\V-111\V-111 PB1\V-111 PB1
Generated 9/15/2003 1:48 PM Page 3 of 3
V-111 PB2 Survey Report Schlum ruer
Report Date: 29-Jul-03 Survey I DLS Computation Method: Minimum Curvature I Lubinski
Client: BP Exploration Alaska Vertical Section Azimuth: 33.930'
Field: Prudhoe Bay Unit - WOA Vertical Section Drigin: N 0.000 ft, E 0.000 ft
Structure I Slot: V-Pad I Plan V-111 (N-U) TVD Reference Datum: KB
Well: V-111 TVD Reference Elevation: 81.80 ft relative to MSL
Borehole: V-111PB2 Sea Bed I Ground Level Elevation: 53.30 ft relative to MSL
UWVAPI#: 500292316171 Magnetic Declination: 25.489'
Survey Name I Date: V-111 PB2 / July 29, 2003 Total Field Strength: 57519.024 nT
Tort I AHD / DDII ERD ratio: 129.439' / 1456.09 ft / 5.313 / 0.220 Magnetic Dip: 80.781'
Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feet Declination Date: July 29, 2003
e Location LatILong: N 701941.296, W 14915 51.593 Magnetic Declination Model: BGGM 2003
Location Grid NIE Y/X: N 5970134.340 ftUS, E 590709.620 ftUS North Reference: True North
Grid Convergence Angle: +0.69273635' Total Corr Mag North -> True North: +25.489'
Grid Scale Factor: 0.99990935 Local Coordinates Referenced To: Well Head
Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (ltUS)
0.00 0.00 0.00 0.00 0.00 -81.80 0.00 0.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70 19 41.296 W 1491551.593
100.00 0.50 91.31 100.00 100.00 18.20 0.24 -0.01 0.44 0.44 91.31 0.50 5970134.34 590710.06 N 70 19 41.295 W 1491551.580
200.00 0.65 90.96 100.00 199.99 118.19 0.78 -0.03 1.44 1.44 91.17 0.15 5970134.33 590711 .06 N 70 19 41 .295 W 14915 51.551
300.00 0.76 93.40 100.00 299.99 218.19 1.42 -0.08 2.67 2.67 91.68 0.11 5970134.29 590712.29 N 70 19 41.295 W 14915 51.515
400.00 1.06 96.98 100.00 399.97 318.17 2.18 -0.23 4.25 4.26 93.10 0.31 5970134.16 590713.87 N 70 19 41.293 W 14915 51.469
500.00 1.31 101.81 100.00 499.95 418.15 3.03 -0.58 6.29 6.31 95.24 0.27 5970133.84 590715.91 N 70 19 41.290 W 1491551.410
600.00 1.73 103.02 100.00 599.92 518.12 4.00 -1.15 8.88 8.95 97.39 0.42 5970133.30 590718.51 N 70 1941.284 W 1491551.334
700.00 1.72 100.58 100.00 699.87 618.07 5.13 -1.77 11.82 11.95 98.50 0.07 5970132.72 590721.46 N 70 19 41.278 W 1491551.248
800.00 1.84 104.04 100.00 799.82 718.02 6.27 -2.43 14.85 15.05 99.29 0.16 5970132.09 590724.50 N 70 19 41.272 W 14915 51.159
900.00 1.42 119.85 100.00 899.78 817.98 6.91 -3.44 17.49 17.82 101.12 0.61 5970131.11 590727.14 N 70 19 41.262 W 149 1551.083
1000.00 0.75 196.62 100.00 999.77 917.97 6.37 -4.68 18.37 18.96 104.29 1.45 5970129.88 590728.05 N 70 19 41.250 W 14915 51.057
1100.00 1.85 248.29 100.00 1099.74 1017.94 4.41 -5.91 16.69 17.70 1 09.49 1.50 5970128.64 590726.38 N 70 19 41 .237 W 14915 51.106
e 1200.00 3.15 261.17 100.00 1199.65 1117.85 1.22 -6.92 12.47 14.27 119.04 1.41 5970127.57 590722.17 N 70 19 41.227 W 1491551.229
1300.00 3.89 266.10 100.00 1299.46 1217.66 -2.73 -7.58 6.37 9.90 139.93 0.80 5970126.84 590716.08 N 70 1941.221 W 1491551.407
1400.00 4.17 263.62 100.00 1399.21 1317.41 -7.16 -8.21 -0.62 8.24 184.35 0.33 5970126.12 590709.09 N 70 1941.215 W1491551.611
1500.00 4.24 265.50 100.00 1498.94 1417.14 -11.81 -8.91 -7.92 11.92 221.66 0.15 5970125.34 590701.81 N 70 19 41 .208 W 1491551.824
1600.00 4.23 261.68 100.00 1598.67 1516.87 -16.59 -9.73 -15.26 18.10 237.48 0.28 5970124.43 590694.48 N 70 19 41.200 W 1491552.038
1700.00 4.70 264.43 100.00 1698.37 1616.57 -21.67 -10.66 -22.98 25.34 245.12 0.52 5970123.40 590686.77 N 70 19 41.191 W 1491552.264
1800.00 5.76 267.76 100.00 1797.95 1716.15 -27.24 -11.25 -32.08 33.99 250.67 1.10 5970122.70 590677.68 N 70 19 41.185 W 14915 52.529
1847.00 5.08 277.98 47.00 1844.74 1762.94 -29.55 -11.06 -36.49 38.13 253.14 2.51 5970122.84 590673.27 N701941.187 W 14915 52.658
1873.77 4.85 281.20 26.77 1871.41 1789.61 -30.50 -10.67 -38.78 40.22 254.61 1.35 5970123.20 590670.98 N701941.191 W 1491552.725
1966.13 6.24 282.06 92.36 1963.33 1881.53 -33.88 -8.87 -47.52 48.34 259.43 1.51 5970124.90 590662.22 N 70 19 41.208 W 1491552.980
2058.26 6.50 280.72 92.13 2054.89 1973.09 -37.80 -6.85 -57.54 57.94 263.21 0.33 5970126.80 590652.17 N 70 19 41.228 W 1491553.273
2153.25 6.37 280.92 94.99 2149.29 2067.49 -41.98 -4.85 -67.99 68.17 265.92 0.14 5970128.67 590641.70 N 70 19 41.248 W 149 1553.578
2245.73 5.06 284.09 92.48 2241 .30 2159.50 -45.37 -2.89 -76.99 77.04 267.85 1.46 5970130.52 590632.68 N 70 19 41.267 W 149 15 53.841
Version DO 3.1 RT (d031 rt_546) 3.1 RT-SP3.03
Plan V-111 (N-U)\V-111\V-111 PB2\V-111 PB2
Generated 9/15/2003 1 :48 PM Page 1 of 3
,.
..
Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Comments Depth Length Section Azimuth
(II) (deg) (deg) (II) (II) (II) (II) (II) (II) (II) (deg) (deg/100 II) (IIUS) (IIUS)
2339.83 2.86 279.64 94.10 2335.17 2253.37 -47.74 -1.48 -83.33 83.34 268.98 2.36 5970131.85 590626.32 N 70 19 41.281 W 14915 54.026
2432.60 2.64 279.59 92.77 2427.84 2346.04 -49.58 -0.74 -87.72 87.72 269.52 0.24 5970132.54 590621.93 N 70 19 41.288 W 14915 54.154
2525.85 1.40 286.00 93.25 2521.03 2439.23 -50.81 -0.07 -90.93 90.93 269.96 1.35 5970133.17 590618.71 N 70 19 41.295 W 14915 54.247
2618.84 0.52 320.88 92.99 2614.00 2532.20 -51.04 0.57 -92.29 92.29 270.36 1.09 5970133.80 590617.34 N701941.301 W 1491554.287
2682.69 0.42 312.45 63.85 2677.85 2596.05 -50.92 0.96 -92.64 92.65 270.59 0.19 5970134.18 590616.98 N 70 19 41.305 W 14915 54.298
2703.23 0.41 310.50 20.54 2698.39 2616.59 -50.90 1.05 -92.75 92.76 270.65 0.08 5970134.27 590616.87 N 70 19 41.306 W 1491554.301
2746.00 0.59 310.39 42.77 2741.16 2659.36 -50.86 1.30 -93.04 93.05 270.80 0.42 5970134.51 590616.58 N 70 19 41.308 W 149 1554.309
2826.99 0.92 310.35 80.99 2822.14 2740.34 -50.74 1.99 -93.85 93.87 271.21 0.41 5970135.19 590615.76 N 70 19 41.315 W 14915 54.333
2921.28 0.94 307.97 94.29 2916.42 2834.62 -50.60 2.95 -95.04 95.08 271.78 0.05 5970136.14 590614.56 N 70 19 41.325 W 14915 54.367
3014.53 0.81 307.80 93.25 3009.66 2927.86 -50.50 3.83 -96.16 96.24 272.28 0.14 5970137.00 590613.43 N 70 19 41.333 W 14915 54.400
3107.91 0.86 309.69 93.38 3103.03 3021.23 -50.38 4.68 -97.22 97.34 272.76 0.06 5970137.84 590612.36 N701941.342 W1491554.431
e 3199.89 0.82 298.93 91.98 3195.00 3113.20 -50.37 5.44 -98.33 98.48 273.17 0.18 5970138.59 590611.24 N 70 1941.349 W 149 15 54.464
3294.17 0.76 295.23 94.28 3289.27 3207.47 -50.53 6.03 -99.49 99.67 273.47 0.08 5970139.17 590610.08 N 70 19 41.355 W 1491554.497
3387.24 0.84 297.73 93.07 3382.33 3300.53 -50.69 6.61 -100.65 100.87 273.76 0.09 5970139.73 590608.91 N 70 19 41.361 W 1491554.531
3481.14 0.91 299.01 93.90 3476.22 3394.42 -50.83 7.29 -101.91 102.17 274.09 0.08 5970140.40 590607.64 N 70 19 41.367 W 1491554.568
3575.16 0.94 298.84 94.02 3570.23 3488.43 -50.96 8.03 -103.24 103.55 274.45 0.03 5970141.12 590606.30 N 70 19 41.375 W 14915 54.607
3666.76 1.06 304.53 91.60 3661.81 3580.01 -51.02 8.87 -104.59 104.97 274.85 0.17 5970141.94 590604.94 N 70 19 41.383 W 14915 54.646
3759.37 1.12 308.10 92.61 3754.41 3672.61 -50.95 9.91 -106.01 106.47 275.34 0.10 5970142.97 590603.51 N 70 19 41.393 W 14915 54.688
3851.37 1.03 309.69 92.00 3846.39 3764.59 -50.80 11.00 -107.36 107.92 275.85 0.10 5970144.04 590602.15 N 70 19 41.404 W 1491554.727
3945.67 1.13 315.42 94.30 3940.68 3858.88 -50.53 12.20 -108.66 109.34 276.41 0.16 5970145.23 590600.83 N 70 19 41.416 W 14915 54.765
3970.68 1.16 312.31 25.01 3965.68 3883.88 -50.44 12.55 -109.02 109.74 276.57 0.28 5970145.57 590600.47 N 70 19 41.419 W 14915 54.776
4034.88 1.34 309.51 64.20 4029.86 3948.06 -50.27 13.46 -110.08 110.90 276.97 0.30 5970146.47 590599.39 N 70 19 41.428 W 14915 54.807
4127.50 1.35 306.49 92.62 4122.46 4040.66 -50.12 14.80 -111.79 112.77 277.54 0.08 5970147.79 590597.67 N 70 19 41.441 W 1491554.857
4221.16 1.22 299.20 93.66 4216.10 4134.30 -50.15 15.94 -113.55 114.66 277.99 0.22 5970148.91 590595.90 N 70 19 41.452 W 1491554.908
4302.36 1.11 275.01 81.20 4297.28 4215.48 -50.61 16.43 -115.09 116.26 278.13 0.62 5970149.38 590594.35 N 70 19 41.457 W 14915 54.953
4396.52 1.28 310.71 94.16 4391.42 4309.62 -50.92 17.20 -116.79 118.05 278.38 0.80 5970150.12 590592.64 N 70 19 41.465 W 1491555.003
4490.66 1.31 311.59 94.14 4485.54 4403.74 -50.65 18.60 -118.40 119.85 278.93 0.04 5970151.50 590591.02 N 70 19 41.478 W 1491555.049
4582.91 1.27 313.20 92.25 4577.76 4495.96 -50.35 20.00 -119.93 121.59 279.47 0.06 5970152.89 590589.47 N 70 19 41.492 W 1491555.094
4676.61 1.19 314.59 93.70 4671 .44 4589.64 -50.00 21.39 -121.38 123.25 280.00 0.09 5970154.26 590588.00 N 70 1941.506 W 1491555.136
4768.51 1.12 312.94 91.90 4763.32 4681.52 -49.68 22.67 -122.72 124.79 280.47 0.08 5970155.53 590586.65 N 70 1941.519 W 1491555.176
e 4861.01 1.13 316.73 92.50 4855.80 4774.00 -49.34 23.95 -124.00 126.30 280.93 0.08 5970156.79 590585.35 N 70 19 41.531 W 1491555.213
4955.40 3.07 338.84 94.39 4950.13 4868.33 -47.69 26.99 -125.56 128.42 282.13 2.19 5970159.81 590583.76 N 70 19 41.561 W 1491555.258
5048.19 6.44 348.97 92.79 5042.59 4960.79 -42.58 34.42 -127.45 132.01 285.11 3.73 5970167.21 590581.78 N 70 19 41.634 W 1491555.314
5141.18 9.68 355.07 92.99 5134.65 5052.85 -32.80 47.33 -129.12 137.52 290.13 3.60 5970180.10 590579.95 N 70 19 41.761 W 14915 55.362
5233.84 13.55 357.84 92.66 5225.39 5143.59 -17.96 65.94 -130.20 145.94 296.86 4.22 5970198.70 590578.65 N 70 19 41.944 W 14915 55.394
5326.65 18.26 357.85 92.81 5314.63 5232.83 2.59 91.35 -131.15 159.83 304.86 5.07 5970224.09 590577.38 N 70 19 42.194 W 14915 55.422
5420.17 22.69 356.70 93.52 5402.22 5320.42 28.81 124.02 -132.74 181.66 313.05 4.76 5970256.73 590575.40 N 70 19 42.515 W 1491555.468
5513.45 26.75 356.89 93.28 5486.93 5405.13 59.90 162.96 -134.92 211.56 320.38 4.35 5970295.64 590572.76 N 70 19 42.898 W 149 1555.532
5606.63 25.89 356.44 93.18 5570.45 5488.65 92.78 204.20 -137.32 246.08 326.08 0.95 5970336.85 590569.86 N 70 19 43.304 W 1491555.602
5700.28 26.16 359.86 93.65 5654.61 5572.81 126.11 245.25 -138.64 281.73 330.52 1.63 5970377.88 590568.04 N 70 1943.708 W 1491555.640
5793.84 26.37 4.64 93.56 5738.52 5656.72 161.32 286.59 -137.01 317.66 334.45 2.27 5970419.23 590569.17 N 70 19 44.114 W 1491555.593
5886.36 26.35 12.49 92.52 5821.44 5739.64 198.36 327.13 -130.90 352.35 338.19 3.76 5970459.83 590574.78 N 70 19 44.513 W 149 1555.415
5979.56 27.65 18.37 93.20 5904.50 5822.70 238.45 367.86 -119.61 386.82 341.99 3.18 5970500.69 590585.58 N 70 19 44.913 W 14915 55.085
6034.93 29.72 22.10 55.37 5953.08 5871.28 264.27 392.77 -110.40 407.99 344.30 4.94 5970525.71 590594.49 N 70 19 45.158 W 1491554.816
Version DO 3.1 RT (d031 rC546) 3.1 RT-SP3.03
Plan V-111 (N-U)\V-111\V-111 PB2\V-111 PB2
Generated 9/15/2003 1 :48 PM Page 2 of 3
Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100ft) (ltUS) (flUS)
6072.52 30.33 22.64 37.59 5985.62 5903.82 282.70 410.17 -103.24 422.96 345.87 1.77 5970543.19 590601.44 N 70 19 45.330 W 1491554.607
6165.43 34.66 28.73 92.91 6063.99 5982.19 332.05 455.02 -81.49 462.26 349.85 5.84 5970588.30 590622.64 N 70 19 45.771 W 14915 53.972
6229.42 37.49 32.22 63.99 6115.71 6033.91 369.65 487.46 -62.36 491.43 352.71 5.46 5970620.96 590641.38 N 70 19 46.090 W 14915 53.414
6261.06 35.91 31.69 31.64 6141.07 6059.27 388.54 503.50 -52.35 506.21 354.06 5.09 5970637.12 590651.19 N701946.247 W1491553.121
6291.38 35.49 31.14 30.32 6165.70 6083.90 406.22 518.60 -43.13 520.39 355.25 1.74 5970652.33 590660.23 N 70 19 46.396 W 149 15 52.852
6324.44 36.74 32.58 33.06 6192.40 6110.60 425.69 535.15 -32.84 536.15 356.49 4.57 5970669.00 590670.32 N 70 19 46.559 W 1491552.552
6355.57 37.15 34.34 31.13 6217.28 6135.48 444.40 550.75 -22.52 551.21 357.66 3.64 5970684.73 590680.44 N 70 19 46.712 W 1491552.251
6386.06 38.19 37.59 30.49 6241.42 6159.62 463.01 565.83 -11.58 565.94 358.83 7.35 5970699.93 590691.20 N 70 1946.860 W 14915 51.931
6418.43 39.76 40.43 32.37 6266.59 6184.79 483.29 581.64 1.24 581.64 0.12 7.35 5970715.90 590703.83 N701947.016 W1491551.557
6449.01 41.55 42.51 30.58 6289.79 6207.99 503.03 596.56 14.44 596.73 1.39 7.34 5970730.97 590716.84 N 70 19 47.163 W 1491551.172
6480.35 43.55 44.51 31.34 6312.87 6231.07 523.93 611.92 29.03 612.61 2.72 7.70 5970746.51 590731.25 N701947.314 W1491550.745
e 6508.83 44.87 46.25 28.48 6333.29 6251.49 543.39 625.87 43.17 627.35 3.95 6.29 5970760.62 590745.21 N 70 19 47.451 W 1491550.333
6540.50 46.31 48.33 31.67 6355.45 6273.65 565.40 641 .21 59.79 643.99 5.33 6.53 5970776.16 590761.65 N 70 19 47.602 W 1491549.847
6570.07 47.68 50.01 29.57 6375.62 6293.82 586.26 655.34 76.16 659.75 6.63 6.22 5970790.49 590777.84 N 70 19 47.741 W 1491549.370
6601 .93 49.81 51.88 31.86 6396.63 6314.83 609.16 670.42 94.76 677.09 8.04 8.01 5970805.80 590796.26 N 70 19 47.889 W 149 1548.827
6629.68 51.52 51.40 27.75 6414.22 6332.42 629.60 683.75 111.58 692.79 9.27 6.31 5970819.32 590812.92 N 70 19 48.020 W 1491548.335
6663.82 53.76 50.81 34.14 6434.93 6353.13 655.53 700.78 132.70 713.24 10.72 6.70 5970836.61 590833.83 N 70 19 48.188 W 1491547.719
6694.57 56.19 51.32 30.75 6452.58 6370.78 679.59 716.61 152.29 732.61 12.00 8.02 5970852.67 590853.22 N 70 19 48.343 W 1491547.147
6725.71 58.97 50.26 31.14 6469.27 6387.47 704.74 733.22 172.65 753.28 13.25 9.38 5970869.53 590873.38 N 70 19 48.507 W 149 1546.552
6757.53 60.88 51.34 31.82 6485.22 6403.42 731.09 750.62 193.99 775.29 14.49 6.68 5970887.19 590894.50 N 70 19 48.678 W 1491545.929
6787.65 62.98 53.02 30.12 6499.39 6417.59 756.33 766.92 214.98 796.48 15.66 8.53 5970903.73 590915.30 N 70 19 48.838 W 1491545.316
6818.62 65.54 53.85 30.97 6512.84 6431.04 782.62 783.53 237.39 818.70 16.86 8.61 5970920.61 590937.50 N 70 19 49.001 W 149 15 44.662
6853.06 69.25 54.59 34.44 6526.08 6444.28 812.43 802.12 263.18 844.19 18.17 10.95 5970939.50 590963.06 N 70 19 49.184 W1491543.909
6880.66 71.78 55.28 27.60 6535.28 6453.48 836.72 817.06 284.48 865.17 19.20 9.46 5970954.71 590984.17 N 70 19 49.331 W 1491543.287
6912.20 74.43 55.20 31.54 6544.45 6462.65 864.83 834.27 309.27 889.75 20.34 8.41 5970972.21 591008.75 N 70 19 49.500 W 1491542.564
6943.59 78.09 56.83 31.39 6551.90 6470.10 893.08 851.30 334.55 914.68 21.45 12.70 5970989.55 591033.82 N 70 19 49.668 W 1491541.825
6974.58 78.01 58.05 30.99 6558.32 6476.52 920.88 867.62 360.10 939.38 22.54 3.86 5971006.17 591059.17 N 70 19 49.828 W 1491541.079
7005.32 77.71 59.03 30.74 6564.79 6482.99 948.21 883.31 385.73 963.86 23.59 3.27 5971022.16 591084.61 N 70 19 49.983 W 1491540.331
7035.91 77.98 58.73 30.59 6571.23 6489.43 975.32 898.76 411.34 988.42 24.59 1.30 5971037.92 591110.02 N 70 19 50.135 W1491539.583
e 7067.61 78.12 57.97 31.70 6577.79 6495.99 1003.56 915.03 437.74 1014.35 25.57 2.39 5971054.51 591136.22 N 70 19 50.295 W 149 1538.813
7099.50 77.99 58.68 31.89 6584.39 6502.59 1031.97 931.42 464.29 1040.72 26.50 2.22 5971071.22 591162.57 N 70 19 50.456 W 1491538.037
7142.16 78.18 58.82 42.66 6593.20 6511.40 1069.86 953.07 499.97 1076.25 27.68 0.55 5971093.30 591197.99 N 70 19 50.669 W 1491536.996
7210.00 78.18 59.04 67.84 6607.09 6525.29 1130.04 987.34 556.85 1133.54 29.42 0.32 5971128.25 591254.44 N 70 19 51.006 W 149 15 35.335
Leaal Description:
Northina (Y) [ftUSl Eastina (X) [nUS1
Surface: 4885 FSL 1591 FEL S11 T11 N R11E UM 5970134.34 590709.62
BHL: 592 FSL 1033 FEL S2 T11N R11 E UM 5971128.25 591254.44
Version DO 3.1RT (do31 rt_546) 3.1 RT-SP3.03
Plan V-111 (N-U)\V-111\V-111 PB2\V-111 PB2
Generated 9/15/2003 1 :48 PM Page 3 of 3
~
..
"
V-111 PB3 Survey Report Schlu
Report Date: 4-Aug-03 Survey 1 DLS Computation Method: Minimum Curvature 1 Lubinski
Client: BP Exploration Alaska Vertical Section Azimuth: 33.930'
Field: Prudhoe Bay Unit - WOA Vertical Section Origin: N 0.000 ft, E 0.000 ft
Structure 1 Slot: V-Pad 1 Plan V-111 (N-U) TVD Reference Datum: KB
Well: V-111 TVD Reference Elevation: 81.80 ft relative to MSL
Borehole: V-111PB3 Sea Bed 1 Ground Level Elevation: 53.30 ft relative to MSL
UWVAPI#: 500292316172 Magnetic Declination: 25.483'
Survey Name 1 Date: V-111 PB31 August 4, 2003 Total Field Strength: 57519.269 nT
Tort 1 AHD 1 DDI! ERD ratio: 124.642' 11819.60 ft 15.402/ 0.268 Magnetic Dip: 80.781'
Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feet Declination Date: August 04, 2003
e Location LatILong: N 70 1941.296, W 14915 51.593 Magnetic Declination Model: BGGM 2003
Location Grid WE Y IX: N 5970134.340 ftUS, E 590709.620 ftUS North Reference: True North
Grid Convergence Angle: +0.69273635' Total Corr Mag North -> True North: +25.483'
Grid Scale Factor: 0.99990935 Local Coordinates Referenced To: Well Head
Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(II) (deg) (deg) (II) (II) (II) (II) (II) (II) (II) (deg) (deg/100 II) (IIUS) (IIUS)
0.00 0.00 0.00 0.00 0.00 -81.80 0.00 0.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N701941.296 W 1491551.593
100.00 0.50 91.31 100.00 100.00 18.20 0.24 -0.01 0.44 0.44 91.31 0.50 5970134.34 590710.06 N 70 19 41.295 W 1491551.580
200.00 0.65 90.96 100.00 199.99 118.19 0.78 -0.Q3 1.44 1.44 91.17 0.15 5970134.33 590711.06 N 70 19 41.295 W 14915 51.551
300.00 0.76 93.40 100.00 299.99 218.19 1.42 -0.08 2.67 2.67 91.68 0.11 5970134.29 590712.29 N 70 19 41.295 W 14915 51.515
400.00 1.06 96.98 100.00 399.97 318.17 2.18 -0.23 4.25 4.26 93.10 0.31 5970134.16 590713.87 N 70 19 41.293 W 1491551.469
500.00 1.31 101.81 100.00 499.95 418.15 3.03 -0.58 6.29 6.31 95.24 0.27 5970133.84 590715.91 N 70 19 41.290 W 1491551.410
600.00 1.73 103.02 100.00 599.92 518.12 4.00 -1.15 8.88 8.95 97.39 0.42 5970133.30 590718.51 N701941.284 W1491551.334
700.00 1.72 100.58 100.00 699.87 618.07 5.13 -1.77 11.82 11.95 98.50 0.Q7 5970132.72 590721 .46 N701941.278 W1491551.248
800.00 1.84 104.04 100.00 799.82 718.02 6.27 -2.43 14.85 15.05 99.29 0.16 5970132.09 590724.50 N 70 19 41.272 W 1491551.159
900.00 1.42 119.85 100.00 899.78 817.98 6.91 -3.44 17.49 17.82 101.12 0.61 5970131.11 590727.14 N 70 1941.262 W 149 1551.083
1000.00 0.75 196.62 100.00 999.77 917.97 6.37 -4.68 18.37 18.96 104.29 1.45 5970129.88 590728.05 N 70 19 41.250 W 1491551.057
1100.00 1.85 248.29 100.00 1099.74 1017.94 4.41 -5.91 16.69 17.70 1 09.49 1.50 5970128.64 590726.38 N701941.237 W 1491551.106
e 1200.00 3.15 261.17 100.00 1199.65 1117.85 1.22 -6.92 12.47 14:27 119.04 1.41 5970127.57 590722.17 N 70 19 41.227 W 1491551.229
1300.00 3.89 266.10 100.00 1299.46 1217.66 -2.73 -7.58 6.37 9.90 139.93 0.80 5970126.84 590716.08 N 70 19 41.221 W 1491551.407
1400.00 4.17 263.62 100.00 1399.21 1317.41 -7.16 -8.21 -0.62 8.24 184.35 0.33 5970126.12 590709.09 N 70 19 41 .215 W 1491551.611
1500.00 4.24 265.50 100.00 1498.94 1417.14 -11.81 -8.91 -7.92 11.92 221.66 0.15 5970125.34 590701.81 N 70 19 41.208 W 14915 51.824
1600.00 4.23 261.68 100.00 1598.67 1516.87 -16.59 -9.73 -15.26 18.10 237.48 0.28 5970124.43 590694.48 N 70 19 41.200 W 14915 52.038
1700.00 4.70 264.43 100.00 1698.37 1616.57 -21.67 -10.66 -22.98 25.34 245.12 0.52 5970123.40 590686.77 N 70 19 41.191 W 14915 52.264
1800.00 5.76 267.76 100.00 1797.95 1716.15 -27.24 -11.25 -32.08 33.99 250.67 1.10 5970122.70 590677.68 N701941.185 W 14915 52.529
1847.00 5.08 277.98 47.00 1844.74 1762.94 -29.55 -11.06 -36.49 38.13 253.14 2.51 5970122.84 590673.27 N701941.187 W 14915 52.658
1873.77 4.85 281.20 26.77 1871.41 1789.61 -30.50 -10.67 -38.78 40.22 254.61 1.35 5970123.20 590670.98 N 70 19 41.191 W 1491552.725
1966.13 6.24 282.06 92.36 1963.33 1881.53 -33.88 -8.87 -47.52 48.34 259.43 1.51 5970124.90 590662.22 N 70 19 41.208 W 14915 52.980
2058.26 6.50 280.72 92.13 2054.89 1973.09 -37.80 -6.85 -57.54 57.94 263.21 0.33 5970126.80 590652.17 N 70 19 41.228 W 14915 53.273
2153.25 6.37 280.92 94.99 2149.29 2067.49 -41.98 -4.85 -67.99 68.17 265.92 0.14 5970128.67 590641.70 N 70 19 41.248 W 14915 53.578
2245.73 5.06 284.09 92.48 2241 .30 2159.50 -45.37 -2.89 -76.99 77.04 267.85 1.46 5970130.52 590632.68 N 70 19 41.267 W 14915 53.841
Version DO 3.1 RT (d031 rt_546) 3.1 RT-SP3.03
Plan V-111 (N-U)\V-111\V-111PB3\V-111PB3
Generated 9/15/2003 1 :48 PM Page 1 of 3
~
Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (ltUS)
2339.83 2.86 279.64 94.10 2335.17 2253.37 -47.74 -1.48 -83.33 83.34 268.98 2.36 5970131.85 590626.32 N 70 19 41.281 W 14915 54.026
2432.60 2.64 279.59 92.77 2427.84 2346.04 -49.58 -0.74 -87.72 87.72 269.52 0.24 5970132.54 590621.93 N 70 19 41.288 W 14915 54.154
2525.85 1.40 286.00 93.25 2521.03 2439.23 -50.81 -0.07 -90.93 90.93 269.96 1.35 5970133.17 590618.71 N 70 19 41.295 W 14915 54.247
2618.84 0.52 320.88 92.99 2614.00 2532.20 -51.04 0.57 -92.29 92.29 270.36 1.09 5970133.80 590617.34 N 70 19 41.301 W 1491554.287
2682.69 0.42 312.45 63.85 2677.85 2596.05 -50.92 0.96 -92.64 92.65 270.59 0.19 5970134.18 590616.98 N 70 19 41.305 W 14915 54.298
2703.23 0.41 310.50 20.54 2698.39 2616.59 -50.90 1.05 -92.75 92.76 270.65 0.08 5970134.27 590616.87 N 70 1941.306 W 149 1554.301
2746.00 0.59 310.39 42.77 2741.16 2659.36 -50.86 1.30 -93.04 93.05 270.80 0.42 5970134.51 590616.58 N 70 19 41.308 W 14915 54.309
2826.99 0.92 310.35 80.99 2822.14 2740.34 -50.74 1.99 -93.85 93.87 271.21 0.41 5970135.19 590615.76 N 70 19 41.315 W 14915 54.333
2908.24 2.32 358.81 81.25 2903.36 2821.56 -49.32 4.05 -94.38 94.47 272.46 2.27 5970137.25 590615.20 N 70 19 41.335 W 14915 54.348
3001 .66 6.17 16.03 93.42 2996.51 2914.71 -42.99 10.77 -93.04 93.66 276.60 4.30 5970143.99 590616.47 N 70 19 41.402 W 14915 54.309
3094.38 8.41 20.81 92.72 3088.48 3006.68 -31.65 21.90 -89.25 91.90 283.79 2.50 5970155.16 590620.12 N701941.511 W 14915 54.198
e 3188.D7 10.52 21.89 93.69 3180.89 3099.09 -16.61 36.24 -83.63 91.14 293.43 2.26 5970169.57 590625.57 N 70 19 41.652 W 149 1554.034
3281.54 13.08 23.15 93.47 3272.37 3190.57 2.13 53.89 -76.29 93.40 305.24 2.75 5970187.30 590632.70 N701941.826 W 149 1553.820
3376.51 12.35 19.50 94.97 3365.01 3283.21 22.52 73.34 -68.67 100.47 316.88 1.14 5970206.84 590640.07 N 70 19 42.017 W 149 1553.598
3470.17 10.15 11.31 93.66 3456.88 3375.08 39.85 90.88 -63.71 110.99 324.97 2.90 5970224.44 590644.82 N 70 1942.189 W 14915 53.453
3563.84 6.96 3.13 93.67 3549.49 3467.69 52.34 104.65 -61.78 121.52 329.44 3.64 5970238.22 590646.59 N 70 19 42.325 W 14915 53.397
3657.03 3.85 352.84 93.19 3642.26 356D.46 59.55 113.39 -61.86 129.17 331.39 3.48 5970246.96 590646.40 N 70 19 42.411 W 14915 53.399
3749.92 2.85 339.15 92.89 3734.99 3653.19 63.23 118.64 -63.07 134.36 332.00 1.37 5970252.20 590645.13 N 70 19 42.462 W 14915 53.434
3842.91 1.64 13.65 92.99 3827.91 3746.11 65.82 122.10 -63.58 137.66 332.49 1.90 5970255.65 590644.57 N 70 19 42.496 W 149 15 53.449
3936.23 1.08 46.53 93.32 3921 .21 3839.41 67.93 124.00 -62.63 138.92 333.20 1.01 5970257.56 590645.51 N 70 19 42.515 W 149 15 53.421
4028.66 0.95 48.25 92.43 4013.62 3931.82 69.52 125.11 -61.42 139.37 333.85 0.14 5970258.68 590646.70 N 70 1942.526 W 149 1553.386
4122.08 1.09 52.14 93.42 4107.03 4025.23 71.11 126.17 -60.14 139.77 334.51 0.17 5970259.76 590647.96 N 70 1942.536 W 149 15 53.349
4216.02 1.19 45.57 93.94 4200.95 4119.15 72.92 127.40 -58.74 140.29 335.25 0.18 5970261.01 590649.35 N 70 1942.549 W 14915 53.308
4309.02 1.46 55.67 93.00 4293.93 4212.13 74.96 128.74 -57.07 140.83 336.09 0.38 5970262.37 590651.00 N 70 1942.562 W 14915 53.259
4403.10 0.31 11.89 94.08 4387.99 4306.19 76.31 129.67 -56.03 141.26 336.63 1.33 5970263.31 590652.03 N 70 19 42.571 W 149 1553.229
4497.19 0.70 289.64 94.09 4482.08 4400.28 76.41 130.11 -56.52 141.86 336.52 0.77 5970263.75 590651.54 N 70 19 42.575 W 149 1553.243
4590.02 0.69 269.68 92.83 4574.90 4493.10 75.95 130.30 -57.61 142.47 336.15 0.26 5970263.92 590650.44 N 70 19 42.577 W 1491553.275
4683.04 0.91 266.98 93.02 4667.91 4586.11 75.19 130.26 -58.91 142.96 335.66 0.24 5970263.86 590649.14 N 70 19 42.577 W 149 15 53.313
4775.72 1.01 268.12 92.68 4760.58 4678.78 74.27 130.19 -60.46 143.55 335.09 0.11 5970263.78 590647.59 N 70 1942.576 W 14915 53.358
4868.44 0.83 263.66 92.72 4853.29 4771 .49 73.36 130.09 -61.95 144.09 334.54 0.21 5970263.66 590646.11 N 70 19 42.575 W 14915 53.401
e 4961.50 0.86 267.87 93.06 4946.34 4864.54 72.52 129.99 -63.31 144.59 334.03 0.07 5970263.54 590644.75 N 70 19 42.574 W 14915 53.441
5054.46 1.04 269.97 92.96 5039.29 4957.49 71.63 129.96 -64.85 145.25 333.48 0.20 5970263.50 590643.21 N 70 19 42.574 W 14915 53.486
5147.41 1.25 8.89 92.95 5132.23 5050.43 72.08 130.97 -65.54 146.45 333.41 1.88 5970264.49 590642.51 N 70 19 42.584 W 1491553.506
5240.87 5.93 41.11 93.46 5225.48 5143.68 77.80 135.61 -62.21 149.20 335.36 5.26 5970269.18 590645.78 N 70 19 42.629 W 1491553.409
5334.61 9.37 45.78 93.74 5318.37 5236.57 90.07 144.59 -53.55 154.18 339.68 3.73 5970278.25 590654.33 N 70 19 42.718 W 1491553.156
5429.11 11.62 47.64 94.50 5411.29 5329.49 106.85 156.36 -41.01 161.65 345.31 2.41 5970290.18 590666.73 N 70 19 42.833 W 149 1552.790
5521.23 14.26 47.98 92.12 5501.06 5419.26 126.87 170.21 -25.72 172.14 351.41 2.87 5970304.21 590681.85 N 70 19 42.970 W 1491552.344
5614.75 17.77 48.93 93.52 5590.94 5509.14 151.84 187.30 -6.40 187.41 358.04 3.76 5970321.54 590700.96 N 70 19 43.138 W 14915 51.780
5708.20 20.51 49.11 93.45 5679.21 5597.41 181.42 207.39 16.74 208.07 4.61 2.93 5970341.90 590723.85 N 70 19 43.335 W 149 1551.104
5800.49 25.22 47.29 92.29 5764.23 5682.43 216.17 231.33 43.42 235.37 10.63 5.16 5970366.15 590750.24 N 70 19 43.571 W 14915 50.325
5894.00 29.93 45.92 93.51 5847.09 5765.29 258.40 261.09 74.84 271.60 15.99 5.08 5970396.29 590781.29 N 70 19 43.863 W 1491549.408
5987.57 32.70 43.83 93.57 5927.03 5845.23 306.14 295.57 109.12 315.06 20.26 3.18 5970431.18 590815.14 N 70 19 44.202 W 149 1548.407
6080.85 39.02 42.77 93.28 6002.59 5920.79 360.04 335.34 146.54 365.96 23.61 6.81 5970471.40 590852.08 N 70 19 44.594 W1491547.315
6173.89 46.57 44.73 93.04 6070.81 5989.01 422.25 380.91 190.27 425.79 26.54 8.24 5970517.49 590895.26 N 70 19 45.042 W 14915 46.038
Version DO 3.1 RT (d031 rt_546) 3.1 RT-SP3.03
Plan V-111 (N-U)\V-111\V-111 PB3\V-111 PB3
Generated 9/15/2003 1 :48 PM Page 2 of 3
"
~
Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (flUS)
6268.20 50.74 43.75 94.31 6133.10 6051.30 491.90 431.63 239.64 493.70 29.04 4.49 5970568.80 590944.01 N 70 19 45.541 W 149 15 44.597
6361.71 52.47 45.22 93.51 6191.18 6109.38 563.94 483.91 291.00 564.67 31.02 2.22 5970621.69 590994.72 N 70 19 46.055 W 1491543.097
6454.94 55.19 47.39 93.23 6246.20 6164.40 637.43 535.87 345.42 637.56 32.81 3.47 5970674.30 591048.51 N 70 19 46.566 W 1491541.508
6546.56 61.20 49.10 91.62 6294.47 6212.67 712.83 587.67 403.51 712.86 34.47 6.75 5970726.79 591105.95 N 70 19 47.075 W1491539.813
6639.74 61.09 49.43 93.18 6339.43 6257.63 791.54 640.93 465.35 792.04 35.98 0.33 5970780.79 591167.14 N 70 19 47.599 W 1491538.007
6733.56 61.67 50.42 93.82 6384.37 6302.57 870.70 693.94 528.36 872.20 37.29 1.11 5970834.56 591229.51 N 70 1948.120 W 1491536.167
6824.99 62.34 49.55 91.43 6427.29 6345.49 948.28 745.85 590.19 951.12 38.35 1.11 5970887.21 591290.70 N 70 1948.631 W 1491534.362
6918.24 60.74 48.90 93.25 6471.73 6389.93 1027.36 799.39 652.27 1031.74 39.21 1.82 5970941.48 591352.12 N 70 19 49.157 W 1491532.549
7011.62 59.93 49.18 93.38 6517.94 6436.14 1105.69 852.58 713.55 1111.78 39.93 0.91 5970995.41 591412.74 N 70 19 49.680 W 149 1530.760
7104.73 60.39 49.39 93.11 6564.27 6482.47 1183.57 905.26 774.77 1191.54 40.56 0.53 5971048.82 591473.31 N 70 19 50.198 W 1491528.973
7197.61 60.88 49.95 92.88 6609.82 6528.02 1261.48 957.65 836.47 1271.53 41.14 0.74 5971101.94 591534.38 N 70 19 50.713 W1491527.171
e 7290.81 60.19 50.57 93.20 6655.66 6573.86 1339.35 1009.53 898.87 1351.71 41.68 0.94 5971154.57 591596.14 N 70 19 51.224 W 1491525.349
7383.90 60.18 49.26 93.09 6701.95 6620.15 1417.00 1061.53 960.66 1431.69 42.14 1.22 5971207.31 591657.29 N 70 19 51.735 W1491523.545
7477.28 58.74 49.98 93.38 6749.40 6667.60 1494.42 1113.64 1021.92 1511.46 42.54 1.68 5971260.15 591717.91 N 70 19 52.247 W 1491521.756
7485.24 58.67 49.97 7.96 6753.53 6671.73 1500.96 1118.01 1027.13 1518.21 42.57 0.89 5971264.58 591723.06 N 70 19 52.290 W 14915 21.604
7560.00 58.67 49.97 74.76 6792.41 6710.61 1562.33 1159.09 1076.03 1581.56 42.87 0.00 5971306.24 591771.46 N 70 19 52.694 W 1491520.176
Leqal Description:
Northinq IY) rnUS] Eastinq IX) rnUS]
Surface: 4885 FSL 1591 FEL S11 T11N R11 E UM 5970134.34 590709.62
BHL: 764 FSL 514 FEL S2 T11 N R11 E UM 5971306.24 591771.46
e
Version DO 3.1RT (do31 rt_546) 3.1 RT-SP3.03
Plan V-111 (N-U)\V-111\V-111 PB3\V-111 PB3
Generated 9/15/2003 1 :48 PM Page 3 of 3
V-111 Survey Report Schlu ruer
Report Date: 13-Aug-03 Survey I DLS Computation Method: Minimum Curvature I Lubinski
Client: BP Exploration Alaska Vertical Section Azimuth: 64.540'
Field: Prudhoe Bay Unit - WOA Vertical Section Origin: N 0.000 It, E 0.000 It
Structure I Slot: V-Pad I Plan V-111 (N-U) TVD Reference Datum: KB
Well: V-111 TVD Reference Elevation: 81.80 It relative to MSL
Borehole: V-111 Sea Bed I Ground Level Elevation: 53.30 It relative to MSL
UWUAPI#: 500292316100 Magnetic Declination: 25.298'
Survey Name I Date: V-111 I August 13, 2003 Total Field Strength: 57542.893 nT
Tort I AHD I DOlI ERD ratio: 249.504' 14139.86lt/6.181 10.617 Magnetic Dip: 80.805'
Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feet Declination Date: August 18, 2003
e Location LatILong: N 70 1941.296, W 14915 51.593 Magnetic Declination Model: BGGM 2003
Location Grid NIE Y IX: N 5970134.340 ItUS, E 590709.620 ItUS North Reference: True North
Grid Convergence Angle: +0.69273635' Total Corr Mag North -> True North: +25.298'
Grid Scale Factor: 0.99990935 Local Coordinates Referenced To: Well Head
Comments Measured Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(II) (deg) (deg) (II) (II) (II) (II) (II) (II) (II) (deg) (deg/100 II) (IIUS) (IIUS)
0.00 0.00 0.00 0.00 0.00 -81.80 0.00 0.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70 19 41.296 W 14915 51.593
100.00 0.50 91.31 100.00 100.00 18.20 0.39 -0.01 0.44 0.44 91.31 0.50 5970134.34 590710.06 N 70 19 41.295 W 14915 51.580
200.00 0.65 90.96 100.00 199.99 118.19 1.29 -0.Q3 1.44 1.44 91.17 0.15 5970134.33 590711.06 N 70 19 41.295 W 14915 51.551
300.00 0.76 93.40 100.00 299.99 218.19 2.38 -0.08 2.67 2.67 91.68 0.11 5970134.29 590712.29 N 70 19 41.295 W 14915 51.515
400.00 1.06 96.98 100.00 399.97 318.17 3.74 -0.23 4.25 4.26 93.10 0.31 5970134.16 590713.87 N 70 19 41.293 W 14915 51.469
500.00 1.31 101.81 100.00 499.95 418.15 5.43 -0.58 6.29 6.31 95.24 0.27 5970133.84 590715.91 N 70 19 41.290 W 14915 51.410
600.00 1.73 103.02 100.00 599.92 518.12 7.52 -1.15 8.88 8.95 97.39 0.42 5970133.30 590718.51 N 70 19 41.284 W 1491551.334
700.00 1.72 100.58 100.00 699.87 618.07 9.91 -1.77 11.82 11.95 98.50 0.07 5970132.72 590721.46 N 70 19 41.278 W 1491551.248
800.00 1.84 104.04 100.00 799.82 718.02 12.37 -2.43 14.85 15.05 99.29 0.16 5970132.09 590724.50 N 70 1941.272 W1491551.159
900.00 1.42 119.85 100.00 899.78 817.98 14.31 -3.44 17.49 17.82 101.12 0.61 5970131.11 590727.14 N 70 19 41.262 W 149 1551.083
1000.00 0.75 196.62 100.00 999.77 917.97 14.58 -4.68 18.37 18.96 104.29 1.45 5970129.88 590728.05 N 70 19 41.250 W 1491551.057
1100.00 1.85 248.29 100.00 1099.74 1017.94 12.53 -5.91 16.69 17.70 109.49 1.50 5970128.64 590726.38 N 70 19 41.237 W1491551.106
e 1200.00 3.15 261.17 100.00 1199.65 1117.85 8.28 -6.92 12.47 14.27 119.04 1.41 5970127.57 590722.17 N 70 1941.227 W 1491551.229
1300.00 3.89 266.10 100.00 1299.46 1217.66 2.50 -7.58 6.37 9.90 139.93 0.80 5970126.84 590716.08 N 70 19 41.221 W1491551.407
1400.00 4.17 263.62 100.00 1399.21 1317.41 -4.09 -8.21 -0.62 8.24 184.35 0.33 5970126.12 590709.09 N 70 19 41.215 W 1491551.611
1500.00 4.24 265.50 100.00 1498.94 1417.14 -10.98 -8.91 -7.92 11.92 221.66 0.15 5970125.34 590701.81 N 70 19 41.208 W 1491551.824
1600.00 4.23 261.68 100.00 1598.67 1516.87 -17.96 -9.73 -15.26 18.10 237.48 0.28 5970124.43 590694.48 N 70 19 41.200 W 1491552.038
1700.00 4.70 264.43 100.00 1698.37 1616.57 -25.34 -10.66 -22.98 25.34 245.12 0.52 5970123.40 590686.77 N701941.191 W 1491552.264
1800.00 5.76 267.76 100.00 1797.95 1716.15 -33.80 -11.25 -32.08 33.99 250.67 1.10 5970122.70 590677.68 N701941.185 W 149 1552.529
1847.00 5.08 277.98 47.00 1844.74 1762.94 -37.70 -11.06 -36.49 38.13 253.14 2.51 5970122.84 590673.27 N 70 19 41 .187 W 1491552.658
1873.77 4.85 281.20 26.77 1871.41 1789.61 -39.60 -10.67 -38.78 40.22 254.61 1.35 5970123.20 590670.98 N 70 19 41.191 W 14915 52.725
1966.13 6.24 282.06 92.36 1963.33 1881.53 -46.71 -8.87 -47.52 48.34 259.43 1.51 5970124.90 590662.22 N 70 19 41.208 W 1491552.980
2058.26 6.50 280.72 92.13 2054.89 1973.09 -54.89 -6.85 -57.54 57.94 263.21 0.33 5970126.80 590652.17 N 70 19 41 .228 W 14915 53.273
2153.25 6.37 280.92 94.99 2149.29 2067.49 -63.48 -4.85 -67.99 68.17 265.92 0.14 5970128.67 590641.70 N 70 19 41 .248 W 14915 53.578
2245.73 5.06 284.09 92.48 2241 .30 2159.50 -70.75 -2.89 -76.99 77.04 267.85 1.46 5970130.52 590632.68 N 70 19 41.267 W 14915 53.841
Version DO 3.1 RT (d031 rt_546) 3.1 RT-SP3.03
Plan V-111 (N-U)\V-111\V-111\V-111
Generated 9/15/2003 1 :48 PM Page 1 of 5
· (
Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (deg) (deg/100 ft) (ftUS) (ftUS)
2339.83 2.86 279.64 94.10 2335.17 2253.37 -75.87 -1.48 -83.33 83.34 268.98 2.36 5970131.85 590626.32 N 70 19 41.281 W 1491554.026
2432.60 2.64 279.59 92.77 2427.84 2346.04 -79.52 -0.74 -87.72 87.72 269.52 0.24 5970132.54 590621.93 N 70 19 41.288 W 1491554.154
2525.85 1.40 286.00 93.25 2521.03 2439.23 -82.13 -0.07 -90.93 90.93 269.96 1.35 5970133.17 590618.71 N 70 19 41.295 W 14915 54.247
2618.84 0.52 320.88 92.99 2614.00 2532.20 -83.08 0.57 -92.29 92.29 270.36 1.09 5970133.80 590617.34 N 70 19 41.301 W 1491554.287
2682.69 0.42 312.45 63.85 2677.85 2596.05 -83.24 0.96 -92.64 92.65 270.59 0.19 5970134.18 590616.98 N 70 19 41.305 W 1491554.298
2703.23 0.41 310.50 20.54 2698.39 2616.59 -83.29 1.05 -92.75 92.76 270.65 0.08 5970134.27 590616.87 N 70 19 41.306 W 14915 54.301
2746.00 0.59 310.39 42.77 2741.16 2659.36 -83.45 1.30 -93.04 93.05 270.80 0.42 5970134.51 590616.58 N 70 19 41.308 W 1491554.309
2826.99 0.92 310.35 80.99 2822.14 2740.34 -83.88 1.99 -93.85 93.87 271.21 0.41 5970135.19 590615.76 N701941.315 W 14915 54.333
2908.24 2.32 358.81 81.25 2903.36 2821.56 -83.47 4.05 -94.38 94.47 272.46 2.27 5970137.25 590615.20 N 70 19 41.335 W 1491554.348
3001.66 6.17 16.03 93.42 2996.51 2914.71 -79.37 10.77 -93.04 93.66 276.60 4.30 5970143.99 590616.47 N 70 19 41.402 W 1491554.309
3094.38 8.41 20.81 92.72 3088.48 3006.68 -71.17 21.90 -89.25 91.90 283.79 2.50 5970155.16 590620.12 N 70 19 41.511 W 14915 54.198
e 3188.07 10.52 21.89 93.69 3180.89 3099.09 -59.92 36.24 -83.63 91.14 293.43 2.26 5970169.57 590625.57 N 70 19 41.652 W 149 15 54.034
3281.54 13.08 23.15 93.47 3272.37 3190.57 -45.71 53.89 -76.29 93.40 305.24 2.75 5970187.30 590632.70 N 70 19 41.826 W 14915 53.820
3376.51 12.35 19.50 94.97 3365.01 3283.21 -30.47 73.34 -68.67 100.47 316.88 1.14 5970206.84 590640.07 N 70 19 42.017 W 14915 53.598
3470.17 10.15 11.31 93.66 3456.88 3375.08 -18.45 90.88 -63.71 110.99 324.97 2.90 5970224.44 590644.82 N 70 19 42.189 W 1491553.453
3563.84 6.96 3.13 93.67 3549.49 3467.69 -10.79 104.65 -61.78 121.52 329.44 3.64 5970238.22 590646.59 N 70 19 42.325 W 14915 53.397
3657.03 3.85 352.84 93.19 3642.26 3560.46 -7.11 113.39 -61.86 129.17 331.39 3.48 5970246.96 590646.40 N 70 19 42.411 W 1491553.399
3749.92 2.85 339.15 92.89 3734.99 3653.19 -5.94 118.64 -63.07 134.36 332.00 1.37 5970252.20 590645.13 N 70 19 42.462 W 1491553.434
3842.91 1.64 13.65 92.99 3827.91 3746.11 -4.92 122.10 -63.58 137.66 332.49 1.90 5970255.65 590644.57 N 70 19 42.496 W 1491553.449
3936.23 1.08 46.53 93.32 3921.21 3839.41 -3.24 124.00 -62.63 138.92 333.20 1.01 5970257.56 590645.51 N 70 19 42.515 W 1491553.421
4028.66 0.95 48.25 92.43 4013.62 3931.82 -1.68 125.11 -61.42 139.37 333.85 0.14 5970258.68 590646.70 N 70 19 42.526 W 1491553.386
4122.08 1.09 52.14 93.42 4107.03 4025.23 -0.06 126.17 -60.14 139.77 334.51 0.17 5970259.76 590647.96 N 70 19 42.536 W 1491553.349
4216.02 1.19 45.57 93.94 4200.95 4119.15 1.73 1 27.40 -58.74 140.29 335.25 0.18 5970261.01 590649.35 N 70 19 42.549 W 1491553.308
4309.02 1.46 55.67 93.00 4293.93 4212.13 3.81 128.74 -57.07 140.83 336.09 0.38 5970262.37 590651.00 N 70 19 42.562 W 1491553.259
4403.10 0.31 11.89 94.08 4387.99 4306.19 5.15 129.67 -56.03 141.26 336.63 1.33 5970263.31 590652.03 N 70 19 42.571 W 149 1553.229
4497.19 0.70 289.64 94.09 4482.08 4400.28 4.90 130.11 -56.52 141.86 336.52 0.77 5970263.75 590651.54 N 70 19 42.575 W 14915 53.243
4590.02 0.69 269.68 92.83 4574.90 4493.10 4.00 130.30 -57.61 142.47 336.15 0.26 5970263.92 590650.44 N 70 19 42.577 W 14915 53.275
4683.04 0.91 266.98 93.02 4667.91 4586.11 2.81 130.26 -58.91 142.96 335.66 0.24 5970263.86 590649.14 N 70 19 42.577 W 1491553.313
4775.72 1.01 268.12 92.68 4760.58 4678.78 1.38 130.19 -60.46 143.55 335.09 0.11 5970263.78 590647.59 N 70 19 42.576 W 149 15 53.358
4868.44 0.83 263.66 92.72 4853.29 4771.49 -0.01 130.09 -61.95 144.09 334.54 0.21 5970263.66 590646.11 N 70 19 42.575 W 149 15 53.401
e 4961.50 0.86 267.87 93.06 4946.34 4864.54 -1.28 129.99 -63.31 144.59 334.03 0.07 5970263.54 590644.75 N 70 19 42.574 W 1491553.441
5054.46 1.04 269.97 92.96 5039.29 4957.49 -2.69 129.96 -64.85 145.25 333.48 0.20 5970263.50 590643.21 N 70 19 42.574 W 1491553.486
5147.41 1.25 8.89 92.95 5132.22 5050.42 -2.88 130.97 -65.54 146.45 333.41 1.88 5970264.49 590642.51 N 70 19 42.584 W 149 1553.506
5240.87 5.93 41.11 93.46 5225.48 5143.68 2.13 135.61 -62.21 149.20 335.36 5.26 5970269.18 590645.78 N 70 19 42.629 W 1491553.409
5334.61 9.37 45.78 93.74 5318.37 5236.57 13.80 144.59 -53.55 154.18 339.68 3.73 5970278.25 590654.33 N 70 1942.718 W 1491553.156
5429.11 11.62 47.64 94.50 5411.29 5329.49 30.20 156.36 -41.00 161.65 345.31 2.41 5970290.18 590666.73 N 70 19 42.833 W 1491552.790
5521.23 14.26 47.98 92.12 5501.06 5419.26 49.95 170.21 -25.72 172.14 351.41 2.87 5970304.21 590681.85 N 70 19 42.970 W 149 1552.344
5614.75 17.77 48.93 93.52 5590.94 5509.14 74.74 187.30 -6.40 187.41 358.04 3.76 5970321 .54 590700.96 N 70 19 43.138 W 149 1551.780
5708.20 20.51 49.11 93.45 5679.21 5597.41 104.26 207.39 16.74 208.07 4.61 2.93 5970341.90 590723.85 N 70 19 43.335 W 1491551.104
5800.49 25.22 47.29 92.29 5764.23 5682.43 138.65 231.33 43.42 235.37 10.63 5.16 5970366.15 590750.24 N 70 19 43.571 W 14915 50.325
5894.00 29.93 45.92 93.51 5847.09 5765.29 179.80 261.09 74.84 271.60 15.99 5.08 5970396.29 590781.29 N 70 19 43.863 W 149 1549.408
5987.57 32.70 43.83 93.57 5927.03 5845.23 225.58 295.57 109.12 315.06 20.26 3.18 5970431.18 590815.14 N 70 19 44.202 W 1491548.407
6080.85 39.02 42.77 93.28 6002.59 5920.79 276.47 335.34 146.54 365.96 23.61 6.81 5970471.40 590852.08 N 70 19 44.594 W 1491547.315
6173.89 46.57 44.73 93.04 6070.81 5989.01 335.54 380.91 190.27 425.79 26.54 8.24 5970517.49 590895.26 N 70 19 45.042 W 1491546.038
Version DO 3.1RT (d031 rt_546) 3.1RT-SP3.03
Plan V-111 (N-U)\V-111\V-111\V-111
Generated 9/15/2003 1 :48 PM Page 2 of 5
Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Comments Depth Length Section Azimuth
(It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (ltUS)
6268.20 50.74 43.75 94.31 6133.10 6051.30 401.92 431.63 239.64 493.70 29.04 4.49 5970568.80 590944.01 N 70 19 45.541 W 1491544.597
6361.71 52.47 45.22 93.51 6191.18 6109.38 470.76 483.91 291.00 564.67 31.02 2.22 5970621.69 590994.72 N 70 1946.055 W 1491543.097
6454.94 55.19 47.39 93.23 6246.20 6164.40 542.24 535.87 345.42 637.56 32.81 3.47 5970674.30 591048.51 N 70 19 46.566 W 1491541.508
6546.56 61.20 49.10 91.62 6294.47 6212.67 616.95 587.67 403.51 712.86 34.47 6.75 5970726.79 591105.95 N 70 19 47.075 W 1491539.813
6639.74 61.09 49.44 93.18 6339.43 6257.63 695.68 640.92 465.35 792.04 35.98 0.34 5970780.78 591167.14 N 70 19 47.599 W 14915 38.007
6733.56 61.67 50.42 93.82 6384.37 6302.57 775.37 693.93 528.37 872.19 37.29 1.11 5970834.55 591229.52 N 70 1948.120 W 1491536.167
6824.99 62.34 49.55 91.43 6427.29 6345.49 853.51 745.84 590.20 951.12 38.36 1.11 5970887.19 591290.71 N 70 19 48.631 W 1491534.362
6918.24 60.74 48.90 93.25 6471.73 6389.93 932.58 799.38 652.28 1031.74 39.21 1.82 5970941.47 591352.13 N 70 1949.157 W 1491532.549
7011.62 59.93 49.18 93.38 6517.94 6436.14 1010.76 852.57 713.56 1111.77 39.93 0.91 5970995.39 591412.75 N 70 1949.680 W 149 1530.760
7104.73 60.39 49.39 93.11 6564.27 6482.47 1088.68 905.25 774.77 1191.54 40.56 0.53 5971048.81 591473.32 N 70 19 50.198 W 1491528.972
7197.61 60.88 49.95 92.88 6609.82 6528.02 1166.92 957.64 836.48 1271 .52 41.14 0.74 5971101 .93 591534.39 N 70 19 50.713 W 1491527.171
e 7221.00 60.62 50.19 23.39 6621.25 6539.45 1186.68 970.74 852.13 1291.69 41.28 1.43 5971115.22 591549.88 N 70 19 50.842 W 1491526.714
7233.00 62.42 50.95 12.00 6626.97 6545.17 1196.91 977.44 860.28 1302.10 41.35 16.00 5971122.01 591557.94 N 70 19 50.908 W 1491526.476
7247.42 62.47 51.16 14.42 6633.64 6551.84 1209.35 985.47 870.22 1314.70 41.45 1.34 5971130.17 591567.78 N 70 19 50.987 W 149 1526.185
7278.54 66.28 51.71 31.12 6647.10 6565.30 1236.67 1002.96 892.16 1342.34 41.65 12.35 5971147.92 591589.51 N 70 19 51.159 W 1491525.545
7309.93 71.04 52.00 31.39 6658.52 6576.72 1265.19 1021.01 915.15 1371.12 41.87 15.19 5971166.25 591612.27 N 70 19 51.337 W 1491524.874
7341.83 75.80 53.04 31.90 6667.62 6585.82 1295.08 1039.61 939.40 1401.16 42.10 15.25 5971185.13 591636.30 N 70 19 51.519 W 1491524.165
7372.01 78.50 54.04 30.18 6674.33 6592.53 1323.96 1057.09 963.07 1430.01 42.34 9.51 5971202.90 591659.75 N 70 19 51.691 W 1491523.474
7402.26 83.64 52.33 30.25 6679.02 6597.22 1353.25 1074.99 986.98 1459.36 42.56 17.89 5971221.09 591683.44 N 70 19 51.867 W 1491522.776
7434.52 90.31 52.69 32.26 6680.73 6598.93 1384.74 1094.59 1012.53 1491.08 42.77 20.71 5971240.99 591708.75 N 70 19 52.060 W 1491522.030
7464.96 97.43 53.52 30.44 6678.67 6596.87 1414.49 1112.81 1036.80 1520.95 42.97 23.55 5971259.50 591732.79 N 70 19 52.239 W 1491521.321
7496.73 99.61 50.50 31.77 6673.96 6592.16 1445.15 1132.14 1061.56 1551.98 43.16 11.64 5971279.13 591757.32 N 70 19 52.429 W 1491520.598
7526.97 99.34 50.26 30.24 6668.99 6587.19 1474.07 1151.16 1084.53 1581.58 43.29 1.19 5971298.42 591780.06 N 70 19 52.616 W 1491519.927
7557.94 99.50 51.46 30.97 6663.92 6582.12 1503.76 1170.45 1108.23 1611.87 43.44 3.86 5971317.99 591803.52 N 70 19 52.806 W 1491519.235
7589.56 100.48 51.71 31.62 6658.43 6576.63 1534.11 1189.80 1132.63 1642.70 43.59 3.20 5971337.63 591827.68 N 70 19 52.996 W 14915 18.523
7620.53 100.27 53.51 30.97 6652.85 6571.05 1563.91 1208.30 1156.83 1672.79 43.75 5.76 5971356.42 591851.65 N 70 19 53.178 W 1491517.816
7651.52 98.15 54.92 30.99 6647.89 6566.09 1594.00 1226.18 1181.65 1702.88 43.94 8.18 5971374.60 591876.25 N 70 19 53.354 W 1491517.092
7682.86 95.70 57.15 31.34 6644.12 6562.32 1624.77 1243.56 1207.45 1733.31 44.16 10.54 5971392.29 591901.83 N 70 19 53.525 W 1491516.338
7714.61 94.46 59.43 31.75 6641.30 6559.50 1656.20 1260.18 1234.35 1763.99 44.41 8.15 5971409.23 591928.53 N 70 19 53.688 W 1491515.553
e 7745.79 92.30 59.91 31.18 6639.47 6557.67 1687.21 1275.90 1261.21 1794.04 44.67 7.10 5971425.27 591955.20 N 70 19 53.843 W 1491514.768
7775.31 89.21 60.78 29.52 6639.08 6557.28 1716.65 1290.50 1286.86 1822.47 44.92 10.87 5971440.18 591980.67 N 70 19 53.986 W 1491514.019
7807.24 87.63 60.53 31.93 6639.96 6558.16 1748.49 1306.14 1314.68 1853.21 45.19 5.01 5971456.16 592008.29 N 70 19 54.140 W 1491513.207
7838.32 86.88 60.78 31.08 6641 .45 6559.65 1779.47 1321.35 1341.74 1883.15 45.44 2.54 5971471.70 592035.17 N 70 19 54.290 W 1491512.417
7866.60 87.80 62.31 28.28 6642.76 6560.96 1807.68 1334.81 1366.58 1910.31 45.67 6.31 5971485.45 592059.84 N 70 19 54.422 W 1491511.691
7900.06 87.01 62.28 33.46 6644.27 6562.47 1841.08 1350.35 1396.17 1942.36 45.96 2.36 5971501.35 592089.24 N 70 19 54.575 W 1491510.827
7932.43 88.28 61.68 32.37 6645.60 6563.80 1873.38 1365.55 1424.72 1973.46 46.21 4.34 5971516.88 592117.60 N 70 19 54.724 W 149159.994
7961.26 87.84 62.47 28.83 6646.58 6564.78 1902.17 1379.04 1450.18 2001.19 46.44 3.14 5971530.68 592142.89 N 70 19 54.857 W 149159.250
7992.67 87.67 64.36 31.41 6647.81 6566.01 1933.55 1393.09 1478.25 2031.23 46.70 6.04 5971545.07 592170.78 N 70 19 54.995 W 149158.431
8024.69 87.70 65.44 32.02 6649.10 6567.30 1965.54 1406.66 1507.22 2061.65 46.98 3.37 5971558.99 592199.58 N 70 19 55.128 W 149157.585
8055.44 87.98 65.73 30.75 6650.26 6568.46 1996.27 1419.36 1535.20 2090.79 47.25 1.31 5971572.02 592227.41 N 70 19 55.253 W 149156.768
8086.65 88.15 65.42 31.21 6651.32 6569.52 2027.45 1432.26 1563.60 2120.43 47.51 1.13 5971585.26 592255.65 N 70 19 55.380 W 149155.938
8118.45 88.18 65.54 31.80 6652.33 6570.53 2059.23 1445.45 1592.52 2150.68 47.77 0.39 5971598.80 592284.40 N 70 19 55.510 W 14915 5.094
8148.71 88.15 65.09 30.26 6653.30 6571.50 2089.47 1458.08 1620.00 2179.54 48.01 1.49 5971611.76 592311.72 N 70 19 55.634 W 149154.291
Version DO 3.1 RT (d031rt_546) 3.1RT-SP3.03
Plan V-111 (N-U)\V-111\V-111\V-111
Generated 9/15/2003 1 :48 PM Page 3 of 5
"
Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(II) (deg) (deg) (II) (II) (II) (II) (II) (II) (II) (deg) (deg/100 II) (IIUS) (IIUS)
8180.77 88.25 65.85 32.06 6654.31 6572.51 2121.51 1471.38 1649.15 2210.13 48.26 2.39 5971625.42 592340.71 N 70 19 55.765 W 14915 3.440
8211.55 87.25 65.43 30.78 6655.52 6573.72 2152.26 1484.07 1677.17 2239.50 48.50 3.52 5971638.44 592368.57 N 70 19 55.889 W 149152.622
8242.33 84.78 65.89 30.78 6657.66 6575.86 2182.96 1496.72 1705.14 2268.85 48.72 8.16 5971651.43 592396.39 N 70 19 56.014 W 149151.805
8273.76 84.47 66.49 31.43 6660.60 6578.80 2214.24 1509.36 1733.77 2298.72 48.96 2.14 5971664.40 592424.86 N 70 19 56.138 W 14915 0.969
8305.28 84.57 66.59 31.52 6663.61 6581.81 2245.60 1521.85 1762.55 2328.65 49.19 0.45 5971677.24 592453.48 N 70 19 56.261 W 149150.128
8336.17 84.71 66.80 30.89 6666.50 6584.70 2276.33 1534.01 1790.80 23.58.00 49.42 0.81 5971689.75 592481.58 N 70 19 56.380 W 1491459.304
8375.10 84.92 66.59 38.93 6670.02 6588.22 2315.07 1549.35 1826.41 2395.05 49.69 0.76 5971705.52 592516.99 N 70 19 56.531 W 14914 58.264
8398.60 86.57 66.58 23.50 6671.76 6589.96 2338.49 1558.67 1847.91 2417.48 49.85 7.02 5971715.09 592538.38 N 70 19 56.623 W 14914 57.636
8429.70 87.46 66.52 31.10 6673.38 6591.58 2369.53 1571.02 1876.40 2447.24 50.06 2.87 5971727.79 592566.72 N 70 19 56.744 W 1491456.804
8461.13 87.67 66.06 31.43 6674.71 6592.91 2400.92 1583.65 1905.15 2477.41 50.27 1.61 5971740.76 592595.31 N 70 19 56.868 W 1491455.964
8492.00 87.56 67.10 30.87 6676.00 6594.20 2431.74 1595.91 1933.46 2507.03 50.46 3.38 5971753.36 592623.46 N 70 19 56.989 W 149 1455.138
e 8522.54 87.53 66.07 30.54 6677.31 6595.51 2462.23 1608.04 1961.45 2536.35 50.65 3.37 5971765.82 592651.31 N 70 19 57.108 W 14914 54.320
8553.94 87.77 66.96 31.40 6678.59 6596.79 2493.59 1620.54 1990.23 2566.54 50.85 2.93 5971778.67 592679.93 N 70 19 57.231 W 14914 53.480
8585.02 87.94 67.67 31.08 6679.76 6597.96 2524.61 1632.52 2018.88 2596.34 51.04 2.35 5971790.99 592708.43 N 70 19 57.349 W 14914 52.643
8615.88 88.18 66.96 30.86 6680.80 6599.00 2555.4 1 1644.41 2047.34 2625.96 51.23 2.43 5971803.23 592736.74 N 70 19 57.465 W 14914 51.812
8646.97 88.28 67.28 31.09 6681.76 6599.96 2586.46 1656.49 2075.97 2655.87 51.41 1.08 5971815.65 592765.22 N 70 19 57.584 W 14914 50.976
8678.05 88.39 67.60 31.08 6682.67 6600.87 2617.49 1668.41 2104.66 2685.74 51.60 1.09 5971827.92 592793.76 N 70 19 57.701 W 14914 50.138
8708.78 88.42 66.55 30.73 6683.52 6601.72 2648.17 1680.38 2132.95 2715.35 51.77 3.42 5971840.22 592821.90 N 70 19 57.819 W 1491449.312
8739.74 88.56 66.12 30.96 6684.34 6602.54 2679.11 1692.80 2161.30 2745.32 51.93 1.46 5971852.99 592850.10 N 70 19 57.941 W 1491448.484
8770.59 88.52 66.21 30.85 6685.12 6603.32 2709.93 1705.26 2189.51 2775.22 52.09 0.32 5971865.79 592878.15 N 70 19 58.063 W 1491447.660
8802.10 90.99 67.36 31.51 6685.26 6603.46 2741.42 1717.68 2218.46 2805.71 52.25 8.65 5971878.56 592906.95 N 70 19 58.186 W 1491446.815
8833.55 91.58 67.04 31.45 6684.55 6602.75 2772.83 1729.87 2247.45 2836.10 52.41 2.13 5971891.09 592935.78 N 70 19 58.305 W 1491445.968
8864.27 88.59 66.19 30.72 6684.51 6602.71 2803.52 1742.06 2275.64 2865.89 52.57 10.12 5971903.62 592963.82 N 70 19 58.425 W 149 1445.145
8894.59 86.26 66.60 30.32 6685.87 6604.07 2833.79 1754.18 2303.39 2895.31 52.71 7.80 5971916.08 592991.43 N 70 19 58.544 W 149 1444.334
8926.00 85.81 66.53 31.41 6688.04 6606.24 2865.11 1766.65 2332.14 2925.74 52.86 1.45 5971928.89 593020.02 N 70 19 58.667 W 14914 43.495
8956.82 86.22 66.74 30.82 6690.18 6608.38 2895.83 1778.84 2360.37 2955.61 53.00 1.49 5971941 .42 593048.09 N 70 19 58.787 W 1491442.671
8987.43 86.29 67.28 30.61 6692.18 6610.38 2926.35 1790.77 2388.49 2985.25 53.14 1.78 5971953.69 593076.06 N 70 19 58.904 W 1491441.849
9018.03 86.77 67.09 30.60 6694.03 6612.23 2956.86 1802.61 2416.64 3014.89 53.28 1.69 5971965.87 593104.07 N 70 19 59.020 W 1491441.027
9050.54 87.08 66.35 32.51 6695.78 6613.98 2989.30 1815.44 2446.46 3046.47 53.42 2.46 5971979.06 593133.73 N 70 19 59.146 W 1491440.156
e 9078.85 87.60 66.30 28.31 6697.09 6615.29 3017.57 1826.80 2472.36 3074.05 53.54 1.85 5971990.73 593159.49 N 70 19 59.258 W 1491439.400
9109.74 88.39 64.44 30.89 6698.17 6616.37 3048.43 1839.66 2500.42 3104.27 53.66 6.54 5972003.93 593187.39 N 70 19 59.384 W 1491438.580
9141.03 88.35 64.62 31.29 6699.06 6617.26 3079.71 1853.11 2528.66 3134.99 53.76 0.59 5972017.72 593215.46 N 70 19 59.517 W 1491437.756
9172.56 88.28 65.57 31.53 6699.99 6618.19 3111.22 1866.39 2557.24 3165.90 53.88 3.02 5972031.33 593243.88 N 70 19 59.647 W 1491436.921
9204.36 88.52 65.95 31.80 6700.88 6619.08 3143.00 1879.44 2586.23 3197.01 53.99 1.41 5972044.73 593272.70 N 70 19 59.775 W 14914 36.074
9234.34 88.59 64.90 29.98 6701 .63 6619.83 3172.97 1891.90 2613.48 3226.39 54.10 3.51 5972057.52 593299.80 N 70 19 59.898 W 1491435.278
9264.95 88.56 66.57 30.61 6702.39 6620.59 3203.56 1904.48 2641.38 3256.37 54.21 5.45 5972070.43 593327.54 N 7020 0.021 W 1491434.464
9295.68 88.56 65.41 30.73 6703.17 6621.37 3234.27 1916.98 2669.44 3286.45 54.32 3.77 5972083.27 593355.45 N 70 20 0.144 W 1491433.644
9326.71 88.46 67.12 31.03 6703.97 6622.17 3265.28 1929.46 2697.84 3316.80 54.43 5.52 5972096.10 593383.68 N 70 20 0.267 W1491432.815
9358.47 88.46 66.74 31.76 6704.83 6623.03 3297.00 1941.90 2727.05 3347.80 54.55 1.20 5972108.89 593412.74 N 70 20 0.389 W 1491431.962
9387.92 88.39 67.70 29.45 6705.64 6623.84 3326.40 1953.30 2754.19 3376.53 54.66 3.27 5972120.61 593439.74 N 70200.501 W 1491431.169
9419.86 88.21 66.27 31.94 6706.58 6624.78 3358.30 1965.78 2783.57 3407.72 54.77 4.51 5972133.45 593468.97 N 7020 0.624 W 1491430.311
9451.23 88.32 67.04 31.37 6707.53 6625.73 3389.63 1978.21 2812.36 3438.4 1 54.88 2.48 5972146.22 593497.60 N 70 20 0.746 W 1491429.470
9483.61 88.73 69.58 32.38 6708.37 6626.57 3421.93 1990.17 2842.44 3469.90 55.00 7.94 5972158.54 593527.53 N 70200.863 W 149 1428.592
Version DO 3.1 RT (d031 rC546) 3.1RT-SP3.03
Plan V-111 (N-U)\V-111\V-111\V-111
Generated 9/15/2003 1 :48 PM Page 4 of 5
Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude
Depth Length Section Azimuth
(It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (degNOO It) (ltUS) (ltUS)
9514.34 89.52 72.14 30.73 6708.84 6627.04 3452.47 2000.24 2871.46 3499.47 55.14 8.72 5972168.97 593556.42 N 70 20 0.962 W 1491427.744
9545.77 91.51 73.73 31.43 6708.55 6626.75 3483.56 2009.47 2901.50 3529.40 55.30 8.10 5972178.55 593586.35 N 70 20 1.053 W 1491426.867
9577.14 92.50 71.18 31.37 6707.46 6625.66 3514.61 2018.92 2931.39 3559.37 55.44 8.72 5972188.36 593616.12 N70201.146 W 1491425.994
9608.33 92.57 72.20 31.19 6706.08 6624.28 3545.52 2028.70 2960.98 3589.29 55.58 3.27 5972198.50 593645.58 N 70 20 1.242 W 1491425.130
9639.63 92.68 72.44 31.30 6704.64 6622.84 3576.50 2038.20 2990.77 3619.25 55.73 0.84 5972208.36 593675.25 N 70 20 1.335 W 149 1424.260
9670.30 91.88 71.10 30.67 6703.42 6621.62 3606.90 2047.79 3019.87 3648.71 55.86 5.09 5972218.29 593704.24 N 70 20 1.429 W 1491423.410
9701.94 91.95 71.22 31.64 6702,37 6620.57 3638.31 2058.00 3049.80 3679.22 55.99 0.44 5972228.87 593734.04 N 7020 1.530 W 1491422.536
9732.74 93.05 70.59 30.80 6701.02 6619.22 3668.90 2068.06 3078.88 3708.96 56.11 4.11 5972239.28 593762.99 N 70 20 1.629 W 14914 21.687
9763.82 92.60 70.41 31.08 6699.49 6617.69 3699.77 2078.43 3108.14 3739.04 56.23 1.56 5972250.00 593792.12 N 7020 1.730 W 1491420.832
9799.41 93.84 70.11 35.59 6697.49 6615.69 3735.13 2090.43 3141.58 3773.52 56.36 3.58 5972262.40 593825.41 N 70 20 1.848 W 1491419.855
9850.00 93.84 70.11 50.59 6694.10 6612.30 3785.36 2107.60 3189.05 3822.57 56.54 0.00 5972280.14 593872.66 N 70 20 2.017 W 1491418.469
.escriPtion: Northinq (y) rnUS] Eastinq (X) rnUS]
Surface: 4885 FSL 1591 FEL S11 T11N R11 E UM 5970134.34 590709.62
BHL: 1712 F8L 3680 FEL 81 T11 N R11E UM 5972280.14 593872.66
e
Version DO 3.1 RT (d031 rt_546) 3.1RT-8P3.03
Plan V-111 (N-U)\V-111\V-111\V-111
Generated 9/15/2003 1 :48 PM Page 5 of 5
~"..r'--
SCRLUMBERGER
Survey report
Client...................: BP Exploration (Alaska) Inc.
Field....................: Borealis
Well. . . . . . . . . . . . . . . . . . . . .: V-111 PB1
API number............. ..: 50-029-23161-70
Engineer. . . . . . . . . . . . . . . . .: St. Amour
As: . . . . . . . . . . . . . . . . . . . . .: Nabors 9ES
.ATE:...................: Alaska
----- Survey calculation methods-------------
Method for positions.....: Minimum curvature
Method for DLS...........: Mason & Taylor
----- Depth reference -----------------------
Permanent datum..........: Mean Sea Level
Depth reference..........: Driller's Pipe Tally
GL above permanent.......: 53.30 ft
KB above permanent.......: N/A
DF above permanent.......: 81.80 ft
----- Vertical section origin----------------
Latitude (+N/S-) .........: 0.00 ft
Departure (+E/W-) ..... ...: 0.00 ft
~--- Platform reference point---------------
Latitude (+N/S-) .........: -999.25 ft
Departure (+E/W-) ........: -999.25 ft
Azimuth from rotary table to target:
33.93 degrees
16-Jul-2003 12:04:18
Spud date......... . . . . . . . :
Last survey date.... .....:
Total accepted surveys...:
MD of first survey.......:
MD of last survey... .....:
Page
1 of 4
02-Jul-03
16-Jul-03
88
0.00 ft
7635.00 ft
.
----- Geomagnetic data ----------------------
Magnetic model...........: BGGM version 2002
Magnetic date............: 02-Jul-2003
Magnetic field strength..: 1150.36 RCNT
Magnetic dec (+E/W-) .....: 25.52 degrees
Magnetic dip.............: 80.78 degrees
----- MWD survey Reference
Reference G..............:
Reference R..............:
Reference Dip............:
Tolerance of G...........:
Tolerance of R...........:
Tolerance of Dip.........:
Criteria ---------
1002.68 mGal
1150.36 RCNT
80.78 degrees
(+/-) 2.50 mGal
(+/-) 6.00 RCNT
(+/-) 0.45 degrees
.
----- Corrections ---------------------------
Magnetic dec (+E/W-) .....: 25.50 degrees
Grid convergence (+E/W-).: 0.00 degrees
Total az corr (+E/W-) ....: 25.50 degrees
(Total az corr = magnetic dec - grid conv)
Survey Correction Type ...:
1= Sag Corrected Inclination
M-IFR= Schlumberger Magnetic Correction + Infield
Reference
S= Shell Magnetic Correction
F= Failed Axis Correction
R= Magnetic Resonance Tool Correction
D= Dmag Magnetic Correction
ŠCHLUMBERGER Survey Report 16-Jul-2003 12:04:18 Page 2 of 4
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr
(ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TIP None
2 100.00 0.50 91. 31 100.00 100.00 0.24 -0.01 0.44 0.44 91. 31 0.50 GYR None
3 200.00 0.65 90.96 100.00 199.99 0.78 -0.03 1. 44 1. 44 91.17 0.15 GYR None
4 300.00 0.76 93.40 100.00 299.99 1. 42 -0.08 2.67 2.67 91.68 0.11 GYR None
5 400.00 1. 06 96.98 100.00 399.97 2.18 -0.23 4.25 4.26 93.10 0.31 GYR None
.~ 500.00 1. 31 101.81 100.00 499.95 3.03 -0.58 6.29 6.31 95.24 0.27 GYR None .
600.00 1. 73 103.02 100.00 599.92 4.00 -1.15 8.88 8.95 97.39 0.42 GYR None
8 700.00 1. 72 100.58 100.00 699.87 5.13 -1.77 11. 82 11.95 98.50 0.07 GYR None
9 800.00 1. 84 104.04 100.00 799.82 6.27 -2.43 14.85 15.05 99.29 0.16 GYR None
10 900.00 1. 42 119.85 100.00 899.78 6.91 -3.44 17.49 17.82 101.12 0.61 GYR None
11 1000.00 0.75 196.62 100.00 999.77 6.37 -4.68 18.37 18.96 104.29 1. 45 GYR None
12 1100.00 1. 85 248.29 100.00 1099.74 4.41 -5.91 16.69 17.70 109.49 1. 50 GYR None
13 1200.00 3.15 261.17 100.00 1199.65 1. 22 -6.92 12.47 14.27 119.04 1. 41 GYR None
14 1300.00 3.89 266.10 100.00 1299.46 -2.73 -7.58 6.37 9.90 139.93 0.80 GYR None
15 1400.00 4.17 263.62 100.00 1399.21 -7.16 -8.21 -0.62 8.24 184.35 0.33 GYR None
16 1500.00 4.24 265.50 100.00 1498.94 -11.81 -8.91 -7.92 11. 92 221. 66 0.15 GYR None
17 1600.00 4.23 261. 68 100.00 1598.67 -16.59 -9.73 -15.26 18.10 237.48 0.28 GYR None
18 1700.00 4.70 264.43 100.00 1698.36 -21. 67 -10.66 -22.98 25.34 245.12 0.52 GYR None
19 1800.00 5.76 267.76 100.00 1797.95 -27.24 -11.25 -32.08 33.99 250.67 1.10 GYR None
20 1847.00 5.08 277.98 47.00 1844.74 -29.55 -11.06 -36.49 38.13 253.14 2.51 GYR None
.21 1873.77 4.85 281.20 26.77 1871. 41 -30.50 -10.67 -38.78 40.22 254.61 1. 35 MWDM M-IFR .
22 1966.13 6.24 282.06 92.36 1963.33 -33.88 -8.87 -47.52 48.34 259.43 1. 51 MWDM M-IFR
23 2058.26 6.50 280.72 92.13 2054.89 -37.80 -6.85 -57.54 57.94 263.21 0.33 MWDM M-IFR
24 2153.25 6.37 280.92 94.99 2149.29 -41. 98 -4.85 -67.99 68.17 265.92 0.14 MWDM M-IFR
25 2245.73 5.06 284.09 92.48 2241.30 -45.37 -2.89 -76.99 77.04 267.85 1. 46 MWDM M-IFR
26 2339.83 2.86 279.64 94.10 2335.17 -47.74 -'1.48 -83.33 83.34 268.98 2.36 MWD M . M-IFR
27 2432.60 2.64 279.59 92.77 2427.84 -49.58 -0.74 -87.72 87.72 269.52 0.24 MWDM M-IFR
28 2525.85 1. 40 286.00 93.25 2521.03 -50.81 -0.07 -90.93 90.93 269.96 1. 35 MWDM M-IFR
29 2618.84 0.52 320.88 92.99 2614.00 -51. 04 0.57 -92.29 92.29 270.36 1. 09 MWDM M-IFR
30 2682.69 0.42 312.45 63.85 2677.85 -50.92 0.96 -92.64 92.65 270.59 0.19 MWD M M-IFR
ŠCHLUMBERGER Survey Report 16-Jul-2003 12:04:18 Page 3 of 4
-------- ------ ------- ------ -------- -------- ---------------- --------------- ----- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ----- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/w- displ Azim (degl tool Corr
(ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
31 2703.23 0.41 310.50 20.54 2698.39 -50.90 1. 05 -92.75 92.76 270.65 0.08 MWDM M-IFR
32 2826.99 0.92 310.35 123.76 2822.14 -50.74 1. 98 -93.85 93.87 271.21 0.41 MWDM M-IFR
-
33 2921.28 0.94 307.97 94.29 2916.42 -50.60 2.95 -95.03 95.08 271.78 0.05 MWDM M-IFR
-
34 3014.53 0.81 307.80 93.25 3009.66 -50.50 3.83 -96 .16 96.23 272.28 0.14 MWDM M-IFR
35 3107.91 0.86 309.69 93.38 3103.03 -50.39 4.68 -97.22 97.33 272.75 0.06 MWDM M-IFR
-~ 3199.89 0.82 298.93 91.98 3195.00 -50.37 5.44 -98.33 98.48 273.16 0.18 MWD M M-IFR .
3294.17 0.76 295.23 94.28 3289.27 -50.53 6.03 -99.48 99.67 273.47 0.08 MWDM M-IFR
38 3387.24 0.84 297.73 93.07 3382.33 -50.69 6.61 -100.64 100.86 273.76 0.09 MWDM M-IFR
39 3481.14 0.91 299.01 93.90 3476.22 -50.83 7.29 -101.91 102.17 274.09 0.08 MWDM M-IFR
40 3575.16 0.94 298.84 94.02 3570.23 -50.96 8.03 -103.23 103.55 274.45 0.03 MWDM M-IFR
41 3666.76 1. 06 304.53 91.60 3661. 81 -51. 02 8.87 -104.59 104.97 274.85 0.17 MWDM M-IFR
-
42 3759.37 1.12 308.10 92.61 3754.41 -50.95 9.91 -106.01 106.47 275.34 0.10 MWDM M-IFR
43 3851.37 1. 03 309.69 92.00 3846.39 -50.80 11. 00 -107.35 107.91 275.85 0.10 MWDM M-IFR
44 3945.67 1.13 315.42 94.30 3940.67 -50.53 12.20 -108.66 109.34 276.41 0.16 MWDM M-IFR
45 3970.68 1.16 312.31 25.01 3965.68 -50.44 12.55 -109.02 109.74 276.56 0.28 MWDM M-IFR
46 4034.88 1. 34 309.51 64.20 4029.86 -50.27 13.46 -110.08 110.90 276.97 0.30 MWDM M-IFR
47 4127.50 1.35 306.49 92.62 4122.46 -50.12 14.80 -111. 79 112.77 277.54 0.08 MWDM M-IFR
48 4221.16 1.22 299.20 93.66 4216.10 -50.15 15.94 -113.55 114.66 277.99 0.22 MWDM M-IFR
49 4302.36 1.11 275.01 81. 20 4297.28 -50.61 16.43 -115.09 116.25 278.13 0.62 MWDM M-IFR
50 4396.52 1. 28 310.71 94.16 4391.42 -50.92 17.20 -116.79 118.05 278.38 0.80 MWDM M-IFR
.51 4490.66 1. 31 311.59 94.14 4485.54 -50.65 18.60 -118.39 119.84 278.93 0.04 MWDM M-IFR .
52 4582.91 1. 27 313.20 92.25 4577.76 -50.35 20.00 -119.93 121. 58 279.47 0.06 MWDM M-IFR
53 4676.61 1.19 314.59 93.70 4671.44 -50.00 21. 39 -121. 38 123.25 279.99 0.09 MWDM M-IFR
-
54 4768.51 1.12 312.94 91. 90 4763.32 -49.69 22.67 -122.71 124.79 280.47 0.08 MWDM M-IFR
55 4861.01 1.13 316.73 92.50 4855.80 -49.34 23.95 -124.00 126.29 280.93 0.08 MWDM M-IFR
56 4955.40 3.07 338.84 94.39 -4950.13 -47.69 26.99 -125.55 128.42- 282.13 2.19 MWDM M-IFR
57 5048.19 6.44 348.97 92.79 5042.59 -42.58 34.41 -127.44 132.01 285.11 3.73 MWD M M-IFR
58 5141.18 9.68 355.07 92.99 5134.65 -32.80 47.33 -129.11 137.51 290.13 3.60 MWDM M-IFR
59 5233.84 13.55 357.84 92.66 5225.39 -17.96 65.94 -130.19 145.94 296.86 4.22 MWDM M-IFR
60 5326.65 18.26 357.85 92.81 5314 . 63 2.59 91.35 -131.15 159.83 304.86 5.07 MWDM M-IFR
-
SCHLUMBERGER Survey Report 16-Jul-2003 12:04:18 Page 4 of 4
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr
(n) (deg) (deg) (n) (n) (n) (n) (n) (n) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
61 5420.17 22.69 356.70 93.52 5402.22 28.81 124.02 -132.74 181. 66 313.05 4.76 MWDM M-IFR
62 5513.45 26.75 356.89 93.28 5486.93 59.90 162.95 -134.91 211.56 320.38 4.35 MWDM M-IFR
-
63 5606.63 25.89 356.44 93.18 5570.45 92.78 204.20 -137.31 246.07 326.08 0.95 MWD M M-IFR
-
64 5700.28 26.16 359.86 93.65 5654.61 126.11 245.25 -138.63 281.72 330.52 1. 63 MWD M M-IFR
65 5793.84 26.37 4.64 93.56 5738.52 161.32 286.59 -137.00 317.65 334.45 2.27 MWD M M-IFR
.66 5886.36 26.35 12.49 92.52 5821. 44 198.36 327.13 -130.90 352.35 338.19 3.76 MWDM M-IFR .
67 5979.56 27.65 18.37 93.20 5904.50 238.45 367.86 -119.61 386.81 341.99 3.18 MWDM M-IFR
68 6034.93 29.72 22.10 55.37 5953.07 264.27 392.77 -110.39 407.99 344.30 4.94 MWDM M-IFR
69 6072.52 30.33 22.64 37.59 5985.62 282.70 410.16 -103.23 422.96 345.87 1. 77 MWD M M-IFR
70 6165.43 34.66 28.73 92.91 6063.99 332.05 455.02 -81.49 462.25 349.85 5.84 MWD M M-IFR
71 6258.12 39.96 34.96 92.69 6137.71 388.12 502.57 -51.73 505.23 354.12 7.01 MWDM M-IFR
72 6353.45 43.07 40.23 95.33 6209.10 451.12 552.54 -13 .15 552.70 358.64 4.90 MWDM M-IFR
73 6447.02 47.83 45.79 93.57 6274.75 516.87 601.16 32.39 602.03 3.08 6.62 MWD M M-IFR
-
74 6539.04 52.54 50.79 92.02 6333.68 585.26 648.07 85.18 653.64 7.49 6.60 MWDM M-IFR
75 6630.00 57.82 54.41 90.96 6385.61 655.93 693.33 144.51 708.23 11.77 6.66 MWDM M-IFR
76 6725.36 62.34 57.26 95.36 6433.17 732.57 739.69 212.89 769.72 16.06 5.40 MWDM M-IFR
77 6817.63 63.08 58.50 92.27 6475.48 807.50 783.29 282.34 832.62 19.82 1. 44 MWDM M-IFR
78 6910.91 66.56 59.92 93.28 6515.16 883.82 826.48 354.85 899.44 23.24 3.98 MWDM M-IFR
79 7004.20 70.63 60.18 93.29 6549.20 961.78 869.83 430.09 970.35 26.31 4.37 MWDM M-IFR
80 7096.88 71.77 61.62 92.68 6579.07 1039.97 912.49 506.75 1043.76 29.05 1. 92 MWDM M-IFR
.81 7189.25 71. 65 61.63 92.37 6608.06 1117.63 954.17 583.92 1118.66 31. 47 0.13 MWD M M-IFR .
82 7283.07 71.75 62.11 93.82 6637.52 1196.32 996.17 662.47 1196.34 33.62 0.50 MWD M M-IFR
83 7376.77 71.83 61.84 93.70 6666.80 1274.87 1037.99 741. 04 1275.37 35.52 0.29 MWDM M-IFR
-
84 7470.34 71.77 61. 96 93.57 6696.02 1353.38 1079.86 819.45 1355.58 37.19 0.14 MWDM M-IFR
-
85 7501. 49 71. 88 62.48 31.15 6705.74 1379.44 1093.65 845.64 1382.45 37.71 1. 62 MWDM M-IFR
86 7532.45 71.92 62.62 30.96 6715.36 1405.27 1107.21 871. 75 1409.21 38.21 0.45 MWD M" M-IFR
-
87 7564.32 71.95 62.36 31. 87 6725.24 1431. 89 1121.21 898.63 1436.89 38.71 0.78 MWD M M-IFR
88 7635.00 71.95 62.36 70.68 6747.14 1490.98 1152.39 958.16 1498.69 39.74 0.00 Projected to TD
[(c)2003 IDEAL ID8_0C_07]
.~
SCHLUMBERGER
Survey report
Client......... ....... ...: BP Exploration (Alaska) Inc.
Field. . . . . . . . . . . . . . . . . . . .: Borealis
Well. . . . . . . . . . . . . . . . . . . . .: V-ll1 PB2
API number.......... .....: 50-029-23161-71
Engineer........ ....... ..: M. Aburto
~~~~;::::::: ::::::::::::~ ~~~~~: 9ES
----- Survey calculation methods-------------
Method for positions.....: Minimum curvature
Method for DLS...... .....: Mason & Taylor
----- Depth reference -----------------------
Permanent datum....... ...: Mean Sea Level
Depth reference...... ....: Driller's Pipe Tally
GL above permanent.... ...: 53.30 ft
KB above permanent... ....: N/A - Top Drive
DF above permanent.......: 81.80 ft
----- Vertical section origin----------------
Latitude (+N/S-). .... ....: 0.00 ft
Departure (+E/W-).. ......: 0.00 ft
.-~- Platform reference point---------------
tltude (+N/S-).........: N 70 19 41.296
Departure (+E/W-)... ... ..: W 149 15 51.593
Azimuth from rotary table to target:
33.93 degrees
[(c)2003 IDEAL ID8 OC 07]
29-Jul-2003 07:17:09
Spud date. . . . . . . . . . . . . . . . :
Last survey date...... ...:
Total accepted surveys...:
MD of first survey. ......:
MD of last survey... .....:
Page
1 of 5
02-Jul-03
29-Jul-03
101
0.00 ft
7210.00 ft
.
----- Geomagnetic data ----------------------
Magnetic model... ........: BGGM version 2002
Magnetic date... .........: 20-Jul-2003
Magnetic field strength..: 1150.38 HCNT
Magnetic dec (+E/W-) .....: 25.50 degrees
Magnetic dip...... .......: 80.78 degrees
----- MWD survey Reference
Reference G..... .........:
Reference H... ... ........:
Reference Dip............:
Tolerance of G.. .........:
Tolerance of H.. .........:
Tolerance of Dip.........:
Criteria ---------
1002.68 mGal
1150.38 HCNT
80.78 degrees
(+/-) 2.50 mGal
( + / - ) 6. 00 HCNT
(+/-) 0.45 degrees
.
----- Corrections ---------------------------
Magnetic dec (+E/W-) .....: 25.50 degrees
Grid convergence (+E/W-).: 0.00 degrees
Total az corr (+E/W-)....: 25.50 degrees
(Total az corr = magnetic dec - grid conv)
Survey Correction Type ...:
I=Sag Corrected Inclination
M=Schlumberger Magnetic Correction
S=Shell Magnetic Correction
F=Failed Axis Correction
R=Magnetic Resonance Tool Correction
D=Dmag Magnetic Correction
SCHLUMBERGER Survey Report
29-Jul-2003 07:17:09
-------- ------ ------- ------ -------- -------- ----------------
-------- ------ ------- ------ -------- -------- ----------------
Seq Measured
# depth
(n)
.~
8
9
10
.21
22
23
24
25
Incl
angle
(deg)
Azimuth
angle
(deg)
Course
length
(n)
TVD
depth
(n)
Vertical
section
(n)
Displ
+N/S-
(n)
Displ
+E/W-
(n)
-------- ------ ------- ------ -------- -------- ----------------
-------- ------ ------- ------ -------- -------- ----------------
1
2
3
4
5
0.00
100.00
200.00
300.00
400.00
0.00
0.50
0.65
0.76
1. 06
1. 31
1. 73
1. 72
1. 84
1. 42
0.75
1. 85
3.15
3.89
4.17
4.24
4.23
4.70
5.76
5.08
4.85
6.24
6.50
6.37
5.06
2.86
2.64
1. 40
0.52
0.42
0.00
91. 31
90.96
93.40
96.98
101.81
103.02
100.58
104.04
119.85
196.62
248.29
261. 17
266.10
263.62
265.50
261.68
264.43
267.76
277.98
281.20
282.06
280.72
280.92
284.09
279.64
279.59
286.00
320.88
312.45
[(c)2003 IDEAL 108 OC 07]
500.00
600.00
700.00
800.00
900.00
11
12
13
14
15
1000.00
1100.00
1200.00
1300.00
1400.00
16
17
18
19
20
1500.00
1600.00
1700.00
1800.00
1847.00
1873.77
1966.13
2058.26
2153.25
2245.73
26
27
28
29
30
2339.83
2432.60
2525.85
2618.84
2682.69
0.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
47.00
26.77
92.36
92.13
94.99
92.48
94.10
92.77
93.25
92.99
63.85
0.00
100.00
199.99
299.99
399.97
499.95
599.92
699.87
799.82
899.78
999.77
1099.74
1199.65
1299.46
1399.21
1498.94
1598.67
1698.36
1797.95
1844.74
1871.41
1963.33
2054.89
2149.29
2241. 30
2335.17
2427.84
2521.03
2614.00
2677.85
0.00
0.24
0.78
1. 42
2.18
3.03
4.00
5.13
6.27
6.91
6.37
4.41
1. 22
-2.73
-7.16
-11.81
-16.59
-21. 67
-27.24
-29.55
-30.50
-33.88
-37.80
-41.98
-45.37
-47.74
-49.58
-50.81
-51.04
-50.92
0.00
-0.01
-0.03
-0.08
-0.23
-0.58
-1.15
-1.77
-2.43
-3.44
-4.68
-5.91
-6.92
-7.58
-8.21
-8.91
-9.73
-10.66
-11.25
-11. 06
-10.67
-8.87
-6.85
-4.85
-2.89
-1.48
-0.74
-0.07
0.57
0.96
0.00
0.44
1. 44
2.67
4.25
6.29
8.88
11.82
14.85
17.49
18.37
16.69
12.47
6.37
-0.62
-7.92
-15.26
-22.98
-32.08
-36.49
-38.78
-47.52
-57.54
-67.99
-76.99
-83.33
-87.72
-90.93
-92.29
-92.64
Page
2 of 5
---------------
---------------
Total
displ
(n)
At
Azim
(deg)
---------------
---------------
0.00
0.44
1. 44
2.67
4.26
6.31
8.95
11. 95
15.05
17.82
18.96
17.70
14.27
9.90
8.24
11. 92
18.10
25.34
33.99
38.13
40.22
48.34
57.94
68.17
77.04
83.34
87.72
90.93
92.29
92.65
0.00
91. 31
91. 17
91. 68
93.10
95.24
97.39
98.50
99.29
101.12
104.29
109.49
119.04
139.93
184.35
221.66
237.48
245.12
250.67
253.14
254.61
259.43
263.21
265.92
267.85
268.98
269.52
269.96
270.36
270.59
DLS
(deg/
100f)
0.00
0.50
0.15
0.11
0.31
0.27
0.42
0.07
0.16
0.61
1. 45
1. 50
1. 41
0.80
0.33
0.15
0.28
0.52
1.10
2.51
1. 35
1. 51
0.33
0.14
1. 46
2.36
0.24
1. 35
1. 09
0.19
------
------
Srvy Tool
tool Corr
type (deg)
------
------
TIP
GYR
GYR
GYR
GYR
GYR
GYR
GYR
GYR
GYR
.
GYR
GYR
GYR
GYR
GYR
GYR
GYR
GYR
GYR
GYR
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
.
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
.
SCHLUMBERGER Survey Report
29-Jul-2003 07:17:09
Page
3 of 5
-------- ------ ------- ------ -------- -------- ---------------- ---------------
-------- ------ ------- ------ -------- -------- ---------------- ---------------
Seq Measured
# depth
(n)
.36
37
38
39
40
.51
52
53
54
55
Incl
angle
(deg)
Azimuth
angle
(deg)
Course
length
(n)
TVD
depth
(n)
Vertical
section
(n)
Displ
+N/S-
(n)
Displ
+E/W-
(n)
Total
displ
(n)
At
Azim
(deg)
-------- ------ ------- ------ -------- -------- ---------------- ---------------
-------- ------ ------- ------ -------- -------- ---------------- ---------------
3L
32
33
34
35
2703.23
2826.99
2921.28
3014.53
3107.91
0.41
0.92
0.94
0.81
0.86
0.82
0.76
0.84
0.91
0.94
1. 06
1.12
1. 03
1.13
1. 16
1. 34
1. 35
1. 22
1.11
1. 28
1. 31
1. 27
1.19
1.12
1.13
3.07
6.44
9.68
13.55
18.26
310.50
310.35
307.97
307.80
309.69
298.93
295.23
297.73
299.01
298.84
304.53
308.10
309.69
315.42
312.31
309.51
306.49
299.20
275.01
310.71
311.59
313.20
314.59
312.94
316.73
338.84
348.97
355.07
357.84
357.85
[(c)2003 IDEAL ID8 OC 07]
3199.89
3294.17
3387.24
3481.14
3575.16
41
42
43
44
45
3666.76
3759.37
3851.37
3945.67
3970.68
46
47
48
49
50
4034.88
4127.50
4221.16
4302.36
4396.52
4490.66
4582.91
4676.61
4768.51
4861. 01
56
57
58
59
60
4955.40
5048.19
5141.18
5233.84
5326.65
20.54
123.76
94.29
93.25
93.38
91.98
94.28
93.07
93.90
94.02
91. 60
92.61
92.00
94.30
25.01
64.20
92.62
93.66
81.20
94.16
94.14
92.25
93.70
91. 90
92.50
94.39
92.79
92.99
92.66
92.81
2698.39
2822.14
2916.42
3009.66
3103.03
3195.00
3289.27
3382.33
3476.22
3570.23
3661.81
3754.41
3846.39
3940.67
3965.68
4029.86
4122.46
4216.10
4297.28
4391. 42
4485.54
4577.76
4671.44
4763.32
4855.80
4950.13
5042.59
5134.65
5225.39
5314.63
-50.90
-50.74
-50.60
-50.50
-50.39
-50.37
-50.53
-50.69
-50.83
-50.96
-51. 02
-50.95
-50.80
-50.53
-50.44
-50.27
-50.12
-50.15
-50.61
-50.92
-50.65
-50.35
-50.00
-49.69
-49.34
-47.69
-42.58
-32.80
-17.96
2.59
1. 05
1. 98
2.95
3.83
4.68
5.44
6.03
6.61
7.29
8.03
8.87
9.91
11.00
12.20
12.55
13.46
14.80
15.94
16.43
17.20
18.60
20.00
21. 39
22.67
23.95
26.99
34.41
47.33
65.94
91. 35
-92.75
-93.85
-95.03
-96.16
-97.22
-98.33
-99.48
-100.64
-101. 91
-103.23
-104.59
-106.01
-107.35
-108.66
-109.02
-110.08
-111.79
-113.55
-115.09
-116.79
-118.39
-119.93
-121.38
-122.71
-124.00
-125.55
-127.44
-129.11
-130.19
-131.15
92.76
93.87
95.08
96.23
97.33
98.48
99.67
100.86
102.17
103.55
104.97
106.47
107.91
109.34
109.74
110.90
112.77
114.66
116.25
118.05
119.84
121. 58
123.25
124.79
126.29
128.42
132.01
137.51
145.94
159.83
270.65
271.21
271. 78
272.28
272.75
273.16
273.47
273.76
274.09
274.45
274.85
275.34
275.85
276.41
276.56
276.97
277.54
277.99
278.13
278.38
278.93
279.47
279.99
280.47
280.93
282.13
285.11
290.13
296.86
304.86
DLS
(deg/
100f)
0.08
0.41
0.05
0.14
0.06
0.18
0.08
0.09
0.08
0.03
0.17
0.10
0.10
0.16
0.28
0.30
0.08
0.22
0.62
0.80
0.04
0.06
0.09
0.08
0.08
2.19
3.73
3.60
4.22
5.07
------
------
Srvy Tool
tool Corr
type (deg)
------
------
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
.
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
.
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
MWD IFR MSA
SCHLUMBERGER Survey Report 29-Jul-2003 07:17:09 Page 4 of 5
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr
(ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
61 5420.17 22.69 356.70 93.52 5402.22 28.81 124.02 -132.74 181.66 313.05 4.76 MWD IFR MSA
-
62 5513.45 26.75 356.89 93.28 5486.93 59.90 162.95 -134.91 211.56 320.38 4.35 MWD IFR MSA
-
63 5606.63 25.89 356.44 93.18 5570.45 92.78 204.20 -137.31 246.07 326.08 0.95 MWD IFR MSA
-
64 5700.28 26.16 359.86 93.65 5654.61 126.11 245.25 -138.63 281. 72 330.52 1. 63 MWD IFR MSA
- -
65 5793.84 26.37 4.64 93.56 5738.52 161.32 286.59 -137.00 317.65 334.45 2.27 MWD IFR MSA
-
.66 5886.36 26.35 12.49 92.52 5821. 44 198.36 327.13 -130.90 352.35 338.19 3.76 MWD IFR MSA .
- -
67 5979.56 27.65 18.37 93.20 5904.50 238.45 367.86 -119.61 386.81 341. 99 3.18 MWD IFR MSA
- -
68 6034.93 29.72 22.10 55.37 5953.07 264.27 392.77 -110.39 407.99 344.30 4.94 MWD IFR MSA
-
69 6072.52 30.33 22.64 37.59 5985.62 282.70 410.16 -103.23 422.96 345.87 1. 77 MWD IFR MSA
-
70 6165.43 34.66 28.73 92.91 6063.99 332.05 455.02 -81. 49 462.25 349.85 5.84 MWD IFR MSA
71 6229.42 37.49 32.22 63.99 6115.71 369.65 487.46 -62.35 491.43 352. 71 5.46 MWD IFR MSA
- -
72 6261.06 35.91 31. 69 31. 64 6141. 07 388.54 503.50 -52.35 506.21 354.06 5.09 MWD IFR MSA
-
73 6291.38 35.49 31.14 30.32 6165.70 406.22 518.60 -43.12 520.39 355.25 1. 74 MWD IFR MSA
- -
74 6324.44 36.74 32.58 33.06 6192.40 425.69 535.14 -32.84 536.15 356.49 4.57 MWD IFR MSA
-
75 6355.57 37.15 34.34 31. 13 6217.28 444.40 550.75 -22.52 551.21 357.66 3.64 MWD IFR MSA
76 6386.06 38.19 37.59 30.49 6241.42 463.01 565.82 -11.57 565.94 358.83 7.35 MWD IFR MSA
- -
77 6418.43 39.76 40.43 32.37 6266.59 483.29 581.63 1. 24 581.64 0.12 7.35 MWD IFR MSA
- -
78 6449.01 41.55 42.51 30.58 6289.78 503.03 596.56 14.44 596.73 1. 39 7.34 MWD IFR MSA
- -
79 6480.35 43.55 44.51 31. 34 6312.87 523.93 611. 92 29.03 612.61 2.72 7.70 MWD IFR MSA
- -
80 6508.83 44.87 46.25 28.48 6333.29 543.39 625.86 43.17 627.35 3.95 6.29 MWD IFR MSA
- -
.81 6540.50 46.31 48.33 31. 67 6355.45 565.40 641.20 59.80 643.99 5.33 6.53 MWD IFR MSA .
- -
82 6570.07 47.68 50.01 29.57 6375.62 586.26 655.34 76.16 659.75 6.63 6.22 MWD IFR MSA
-
83 6601.93 49.81 51. 88 31.86 6396.63 609.16 670.42 94.76 677.09 8.05 8.01 MWD IFR MSA
- -
84 6629.68 51.52 51.40 27.75 6414.22 629.60 683.74 111.59 692.79 9.27 6.31 MWD IFR MSA
- -
85 6663.82 53.76 50.81 34.14 6434.93 655.53 700.78 132.70 713.24 10.72 6.70 MWD IFR MSA
-
86 6694.57 56.19 51.32 30.75 6452.58 679.59 716.60 152.29 732.61 12.00 8.02 MWD IFR MSA
- -
87 6725.71 58.97 50.26 31.14 6469.27 704.74 733.22 172.65 753.28 13.25 9.38 MWD IFR MSA
- -
88 6757.53 60.88 51. 34 31. 82 6485.22 731.09 750.62 193.99 775.29 14.49 6.68 MWD IFR MSA
- -
89 6787.65 62.98 53.02 30.12 6499.39 756.33 766.91 214.99 796.48 15.66 8.53 MWD IFR MSA
-
90 6818.62 65.54 53.85 30.97 6512.84 782.62 783.53 237.39 818.70 16.86 8.61 MWD IFR MSA
-
[(c)2003 IDEAL ID8 OC 07]
SCHLUMBERGER Survey Report 29-Jul-2003 07:17:09 Page 5 of 5
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr
(ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
91 6853.06 69.25 54.59 34.44 6526.08 812.43 802.11 263.18 844.19 18.17 10.95 MWD IFR MSA
- -
92 6880.66 71.78 55.28 27.60 6535.28 836.72 817.06 284.48 865.17 19.20 9.46 MWD IFR MSA
- -
93 6912.20 74.43 55.20 31. 54 6544.45 864.83 834.26 309.27 889.74 20.34 8.41 MWD IFR MSA
- -
94 6943.59 78.09 56.83 31. 39 6551. 90 893.08 851. 30 334.55 914.68 21. 45 12.70 MWD IFR MSA
- -
95 6974.58 78.01 58.05 30.99 6558.32 920.88 867.62 360.10 939.38 22.54 3.86 MWD IFR MSA
.96 7005.32 77.71 59.03 30.74 6564.78 948.21 883.30 385.74 963.86 23.59 3.27 MWD IFR MSA .
- -
97 7035.91 77.98 58.73 30.59 6571. 23 975.32 898.76 411. 34 988.42 24.59 1. 30 MWD IFR MSA
- -
98 7067.61 78.12 57.97 31.70 6577.79 1003.56 915.03 437.74 1014.35 25.57 2.39 MWD IFR MSA
- -
99 7099.50 77.99 58.68 31.89 6584.39 1031.97 931.41 464.29 1040.72 26.50 2.22 MWD IFR MSA
- -
100 7142.16 78 .18 58.82 42.66 6593.20 1069.86 953.07 499.98 1076.25 27.68 0.55 MWD IFR MSA
101 7210.00 78 .18 59.04 67.84 6607.09 1130.04 987.34 556.85 1133.54 29.42 0.32 Projected to TO
[(c)2003 IDEAL 108 OC_07]
.
.
SCHLUMBERGER
Survey report
Client.. ......... ... .....: BP Exploration (Alaska) Inc.
Field. . . .. . . ., . . . . . . . . . . .: Borealis
Well. . . . . . . . . . . . . . . . . . . . .: V111 - PB3
API number........ .......: 50-029-23161-72
Engineer.. ...............: Mark St. Amour
Rig. . . . . . . . . . . . . . . . . . . . . .: Nabors 9ES
STATE: . . . . . . . . . . . . . . . . . . .: Alaska
----- Survey calculation methods-------------
Method for positions. ....: Minimum curvature
Method for DLS.. ...... ...: Mason & Taylor
----- Depth reference -----------------------
Permanent datum... .......: Mean Sea Level
Depth reference... .... ...: Drill Floor
GL above permanent.. .....: 53.30 ft
KB above permanent.... ...: N/A - Top Drive
OF above permanent.. . . . . . : 81.80 ft
----- Vertical section origin----------------
Latitude (+N/S-). ... .....: 0.00 ft
Departure (+E/W-)... .....: 0.00 ft
----- Platform reference point---------------
Latitude (+N/S-).. ..... ..: N 70 19 41.296
Departure (+E/W-)... .., ..: W 149 15 51.593
Azimuth from rotary table to target:
33.93 degrees
[(c)2003 IDEAL 108 OC 07]
4-Aug-2003 23:30:32
Spud date.. . . . . . . . . . . . . . . :
Last survey date... ......:
Total accepted surveys...:
MD of first survey.......:
MD of last survey........:
Page
1 of 4
02-Jul-03
04-Aug-03
83
0.00 ft
7485.24 ft
.
----- Geomagnetic data ----------------------
Magnetic model...........: BGGM version 2002
Magnetic date........ ....: 02-Aug-2003
Magnetic field strength..: 1150.38 HCNT
Magnetic dec (+E/W-).....: 25.49 degrees
Magnetic dip.............: 80.78 degrees
----- MWD survey Reference
Reference G..... .... .....:
Reference H.......... ....:
Reference Dip....... .....:
Tolerance of G.... .......:
Tolerance of H....... ....:
Tolerance of Dip..... ....:
Criteria ---------
1002.68 mGal
1150.38 HCNT
80.78 degrees
(+/-) 2.50 mGal
(+/-) 6.00 HCNT
(+/-) 0.45 degrees
.
----- Corrections ---------------------------
Magnetic dec (+E/W-). ....: 25.50 degrees
Grid convergence (+E/W-).: 0.00 degrees
Total az corr (+E/W-) ....: 25.50 degrees
(Total az corr = magnetic dec - grid conv)
Survey Correction Type...:
I=Sag Corrected Inclination
M=Schlumberger Magnetic Correction
S=Shell Magnetic Correction
F=Fai1ed Axis Correction
R=Magnetic Resonance Tool Correction
D=Dmag Magnetic Correction
SCHLUMBERGER Survey Report 4-Aug-2003 23:30:32 Page 2 of 4
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Carr
(ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TIP None
2 100.00 0.50 91.31 100.00 100.00 0.24 -0.01 0.44 0.44 91.31 0.50 GYR None
3 200.00 0.65 90.96 100.00 199.99 0.78 -0.03 1. 44 1. 44 91. 17 0.15 GYR None
4 300.00 0.76 93.40 100.00 299.99 1. 42 -0.08 2.67 2.67 91. 68 0.11 GYR None
5 400.00 1. 06 96.98 100.00 399.97 2.18 -0.23 4.25 4.26 93.10 0.31 GYR None
6 500.00 1. 31 101.81 100.00 499.95 3.03 -0.58 6.29 6.31 95.24 0.27 GYR None
7 600.00 1. 73 103.02 100.00 599.92 4.00 -1.15 8.88 8.95 97.39 0.42 GYR None .
8 700.00 1. 72 100.58 100.00 699.87 5.13 -1.77 11. 82 11. 95 98.50 0.07 GYR None
9 800.00 1. 84 104.04 100.00 799.82 6.27 -2.43 14.85 15.05 99.29 0.16 GYR None
10 900.00 1. 42 119.85 100.00 899.78 6.91 -3.44 17.49 17.82 101.12 0.61 GYR None
11 1000.00 0.75 196.62 100.00 999.77 6.37 -4.68 18.37 18.96 104.29 1. 45 GYR None
12 1100.00 1. 85 248.29 100.00 1099.74 4.41 -5.91 16.69 17.70 109.49 1. 50 GYR None
13 1200.00 3.15 261.17 100.00 1199.65 1. 22 -6.92 12.47 14.27 119.04 1. 41 GYR None
14 1300.00 3.89 266.10 100.00 1299.46 -2.73 -7.58 6.37 9.90 139.93 0.80 GYR None
15 1400.00 4.17 263.62 100.00 1399.21 -7.16 -8.21 -0.62 8.24 184.35 0.33 GYR None
16 1500.00 4.24 265.50 100.00 1498.94 -11. 81 -8.91 -7.92 11. 92 221. 66 0.15 GYR None
17 1600.00 4.23 261. 68 100.00 1598.67 -16.59 -9.73 -15.26 18.10 237.48 0.28 GYR None
18 1700.00 4.70 264.43 100.00 1698.36 -21. 67 -10.66 -22.98 25.34 245.12 0.52 GYR None
19 1800.00 5.76 267.76 100.00 1797.95 -27.24 -11.25 -32.08 33.99 250.67 1.10 GYR None
20 1847.00 5.08 277 . 98 47.00 1844.74 -29.55 -11.06 -36.49 38.13 253.14 2.51 GYR None
21 1873.77 4.85 281.20 26.77 1871.41 -30.50 -10.67 -38.78 40.22 254.61 1. 35 MWD IFR MSA .
- -
22 1966.13 6.24 282.06 92.36 1963.33 -33.88 -8.87 -47.52 48.34 259.43 1. 51 MWD IFR MSA
-
23 2058.26 6.50 280.72 92.13 2054.89 -37.80 -6.85 -57.54 57.94 263.21 0.33 MWD IFR MSA
- -
24 2153.25 6.37 280.92 94.99 2149.29 -41.98 -4.85 -67.99 68.17 265.92 0.14 MWD IFR MSA
- -
25 2245.73 5.06 284.09 92.48 2241. 30 -45.37 -2.89 -76.99 77.04 267.85 1. 46 MWD IFR MSA
26 2339.83 2.86 279.64 94.10 2335.17 -47.74 -1.48 -83.33 83.34 268.98 2.36 MWD IFR MSA
-
27 2432.60 2.64 279.59 92.77 2427.84 -49.58 -0.74 -87.72 87.72 269.52 0.24 MWD IFR MSA
- -
28 2525.85 1. 40 286.00 93.25 2521.03 -50.81 -0.07 -90.93 90.93 269.96 1. 35 MWD IFR MSA
- -
29 2618.84 0.52 320.88 92.99 2614.00 -51.04 0.57 -92.29 92.29 270.36 1. 09 MWD IFR MSA
- -
30 2682.69 0.42 312.45 63.85 2677.85 -50.92 0.96 -92.64 92.65 270.59 0.19 MWD IFR MSA
-
[(c)2003 IDEAL ID8 OC 07]
SCHL?MBERGER Survey Report 4-Aug-2003 23:30:32 Page 3 of 4
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/W- displ Azim (degl tool Corr
(n) (deg) (deg) (n) (n) (n) (n) (n) (n) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
31 2703.23 0.41 310.50 20.54 2698.39 -50.90 1. 05 -92.75 92.76 270.65 0.08 MWD IFR MSA
-
32 2826.99 0.92 310.35 123.76 2822.14 -50.74 1. 98 -93.85 93.87 271.21 0.41 MWD IFR MSA
- -
33 2908.24 2.32 358.81 81.25 2903.36 -49.32 4.05 -94.38 94.47 272.46 2.27 MWD IFR MSA
- -
34 3001. 66 6.17 16.03 93.42 2996.51 -42.99 10.77 -93.03 93.65 276.60 4.30 MWD IFR MSA
-
35 3094.38 8.41 20.81 92.72 3088.48 -31. 65 21. 90 -89.25 91.89 283.79 2.50 MWD IFR MSA
36 3188.07 10.52 21.89 93.69 3180.89 -16.61 36.24 -83.62 91.14 293.43 2.26 MWD IFR MSA .
- -
37 3281.54 13.08 23.15 93.47 3272.37 2.13 53.89 -76.28 93.40 305.24 2.75 MWD IFR MSA
-
38 3376.51 12.35 19.50 94.97 3365.01 22.52 73.34 -68.67 100.47 316.89 1.14 MWD IFR MSA
-
39 3470.17 10.15 11. 31 93.66 3456.88 39.85 90.88 -63.70 llO.98 324.97 2.90 MWD IFR MSA
-
40 3563.84 6.96 3.13 93.67 3549.49 52.34 104.64 -61.78 121. 52 329.44 3.64 MWD IFR MSA
41 3657.03 3.85 352.84 93.19 3642.26 59.55 113.39 -61. 86 129.16 331.39 3.48 MWD IFR MSA
- -
42 3749.92 2.85 339.15 92.89 3734.99 63.23 118.64 -63.07 134.36 332.01 1. 37 MWD IFR MSA
-
43 3842.91 1. 64 13.65 92.99 3827.91 65.82 122.09 -63.58 137.65 332.49 1. 90 MWD IFR MSA
-
44 3936.23 1. 08 46.53 93.32 3921.21 67.93 124.00 -62.62 138.91 333.20 1. 01 MWD IFR MSA
-
45 4028.66 0.95 48.25 92.43 4013.62 69.52 125.11 -61. 42 139.37 333.85 0.14 MWD IFR MSA
-
46 4122.08 1. 09 52.14 93.42 4107.03 71.11 126.17 -60.14 139.77 334.51 0.17 MWD IFR MSA
-
47 4216.02 1.19 45.57 93.94 4200.95 72.92 127.40 -58.74 140.29 335.25 0.18 MWD IFR MSA
- -
48 4309.02 1. 46 55.67 93.00 4293.92 74.96 128.74 -57.07 140.82 336.09 0.38 MWD IFR MSA
-
49 4403.10 0.31 11.89 94.08 4387.99 76.31 129.67 -56.03 141.25 336.63 1. 33 MWD IFR MSA
- -
50 4497.19 0.70 289.64 94.09 4482.08 76.41 130.11 -56.52 141.85 336.52 0.77 MWD IFR MSA
51 4590.02 0.69 269.68 92.83 4574.90 75.95 130.30 -57.61 142.46 336.15 0.26 MWD IFR MSA .
- -
52 4683.04 0.91 266.98 93.02 4667.91 75.19 130.25 -58.91 142.96 335.67 0.24 MWD IFR MSA
-
53 4775.72 1. 01 268.12 92.68 4760.58 74.27 130.19 -60.46 143.54 335.09 0.11 MWD IFR MSA
- -
54 4868.44 0.83 263.66 92.72 4853.29 73.36 130.09 -61.94 144.08 334.54 0.21 MWD IFR MSA
-
55 4961. 50 0.86 267.87 93.06 4946.34 72.51 129.99 -63.31 144.59 334.03 0.07 MWD IFR MSA
56 5054.46 1. 04 269.97 92.96 5039.29 71. 63 129.96 -64.85 145.24 333.48 0.20 MWD IFR MSA
-
57 5147.41 1. 25 8.89 92.95 5132.22 72.08 130.96 -65.54 146.45 333.42 1. 88 MWD IFR MSA
-
58 5240.87 5.93 41.11 93.46 5225.48 77.80 135.61 -62.20 149.20 335.36 5.26 MWD IFR MSA
- -
59 5334.61 9.37 45.78 93.74 5318.37 90.07 144.58 -53.55 154.18 339.68 3.73 MWD IFR MSA
-
60 5429.ll 11. 62 47.64 94.50 5411.29 106.85 156.36 -41. 00 161. 65 345.31 2.41 MWD IFR MSA
[(c)2003 IDEAL ID8 OC 07]
SCH~~MBERGER Survey Report 4-Aug-2003 23:30:32 Page 4 of 4
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr
(ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
61 5521.23 14.26 47.98 92.12 5501.06 126.87 170.21 -25.71 172.14 351.41 2.87 MWD IFR MSA
-
62 5614.75 17.77 48.93 93.52 5590.94 151.84 187.30 -6.39 187.41 358.05 3.76 MWD IFR MSA
-
63 5708.20 20.51 49.11 93.45 5679.21 181.42 207.39 16.74 208.07 4.61 2.93 MWD IFR MSA
- -
64 5800.49 25.22 47.29 92.29 5764.23 216.17 231. 33 43.42 235.37 10.63 5.16 MWD IFR MSA
- -
65 5894.00 29.93 45.92 93.51 5847.09 258.40 261.08 74.84 271.60 15.99 5.08 MWD IFR MSA
-
66 5987.57 32.70 43.83 93.57 5927.02 306.14 295.56 109.12 315.06 20.26 3.18 MWD IFR MSA .
-
67 6080.85 39.02 42.77 93.28 6002.59 360.04 335.34 146.55 365.96 23.61 6.81 MWD IFR MSA
-
68 6173.89 46.57 44.73 93.04 6070.81 422.25 380.91 190.28 425.79 26.54 8.24 MWD IFR MSA
-
69 6268.20 50.74 43.75 94.31 6133.10 491. 90 431. 63 239.65 493.70 29.04 4.49 MWD IFR MSA
- -
70 6361.71 52.47 45.22 93.51 6191.18 563.94 483.91 291.01 564.67 31. 02 2.22 MWD IFR MSA
-
71 6454.94 55.19 47.39 93.23 6246.20 637.43 535.87 345.43 637.56 32.81 3.47 MWD IFR MSA
- -
72 6546.56 61. 20 49.10 91. 62 6294.47 712.83 587.67 403.51 712.86 34.47 6.75 MWD IFR MSA
-
73 6639.74 61. 09 49.44 93.18 6339.43 791.54 640.92 465.35 792.04 35.98 0.33 MWD IFR MSA
-
74 6733.56 61. 67 50.42 93.82 6384.37 870.70 693.94 528.37 872.20 37.29 1.11 MWD IFR MSA
- -
75 6824.99 62.34 49.55 91.43 6427.29 948.28 745.85 590.20 951. 12 38.35 1.11 MWD IFR MSA
- -
76 6918.24 60.74 48.90 93.25 6471.73 1027.36 799.39 652.28 1031.74 39.21 1. 82 MWD IFR MSA
- -
77 7011.62 59.93 49.18 93.38 6517.94 1105.69 852.58 713.55 1111. 78 39.93 0.91 MWD IFR MSA
-
78 7104.73 60.39 49.39 93.11 6564.27 1183.57 905.26 774.77 1191.54 40.56 0.53 MWD IFR MSA
- -
79 7197.61 60.88 49.95 92.88 6609.82 1261.48 957.65 836.48 1271.53 41. 14 0.74 MWD IFR MSA
- -
80 7290.81 60.19 50.57 93.20 6655.66 1339.35 1009.52 898.87 1351. 71 41. 68 0.94 MWD IFR MSA
-
81 7383.90 60.18 49.26 93.09 6701. 95 1417.00 1061.53 960.66 1431. 69 42.14 1. 22 MWD IFR MSA .
- -
82 7477.28 58.74 49.98 93.38 6749.40 1494.42 1113.64 1021.93 1511. 46 42.54 1. 68 MWD IFR MSA
- -
83 7485.24 58.67 49.97 7.96 6753.53 1500.96 1118.01 1027.13 1518.21 42.57 0.89 MWD IFR MSA
-
84 7560.00 58.67 49.97 74.76 6792.41 1562.33 1159.08 1076.03 1581. 56 42.87 0.00 Projected to TD
[(c)2003 IDEAL ID8_0C_07]
SCHLUMBERGER
Survey report
Client.. .... .............: BP Exploration (Alaska) Inc.
Field. . . . . . . . . . . . . . . . . . . .: Borealis
Well.....................: V-111
API number......... ......: 50-029-23161-00
Engineer........ ... ......: Mark St. Amour
Rig. . . . . . . . . . . . . . . . . . . . . .: Nabors 9ES
STATE:... ..... ...........: Alaska
----- Survey calculation methods-------------
Method for positions... ..: Minimum curvature
Method for DLS...........: Mason & Taylor
----- Depth reference -----------------------
Permanent datum.. ..... ...: Mean Sea Level
Depth reference. .........: Drill Floor
GL above permanent.......: 53.30 ft
KB above permanent. ......: N/A - Top Drive
OF above permanent.......: 81.80 ft
----- Vertical section origin----------------
Latitude (+N/S-). ........: 0.00 ft
Departure (+E/W-)........: 0.00 ft
----- Platform reference point---------------
Latitude (+N/S-).........: -999.25 ft
Departure (+E/W-).. ......: -999.25 ft
Azimuth from rotary table to target:
64.54 degrees
13-Aug-2003 11:33:59
Spud date. . . . . . . . . . . . . . . . :
Last survey date.........:
Total accepted surveys...:
MD of first survey.......:
MD of last survey........:
Page
1 of 7
02-Jul-03
13-Aug-03
165
0.00 ft
9850.00 ft
.
----- Geomagnetic data ----------------------
Magnetic model.... .......: BGGM version 2002
Magnetic date. ..... ......: 02-Aug-2003
Magnetic field strength..: 1150.38 HCNT
Magnetic dec (+E/W-).....: 25.49 degrees
Magnetic dip..... ........: 80.78 degrees
----- MWD survey Reference
Reference G.... ..........:
Reference H.... ..........:
Reference Dip. ...... .....:
Tolerance of G.. ... ......:
Tolerance of H. ..........:
Tolerance of Dip.........:
Criteria ---------
1002.68 mGal
1150.38 HCNT
80.78 degrees
(+/-) 2.50 mGal
(+/-) 6.00 HCNT
(+/-) 0.45 degrees
----- Corrections ---------------------------
Magnetic dec (+E/W-).....: 25.50 degrees
Grid convergence (+E/W-).: 0.00 degrees
Total az corr (+E/W-)....: 25.50 degrees
(Total az corr = magnetic dec - grid conv)
Survey Correction Type ...:
I=Sag Corrected Inclination
IFR_MSA=Schlumberger G-Mag & Infield Reference
S=Shell Magnetic Correction
F=Failed Axis Correction
R=Magnetic Resonance Tool Correction
D=Dmag Magnetic Correction
.
SCHLUMBERGER Survey Report 13-Aug-2003 11:33:59 Page 2 of 7
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr
(ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TIP None
2 100.00 0.50 91. 31 100.00 100.00 0.39 -0.01 0.44 0.44 91. 31 0.50 GYR None
3 200.00 0.65 90.96 100.00 199.99 1. 29 -0.03 1. 44 1. 44 91. 17 0.15 GYR None
4 300.00 0.76 93.40 100.00 299.99 2.38 -0.08 2.67 2.67 91.68 0.11 GYR None
5 400.00 1. 06 96.98 100.00 399.97 3.74 -0.23 4.25 4.26 93.10 0.31 GYR None
6 500.00 1. 31 101.81 100.00 499.95 5.43 -0.58 6.29 6.31 95.24 0.27 GYR None
7 600.00 1. 73 103.02 100.00 599.92 7.52 -1.15 8.88 8.95 97.39 0.42 GYR None .
8 700.00 1.72 100.58 100.00 699.87 9.91 -1.77 11. 82 11. 95 98.50 0.07 GYR None
9 800.00 1. 84 104.04 100.00 799.82 12.37 -2.43 14.85 15.05 99.29 0.16 GYR None
10 900.00 1. 42 119.85 100.00 899.78 14.31 -3.44 17.49 17.82 101.12 0.61 GYR None
11 1000.00 0.75 196.62 100.00 999.77 14.58 -4.68 18.37 18.96 104.29 1. 45 GYR None
12 1100.00 1. 85 248.29 100.00 1099.74 12.53 -5.91 16.69 17.70 109.49 1. 50 GYR None
13 1200.00 3.15 261. 17 100.00 1199.65 8.28 -6.92 12.47 14.27 119.04 1. 41 GYR None
14 1300.00 3.89 266.10 100.00 1299.46 2.50 -7.58 6.37 9.90 139.93 0.80 GYR None
15 1400.00 4.17 263.62 100.00 1399.21 -4.09 -8.21 -0.62 8.24 184.35 0.33 GYR None
16 1500.00 4.24 265.50 100.00 1498.94 -10.98 -8.91 -7.92 11. 92 221.66 0.15 GYR None
17 1600.00 4.23 261.68 100.00 1598.67 -17.96 -9.73 -15.26 18.10 237.48 0.28 GYR None
18 1700.00 4.70 264.43 100.00 1698.36 -25.34 -10.66 -22.98 25.34 245.12 0.52 GYR None
19 1800.00 5.76 267.76 100.00 1797.95 -33.80 -11.25 -32.08 33.99 250.67 1.10 GYR None
20 1847.00 5.08 277.98 47.00 1844.74 -37.70 -11.06 -36.49 38.13 253.14 2.51 GYR None
21 1873.77 4.85 281.20 26.77 1871.41 -39.60 -10.67 -38.78 40.22 254.61 1. 35 MWD IFR MSA .
-
22 1966.13 6.24 282.06 92.36 1963.33 -46.71 -8.87 -47.52 48.34 259.43 1. 51 MWD IFR MSA
-
23 2058.26 6.50 280.72 92.13 2054.89 -54.89 -6.85 -57.54 57.94 263.21 0.33 MWD IFR MSA
24 2153.25 6.37 280.92 94.99 2149.29 -63.48 -4.85 -67.99 68.17 265.92 0.14 MWD IFR MSA
25 2245.73 5.06 284.09 92.48 2241. 30 -70.75 -2.89 -76.99 77.04 267.85 1. 46 MWD IFR MSA
-
26 2339.83 2.86 27 9.64 94.10 2335.17 -75.87 -1.48 -83.33 83.34 268.98 2.36 MWD IFR MSA
27 2432.60 2.64 279.59 92.77 2427.84 -79.52 -0.74 -87.72 87.72 269.52 0.24 MWD IFR MSA
28 2525.85 1. 40 286.00 93.25 2521.03 -82.13 -0.07 -90.93 90.93 269.96 1. 35 MWD IFR MSA
29 2618.84 0.52 320.88 92.99 2614.00 -83.08 0.57 -92.29 92.29 270.36 1. 09 MWD IFR MSA
30 2682.69 0.42 312.45 63.85 2677.85 -83.24 0.96 -92.64 92.65 270.59 0.19 MWD IFR MSA
SCHLUMBERGER Survey Report
13-Aug-2003 11:33:59
Page
3 of 7
-------- ------ ------- ------ -------- -------- ---------------- ---------------
-------- ------ ------- ------ -------- -------- ---------------- ---------------
Seq Measured
# depth
(ft)
Incl
angle
(deg)
Azimuth
angle
(deg)
Course
length
(ft)
TVD
depth
(ft)
Vertical
section
(ft)
Displ
+N/S-
(ft)
Displ
+E/W-
(ft)
Total
displ
(ft)
At
Azim
(deg)
-------- ------ ------- ------ -------- -------- ---------------- ---------------
-------- ------ ------- ------ -------- -------- ---------------- ---------------
31
32
33
34
35
46
47
48
49
50
51
52
53
54
55
2703.23
2826.99
2908.24
3001.66
3094.38
36
37
38
39
40
3188.07
3281.54
3376.51
3470.17
3563.84
41
42
43
44
45
3657.03
3749.92
3842.91
3936.23
4028.66
4122.08
4216.02
4309.02
4403.10
4497.19
4590.02
4683.04
4775.72
4868.44
4961. 50
56
57
58
59
60
5054.46
5147.41
5240.87
5334.61
5429.11
0.41
0.92
2.32
6.17
8.41
10.52
13.08
12.35
10.15
6.96
3.85
2.85
1. 64
1. 08
0.95
1. 09
1. 19
1. 46
0.31
0.70
0.69
0.91
1. 01
0.83
0.86
1. 04
1. 25
5.93
9.37
11.62
310.50
310.35
358.81
16.03
20.81
21.89
23.15
19.50
11. 31
3.13
352.84
339.15
13.65
46.53
48.25
52.14
45.57
55.67
11.89
289.64
269.68
266.98
268.12
263.66
267.87
269.97
8.89
41.11
45.78
47.64
20.54
123.76
81.25
93.42
92.72
93.69
93.47
94.97
93.66
93.67
93.19
92.89
92.99
93.32
92.43
93.42
93.94
93.00
94.08
94.09
92.83
93.02
92.68
92.72
93.06
92.96
92.95
93.46
93.74
94.50
2698.39
2822.14
2903.36
2996.51
3088.48
3180.89
3272.37
3365.01
3456.88
3549.49
3642.26
3734.99
3827.91
3921.21
4013.62
4107.03
4200.95
4293.92
4387.99
4482.08
4574.90
4667.91
4760.58
4853.29
4946.34
5039.29
5132.22
5225.48
5318.37
5411.29
-83.29
-83.88
-83.47
-79.37
-71.17
-59.92
-45.71
-30.47
-18.45
-10.79
-7.11
-5.94
-4.92
-3.24
-1. 67
-0.06
1. 73
3.82
5.16
4.90
4.00
2.81
1. 38
-0.00
-1.28
-2.69
-2.87
2.13
13.81
30.20
1. 05
1. 98
4.05
10.77
21. 90
36.24
53.89
73.34
90.88
104.64
113.39
118.64
122.09
124.00
125.11
126.17
127.40
128.74
129.67
130.11
130.30
130.25
130.19
130.09
129.99
129.96
130.96
135.61
144.58
156.36
-92.75
-93.85
-94.38
-93.03
-89.25
-83.62
-76.28
-68.67
-63.70
-61.78
-61.86
-63.07
-63.58
-62.62
-61.42
-60.14
-58.74
-57.07
-56.03
-56.52
-57.61
-58.91
-60.46
-61. 94
-63.31
-64.85
-65.54
-62.20
-53.55
-41. 00
92.76
93.87
94.47
93.65
91.89
91. 14
93.40
100.47
110.98
121.52
129.16
134.36
137.65
138.91
139.37
139.77
140.29
140.82
141.25
141.85
142.46
142.96
143.54
144.08
144.59
145.24
146.45
149.20
154.18
161. 65
270.65
271.21
272.46
276.60
283.79
293.43
305.24
316.89
324.97
329.44
331.39
332.01
332.49
333.20
333.85
334.51
335.25
336.09
336.63
336.52
336.15
335.67
335.09
334.54
334.03
333.48
333.42
335.36
339.68
345.31
DLS
(deg/
100f)
0.08 MWD
0.41 MWD
2.27 MWD
4.30 MWD
2.50 MWD
2.26 MWD
2.75 MWD
1.14 MWD
2.90 MWD
3.64 MWD
3.48 MWD
1. 37 MWD
1.90 MWD
1.01 MWD
0.14 MWD
0.17 MWD
0.18 MWD
0.38 MWD
1. 33 MWD
0.77 MWD
0.26 MWD
0.24 MWD
0.11 MWD
0.21 MWD
0.07 MWD
0.20 MWD
1.88 MWD
5.26 MWD
3.73 MWD
2.41 MWD
------
------
Srvy Tool
tool Corr
type (deg)
------
------
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
.
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
.
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
SCHLUMBERGER Survey Report 13-Aug-2003 11:33:59 Page 4 of 7
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr
(ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
61 5521.23 14.26 47.98 92.12 5501.06 49.95 170.21 -25.71 172.14 351.41 2.87 MWD IFR MSA
62 5614.75 17.77 48.93 93.52 5590.94 74.75 187.30 -6.39 187.41 358.05 3.76 MWD IFR MSA
63 5708.20 20.51 49.11 93.45 5679.21 104.27 207.39 16.74 208.07 4.61 2.93 MWD IFR MSA
64 5800.49 25.22 47.29 92.29 5764.23 138.65 231.33 43.42 235.37 10.63 5.16 MWD IFR MSA
-
65 5894.00 29.93 45.92 93.51 5847.09 179.81 261.08 74.84 271.60 15.99 5.08 MWD IFR MSA
66 5987.57 32.70 43.83 93.57 5927.02 225.58 295.56 109.12 315.06 20.26 3.18 MWD IFR MSA
67 6080.85 39.02 42.77 93.28 6002.59 276.47 335.34 146.55 365.96 23.61 6.81 MWD IFR MSA .
68 6173.89 46.57 44.73 93.04 6070.81 335.54 380.91 190.28 425.79 26.54 8.24 MWD IFR MSA
-
69 6268.20 50.74 43.75 94.31 6133.10 401.92 431.63 239.65 493.70 29.04 4.49 MWD IFR MSA
-
70 6361. 71 52.47 45.22 93.51 6191.18 470.77 483.91 291.01 564.67 31. 02 2.22 MWD IFR MSA
71 6454.94 55.19 47.39 93.23 6246.20 542.24 535.87 345.43 637.56 32.81 3.47 MWD IFR MSA
72 6546.56 61. 20 49.10 91. 62 6294.47 616.95 587.67 403.51 712.86 34.47 6.75 MWD IFR MSA
73 6639.74 61.09 49.44 93.18 6339.43 695.68 640.92 465.35 792.04 35.98 0.33 MWD IFR MSA
74 6733.56 61.67 50.42 93.82 6384.37 775.37 693.94 528.37 872.20 37.29 1.11 MWD IFR MSA
75 6824.99 62.34 49.55 91. 43 6427.29 853.51 745.85 590.20 951.12 38.35 1.11 MWD IFR MSA
-
76 6918.24 60.74 48.90 93.25 6471.73 932.57 799.39 652.28 1031.74 39.21 1. 82 MWD IFR MSA
77 7011.62 59.93 49.18 93.38 6517.94 1010.76 852.58 713.55 1111.78 39.93 0.91 MWD IFR MSA
-
78 7104.73 60.39 49.39 93.11 6564.27 1088.68 905.26 774.77 1191.54 40.56 0.53 MWD IFR MSA
79 7197.61 60.88 49.95 92.88 6609.82 1166.92 957.65 836.48 1271. 53 41. 14 0.74 MWD TOW
80 7221.00 60.62 50.19 23.39 6621.25 1186.68 970.75 852.13 1291.69 41.28 1. 43 MWD BOW
81 7233.00 62.42 50.95 12.00 6626.97 1196.91 977.44 860.27 1302.10 41. 35 16.00 MWD Inc. only .
82 7247.42 62.47 51.16 14.42 6633.64 1209.34 985.48 870.22 1314.70 41.45 1. 34 MWD Inc. only
83 7278.54 66.28 51.71 31.12 6647.10 1236.67 1002.97 892.15 1342.34 41. 65 12.35 MWD Inc. only
84 7309.93 71.04 52.00 31. 39 6658.52 1265.18 1021.02 915.14 1371.12 41.87 15.19 MWD Inc. only
85 7341.83 75.80 53.04 31.90 6667.62 1295.08 1039.62 939.40 1401.17 42.10 15.25 MWD Inc. only
86 7372.01 78.50 54.04 30.18 6674.33 1323.96 1057.10 963.06 1430.01 42.33 9.51 MWD IFR MSA
87 7402.26 83.64 52.33 30.25 6679.02 1353.25 1075.00 986.97 1459.36 42.56 17.89 MWD IFR MSA
-
88 7434.52 90.31 52.69 32.26 6680.72 1384.74 1094.60 1012.52 1491.09 42.77 20.71 MWD IFR MSA
89 7464.96 97.43 53.52 30.44 6678.67 1414.48 1112.82 1036.79 1520.96 42.97 23.55 MWD IFR MSA
90 7496.73 99.61 50.50 31.77 6673.96 1445.15 1132.15 1061.55 1551.99 43.16 11. 64 MWD IFR MSA
SCHLUMBERGER Survey Report
13-Aug-2003 11:33:59
Page
5 of 7
-------- ------ ------- ------ -------- -------- ---------------- ---------------
-------- ------ ------- ------ -------- -------- ---------------- ---------------
Seq Measured
# depth
(ft)
Incl
angle
(deg)
Azimuth
angle
(deg)
Course
length
(ft)
TVD
depth
(ft)
Vertical
section
(ft)
Displ
+N/S-
(ft)
Displ
+E/W-
(ft)
Total
displ
(ft)
At
Azim
(deg)
-------- ------ ------- ------ -------- -------- ---------------- ---------------
-------- ------ ------- ------ -------- -------- ---------------- ---------------
91
92
93
94
95
7526.97
7557.94
7589.56
7620.53
7651.52
96
97
98
99
100
7682.86
7714.61
7745.79
7775.31
7807.24
101
102
103
104
105
7838.32
7866.60
7900.06
7932.43
7961.26
106
107
108
109
110
7992.67
8024.69
8055.44
8086.65
8118.45
111
112
113
114
115
8148.71
8180.77
8211. 55
8242.33
8273.76
116
117
118
119
120
8305.28
8336.17
8375.10
8398.60
8429.70
99.34
99.50
100.48
100.27
98.15
95.70
94.46
92.30
89.21
87.63
86.88
87.80
87.01
88.28
87.84
87.67
87.70
87.98
88.15
88.18
88.15
88.25
87.25
84.78
84.47
84.57
84.71
84.92
86.57
87.46
50.26
51.46
51.71
53.51
54.92
57.15
59.43
59.91
60.78
60.53
60.78
62.31
62.28
61. 68
62.47
64.36
65.44
65.73
65.42
65.54
65.09
65.85
65.43
65.89
66.49
66.59
66.80
66.59
66.58
66.52
30.24
30.97
31. 62
30.97
30.99
31. 34
31.75
31.18
29.52
31. 93
31. 08
28.28
33.46
32.37
28.83
31.41
32.02
30.75
31. 21
31. 80
30.26
32.06
30.78
30.78
31.43
31. 52
30.89
38.93
23.50
31. 10
6668.99
6663.92
6658.43
6652.85
6647.89
6644.11
6641.30
6639.46
6639.08
6639.96
6641.44
6642.76
6644.27
6645.60
6646.58
6647.81
6649.10
6650.26
6651.31
6652.33
6653.30
6654.31
6655.52
6657.66
6660.60
6663.61
6666.50
6670.01
6671. 76
6673.38
1474.07
1503.76
1534.10
1563.91
1594.00
1624.77
1656.20
1687.21
1716.65
1748.49
1779.46
1807.67
1841.07
1873.38
1902.17
1933.55
1965.54
1996.26
2027.45
2059.23
2089.47
2121.51
2152.26
2182.96
2214.24
2245.59
2276.33
2315.07
2338.49
2369.53
1151.17
1170.46
1189.81
1208.30
1226.19
1243.57
1260.19
1275.91
1290.51
1306.15
1321.36
1334.82
1350.36
1365.56
1379.05
1393.10
1406.67
1419.37
1432.27
1445.46
1458.09
1471.39
1484.08
1496.73
1509.36
1521.86
1534.02
1549.36
1558.67
1571.03
1084.53
1108.22
1132.62
1156.83
1181.64
1207.44
1234.34
1261.21
1286.85
1314.68
1341. 74
1366.57
1396.17
1424.72
1450.17
1478.24
1507.21
1535.19
1563.59
1592.51
1619.99
1649.14
1677.16
1705.14
1733.76
1762.55
1790.79
1826.40
1847.90
1876.40
1581.58
1611.87
1642.70
1672.80
1702.88
1733.31
1763.99
1794.04
1822.47
1853.21
1883.15
1910.31
1942.36
1973.46
2001.20
2031.23
2061.65
2090.80
2120.43
2150.68
2179.54
2210.13
2239.50
2268.85
2298.72
2328.65
2358.00
2395.05
2417.48
2447.25
43.29
43.44
43.59
43.75
43.94
44.16
44.41
44.67
44.92
45.19
45.44
45.67
45.96
46.21
46.44
46.70
46.98
47.24
47.51
47.77
48.01
48.26
48.50
48.72
48.96
49.19
49.42
49.69
49.85
50.06
DLS
(deg/
100f)
1.19 MWD
3.86 MWD
3.20 MWD
5.76 MWD
8.18 MWD
10.54 MWD
8.15 MWD
7.10 MWD
10.87 MWD
5.01 MWD
2.54 MWD
6.31 MWD
2.36 MWD
4.34 MWD
3.14 MWD
6.04 MWD
3.37 MWD
1.31 MWD
1.13 MWD
0.39 MWD
1.49 MWD
2.39 MWD
3.52 MWD
8.16 MWD
2.14 MWD
o . 45 MWD
0.81 MWD
0.76 MWD
7.02 MWD
2.87 MWD
------
------
Srvy Tool
tool Corr
type (deg)
------
------
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
.
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
.
IFR MSA
IFR MSA
IFR MSA
IFR MSA
IFR MSA
SCHLUMBERGER Survey Report 13-Aug-2003 11:33:59 Page 6 of 7
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr
(ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
121 8461.13 87.67 66.06 31. 43 6674.71 2400.92 1583.66 1905.15 2477.41 50.26 1. 61 MWD IFR MSA
-
122 8492.00 87.56 67.10 30.87 6676.00 2431.74 1595.92 1933.45 2507.03 50.46 3.38 MWD IFR MSA
-
123 8522.54 87.53 66.07 30.54 6677.31 2462.23 1608.04 1961.45 2536.35 50.65 3.37 MWD IFR MSA
-
124 8553.94 87.77 66.96 31. 40 6678.59 2493.59 1620.55 1990.22 2566.55 50.85 2.93 MWD IFR MSA
125 8585.02 87.94 67.67 31. 08 6679.76 2524.61 1632.52 2018.88 2596.34 51. 04 2.35 MWD IFR MSA
126 8615.88 88.18 66.96 30.86 6680.80 2555.41 1644.42 2047.33 2625.97 51. 23 2.43 MWD IFR MSA
127 8646.97 88.28 67.28 31. 09 6681. 76 2586.46 1656.50 2075.96 2655.87 51.41 1. 08 MWD IFR MSA .
-
128 8678.05 88.39 67.60 31. 08 6682.67 2617.48 1668.42 2104.65 2685.74 51. 60 1. 09 MWD IFR MSA
-
129 8708.78 88.42 66.55 30.73 6683.52 2648.17 1680.39 2132.95 2715.36 51.77 3.42 MWD IFR MSA
-
130 8739.74 88.56 66.12 30.96 6684.34 2679.11 1692.81 2161. 29 2745.32 51. 93 1. 46 MWD IFR MSA
131 8770.59 88.52 66.21 30.85 6685.12 2709.93 1705.27 2189.50 2775.22 52.09 0.32 MWD IFR MSA
-
132 8802.10 90.99 67.36 31. 51 6685.26 2741.42 1717.69 2218.46 2805.71 52.25 8.65 MWD IFR MSA
133 8833.55 91. 58 67.04 31.45 6684.55 2772.82 1729.87 2247.44 2836.10 52.41 2.13 MWD IFR MSA
-
134 8864.27 88.59 66.19 30.72 6684.51 2803.52 1742.07 2275.64 2865.89 52.56 10.12 MWD IFR MSA
-
135 8894.59 86.26 66.60 30.32 6685.87 2833.79 1754.19 2303.39 2895.31 52.71 7.80 MWD IFR MSA
-
136 8926.00 85.81 66.53 31.41 6688.04 2865.11 1766.66 2332.14 2925.74 52.86 1. 45 MWD IFR MSA
-
137 8956.82 86.22 66.74 30.82 6690.18 2895.83 1778.85 2360.36 2955.61 53.00 1. 49 MWD IFR MSA
-
138 8987.43 86.29 67.28 30.61 6692.18 2926.35 1790.78 2388.48 2985.25 53.14 1. 78 MWD IFR MSA
-
139 9018.03 86.77 67.09 30.60 6694.03 2956.86 1802.62 2416.64 3014.89 53.28 1. 69 MWD IFR MSA
-
140 9050.54 87.08 66.35 32.51 6695.78 2989.30 1815.45 2446.46 3046.48 53.42 2.46 MWD IFR MSA
141 9078.85 87.60 66.30 28.31 6697.09 3017.56 1826.81 2472.35 3074.05 53.54 1. 85 MWD IFR MSA .
142 9109.74 88.39 64.44 30.89 6698.17 3048.43 1839.67 2500.42 3104.27 53.66 6.54 MWD IFR MSA
-
143 9141.03 88.35 64.62 31.29 6699.06 3079.71 1853.12 2528.65 3134.99 53.76 0.59 MWD IFR MSA
-
144 9172.56 88.28 65.57 31. 53 6699.99 3111.22 1866.40 2557.24 3165.90 53.88 3.02 MWD IFR MSA
-
145 9204.36 88.52 65.95 31. 80 6700.88 3143.00 1879.45 2586.22 3197.01 53.99 1. 41 MWD IFR MSA
-
146 9234.34 88.59 64.90 29.98 6701.63 3172.97 1891. 91 2613.48 3226.39 54.10 3.51 MWD IFR MSA
-
147 9264.95 88.56 66.57 30.61 6702.40 3203.56 1904.49 2641. 38 3256.37 54.21 5.45 MWD IFR MSA
-
148 9295.68 88.56 65.41 30.73 6703.17 3234.27 1916.98 2669.44 3286.45 54.32 3.77 MWD IFR MSA
-
149 9326.71 88.46 67.12 31. 03 6703.98 3265.28 1929.47 2697.83 3316.80 54.43 5.52 MWD IFR MSA
150 9358.47 88.46 66.74 31.76 6704.83 3297.00 1941.91 2727.04 3347.80 54.55 1. 20 MWD IFR MSA
-
.:
SCHLUMBERGER Survey Report 13-Aug-2003 11:33:59 Page 7 of 7
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool
# depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr
(n) (deg) (deg) (n) (n) (n) (n) (n) (n) (deg) 100f) type (deg)
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
-------- ------ ------- ------ -------- -------- ---------------- --------------- ------
151 9387.92 88.39 67.70 29.45 6705.64 3326.40 1953.31 2754.18 3376.53 54.66 3.27 MWD IFR MSA
152 9419.86 88.21 66.27 31. 94 6706.59 3358.30 1965.79 2783.57 3407.72 54.77 4.51 MWD IFR MSA
153 9451.23 88.32 67.04 31. 37 6707.54 3389.63 1978.22 2812.36 3438.41 54.88 2.48 MWD IFR MSA
154 9483.61 88.73 69.58 32.38 6708.37 3421.93 1990.18 2842.43 3469.90 55.00 7.94 MWD IFR MSA
155 9514.34 89.52 72 .14 30.73 6708.84 3452.47 2000.25 2871.46 3499.47 55.14 8.72 MWD IFR MSA
156 9545.77 91. 51 73.73 31. 43 6708.56 3483.55 2009.47 2901.50 3529.40 55.29 8.10 MWD IFR MSA
157 9577.14 92.50 71.18 31. 37 6707.46 3514.60 2018.92 2931.39 3559.37 55.44 8.72 MWD IFR MSA .
158 9608.33 92.57 72.20 31.19 6706.08 3545.52 2028.71 2960.97 3589.29 55.58 3.27 MWD IFR MSA
159 9639.63 92.68 72.44 31. 30 6704.65 3576.50 2038.21 2990.76 3619.25 55.73 0.84 MWD IFR MSA
160 9670.30 91.88 71.10 30.67 6703.43 3606.90 2047.80 3019.87 3648.71 55.86 5.09 MWD IFR MSA
161 9701.94 91. 95 71. 22 31. 64 6702.37 3638.31 2058.01 3049.79 3679.22 55.99 0.44 MWD IFR MSA
162 9732.74 93.05 70.59 30.80 6701. 02 3668.89 2068.07 3078.87 3708.96 56.11 4.11 MWD IFR MSA
163 9763.82 92.60 70.41 31. 08 6699.49 3699.77 2078.44 3108.13 3739.04 56.23 1. 56 MWD IFR MSA
164 9799.41 93.84 70.11 35.59 6697.49 3735.12 2090.44 3141. 58 3773.52 56.36 3.58 MWD IFR MSA
165 9850.00 93.84 70.11 50.59 6694.11 3785.36 2107.61 3189.04 3822.57 56.54 0.00 Projected to TD
[(c)2003 IDEAL ID8_0C_07]
.
· STATEOFALASKA .
ALASKA OIL AND GAS CONSERVATION COMMISSION
APPLICATION FOR SUNDRY APPROVAL
20 MC 25.280
ì/JCífr 7/ ; ¡ IUX):$
iJrj' 7/3/13
'f7/~1l0
1. Type of Request:
o Abandon
o Alter Casing
1m ChanQe Approved ProQram
2. Operator Name:
BP Exploration (Alaska) Inc.
3. Address:
P.O. Box 196612, Anchorage, Alaska
7. KB Elevation (ft):
o Suspend
o Repair Well
o Pull TubinQ
o Operation Shutdown 0 Perforate
o Plug Perforations 0 Stimulate
o Perforate New Pool 0 Re-Enter Suspended Well
4. Current Well Class:
IS! Development 0 Exploratory
o Stratigraphic 0 Service
99519-6612
Plan RKB = 83.8'
8. Property Designation:
ADL 028240
o Variance
o Time Extension
o Annular Disposal
5. Permit To Drill Number
203-103 ,/
6. API Number: /
50-029-23161-00-00
o Other
9. Well Name and Number:
.,/
PBU V-111
10. Field I Pool(s):
Prudhoe Bay Field I Borealis Pool
Total Depth MD (ft): Total Depth TVD (ft):
7210 6607
Junk (measured):
N/A
Plugs (measured):
2550
12. Attachments:
IS! Description Summary of Proposal 0 BOP Sketch
o Detailed Operations Program
14. Estimated Date for
Commencing Operations: July 28, 2003
16. Verbal Approval: Date: 7/28/200;3
Commission Representative: Winton Aubert -/
22. I hereby certify that the f egoing is true and correct to the best of my knowledge.
Printed Name Lowell rane Title Senior Drilling Engineer
~k
Structural
Conductor
Surface
Intermediate
Production
Liner
110'
2717'
20"
9-5/8"
Perforation Depth MD (ft): I Perforation Depth TVD (ft): I
N/A N/A
Packers and SSSV Type: None
Signature
Phone 564-4089
COllllllisaion Use Only
Date7-$~-é..::1
Prepared By Name/Number:
Terrie Hubble, 564-4628
108' 108'
2746' ~ 2752'
¡t./:>A-
1530
5750
520
3090
Tubing Size:
N/A
Tubing Grade:
N/A
Packers and SSSV MD (ft): N/A
Tubing MD (ft):
N/A
13. Well Class after proposed work:
o Exploratory IS! Development 0 Service
15. Well Status after proposed work:
IS! Oil 0 Gas
o WAG DGINJ
o Plugged
DWINJ
o Abandoned
o WDSPL
Contact Neil Magee, 564-5119
I Sundry Number:3Ð ~4'"
o Plug Integrity
o Mechanical Integrity Test
Conditions of approval: Notify Commission so that a representative may witness
o Location Clearance
o BOP Test
Other:
Subsequeolfonn ;~'~ 10- i./ O}; ""'{¡U-.. ,/M.Ll{ ~~# "'- .
Approved SIC ----.,>t-.-fviJ ~ COMMISSIONER ~~~~g~~~'ON
Fo,m 10-403 Rev;sed2l2eb3 ~L IUì 0 4100tJ _ A
RBOMS'f R1GIN L
l~j,()-) ·~c:t-,
e' ¡'f ¡~
Date v/ '-.?
- ubm" I Dupl;cate
e
e
To:
Winton Aubert - AOGCC
Date: July 29, 2003
From:
Neil Magee - BPXA GPB Drilling & Wells
Subject:
Reference:
V-111 Application for Sundry Approval -
Plug Back well for Sidetrack Operations
API # 50-029-23161
Dear Mr. Aubert,
As you are aware, Borealis Well V-111 (Permit #203-103) encountered drilling difficulty which will require
abandonment of the intermediate hole. Plans are underway to re-drill this section of the hole once
sidetrack plans are finalized. The new drilling plan will pene e Kuparuk target interval some 300'
further to the East however the BHL will be essentially ang (preliminary plan is to be within 200' of
original proposal). Below is an outline of the propose r C and sidetrack operations. Also enclosed
is a schematic of the proposed plug-back.
../
If you have any questions or require any additional information, please contact me at 564-5119.
Scope
PluQ Back Operations:
1. RIH to 5200' with 1500' 3-1/2" cement stinger on 4" DP cementing assembly. (Cement stinger to
have bull-nosed perforated joint on bottom to catch Baker Drill Pipe Wiper Plug.) Circulate and
condition mud and wellbore until the hole is clean and mud is properly conditioned (reciprocate to
help clean hole and break mud gels).
2. Spot a balanced 12.0 ppg Form-A-Plug pill from 5,290' to -4,970' to act as a base for cement plug /'
#1. Plug volume should be based upon gauge hole plus 10% through this section. Pill
thickening time should be based upon a BHST of 100 deg F. Pump a 12.0 ppg viscosified
spacer ahead and behind the Form-A-Plug pill (to be confirmed). Rotate pipe while spotting
the pill. Pump at 300 gpm (higher if achievable) while displacing pill and slow pump rates to -6
bpm as Form-A-Plug is spotted around the pipe. Pull DP up to -4800' and circulate minimum
volume required to get any remaining Form-A-Plug out of DP (30 to 50 bbls). POH to shoe and
wait on Form-A-Plug to set for 5 hrs from the time the plug was spotted.
3. RIH to -4,800' and start to wash down looking for top of plug. Verify presence of plug with weight
or pump pressure increase or surface samples. Exercise caution to not plug the drill string. Wash
to a maximum depth of 5100' MD, PU -50' and circulate bottoms up looking for signs of Form-A-
Plug.
4. Condition mud as required for spotting the abandonment plug. Circulate one hole volume at a
minimum, and be sure mud weight is uniform throughout well before spotting plug.
5. Position DP immediately above the Form-A-Plug plug and spot a balanced 15.8 ppg 'G' cement
plug from 5,000' to 3794' (200' above Schrader Ma sand). Plug volume should be based upon
gauge hole plus 10% excess. (BHST=100 deg F). Pull DP -300' above top cement plug (at
rate as per RP) and drop Baker Drill Pipe Wiper to clean cementing string.
6. POH with stinger and wac for 8 hours.
V-111 Application for Sundry
e
e
7. RIH to 3,300' looking for top of plug. Circulate down to TOC. Do not allow DP stinger to approach
TOC without circulation. NOTE: Request AOGCC approval not to place weight on plug with ,./
cementing assembly as long as no losses are seen while spotting the plug or circulating 0 tI- .
afterwards. ¡..Jú/í
8. Spot a balanced 16.4 ppg 'G' cement P&A plug from 3,794' to -2,550' (approximately 200' inside
9-5/8" casing.) Plug volume should be based upon gauge hole. (BHST=58 F Static) Pull DP
above top cement plug (at rate as per RP) and circulate hole clean the long way immediately
above the planned top of plug. Displace Baker Drill Pipe Wiper Plug.
9. Displace well over to 9.0 ppg LSND mud.
Sidetrack Operations
1. NU and test BOP's. PU 8-3/4" drilling assembly and RIH to TOC inside 9-5/8" shoe. Clean out
remaining cement and rat hole 150' below shoe. (Previous LOT at shoe- 12.8 ppg EMW) Planned /'
kick-off point is at -2900' MD. Perform a lowside kick-off and drill the 8-3/4" hole section as per
revised directional plan to TD @ -7,533' MD (6,718' TVD) with 10.2 ppg WBM. POOH.
2. Run and cement the 7", 26# production casing as required to cover all significant hydrocarbon /'
intervals (plans are to cover the Schrader Bluff and Kuparuk formations). Once cement has had
adequate time to set, freeze protect the 7" x 9-5/8" annulus as required.
3. Run and cement the 7" production casing. Test casing to 3500 for 30 minutes on plug bump with
9.0 ppg Flo-Pro.
4. Freeze protect the 7" x 9-5/8" annulus as required. Record formation breakdown pressure on the
Morning Report.
5. RU e-line. RIH with GR-CCUjunk basket to float collar. Make up and run 7" EZSV and set on
depth such that Baker window top is at top Kuparuk C.
6. Make up and RIH with 7" whipstock assembly. Set whipstock such that top of window is at top
Kuparuk C. Mill window.
7. Perform FIT test to 11.5 PP9 EMW. POOH and lay down milling assembly.
8. MU 6-1/8" directional assembly and drill ahead as per directional plan to proposed TD at 9,536'
MD/6706'TVD. Short trip and condition hole for running 4-1/2" slotted liner.
9. Run 4-1/2" slotted liner. The liner will extend approximately 100' above the 7" whipstock. Release
from liner and displace well above liner top to clean filtered 9.0 ppg KCL brine. POOH and LDDP.
10. Run the 3-1/2", 9.2#, IB-T, L-80 completion assembly. Set packer and test the tubing to 3500 psi
and annulus to 3500 psi for 30 minutes.
11. Shear DCK valve and install TWC.
/
/'
/
12. Nipple down the BOPE. Nipple up and test the tree to 5000 psi. Remove TWC.
13. RU hot oil truck and freeze protect well by pumping diesel to DCK GLM. Allow to equalize.
14. Rig down and move off.
V-111 Application for Sundry
TREE: NIA
WELLHEAD: 13518" ·5M FMCSH
9-5/8",40.0 #/11, L-80, BTC
I 2745' I
TD of 8-1/2" hole 17,210' I
Date
07/28/03
e
e
V-111 Proposed Plug-Back
9.0 PPG ppg WBM
. 64 ppg Gem",,,
Kh;,:i(·utf P:ug
12 {\ PPH I o~!TI·A-rIIJO
G-e!"'~.¡.m: B~H;e
1~.O p:;g 0,1 B""o j
Mud
""- -
GL Elevation = 44.1'
Nabor" ge" KB = 28.5'
KBE = 76.4'
Top of 16.4 ppg Kick-Off Plug at I 2,550' I
(0% Excess)
1f bl.ot~ ~ 'fit 0 r; It. (J. V ð f-):31 c It- J
\;J~'"
/'
T:>p of 15.8 ppg P&A Plug at I 3,794' I
(10% Excess)
Top Schrader Ma @ -3,994' MO
lS bbk ~ t.! ~T (.t.... ( I ,J \' µ? If,. tJ
\J'k
Base Schrader Obf @ -4,756' MD
Top of Form-A-Plug pill at
4,970'
...-/
Bottom of Form-A-Plug pill at 5,290'
Top HRZ @ -6,549' MD
Top Kuparuk Reservoir at
7,203' I
Rev By Comments
NM Proposed Plug Back for Sidetrack Operations
Borealis
WELL: V-111
API NO: 50-029-23161
BP Alaska Drilling & Wells
V-111 PB3 {P5} Proposal Schlumberger
Report Date: July 30, 2003 Survey / DLS Computation Method: Minimum Curvature / Lubinski
Client: BP Exploration Alaska Vertical Section Azimuth: 33.930°
Field: Prudhoe Bay Unit - WOA d Vertical Section Origin: N 0.000 ft, E 0.000 ft
Structure / Slot: V-Pad/PlanV-111 (N-U) rty stu Y TVD Reference Datum: KB
Well: V-111 -bll TVD Reference Elevation: 81.8 ft relative to MSL
Borehole: V-111PB3 Feasl Sea Bed / Ground Level Elevation: 54.000 ft relative to MSL
UWUAPI#: 50029 Magnetic Declination: 25.48r
Survey Name / Date: V-111PB3 (P5)/July30, 2003 Total Field Strength: 57519.106 nT
Tort / AHD / DD! / ERD ratio: 112.780° /1584.62 ft/5.289 / 0.237 Magnetic Dip: 80.781° e
Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feet Declination Date: July 31,2003
Location Lat/Long: N 70.32813766, W 149.26433139 Magnetic Declination Model: BGGM 2002
Location Grid NJE YIX: N 5970134.340 ftUS, E 590709.620 ftUS North Reference: True North
Grid Convergence Angle: -tû.69273635° Total Corr Mag North .) True North: +25.48r
Grid Scale Factor: 0.99990935 Local Coordinates Referenced To: Well Head
Comments Measured Inclination Azimuth TVD Sub-Sea TVD Vertical NS EW DLS Tool Face Northing Easting Latitude Longitude
Depth Section
(ft ) (deg) (deg) (ft) (ft ) (ft) (ft) (ft) (deg/100 ft) (deg) (flUS) (flUS)
Tie-In Survey 2826.99 0.92 310.35 2822.14 2740.34 -50.74 1.99 -93.85 0.00 -51.50M 5970135.19 590615.76 N 70.32814309 W 149.26509245
KOP Crv 3/100 2900.00 0.94 308.50 2895.14 2813.34 -50.62 2.74 -94.76 0.05 7.92M 5970135.93 590614.84 N 70.32814514 W 149.26509985
3000.00 3.38 7.92 2995.07 2913.27 -47.91 6.17 -95.00 3.02 15.23M 5970139.36 590614.57 N 70.32815451 W 149.26510173
3100.00 6.34 15.23 3094.70 3012.90 -40.02 14.43 -93.14 3.02 8.19G 5970147.64 590616.32 N 70.32817707 W 149.26508666
3200.00 9.34 17.88 3193.76 3111.96 -26.98 27.49 -89.19 3.02 5.57G 5970160.74 590620.11 N 70.32821275 W 149.26505468
/
3300.00 12.35 19.24 3291.96 3210.16 -8.83 45.31 -83.18 3.02 4.22G 5970178.64 590625.91 N 70.32826145 W 149.26500589
Drp 1/100 3388.00 15.00 20.00 3377.46 3295.66 11.33 64.90 -76.18 3.02 180.00G 5970198.31 590632.67 N 70.32831496 W 149.26494914
3400.00 14.88 20.00 3389.05 3307.25 14.33 67.81 -75.12 1.03 180.00G 5970201.23 590633.69 N 70.32832291 W 149.26494056
3500.00 13.85 20.00 3485.92 3404.12 38.41 91.12 -66.64 1.03 180.00G 5970224.64 590641.89 N 70.32838659 W 149.26487176
3600.00 12.82 20.00 3583.23 3501.43 60.79 112.79 -58.75 1.03 180.00G 5970246.40 590649.52 N 70.32844580 W 149.2648_
3700.00 11.79 20.00 3680.93 3599.13 81.48 132.82 -51 .46 1.03 180.00G 5970266.52 590656.57 N 70.32850052 W 149.26474867
3800.00 10.77 20.00 3778.99 3697.19 100.47 151.21 -44.77 1.03 180.00G 5970284.98 590663.03 N 70.32855074 W 149.26469442
3900.00 9.74 20.00 3877.39 3795.59 117.75 167.93 -38.68 1.03 180.00G 5970301.78 590668.92 N 70.32859644 W 149.26464505
4000.00 8.71 20.00 3976.10 3894.30 133.31 183.00 -33.20 1.03 180.00G 5970316.91 590674.22 N 70.32863760 W 149.26460058
4100.00 7.68 20.00 4075.08 3993.28 147.15 196.40 -28.32 1.03 180.00G 5970330.36 590678.93 N 70.32867420 W 149.26456103
4200.00 6.66 20.00 4174.29 4092.49 159.27 208.13 -24.05 1.03 180.00G 5970342.14 590683.06 N 70.32870625 W 149.26452641
4300.00 5.63 20.00 4273.72 4191.92 169.65 218.19 -20.39 1.03 180.00G 5970352.24 590686.60 N 70.32873373 W 149.26449673
4400.00 4.60 20.00 4373.32 4291.52 178.31 226.57 -17.34 1.03 20.00M 5970360.66 590689.55 N 70.32875662 W 149.26447199
4500.00 3.58 20.00 4473.06 4391.26 185.23 233.27 -14.90 1.03 20.00M 5970367.39 590691.90 N 70.32877492 W 149.26445221
4600.00 2.55 20.00 4572.92 4491.12 190.41 238.29 -13.07 1.03 20.00M 5970372.43 590693.67 N 70.32878864 W 149.26443740
Version DO 3.1RT (d031rL399) 3.1RT Service Pack 2.03
Plan V-111 (N-U)\V-111\V-111PB3\V-111PB3 (P5)
Generated 7/30/2003 6:21 PM Page 1 of 2
Comments Measured Inclination Azimuth TVD Sub-Sea TVD Vertical NS EW DLS Tool Face Northing Easting Latitude Longitude
Depth Section
(ft ) (deg) (deg) (ft) (ft ) (ft) (ft) (ft) ( deg/100 ft ) (deg) (flUS) (ftUS)
4700.00 1.52 20.00 4672.85 4591.05 193.86 241.62 -11.86 1.03 20.00M 5970375.78 590694.84 N 70.32879775 W 149.26442756
4800.00 0.49 20.00 4772.84 4691.04 195.56 243.27 -11.26 1.03 20.00M 5970377.44 590695.42 N 70.32880226 W 149.26442268
End Drp 4848.00 0.00 20.00 4820.84 4739.04 195.76 243.47 -11.19 1.03 46.08M 5970377.63 590695.49 N 70.32880279 W 149.26442211
Crv 4.5/100 5308.00 0.00 46.08 5280.84 5199.04 195.76 243.47 -11.19 0.00 46.08M 5970377.63 590695.49 N 70.32880279 W 149.26442211
5400.00 4.14 46.08 5372.76 5290.96 199.01 245.77 -8.79 4.50 46.08M 5970379.96 590697.86 N 70.32880908 W 149.26440270
5500.00 8.64 46.08 5472.11 5390.31 209.89 253.49 -0.78 /4.50 O.OOG 5970387.78 590705.78 N 70.32883017 W 149.26433771
5600.00 13.14 46.08 5570.28 5488.48 228.35 266.59 12.83 4.50 O.OOG 5970401.04 590719.22 N 70.32886596 W 149.26422738
5700.00 17.64 46.08 5666.67 5584.87 254.29 284.99 31.94 4.50 O.OOG 5970419.67 590738.11 N 70.32891624 W 149.26407239
5800.00 22.14 46.08 5760.68 5678.88 287.54 308.59 56.44 4.50 O.OOG 5970443.56 590762.32 N 70.32898069 W 149.26387370
5900.00 26.64 46.08 5851.73 5769.93 327.90 337.22 86.18 4.50 O.OOG 5970472.55 590791.71 N 70.32905892 W 149.26361
6000.00 31.14 46.08 5939.27 5857.47 375.12 370.73 120.97 4.50 O.OOG 5970506.47 590826.09 N 70.32915045 W 149.2633
6100.00 35.64 46.08 6022.74 5940.94 428.91 408.89 160.60 4.50 O.OOG 5970545.10 590865.25 N 70.32925470 W 149.26302899
6200.00 40.14 46.08 6101.64 6019.84 488.93 451.48 204.83 4.50 O.OOG 5970588.22 590908.96 N 70.32937105 W 149.26267031
6300.00 44.64 46.08 6175.48 6093.68 554.82 498.23 253.38 4.50 O.OOG 5970635.55 590956.93 N 70.32949876 W 149.26227658
6400.00 49.14 46.08 6243.80 6162.00 626.17 548.85 305.95 4.50 O.OOG 5970686.80 591008.88 N 70.32963706 W 149.26185021
6500.00 53.64 46.08 6306.19 6224.39 702.54 603.04 362.22 4.50 O.OOG 5970741.66 591064.49 N 70.32978509 W 149.26139383
6537.93 55.35 46.08 6328.22 6246.42 732.73 624.46 384.46 4.50 O.OOG 5970763.34 591086.47 N 70.32984360 W 149.26121345
Crv 4.5/100 6538.11 55.35 46.08 6328.31 6246.51 732.87 624.56 384.57 0.00 27.75G 5970763.44 591086.57 N 70.32984387 W 149.26121262
6600.00 57.82 47.61 6362.40 6280.60 783.21 659.88 422.26 4.50 26.91 G 5970799.22 591123.83 N 70.32994037 W 149.26090692
6700.00 61.86 49.92 6412.64 6330.84 866.76 716.83 487.29 4.50 25.75G 5970856.94 591188.16 N 70.33009592 W 149.26037955
End Crv 6703.57 62.00 50.00 6414.32 6332.52 869.78 718.85 489.70 4.50 O.OOG 5970858.99 591190.54 N 70.33010145 W 149.26035999
Target 7113.57 62.00 50.00 6606.80 6525.00 1217.65 951.55 767.01 0.00 O.OOG 5971095.00 591465.00 N 70.33073709 W 149.25811080
TO / 7" Csg pt 7273.32 62.00 50.00 6681.80 6600.00 1353.19 1042.21 875.06 0.00 O.OOG 5971186.96 591571.94 N 70.33098476 W 149.25723438
Leqal Description:
Northinq IY) rftUSl Eastinq IX) rftUSl
Surface : 4885FSL1591 FELS11 T11NR11EUM 5970134.34 590709.62
Tie-In: 4887 FSL 1684 FEL S11 T11 N R11E UM 5970135.19 590615.76
Target: 556 FSL 823 FEL S2 T11N R11E UM 5971095.00 591465.00 e
BHL: 647 FSL 715 FEL S2 T11N R11E UM 5971186.96 591571.94
Version DO 3.1RT (d031rC399) 3.1RT Service Pack 2.03
Plan V-111 (N-U)\V-111\V-111 PB3\V-111 PB3 (P5)
Generated 7/30/2003 6:21 PM Page 2 of 2
e
e
Schlumberger
WEll
FiElD
STRUCTURE
V-Pad
V-111 PB3 (P5)
Prudhoe Bay Unit - WOA
Magnetic Paramate!s
Model: BGGM2002
Surface Location
Lå: N701941.296
Lon: W1491551.593
NAD27 AIa$ka state Planes. Zone 04. us Feel.
Northing: 5970134.34 ftUS Goo Conv: +0.69273635'
Easting: 590109.62 !tUS Scale Fact: 0.9990093471
Mìsœllaneous
SId: PlanV-111(N-tJ
Plan: V-111PB3(P5)
Dip: 80.781'
Mag Dee: +25.487'
Date: Ju1y31,2003
FS: 57519.1 nT
TVD Ref: K8 (81.80 It abo'Ie MSl)
SlvyDate: J~y30.2003
o
1000
2000
. . .
, , .
, , .
......H.............
: Tie-In Survey :
V :
-,,",
~'". !
r
'I _&".
_Cry 4.5/100
u..... .... 'HU"'~.. ..a...
C¡' 4.51100 ¡
: End Cry :
. Target ¡
TD/7"CsgPj
+'__1__':,,1,
o
o
1000
1000
2000
2000
3000
3000
4?
o
o
o
~
II
Q)
ãj
o
en
c
>
I-
4000
4000
5000
5000
6000
6000
7000
7000
o 1000 2000
Vertical Section (ft) Azim = 33.93°, Scale = 1:1000 Origin = 0 N/-S, 0 E/-W
WEll
V-111 PB3 (P5)
Magnetic:Parameters
Model: BGGM 2002
Dip: 80.781·
Mag Dee: +25.48r
-200
1200
1000
^
^
^
Z
g
o
o
<:'!
800
II
Q)
-æ
<)
en
en
v
v
v
600
400
200
o
TÍt:t-hl !UIYVY
-200
e
FIELD
Date: JUy31,2003
FS: 57519.1nT
Sur1aoeLcx:ation
Lat: N701941.296
Lon: W1491551.593
o
200
e
Schlumberger
Prudhoe Bay Unit - WOA
STRUCTURE
V-Pad
NAD27 Alaska State Planes, Zone 04, us Feet
Northing: 5970134.34ftUS GridConv: +0.69273635'
Easting: 590709.62 ftUS Scale Fact 0.9999093411
Miscellaneous
Slot PlanV-111 (N-U)
Plan: V-111PB3(p5)
TVDRef: KB{81.80ftaboYeMSL)
&vy Date: July 30, 2003
400
600
800
1000
1200
1000
800
--r--
o
600
400
200
o
200 400 600
<<< W Scale = 1 :200(ft) E >>>
1000
800
V-111 (P19) Proposal
Schlumberuer
Report Date:
Client:
Field:
Structure I Slot:
Well:
Borehole:
UWVAPI#:
Survey Name I Date:
Torti AHDI DDII ERD ratio:
Grid Coordinate System:
Location Lat/Long:
Location Grid N/E Y/x:
Grid Convergence Angle:
Grid Scale Factor:
July 30, 2003
BP Exploration Alaska
Prudhoe Bay Unit - WOA d
~:~~1/PlanV-111 (N-U) II IIllIty stu Y
V-111 FeaSlbl I
50029
V-111 (P19) I July 30, 2003
170.067· 14052.07 ft 16.000 I 0.604
NAD27 Alaska State Planes, Zone 04, US Feet
N 70.32813766, W 149.26433139
N 5970134.340 ftUS, E 590709.620 ftUS
+0.69273635·
0.99990935
Survey I DLS Computation Method: Minimum Curvature I Lubinski
Vertical Section Azimuth: 33.930·
Vertical Section Origin: N 0.000 ft, E 0.000 It
TVD Reference Datum: KB
TVD Reference Elevation: 81.8 It relative to MSL
Sea Bed I Ground Level Elevation: 54.000 It relative to MSL
Magnetic Declination: 25.487·
Total Field Strength: 57519.106 nT
Magnetic Dip: 80.781·
Declination Date: July 31, 2003
Magnetic Declination Model: BGGM 2002
North Reference: True North
Total Corr Mag North·> True North: +25.487"
Local Coordinates Referenced To: Well Head
e
Comments Measured Inclination Azimuth TVD Sub-Sea TVD Vertical NS EW DLS Tool Face Northing Eastlng Latitude Longitude
Depth Section
(ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) ( deg/100 ft ) (deg) (ftUS) (ftUS)
Top Whipstock 7113.00 62.00 50.00 6606.53 6524.73 1217.16 951.22 766.63 0.00 30.00G 5971094.67 591464.62 N 70.33073621 W 149.25811392
Base Whipstock 7126.00 63.81 51.16 6612.45 6530.65 1228.25 958.57 775.57 16.00 O.OOG 5971102.13 591473.47 N 70.33075628 W 149.25804141
KOP Crv 12/100 7138.00 63.81 51.16 6617.75 6535.95 1238.53 965.32 783.95 0.00 O.OOG 5971108.98 591481.77 N 70.33077473 W 149.25797338
7200.00 71.25 51.16 6641.44 6559.64 1293.22 1001.23 828.55 12.00 O.OOG 5971145.42 591525.92 N 70.33087281 W 149.25761170
7300.00 83.25 51.16 6663.47 6581.67 1386.20 1062.29 904.37 12.00 O.OOG 5971207.38 591601.00 N 70.33103959 W 149.25699665
7400.00 95.25 51.16 6664.78 6582.98 1481.53 1124.88 982.11 12.00 O.OOG 5971270.91 591677.97 N 70.33121057 W 149.25636609
End Crv 7438.00 99.81 51.16 6659.81 6578.01 1517.51 1148.50 1011.45 12.00 O.OOG 5971294.88 591707.02 N 70.33127509 W 149.25612815
Crv 6/100 7568.00 99.81 51.16 6637.67 6555.87 1639.86 1228.84 1111.22 0.00 130.12G 5971376.41 591805.80 N 70.33149453 W 149.25531883
7600.00 98.57 52.64 6632.56 6550.76 1669.91 1248.33 1136.08 6.00 130.36G 5971396.20 591830.42 N 70.33154776 W 149.2551_
7700.00 94.66 57.23 6621.04 6539.24 1762.59 1305.36 1217.36 6.00 130.88G 5971454.20 591911.00 N 70.33170353 W 149.2544
7800.00 90.72 61.76 6616.35 6534.55 1852.66 1356.04 1303.39 6.00 131.10G 5971505.91 591996.40 N 70.33184193 W 149.25376012
90· Pt 7818.30 90.00 62.59 6616.23 6534.43 1868.78 1364.58 1319.57 6.00 131.10G 5971514.65 592012.47 N 70.33186526 W 149.25362885
End Crv 7888.11 87.25 65.75 6617.91 6536.11 1929.06 1394.99 1382.37 6.00 O.OOG 5971545.81 592074.90 N 70.33194830 W 149.25311943
TO 9737.88 87.25 65.75 6706.80 6625.00 3499.06 2153.94 3066.93 0.00 O.OOG 5972325.00 593750.00 N 70.33402032 W 149.23945408
Leqal Description:
Northinq (y) rftUSl Eastinq (X) rftUSl
Surface: 4885 FSL 1591 FEL S11 T11 N R11E UM 5970134.34 590709.62
Tie-In: 556 FSL 823 FEL S2 T11N R11E UM 5971094.67 591464.62
TO I BHL : 1758 FSL 3802 FEL S1 T11 N R11 E UM 5972325.00 593750.00
Version DO 3.1RT (d031rC399) 3.1RT Service Pack 2.03
Plan V-111 (N-U)\V-111\V-111\V-111 (P19)
Generated 7/30/2003 6:30 PM Page 1 of 1
iE"
0 6600
0
<:'1
II
OJ
~
C/)
0
¡::
6900
Schlumbøpgøp
WELL
FIELD
Prudhoe Bay Unit - WOA
STRUCTURE V-Pad
V-111 (P19)
Magnetic Parameters
Model: BGGM 2002
Stafacelocation
Lat Nl01941.296
Lon: W1491551.593
NAD27 Alaska State Planes, Zone04, US Feet
Northing: 5970134.34ftUS GridConv: +0.69273635"
Easting: 590709.62 ftUS Scale Fact: 0.9990093471
Miscellaneous
Slot: PlanV.111 (N..u)
Plan: V-111 (P19)
Dip: 80.781'
MagDec: +25.487'
Date: Ju1y31,2003
FS: 57519.1nT
TVD Ref: KB (81.80 ft above MSl)
SrvyDate: July30,2003
1200
e
1500
1800
2100
2400
2700
3000
3300
3600
6300
· . . . . . . . ,
,.................................;:........."...........".........",,;......................."............;:................"..,.."......""..¥...........H............".",.....,...................,,,.................:;.,,..............................,...~..,....,........"'"......,,........~...........................".......~.........
· , . . . . . . .
· . . . . . . . .
· . . . , . . . .
, . . . , . . . .
· . . . . . . . .
· . . . . . . . .
· . . . . . . . .
· . . . . . . . .
· . . . . . . . .
· . . . . . . " ,
, . . . . . , . ,
V-111PB3(P5) ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡
~~¡ TOta~h~~~~~Ck ¡ ¡ ¡ ¡ ¡ ! ¡ ¡
~V...-.1....1.1..PB1. :KO.. PCrv12/100: : 90' PIE dC: : : : : :
¡ ¡ ¡ I ,n rv ¡ ¡ ¡ ¡ ¡ :
· . . . . . . . .
· . . . . . . . .
· . . . . . " . .
. . . . . . . .
. .. .~~....... '" .
.......... : : .
''''''''' "............ _ \ \'·111 (pH))
· ~l \
Target: ...... - : .
: '·"'··ì: \ CrvG/100 /",111 KT2
"',r'cIg ¡ EndCrv / 1
V-~1PB3 (P5) 1 TD I
e
6900
6300
6600
7200
; : : : : : : ~ :
· . . . . . . . .
· . . . . . . . .
, " . . . . . . .
~ ~ ~ ~ ~ ~ ~ ~ ~
· . . . . . . , .
: ; : : : : : : :
· . . . . . . . .
· , . " . . . . .
" , . , . . , . ,
7200
1200
1500
1800 2100 2400 2700
Vertical Section (ff) Azim = 33.93°, Scale = 1:300 Origin = 0 N/-S, 0 EI-W
3000
3300
3600
Schlumberger
I WE! V-111 (P19) FIELD Prudhoe Bay Unit _ WOA I STRUCTURE V-Pad I
I Ma\1KlÜC Parameters Surface Location NAD27 Alaska Stale Planes, Zone 04, US Feet I Miscellaneous I
Model; BGGM2002 Dip: 80.781' Date: JuIy31.2003 Lat: N701941.296 Northing: 5970134.34ftUS GÆiConv: +0.69273635' SloI.: PJanV-111(N-U) TVDRet: KB(81.8QftaboveMSl)
Mag Dec" +25.487' FS: 57519.1 nT Lon: W1491551.593 Easting: 590709.62nUS Scale Fact: 0.9999093471 PI$!: V-111 (P19) SNY Date: July 30, 2003
o 500 1000 1500 2000 2500 3000 3500
:IV .
~
2000_'1"'_" 2000
~ 1500 ...... .....j........ .......¡.... >..........................¡..... . 1500
z ¡ ¡ »¡ ¡
j V-11' :rv 6/100. .... j.. ¡
I I :*fV r' ............../¡/ I
.;..; ~ TD > . ....,,, ~ EndCrv j
II : 1 90'1'1 1
~ 1000 ....... ..:.j.......T:. ..................j.....................................¡...... 1000
en '..V· ..
',' ..
........1 : :
/':' . ~ . .
en >V'J/..... ; KC 00 ¡ ¡
V ."...
V TÍ>P~ ¡ ¡
V : : :
. . .
:ase ~hilJ ~ j
1 ¡ ¡ ¡
500 ._. l ... 500
1
t
o ...... r 0
o 500 1000 1500 2000 2500 3000 3500
<<< W Scale = 1 :500(ft) E >>>
e
e
e
BPX AK
Anticollision Report
e
.-., .., ""....,."..--,.......-.,".--...,--,.---.,.-..",.,., -.,.--.".
_ ".,_on'.'......_. .". ,_.._
COm\)all,':
Ficld:
J~crcrencc SUe:
I~efcrence Well:
; I~crcrcnce Wellpath:
BP Amoco
Prudhoe Bay
PB V Pad
V-111
V-111
.Date: 7/30/2003
Time: 18:41:14
Pa~c:
("o-ordinate('" E) I~eferenee:
Vertical (T\'D) 1~I~ferellee:
Well: V-111, True North
V-111 81.8
NO GLOBAL SCAN: Using user defined selection & scan criteria
Interpolation Method: MD + Stations Interval: 50.00 ft
Depth Range: 2900.00 to 9968.54 ft
Maximum Radius: 3000.00 ft
Reference:
Error Model:
Scan Method:
Error Surface:
nb: Sybase
. . ....-. - ---.
Principal Plan & PLANNED PROGRAM
ISCWSA Ellipse
Trav Cylinder North
Ellipse + Casing
Survey Program for Definitive Wellpath
Date: 7/30/2003 Validated: No
Planned From To Survey
ft ft
200.00 1847.00
1873.77 2826.99
2826.99 7113.00
7113.00 9737.88
Version: 20
Toolcode
Tool Name
Survey #1 (200.00-1847.00) (1)
Survey #2 (1873.77-7564.32) (1)
Planned: Plan #5 V1 (3)
Planned: Plan #19 V1
GYD-GC-SS
MWD+IFR+MS
MWD+IFR+MS
MWD+IFR+MS
Gyrodata gyro single shots
MWD + IFR + Multi Station
MWD + IFR + Multi Station
MWD + IFR + Multi Station
Casing Points
\11) n'D \)iallll~lcr lIole Size ~alllc
ft ft in in
- -.---
2745.00 2740.16 9.625 12.250 95/8"
7113.00 6606.53 7.000 8.750 7"
7937.39 6620.28 4.500 6.125 4 1/2"
Summary
< ---- OtTset Wcllpath > Reference Offsel Ctr-Ctr ~o-Go .\lIowablc
Site Well WclllJalh \II) \m I)istance ,\rca I)c\'iation Warn~
ft ft ft ft ft
n_ ,. _,_n _. ........_n. .
PB V Pad V-03 V-03 V7 2954.06 2950.00 111.79 32.22 79.56 Pass: Major Risk
PB V Pad V-100 V-100 V7 2900.00 2900.00 237.03 32.86 204.17 Pass: Major Risk
PB V Pad V-101 V-101 V7 2902.53 3250.00 1293.24 37.98 1255.26 Pass: Major Risk
PB V Pad V-102 V-102 V5 2915.68 3500.00 1634.36 39.10 1595.26 Pass: Major Risk
PB V Pad V-103 V-103 V6 3438.52 3950.00 2231.83 46.04 2185.79 Pass: Major Risk
PB V Pad V-104 V-104 V13 2931.74 3250.00 1177.46 38.30 1139.16 Pass: Major Risk
PB V Pad V-105 V-105 V13 2916.13 3200.00 846.76 36.60 810.15 Pass: Major Risk
PB V Pad V-106 V-106 V10 2997.76 3550.00 1597.83 41.22 1556.61 Pass: Major Risk
PB V Pad V-107 V-107 V5 2904.89 2950.00 412.68 36.08 376.60 Pass: Major Risk
PB V Pad V-108 V-108 V7 2900.00 3650.00 2025.66 41.05 1984.61 Pass: Major Risk
PB V Pad V-109 V-109 V2 2924.46 3050.00 369.69 36.29 333.40 Pass: Major Risk
PB V Pad V-109 V-109PB1 V5 2924.46 3050.00 369.69 36.29 333.40 Pass: Major Risk
PB V Pad V-109 V-109PB2 V2 2924.46 3050.00 369.69 36.29 333.40 Pass: Major Risk
PB V Pad V-111 V-111PB1 V7 2900.00 2900.00 0.00 33.11 -33.11 FAIL: Major Risk
PB V Pad V-111 V-111PB2 V1 2900.00 2900.00 0.00 33.11 -33.11 FAIL: Major Risk
PB V Pad V-111 V-111PB3 V4 Plan: Plan 7100.00 7100.00 0.00 60.98 -60.98 FAIL: Major Risk
PB V Pad V-113 V-113V6 2900.00 3300.00 1377.80 39.48 1338.33 Pass: Major Risk
PB V Pad V-117 V-117 V9 2900.00 4200.00 2763.96 40.32 2723.65 Pass: Major Risk
PB V Pad V-117 V-117PB1 V6 2900.00 4200.00 2763.96 40.32 2723.65 Pass: Major Risk
PB V Pad V-117 V-117PB2V6 2900.00 4200.00 2763.96 40.32 2723.65 Pass: Major Risk
PB V Pad V-201 V-201 V8 4638.13 4950.00 1062.82 46.77 1016.05 Pass: Major Risk
PB V Pad V-202 V-202 V9 2935.03 3050.00 589.67 36.59 553.08 Pass: Major Risk
Re: V-Ill Plug Back (Verbal Approval)
.
.
Subject: Re: V-Ill Plug Back (Verbal Approval)
Date: Mon, 28 Jul2003 14:02:19 -0800
From: Winton Aubert <Winton _ Aubert@admin.state.akus>
Organization: AOGCC
To: "Magee, D Neil" <MageeDN@BP.com>
CC: Sarah H Palin <sarah-palin@admin.state.akus>,
Daniel Seamount <dan_seamount@admin.state.akus>,
Randolph A Ruedrich <randy Juedrich@admin.state.akus>
Neil,
This confirms AOGCC's verbal approval to commence plugging operations in PBU well
V-111 (PTD 203-103). Please submit appropriate documentation as required, including a
request for operations shutdown on Form 10-403 if drilling operations are to be
suspended. All other permit stipulations apply.
Winton Aubert
AOGCC
793-1231
"Magee, D Neil" wrote:
> Winton,
>
> Attached is a draft plug back schematic for V-Ill.
> «V-Ill Plug Back.ZIP»
> The plug back proposes placing a 1300' cement plug from 200' below the
> Schrader to 200' above. Afterwards a 1200' kick -off plug will be placed
> from this point to 200' inside the 9-5/8" casing. The current well bore
> exposes 7' of the Kuparuk C formation. No OWC is present. We do not propose
> attempting to run a cement stinger into the lower portion of the hole due to
> the wellbore instability problems we've encountered.
> We have tried numerous times these past few days to stabilize the wellbore
> through wiper trips and additional mud weight with no success. The well
> tries to pack-off the drilling assembly when we attempt to trip below 6500'
> and has already resulted in loosing a $950MM MWD assembly due to stuck pipe.
> We have decided to suspend the well and re-drill with a different well
> profile landing some 300' to the East. BP and Partners are currently
> deciding whether to re-drill the well immediately following plug back
> operations, or in about two months time.
> A formal request to plug back the well (Sundry) will be forthcoming however
> due wellsite activities, we request a verbal approval for this plug back
> application.
>
> Please contact me to answer any questions you may have.
>
> Regards,
> Neil Magee
> Alaska Drilling & Wells
> 907 564-5119 Office
> 907 564-4040 Fax
> 907 240-8038 Cell
>
> ------------------------------------------------------------------------
> Name: V-Ill Plug Back.ZIP
> V-Ill Plug Back.ZIP Type: Zip Compressed Data (application/x-zip-compressed)
> Encoding: base64
.
.
FRANK H. MURKOWSKI, GOVERNOR
AI,ASIiA. ORAND GAS
CONSERVATION COMMISSION
Lowell Crane
Engineer Drilling Engineer
BP Exploration (Alaska), Inc.
PO Box 196612
Anchorage, AK 99519
333 W. 7'" AVENUE, SUITE 100
ANCHORAGE, ALASKA 99501-3539
PHONE (907) 279-1433
FAX (907) 276-7542
Re: Prudhoe Bay Unit V-Ill
BP Exploration (Alaska), Inc.
Permit No: 203-103
Surface Location: 4886' NSL, 1591' WEL, Sec. 1 1, TllN, RIlE, UM
Bottomhole Location: 1758' NSL, 1478' EWL, Sec. 01, TllN, RIlE, UM
Dear Mr. Crane:
Enclosed is the approved application for permit to drill the above referenced development well.
This permit to drill does not exempt you from obtaining additional permits or approvals required
by law from other governmental agencies, and does not authorize conducting drilling operations
until all other required permits and approvals have been issued. In addition, the Commission
reserves the right to withdraw the permit in the event it was erroneously issued.
Operations must be conducted in accordance with AS 31.05 and Title 20, Chapter 25 of the
Alaska Administrative Code unless the Commission specifically authorizes a variance. Failure
to comply with an applicable provision of AS 31.05, Title 20, Chapter 25 of the Alaska
Administrative Code, or a Commission order, or the terms and conditions of this permit may
result in the revocation or suspension of the permit. Please provide at least twenty-four (24)
hours notice for a representative of the Commission to witness any required test. Contact the
Commission's North Slope petroleum field inspector at 659-3607 (pager).
s~~,~~:lY. ' ,('.).) I) ,
~...1s~
Chair
BY ORDER OF THE COMMISSION
DATED thislL day of June, 2003
cc: Department ofFish & Game, Habitat Section w/o encl.
Department of Environmental Conservation w/o encl.
Exploration, Production and Refineries Section
~
1A16A ¡,ll/lz.o01
. STATE OF ALASKA a
ALASKJ. L AND GAS CONSERVATION COM.SION
PERMIT TO DRILL
20 AAC 25.005
1 a. Type of work II Drill 0 Redrill 11 b. Type of well 0 Exploratory 0 Stratigraphic Test II Development Oil
ORe-Entry 0 Deepen 0 Service 0 Development Gas 0 Single Zone 0 Multiple Zone
2. Name of Operator 5. Datum Elevation (OF or KB) 10. Field and Pool
BP Exploration (Alaska) Inc. Plan RKB = 83.8' Prudhoe Bay Field I Borealis
3. Address 6. Property Designation Pool (Undefined)
P.O. Box 196612, Anchorage, Alaska 99519-6612 ADL 028240
4. Location of well at surface x = 590710, Y = 5970134 7. Unit or Property Name
4886' NSL, 1591' WEL, SEC. 11, T11 N, R11 E, UM Prudhoe Bay Unit
At top of productive interval x = 591245, Y = 5971095 8. Well Number .
559' NSL, 1043' WEL, SEC. 02, T11 N, R11 E, UM V-111 /'
At total depth x = 593750, Y = 5972325 9. Approximate spud dqte
1758' NSL, 1478' EWL, SEC. 01, T11 N, R11 E, UM 06/22/03/ Amount $200,000.00
12. Distance to nearest property line 113. Distance to nearest well / 14. Number of acres in property 15. Proposed depth (MD and TVD)
ADL 028238, 3521' MD V-103 is 30' away at 450' MD 2560 .........9927' MD I 6706' TVD
16. To be completed for deviated wells 17. Anticipated pressure {S? 20 MC 25.035 (e) (2)}
Kick Off Depth 5000' MD Maximum Hole Angle 880 Maximum surface 2740 psig, At total depth (TVD) 6600' I 3400 psig
18. Casing ~rogram SpecTcations Setting Depth
Size II Top Bottom
Casina Weiaht Grade CouDlina Lenath MD TVD MD TVD
20" 91.5# H-40 Weld 80' Surface Surface 110' 110'
9-5/8" 40# L-80 BTC 2756' Surface Surface 2756' 2751'
7" 26# L-80 BTC-M 7391' Surface Surface 7391' 6681'
4-1/2" 12.6# L-80 IBT-M 2899' 7028' 6557' 9927' 6706'
11. Type Bond (See 20 AAC 25.025)
Number 2S 100302630-277
Hole
42"
12-1/4"
8-1/2"
6-118"
Quantity of Cement
(include staae data)
260 sx Arctic Set (Approx.)
510 sx PF 'L', 264 sx Class 'G' /'
147 sx Class 'G', 215 sx Class 'G' /'
Uncemented Slotted Liner
19. To be completed for Red rill , Re-entry, and Deepen Operations.
Present well condition summary
Total depth: measured feet Plugs (measured)
true vertical feet
Effective depth: measured feet Junk (measured)
true vertical feet
Casing
Structural
Conductor
Surface
Intermediate
Production
Liner
Length
Size
Cemented
MD TVD
RECEIVED
JUN 1 0 2003
Perforation depth: measured
Alaska Oil & Gas Cons, Cormnissiat1
Anchorage
true vertical
20. Attachments iii Filing Fee 0 Property Plat 0 BOP Sketch 0 Diverter Sketch II Drilling Program
II Drilling Fluid Program 0 Time vs Depth Plot 0 Refraction Analysis 0 Seabed Report 1120 AAC 25.050 Requirements
Contact Engineer NameINumber: Neil agee, 564-5119 Prepared By NameINumber: Terrie Hubble, 564-4628
21. I hereby certify that the for. oing is true n correct to the best of my knowledge
\
Signed Lowell Cr ~-<..i!/! Title Senior Drilling Engineer Date b .- 9 - 03
,.; . ·t:(,.,,~~~,_;.bnty ";':-,
Permit Number I API Number I ApP'f.val Date 1 See cover letter
ZQ .~ - I d. 5 50-027'- <'3/ G,) (p f I~(,),~ for other requirements
Conditions of Approval: Samples Required 0 Yes .)gNo Mud Log Required 0 Yes 'if No
Hydrogen Sulfide Measures 0 Yes )8r No Directional Survey Required ':išfYes 0 No
Required Working Pressure for BOPE 0 2K 0 3K 0 4K 0 5K 0 10K 0 15K 0 3.5K psi for CTU
Other: T.e..c;t- -g ~E .tþ L/Ooo f'~:.
~~:;: Rev ::~ j:JU OHrGrNAt=~i~'" Date (àJbÚ~T~,":ate
e e
WeIlName: IV-111
Drill and Complete Plan Summary
I Type of Well (service I producer I injector): I Producer
Surface Location:
As-Built (Slot N-U)
Target Location:
Top Kuparuk
Bottom Hole Location:
x = 590,709.62' Y = 5,970,134.34'
4885'FSL, 1590'FEL,Sec. 11, T11N,R11E
X = 591,245.00' Y = 5,971,095.00'
559'FSL,1042'FEL,Sec.2,T11N,R11E
X = 593,750.00' Y = 5,972,325.00' /'
1758'FSL,3801'FEL,Sec. 1,T11N, R11E
I AFE Number: I BRD5M4099 I
I Rig: I Nabors 9ES
I Estimated Start Date: 16/22/2003 I / I Operating days to complete: 130.5
I MD: 19927' I I TVD: 16706' I I RT/GL: 128.5' I I RKB: 183.8'
I Well Design (conventional, slim hole, etc.): 13 String Horizontal producer /
I Objective: I Kuparuk
CasingITubing Program:
Hole Csgl WtlFt Grade con/, Length Top Btm
Size Tbg O.D. J MDrrVD MDrrVD bkb
42" Insulated 20" 91.5# H-40 WLD 80' GL 11 0/11 0
12 W' 9 5/8" 40# L-80 BTC 2756' GL 2756/2751 '
8 %" 7" 26# L-80 BTC-m 7391' GL 7391 '/6681'
6-1/8" 4-1/2" slotted 12.6# L-80 IBT-M 2899' 7028'/6557' 9927'/6706'
Tubing 3 %" 9.2# L-80 IBT 7028' GL 7028'/6557'
V-111 Drilling Program- AOGCC
Page 1
e
Mud Program:
12 1A" Surface Hole (0-2756'):
Densitv
(ppg)
8.5-9.2
9.0 - 9.5
9.5 max
Viscosity
(seconds)
250-300
200-200
150-200
Initial
Base PF to top SV
SV to TD
8-1/2" Intermediate Hole: (2756'- 7391 '):
Interval Density Tau 0 YP
(ppg) /
Upper 10.3 4-7 25-30
Interval
6-1/8" Production Hole (7128' - 9927'):
Interval Density Tau 0 YP
(ppg)
Upper 9.0 4-7 30
Interval
e
Fresh Water Surface Hole Mud
Yield Point API FL PH
(lb/100ff) (mls/30min)
45 - 70 NC
35 - 45 < 8
25 - 35 < 8
9.0-9.5
9.0-9.5
9.0- 9.5
PV
MOBM Core Fluid
pH API
Filtrate
<5
1 0-15
PV
Flo-Pro
pH API
Filtrate
9.0-9.5 <5
10
Hydraulics:
Surface Hole: 12-1/4"
Interval Pump Drill AV Pump PSI ECD Motor Jet Nozzles TFA
GPM Pipe (fpm) ppg-emw ("/32) (in2)
0-1700' 600 4" 17.5# 90 1800 10.0 N/A 18,18,18,16 .942
1700'-2756' 680 4" 17.5# 110 3200 10.2 N/A 18,18,18,16 .942
Intermediate Hole: 8-1/2" Rotary Drilling
Interval Pump Drill Pipe AV Pump PSI ECD Motor Jet Nozzles TFA
GPM (fpm) ppg-emw ("/32) (in2)
2756' - 7391' 600 4" 17.5# 240 4200 11.2 N/A 3x14,3x15 .969
Production Hole: 6 1/8"
Interval Pump Drill Pipe AV Pump PSI ECD Motor Jet Nozzles TFA
GPM (fpm) ppg-emw ("/32) (in2)
7391' - 9927' 300 4" 17.5# 200 3500 12.2 N/A 3x14 .451
V-111 Drilling Program- AOGCC
Page 2
e
Di rectional:
Ver. I Anadrill V-111 PB1 (P4) Slot NU
KOP: 5000'
Maximum Hole Angle:
Close Approach Wells:
Logging Program:
Suñace
Intermediate Hole
Production Hole
V-111 Drilling Program- AOGCC
e
88 deg at 7358' MD
All wells pass 1/200 minor risk criteria.
V-103 - 30' @ 450'
V-03 - 42' @ 1000'
IFR-MS corrected surveys will be used for survey validation.
Drilling:
Open Hole:
Cased Hole:
Drilling:
Open Hole:
Cased Hole:
Drilling:
Open Hole:
Cased Hole:
MWD / GR
None
None
MWD/GR/RES/PWD
PEX/GR/RES, NEU/DN/Dipole DT/CMR
USIT cement evaluation (contingency)
MWD/PWD/GR/RES/NEU/AZM DENS/AIM
None
None
Page 3
Formation Markers:
Formation Tops
SV5
SV4
Base Permafrost
SV3
SV2
SV1
UG4A
UG3
UG1
Ma
Mb1-Top upper core
interval
Mb2- base upper
core interval
Na
Lower Nc- Top lower
core interval
Oa
Obd
Top OBf- base lower
core interval
Obf Base
CM2 (Colville)
THRZ
BHRZ (Kalubik)
K-1
TKUP
Kuparuk C
LCU (Kuparuk B)
Kuparuk A
e
TVDss
1555
1685
1700
2075
2250
2560
2875
3225
3600
3890
3940
4000
4260
4280
4295
4510
4620
4670
5020
6310
6440
6480
6515
6515
6600
NIP
e
Estimated pore pressure, PPG
Hydrocarbon bearing, 8.8 ppg EMW
Hydrocarbon bearing, 8.8 ppg EMW
Water Bearing
Hydrocarbon bearing, 8.7 ppg EMW
Hydrocarbon bearing, 8.6 ppg EMW
Hydrocarbon bearing, 8.6 ppg EMW
Hydrocarbon bearing, 8.6 ppg EMW
Hydrocarbon bearing, 8.4 ppg EMW
Hydrocarbon bearing, 8.4 ppg EMW
Hydrocarbon Bearing, 2684 psi, 7.9 ppg EMW
Hydrocarbon Bearing, 2684 psi 7.9 ppg EMW
Not Hydrocarbon Bearing, 3400 psi, 9.8 ppg EMW
\0')
Td Criteria:
Geosteer downdip in the C4/C3 high per layer to a max TVD of 6635' TVDss or
until end target point is reached.
V-111 Drilling Program- AOGCC
Page 4
e
e
Integrity Testing:
Test Point Depth
Surface Casing Shoe 20' min from
surface shoe
20' min from 7"
shoe
Intermediate Casing
Shoe
FIT /
EMW
12.0 ppg EMW Target
11.5 ppg EMW Target
based on 9.0 ppg MW and a /
worst case 11.2 ppg drilling
ECD.
/
Test Type
LOT
Cement Calculations:
The following surface cement calculations are based upon a single stage job using a port collar as a
contingency if cement is not circulated to surface.
Casing Size 19-5/8" Surface I
Basis: Lead: Based on conductor set at 110', 1676' of annulus in the permafrost @ 250% excess and
314' of open hole from top of tail slurry to base permafrost @ 30% excess.
Lead TOC: To surface
Tail: Based on 656' MD(>500'TVD) open hole volume + 30% excess + 80' shoe
track volume. Tail TOC: At -2100' MD ,:::'~7
I Total Cement Volume: Lead 377 bbl I 2114 ff'! I~..sks of Halliburton Permafrost L at
10.7 ppg and 4.1q.cf/sk.
Tail 54 bbl I 302 ff'! )"2641sks of Halliburton 'G' at 15.8 ppg
and 1.15 d/sk.V"
Casing Size 17" Intermediate Longstring I
Basis: Tail: Based on TOC 500' above top of Kuparuk formation + 30% excess + 80' shoe
Cement Placement: From shoe to 6465' MD
Lead: Based on TOC 500' above top of Schrader Ma +30% excess volume
Cement Placement: From 6465' to 3394' MD (500' aboye-Ma sand)
Total Cement Volume: Tail 30 bbls 1168 ff'! 1(14z1sks of Halliburton Premium "G"
Super CBL at 15E'Ppg and 1.16 dIsk (Provisional
Volume) fi·
Lead 90 bbls I 505 ff'! ¡, 1 / sks of Halliburton Premium "G"
with Microlite 12. pg and 2.36 dIsk
V-111 Drilling Program- AOGCC
Page 5
e
e
Well Control: /
Surface hole will be drilled with a diverter. The intermediate/production hole, well control
equipment consisting of 5000 psi working pressure pipe rams(2), blind/shear rams, and annular
preventer will be installed and is capable of handling maximum potential surface pressures.
Based upon the planned casing test of 3500 psi for casing integrity considerations, the
BOP equipment will be tested to 4000 psi.
Diverter, BOPE and drilling fluid system schematics on file with the AOGCC.
Production Interval-
· Maximum anticipated BHP:
3400 psi @ 6600' TVDss - Kuparuk B Sand
~PSi @ surface
~d on BHP and a full column of gas from TD @ 0.10 psi/ft)
· Maximum surface pressure:
· Planned BOP test pressure: ~pSi (The casing and tubing will be tested to 3500 psi)
· Planned completion fluid: %~g filtered brine / 6.8 ppg diesel
Disposal:
· No annular disposal in this well.
· Cuttings Handling: Cuttings generated from drilling operations will be hauled to grind
and inject at DS-04.
· Fluid Handling: Haul all drilling and completion fluids and other Class II wastes to DS-
04 for disposal. Haul all Class I wastes to Pad 3 for disposal.
V-111 Drilling Program- AOGCC
Page 6
e
e
DRILL AND COMPLETE PROCEDURE SUMMARY
Pre-Rig Work:
The 20" insulated conductor was installed in May 2003. (Slot N-U)
1. Weld an FMC landing ring for the FMC Ultra slimhole wellhead on the conductor.
2. If necessary, level the pad and prepare location for rig move.
Rig Operations:
1. MIRU Nabors 9ES. /..'
2. Nipple up diverter spool and riser. PU 4" DP as required and stand back in derrick.
3. MU 12 %" drilling assembly with MWD/LWD (page 5) and directionally drill surface hole to /
approximately 100' TVD below the SV1 Sands. An intermediate wiper/bit trip to surface for a bit will
be performed prior to exiting the Permafrost. /
4. Run and cement the 9-5/8",40# surface casing back to surface. ~
5. ND riser spool and NU casing / tubing head. NU BOPE and test to 0 ... si.
6. MU 8-1/2" drilling assembly yvith MWD/LWD (page 5) and RIH to . collar. Test the 9-5/8" casing to
3500 psi for 30 minutes. ./
7. Drill out shoe track and 20' new formation below the 9-5/8" shoe and perform Leak Off Test.
8. Clean surface pits in preparation for displacement to MOBM coring fluid. Displace well to 10.3 ppg /
OBM coring fluid.
9. Drill ahead to coring point (10' into Schrader Mb1 sand) at approximately 4020'. POOH and PU BHI
core barrel. /
10. Core upper Schrader interval (60') as directed by Asset Coring Supervisor.
11. POOH for rotary BHA. Drill approximately 270' to next coring point at the Schrader OA sand.
12. Core lower Schrader interval (340') as directed by Asset Coring Supervisor.
13. POOH and lay down all coring equipment. Pick up rotary BHA and RIH. ./
14. Drill 150' rat hole and perform open hole logging program detailed on Page 5. Rig down"
Schlumberger.
15. Pick up directional BHA, RIH and drill ahea}t0 intermediate TD at top Kuparuk B.
16. Run and cement the 7" production casing.
17. Freeze protect the 7" x 9-5/8" annulus as required. Record formation breakdown pressure on the
Morning Report.
18. RU e-line. RIH with GR/junk basket to float collar. Make up and run 7" EZSV and set on depth such/
that Baker window top is at top Kuparuk C.
19. Make up and RIH with 7" whipstock assembly. Set whipstock such that ~om of window is at top
Kuparuk C. Displace well to 9.0 ppg Flo-Pro mud system. Mill window.
20. Perform FIT test to 11.5 ppg EMW. POOH and lay down milling assembly. /
21. MU 6-1/8" drilling assembly with MWD/LWD (page 5) and RIH
22. Drill ahead as per directional plan to proposed TD at 9,927' MD/6706'TVD. (Or as shortened for
geologic considerations) Short trip as required and condition hole for running 4-1/2" slotted liner. /
23. Run 4-1/2" slotted liner. The liner will extend approximately 100' above the 7" whipstock. Release from
liner and displace well above liner top to clean filtered 9.0 ppg KCL brine. POOH and LDDP.
24. Run the 3-1/2", 9.2#, IB-T, L-80 completi9f"(assembly. Set packer and test the tubing to 3500 psi and
annulus to 3500 psi for 30 minutes. -/
25. Shear DCK valve and install TWC.
26. Nipple down the BOPE. Nipple up and test the tree to 5000 psi. Remove TWC.
27. RU hot oil truck and freeze protect well by pumping diesel to DCK GLM. Allow to equalize.
28. Rig down and move off.
V-111 Drilling Program- AOGCC
Page 7
e
e
V-111 Drilling Programme
Job 1: MIRU
Hazards and Contingencies /
~ V-Pad is not designated as an H2S site. None of the current producers on V-Pad have
indicated the presence of H2S. As a precaution however Standard Operating Procedures
for H2S precautions should be followed at all times.
~ The cellar area surrounding V-111 (Slot N-U) should be checked to insure level prior to
move in.
> Check the landing ring height on V-111. The BOP nipple up may need review for space out.
Reference RPs
.:. "Drilling! Work over Close Proximity Surface and Subsurface Wells Procedure"
-~, -;ç!!!!!!!!);.=-~
Job 2: Drilling Surface Hole
r There is one close approach issue in the surface hole. V-100 approaches with a center to center
distance of 54' at 2600'.
> Hydrates have been observed in wells drilled on V-Pad. These were encountered near the base of
permafrost to TD in the SV1 sand. Hydrates will be treated at surface with appropriate mud
products and adjustment of drilling parameters. Refer to MI mud recommendation.
/
Reference RPs
.:. "Prudhoe Bay Directional Guidelines"
.:. "Well Control Operations Station Bill"
.:. Follow Schlumberger logging practices and recommendations
Job 3: Install surface Casina
Hazards and Contingencies
> It is critical that cement is circulated to surface for well integrity. 250% excess cement through the
permafrost zone (and 30% excess below the permafrost) is planned. A 9-5/8" port collar will be
available as a contingency is surface hole drilling is problematic. If used, the port collar will be
positioned at +/- 1000' to allow remedial cementing.
> "Annular Pumping Away" criteria for future permitting approval for annular injection.
1. Pipe reciprocation during cement displacement
2. Cement - Top of tail >500' TVD above shoe using 30% excess.
3. Casing Shoe Set approximately 100'TVD below SV-1 sand.
Reference RPs
.:. "Casing and Liner Running Procedure"
V-111 Drilling Program- AOGCC
Page 8
e
e
.:. "Surface Casing and Cementing Guidelines"
.:. "Surface Casing Port Collar Procedure"
-
Job 4: DrillinQ/Corinq Intermediate Hole
Hazards and Contingencies
> V-111 will cross two faults in the intermediate hole section. A fault is anticipated in the Ugnu at
3755'TVD, 3760' MD (+/-150'). The estimated throw of the fault is 100', The well will be - 0
degrees when crossing the fault. Lost circulation is considered low to medium risk. The second
fault occurs in the HRZ at 6480' TVD, 7035' MD (+C 150'). The estimated throw of the fault is 75'.
Lost circulation is considered low to medium risk. Consult the Lost Circulation Decision Tree
regarding LCM treatments and procedures.
> KICK TOLERANCE: In the case scenario of 9.8 ppg pore pressure at the top Kuparuk B target
depth, gauge hole, a fractur -grãi ent of 12.0 ppg at the surface casing shoe, 10.3 ppg mud in the
hole the kick tolerance i b, An accurate LOT will be required as well as heightened
awareness for kick det . . Contact Drilling Manager if LOT is less than 12.0 ppg.
> V-Pad development wells have "kick tolerances" in the 30-50 bbl range. A heightened awareness
of kick detection, pre-job planning and trip tank calibration will be essential while drilling/tripping
the intermediate/production intervals
~ There are no "close approach" issues with the intermediate hole interval of V-111.
~ Oil Base mud will be utilized in the intermediate hole section. The base fluid L VT -200 is
considered non-hazardous by Osha Communication Standard 29CFR191 O. Prolonged expose
requires goggles, impervious gloves, rubber boots and neoprene coated coveralls. Ensure slip
resistant matting and vacuum system are in place and functional.
Reference RPs
.:. Standard Operating Procedure for Leak-off and Formation Integrity Tests
.:. Prudhoe Bay Directional Guidelines
.:. Lubricants for Torque and Drag Management.
.:. "Shale Drilling- Kingak & HrZ"
<~,"i'i'IDi$ffl;'~¡¡W~,
,J!'¡m.>i1."ffi,,!J_
Job 6: Case & Cement Intermediate Hole
Hazards and Contingencies
> The interval is planned to be cemented in with a tail and lead slurry. The lead will cover from 500'
above the Kuparuk to 500' above the Schrader Ma sand and the tail from the shoe to 500' above
the Kuparuk. c
> It is critical that the 7" casing be placed near bottom for upcoming drilling operations. /'
> Considerable losses during running and cementing the 7" longstring has been experienced on
offset wells. A casing running program will be jointly issued by the ODE and Drilling Supervisor
detailing circulating points and running speed. In addition a LCM pill composed of "G Seal" will be
placed across the Schrader and Ugnu to help arrest mud dehydration.
V-111 Drilling Program- AOGCC
Page 9
e
e
Þ- Ensure a minimum hydrostatic equivalent of 10.3 ppg on the HRZ during pumping of cement pre
flushes/chemical washes. Losses of hole integrity and packing off has resulted from a reduction in
hydrostatic pressure while pumping spacers and flushes.
~ Ensure the lower production cement has reached at least a 70BC thickening value prior to freeze
protecting. After freeze protecting the 7" x 9-5/8" casing outer annulus with 63 bbls of dead crude
(2200' MD, 2189'TVD), the hydrostatic pressure will be 7.7 ppg vs 8.5 ppg EMW of the formation
pressure immediately below the shoe. Ensure a double-barrier at the surface on the annulus
exists until the cement has set up for at least 12 hours. Trapped annulus pressure may be present
after pumping the dead crude as the hydrostatic pressure of the mud and crude could be 110 psi
underbalance to the open hole. (A second LOT will be required prior to displacing freeze
protect. This to satisfy AOGCC for future annular pumping permits.)
Reference RPs
.:. "Intermediate Casing and Cementing Guidelines"
.:. "Freeze Protecting an Outer Annulus"
Job 7: Set Whipstock and Drill 6-1/8" Horizontal Production Hole
Hazards and Contingencies
Þ- A whipstock will be set in the 7" intermediate casing to facilitate kicking off the horizontal
production hole. Once milling is complete, make sure all BOP equipment is operable. Wash out
BOP stack to remove any metal cuttings which may have accumulated.
Þ- One fault crossing is possible in the midpoint (9020') of the horizontal section. The estimated
throw of the fault is approximately 20'. If the fault is crossed and losses are encountered, consult
the Lost Circulation Matrix regarding LCM treatments and procedures.
Þ- There are no "close approach" issues with the production hole interval of V-109.
, Heightened kick awareness is required while drì!ling this horizontal production hole. To date we
have not drìlled the Kuparuk formation in Borealis with less than a 9.7 ppg mud system due to
HRZ stability concerns.
Þ- Under no circumstances add any LCM (including Walnut sweeps, and fiberous materials)
other than Calcium Carbonate for losses < 50BPH without prior discussions with the
Drilling Engineer/Asset Production Engineer. Significant mud losses >50 BPH may include
the use of cellulose to arrest losses. See attached LCM Decision Chart.
Þ- There are no restrictions concerning adding lubricants to the mud while drilling the production
hole.
Þ- Expect a certain amount of geo-steering , but significant changes to the planned
directional profile should be discussed with the Drilling Manager/Operations Drilling
Engineer.
Þ- Maintain timely communication with Geology, Directional, and Engineering personnel. Allow the
directional driller adequate notification to plan and execute required well path changes. Rather
than dictate well path azimuth and/or inclination, provide depth and azimuth ranges, which will
result in desired well bore placement. Providing the directional driller with X,Y, and Z coordinates
V-111 Drilling Program- AOGCC
Page 10
e
!e
will enable him to project ahead from current well position. Utilize "Geological Request for Target
Change" Form to document course changes.
Reference RPs
.:. "Standard Operating Procedure for Leak-off and Formation Integrity Tests"
.:. "Prudhoe Bay Directional Guidelines"
.:. "Lubricants for Torque and Drag Management"
~. ~.~='Q"M;r_
Job 9: Install 4%" Production Liner
Hazards and Contingencies
þ> Differential sticking could be a problem. The Flo-Pro will be approximately 370 psi over balance to
the Kuparuk formation. Minimize the time the pipe is left stationary while running the liner.
þ> In the event additional weight is required to get the liner to TD, have 6 stands of weight pipe in the
derrick.
þ> A liner inner string should not be required to help convey the liner to bottom. An inner string
contingency however is included should open hole conditions be poor.
þ> Keep in mind that the Kuparuk interval will be open. Avoid introducing lighted than 9.0 ppg
completion brines during swap over prior to perforating.
Reference RPs
.:. "Running and Cementing a Liner Conventionally"
_<~......-.r="'~__
Job 12: Run Completion
Hazards and Contingencies
þ> Keep in mind that the Kuparuk interval will be open during the running of the completion. Watch
hole fill closely, verify no light fluids are introduced down hole and verify proper safety valves are
on the rig floor while running this completion.
þ> Shear valves have been failing at lower than the 2500 psi differential pressure. When testing
annulus maintain no more than a 1500 psi differential. Avoid cycling pressure (pumping up and
bleeding off) prior to activating shear valve as this is thought to cause shearing at lower
pressures.
Reference RPs
.:. Completion Design and Running
.:. Freeze Protection of Inner Annulus
V-111 Drilling Program- AOGCC
Page 11
e
e
Job 13: ND/NUlRelease RiCl
Hazards and Contingencies
>- No hazards specific to this well have been identified for this phase of the well construction.
Reference RPs
.:. Freeze Protection of Inner Annulus
V-111 Drilling Program- AOGCC
Page 12
TREE = 4-1/16" erN
WELLHEAD = FMC
·AmV_''''''W~,'''·'~,~·,W,·,·.·.·~'mc'w,
ACTUATOR = NIA
KB:S::EV:::: 82.3'
^'~~_"__'___'_,____w___._~__._._._..?_.w._._.m=m~~~==m==...........................w.w.y,·__.__
BF. ELBI =
.~"~~~mm"--" _A___._._""'m"=~m"~~
KOP = 300'
"W'_·Aw_____._~,,~=,,~
Max Angle =
DaiumMï5~
DatumlVD= ?'SS
e
I 9-5/8" CSG, 40#, L-80, ID= 8.835"
1--1 2756'
Minimum ID = 2.813" at 2200'
I 3-1/2" TBG, 9.2#, L-80, IBT ID=2.992" 1-
I Baker HMC Liner H 7028'
I 7" CSG, 26#, L-80, 0.0383 bpf, 1D=6.27Efi 7391'
ÆRFORA TlON SUMMARY
REF LOG:
ANGLE AT TOP ÆRF:
Note: Refer to Production DB for historical perf data
SIZE SPF INTERVAL Opn/Sqz DATE
DATE RBI BY COMMENTS
06105/03 nm HORIZ COMPLETION (P11)
~
/
I
DA TE RBI BY
V-111
l3 NOTES:
2200' H3-1/2" HES X Nippple. ID= 2.813"
~
GAS LIFT MANDRELS
ST MD lVD DBI TYÆ VLV LATCH PORT
1 6200'
2 5700'
3 5100'
4 4200'
5 3300'
6 2600'
DATE
l
:;g:
I
:&-----i
I
H3-1/2" X Nipple ID= 2.813" I
~I Baker 7" x 4-1/2" S-3 Packer
H 3-1/2" X Nipple ID= 2.813"
~
H 3-1/2" X Nipple ID =2.813"
..
.
AI
~
~~ """"",,
..... .....
..... .....
..... .....
..... .....
..... .....
..... .....
..... .....
..... .....
..... .....
..... .....
..... .....
..... .....
..... .....
..... .....
..... .....
I ffiID H 9M~"I').
I 4-1/2" Slotted Liner, 12.7 #, L-80
/'
H 9927'
COMMENTS
PRUDHOE BAY UNIT
WELL: V-111
ÆRMIT No:
API No:
BP Exploration (Alaska)
e
e
V-111 Well
Summary of Drillina Hazards
POST THIS NOTICE IN THE DOGHOUSE
Surface Hole Section:
· Gas hydrates may be encountered near the base of the Permafrost at 1770' MD and near the
TD hole section as well.
· Gravel beds below the Permafrost will tend to slough in when aerated (hydrate cut) mud is
being circulated out. Ensure adequate mud viscosity is maintained to avoid stuck pipe
situations.
Intermediate Hole Section:
· A majority of the V-Pad development wells will have "kick tolerances" in the 25-45 bbl. A
heightened awareness of kick detection, pre-job planning and trip tank calibration will be
essential while drilling/tripping the intermediate/production intervals.
· V-111 will cross two faults in the intermediate hole section. The first at -3760' MD(+/-150') with
an estimated throw of 100' and the second at at -7035' MD (+/- 150'). The estimated throw of
the second fault is approximately 75'. Loss circulation is considered to be a medium risk.
Consult the Lost Circulation Decision Tree regarding LCM treatments and procedures.
· Coring will utilize Oil Base Mud. The base fluid LVT-200 is considered "non-hazardous by
OSHA. Proper PPE including goggles, barrier cream and neoprene coated coveralls should be
in place prior to utilizing this mud system.
Production Hole Section:
· The production section will be drilled with a recommended mud weight of 9.0 ppg to cover the
Kuparuk 7.9 pore pressure.
· Hole packing-off, and lost returns have been encountered in previous wells on this pad. Pipe
sticking tendency is possible as the mud weight is 375 psi over the formation pressure. Back
reaming at connections and good hole cleaning practices will contribute to favorable hole
conditions.
HYDROGEN SULFIDE - H2S /
· This drill-site not designated as an H2S drill site. Recent wells test do not indicate the
presence of H2S. As a precaution, Standard Operating Procedures for H2S precautions
should be followed at all times.
CONSULT THE V-PAD DATA SHEET AND THE WELL PLAN FOR ADDITIONAL INFORMATION
Version 1.0
Rigsite Hazards and Contingencies
!
KBE
G1
SV6
Nudge 111 00
SV5
SV4
Base Perm
End Bid
Drp 11100
SV3
Report Date:
Client:
Field:
Structure J Slot:
Well:
Borehole:
UWIJAPI#:
Survey Name J Date:
Tort J AHD J DDI J ERD ratio:
Grid Coordinate System:
Location Lat/Long:
Location Grid NlE Y)(:
Grid Convergence Angle:
Grid Scale Factor:
V-111PB1
Proposed Well Profile - Geodetic Report
June 5, 2003
BP Exploration Alaska
Prudhoe Bay Unit - WOA (Drill Pads)
V-Pad J Plan V-111 (N-U)
V-111
V-111PB1
50029
V-111PB1 (P4) I June 5, 2003
96.058° 11560.49 ft 15.220 I 0.234
NAD27 Alaska State Planes, Zone 04, US Feel
N 70.32813766, W 149.2643313£
N 5970134.340 ftUS, E 590709.620 ftUS
-+0.69273635°
0.99990935
Survey J DLS Computation Method:
Vertical Section Azimuth:
Vertical Section Origin:
TVD Reference Datum:
TVD Reference Elevation:
Sea Bed J Ground Level Elevation:
Magnetic Declination:
Total Field Strength:
Magnetic Dip:
Declination Date:
Magnetic Declination Model:
North Reference:
Total Corr Mag North .) True North:
Local Coordinates Referenced To:
Schlulbepgep
Minimum Curvature I Lubinski
33.930°
N 0.000 ft, E 0.000 ft
KB
81.8 ft relative to MSL
54.000 ft relative to MSL
25.512°
57517.355 nT
80.780°
July 07, 2003
BGGM 2002
True North
+25.512°
Well Head
-
ro"e
Grid Coordinates Geographic Coordinates
MD Incl Azim TVD TVDss I VSec I NJ·S I EJ·W DLS Northing I Easting Latitude I Longitude
(ft) (0) (0) (ft) (ft) (ft) (ft) (ft) (oJ100ft) (ftUS) (ftUS)
0.00 0.00 270.00 0.00 -81.80 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70.32813766 W 149.26433139
326.80 0.00 270.00 326.80 245.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70.32813766 W 149.26433139
976.80 0.00 270.00 976.80 895.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70.32813766 W 149.26433139
1200.00 0.00 270.00 1200.00 1118.20 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70.32813766 W 149.26433139
1300.00 1.00 270.00 1299.99 1218.19 -0.49 -0.00 -0.87 1.00 5970134.33 590708.75 N 70.32813766 W 149.26433845
1400.00 2.00 270.00 1399.96 1318.16 -1.95 -0.00 -3.49 A.oo 5970134.30 590706.13 N 70.32813766 W 149.26435969
1500.00 3.00 270.00 1499.86 1418.06 -4.38 -0.00 -7.85 1.00 5970134.25 590701.77 N 70.32813766 W 149.26439505
1600.00 4.00 270.00 1599.68 1517.88 -7.79 -0.00 -13.96 1.00 5970134.17 590695.66 N 70.32813766 W 149.264441
1637.22 4.37 270.00 1636.80 1555.00 -9.31 -0.00 -16.67 1.00 5970134.14 590692.95 N 70.32813766 W 149.26446
1700.00 5.00 270.00 1699.37 1617.57 -12.17 -0.00 -21.80 1.00 5970134.08 590687.82 N 70.32813766 W 149.26450
1767.73 5.68 270.00 1766.80 1685.00 -15.69 -0.00 -28.10 1.00 5970134.00 590681.52 N 70.32813766 W 149.26455926
1782.80 5.83 270.00 1781.80 1700.00 -16.53 -0.00 -29.62 1.00 5970133.98 590680.00 N 70.32813766 W 149.26457159
1800.00 6.00 270.00 1798.90 1717.10 -17.52 -0.00 -31 .39 1.00 5970133.96 590678.24 N 70.32813766 W 149.26458594
1900.00 7.00 270.00 1898.26 1816.46 -23.84 -0.00 -42.71 1.00 5970133.82 590666.92 N 70.32813766 W 149.26467773
2000.00 7.00 270.00 1997.51 1915.71 -30.64 -0.00 -54.89 0.00 5970133.68 590654.74 N 70.32813766 W 149.26477650
2100.00 6.00 270.00 2096.87 2015.07 -36.96 -0.00 -66.21 1.00 5970133.54 590643.42 N 70.32813766 W 149.26486830
2160.23 5.40 270.00 2156.80 2075.00 -40.30 -0.00 -72.20 1.00 5970133.47 590637.43 N 70.32813766 W 149.26491687
2200.00 5.00 270.00 2196.41 2114.61 -42.31 -0.00 -75.80 1.00 5970133.42 590633.83 N 70.32813766 W 149.26494607
Station ID
V-111PB1 (P4) report xis
Page 1 of 3
6/5/2003-11 :32 AM
Grid Coordinates Geographic Coordinates
Station ID MD Incl Azim TVD TVDss I VSec N/·S E/·W DLS Northing Easting Latitude I Longitude
(ft) (0) (0) (ft) (ft) (ft) (ft) (ft) (0/100ft) (ftUS) (ftUS)
2300.00 4.00 270.00 2296.10 2214.30 -46.69 -0.00 -83.64 1.00 5970133.33 590625.99 N 70.32813766 W 149.26500964
SV2 2335.78 3.64 270.00 2331.80 2250.00 -48.02 -0.00 -86.03 1.00 5970133.30 590623.60 N 70.32813766 W 149.26502902
2400.00 3.00 270.00 2395.91 2314.11 -50.10 -0.00 -89.75 1.00 5970133.26 590619.88 N 70.32813766 W 149.26505919
2500.00 2.00 270.00 2495.82 2414.02 -52.53 -0.00 -94.11 1.00 5970133.20 590615.53 N 70.32813766 W 149.26509454
2600.00 1.00 270.00 2595.78 2513.98 -53.99 -0.00 -96.73 1.00 5970133.17 590612.91 N 70.32813766 W 149.26511579
SV1 2646.02 0.54 270.00 2641.80 2560.00 -54.34 -0.00 -97.35 1.00 5970133.16 590612.29 N 70.32813766 W 149.26512082
End Drp 2700.00 0.00 270.00 2695.77 2613.97 -54.48 -0.00 -97.60 1.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
9-5/8" Csg PI 2756.03 0.00 354.00 2751.80 2670.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
UG4A 2961.03 0.00 354.00 2956.80 2875.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512_
UG3 3311.03 0.00 354.00 3306.80 3225.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512
UG1 3686.03 0.00 354.00 3681.80 3600.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
Ma 3976.03 0.00 354.00 3971.80 3890.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
Mb1 4026.03 0.00 354.00 4021.80 3940.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
Mb2 4086.03 0.00 354.00 4081.80 4000.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
Na 4211.03 0.00 354.00 4206.80 4125.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
Lower Nc 4366.03 0.00 354.00 4361.80 4280.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
OA 4381.03 0.00 354.00 4376.80 4295.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
OBd 4596.03 0.00 354.00 4591.80 4510.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
Top OBf 4706.03 0.00 354.00 4701.80 4620.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
Obf Base 4756.03 0.00 354.00 4751.80 4670.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
KOP Bid 2/100 4900.00 0.00 354.00 4895.77 4813.97 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285
Crv 4/100 5000.00 2.00 354.00 4995.75 4913.95 -53.14 1.74 -97.78 2.00 5970134.90 590611.84 N 70.32814241 W 149.26512431
5100.00 6.00 353.84 5095.49 5013.69 -47.80 8.67 -98.53 4.00 5970141.82 590611.00 N 70.32816134 W 149.26513039
CM2 5106.35 6.25 353.83 5101.80 5020.00 -47.28 9.34 -98.60 4.00 5970142.49 590610.92 N 70.32816317 W 149.26513096
5200.00 10.00 353.80 5194.50 5112.70 -37.16 22.50 -100.03 4.00 5970155.63 590609.33 N 70.32819913 W 149.26514_
5300.00 14.00 353.79 5292.29 5210.49 -21.27 43.17 -102.27 4.00 5970176.27 590606.85 N 70.32825559 W 149.26516
5400.00 18.00 353.78 5388.40 5306.60 -0.20 70.56 -105.26 /.00 5970203.62 590603.52 N 70.32833042 W 149.26518497
5500.00 22.00 353.78 5482.35 5400.55 25.93 104.56 -108.96 4.00 5970237.57 590599.41 N 70.32842331 W 149.26521498
End Crv 5501.96 22.08 353.78 5484.16 5402.36 26.49 105.29 -109.04 4.00 5970238.29 590599.33 N 70.32842530 W 149.26521563
Crv 4/100 5528.57 22.08 353.78 5508.83 5427.03 34.14 115.23 -110.13 0.00 5970248.22 590598.12 N 70.32845246 W 149.26522447
5600.00 23.29 0.49 5574.74 5492.94 56.19 142.70 -111.46 4.00 5970275.67 590596.45 N 70.32852750 W 149.26523526
5700.00 25.41 8.73 5665.87 5584.07 92.11 183.69 -108.04 4.00 5970316.69 590599.38 N 70.32863948 W 149.26520753
5800.00 27.92 15.69 5755.25 5673.45 133.77 227.45 -98.44 4.00 5970360.56 590608.45 N 70.32875903 W 149.26512968
CM1 5876.07 30.03 20.22 5821.80 5740.00 169.18 262.46 -87.05 4.00 5970395.70 590619.41 N 70.32885468 W 149.26503732
5900.00 30.72 21.52 5842.45 5760.65 180.97 273.77 -82.74 4.00 5970407.06 590623.58 N 70.32888557 W 149.26500237
V-111P81 (P4) report.xls
Page 2 of 3
6/5/2003-11 :32 AM
Grid Coordinates Geographic Coordinates
Station ID MD Incl Azim TVD TVDss I VSec N/-S E/·W DLS Northing I Easting Latitude I Longitude
(ft) (0) (0) (ft) (ft) (ft) (ft) (ft) (o/100ft) (ftUS) (ftUS)
6000.00 33.74 26.44 5927.04 5845.24 233.47 322.42 -60.99 4.00 5970455.97 590644.74 N 70.32901848 W 149.26482599
6100.00 36.93 30.62 6008.62 5926.82 291.02 373.16 -33.31 4.00 5970507.04 590671.80 N 70.32915710 W 149.26460152
6200.00 40.25 34.21 6086.79 6004.99 353.34 425.75 0.17 4.00 5970560.02 590704.64 N 70.32930077 W 149.26433001
6300.00 43.66 37.34 6161.15 6079.35 420.13 479.93 39.28 4.00 5970614.67 590743.09 N 70.32944879 W 149.26401284
6400.00 47.15 40.09 6231.36 6149.56 491.06 535.44 83.84 4.00 5970670.70 590786.97 N 70.32960043 W 149.26365147
6500.00 50.69 42.55 6297.07 6215.27 565.78 592.00 133.63 4.00 5970727.86 590836.07 N 70.32975495 W 149.26324768
6600.00 54.28 44.77 6357.96 6276.16 643.94 649.35 188.40 4.00 5970785.86 590890.14 N 70.32991162 W 149.26280350
Top HRZ 6659.54 56.44 45.99 6391.80 6310.00 691.94 683.75 223.27 4.00 5970820.68 590924.59 N 70.33000560 W 149.26252070
6700.00 57.91 46.79 6413.73 6331.93 725.14 707.19 247.89 4.00 5970844.41 590948.92 N 70.33006963 W 149.26232_
6800.00 61.57 48.66 6464.11 6382.31 809.00 765.26 311.81 4.00 5970903.24 591012.13 N 70.33022827 W 149.26180
6900.00 65.26 50.41 6508.86 6427.06 895.10 823.26 379.85 4.00 5970962.06 591079.45 N 70.33038671 W 149.26125079
Base HRZ 6931.61 66.42 50.94 6521.80 6440.00 922.72 841.54 402.16 4.00 5970980.60 591101.54 N 70.33043665 W 149.26106985
7000.00 68.96 52.05 6547.76 6465.96 983.03 880.92 451.67 4.00 5971020.57 591150.57 N 70.33054422 W 149.26066830
End Crv 7028.07 70.00 52.50 6557.60 6475.80 1007.98 897.01 472.46 4.00 5971036.91 591171.16 N 70.33058817 W 149.26049968
K1 7040.35 70.00 52.50 6561.80 6480.00 1018.92 904.03 481.62 0.00 5971044.04 591180.23 N 70.33060735 W 149.26042539
Target 7128.07 70.00 52.50 6591.80 6510.00 1097.06 954.21 547.01 0.00 5971095.00 591245.00 N 70.33074442 W 149.25989504
TopKup/C 7142.69 70.00 52.50 6596.80 6515.00 1110.08 962.57 557.91 0.00 5971103.50 591255.80 N 70.33076726 W 149.25980664
TD I 7" Csg Pt 7391.21 70.00 52.50 6681.80 6600.00 1331.46 1104.74 743.18 0.00 5971247.88 591439.32 N 70.33115561 W 149.25830395
LeQal Description: NorthinQ IY) rftUSl Eastin!:! IX) rftUSl
Surface: 4885 FSL 1591 FEL 511 T11N R11 E UM 5970134.34 590709.62
Target: 559 FSL 1043 FEL S2 T11N R11E UM 5971095.00 591245.00
BHL: 710 FSL 846 FEL S2 T11N R11E UM 5971247.88 591439.33
e
V-111PB1 (P4) report. xis
Page 3 of 3
6/5/2003-11 :32 AM
e
VERTXCAL SECTXON VXEW
Client:
Well:
Field:
A
BP Exploration Alaska
V-lllPBl (P4)
Prudhoe Bay Unit - WOA
Schlumberger
Structure: V-Pad
Section At: 33.93 deg
Date: June 05, 2003
1000 _..
..... ~;v\';,;I: M!J"·rr·/;::.,.¿fj
..... ...... ....,- ..... .... ..... ...... ...... .....
..............,m............................... .....................................
..... -..... ..... ..,.. ..... ....
....m..........................................
Nudge 1/100 I
1200 MD 1230 TVD
0.00' 270.00, az
o departure
o
.v"
É.~d_~d ~
~_E:;:f;,~~:a~____
:--D",'I100 .
., 000.. 000.. 000.. 2000 MDl99nVD....
7.00° 270.00· az
-'3"1 departürä:
j ~.~ !~~D~f,Ò~~:·:D
, ____________ ·54 de'frture
...!>-518' c..¡ Pt.
2000~-..-
-.
+-'
Q) -.
~~
8~
o Q)
~ .8 3000 ...;;;._.::::....::c....
C CO
..-¢::
.........0
..c~
+-' ..-
g-~
om
ro ~ 4000 -00 = =
u.¡....:
1:: Q)
Q)Cï:
> ã;
~iIi
....
f-
,,;1''''
. ..':::ü.s.D\.
0.00° 354.00° az
-54 depart~re
-c;cr-:.:.s,
Mv~5[¡7T'lD - -
- - - -
Hold
ngle 0.000
- - -- -
i
·~-i
KOP BId 2}1-þo=
4900 MO 4 '96 TVO
··,'H~;JZTVr.r ..... ..... ..... ..... ...../~~o~ -3õl
;~~1"l?&i<;'¡;:m 000 ~.=.: '''':c¡:ÿ" '. ........
~ 5000 MOl 4996 TVD
[ ~ 2.00· 354.00G az
: -53 depaf1:ure
5000 --
(7~1Î.')1Q¡r-r.~D~1C;TI\/u .--
. .
, ..._. ~_w,
. .
~ End cni
j ______ ~~02 M '
______ 2.
6000
~ ~ ~ --
6'"
7000-·
Hold Angle
-1000
o
I
1000
::: .... '::::.. .::::::.....~::'.:......:::::.....:::.......:::::~.¡....::..
I
I
.....¡
I
.....,..
--~~~
..... ,..... ..... .....
.~.~~~_w~_..
I
... ~..~...._..._.._.. .-......-.-J--
I·····
i
0001
!
0001
~ -- ~ -
- - ~ -
~~----
-----_.._~
2000
3000
Vertical Section Departure at 33.93 deg from (0.0, 0.0). (1 in = 1000 feet)
1200-
--
.
'" '
PLAN VIEW
Client: BP Exploration Alaska
Well:
Field:
Structure:
Scale:
Date:
V-lllPBl (P4)
Prudhoe Bay Unit - WOA
V-Pad
1 in = 200 ft
05-Jun-2003
SChluDlbørgør
o
,
¡
¡
200
,
True North
Mag Dee ( E 25.51°
.... ........;...·.....·....··......·.....f·
1000 ------.--.-
^
^ 800 -------+
^
I
~
0::
o
Z
600~
~ 400 __~m
::J
o
C/)
V
V
V
200
o
Cry 41100
5000 MD 4996 TVO
2.00Q 354.00Q az
2N 98W
KOP Bid 2/100 ¡
4900 MD 4896 TVþ
O.OOQ 354.00· az ~
OS 98W
· .
· .
· .
· .
· .
· .
· .
· .
/ ~~: m ~i~ft~~:O _~_~J__mm
9_5/8" Csg Pt: ¡
2756 MD 2752 D! End Bid f
a.DOG 354.00· az' 1900 MD 1~98 TVO
OS 98 W I 7.00· 270.~O· az
EndDrp 'Drp1l100 OS 43W f
2700 MD 2696 TVD 12000 MD 1998 TVO ~
0.00· 270.00· az 7.00" 270.00· az ¡
OS 98W iDS SSW .
¡
o
I
200
«< WEST
400
,
800
600
---- ._--~
~~
~~
ð-Ö
~
1200
TD/T"Csgpt
........~...H_···;~~dö~~Š2~~TY.·~~· ....- 1 000
1105 N 743 E
_~i~!~~~.,:
End Cry . 954 N 547 E
7028 MD 65~ TVD
70.00· 52.50· iu:
897 N 472 E ¡
...............
_ - 800
-~-r-- 600
-400
200
o
I
400
I
600
EAST »>
800
V-111
Schlumberuer
Proposed Well Profile - Geodetic Report
Report Date: June 5, 2003
Client: BP Exploration Alaska
Field: Prudhoe Bay Unit - WOA (Drill Pads)
Structure I Slot: V-Pad I Plan V-111 (N-U) ro."'8
Well: V-111 i.'
Borehole: V-111
UWI/API#: 50029
Survey Name I Date: V-111 (P12) I June 5, 2003
Tort I AHD I DDII ERD ratio: 118.5W 14106.16 ft 15.8581 0.61,
Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feel
Location Lat/Long: N 70.32813766, W 149.2643313£
Location Grid N/E YIX: N 5970134.340 ftUS, E 590709.620 ftUS
Grid Convergence Angle: -+<J.69273635°
Grid Scale Factor: 0.99990935
Survey I DLS Computation Method: Minimum Curvature I Lubinski
Vertical Section Azimuth: 64.540°
Vertical Section Origin: N 0.000 ft, E 0.000 ft
TVD Reference Datum: KB
TVD Reference Elevation: 81.8 ft relative to MSL
Sea Bed I Ground Level Elevation: 54.000 ft relative to MSL
Magnetic Declination: 25.501 °
Total Field Strength: 57517.804 nT
Magnetic Dip: 80.781°
Declination Date: July 18, 2003
Magnetic Declination Model: BGGM 2002
North Reference: True North
Total Corr Mag North .> True North: +25.501 °
Local Coordinates Referenced To: Well Head
-
Grid Coordinates Geographic Coordinates
Station ID MD Incl Azim TVD TVDss I VSec N/·S E/·W DLS Northing Easting Latitude I Longitude
(ft) (0) (0) (ft) (ft) (ft) (ft) (ft) (0/100ft) (ftUS) (ftUS)
Top Whipstock 7128.07 70.00 52.50 6591.80 6510.00 904.09 954.21 547.01 0.00 5971095.00 591245.00 N 70.33074442 W 149.25989504
Base Whipstock 7140.07 71.92 52.50 6595.72 6513.92 915.18 961.12 556.01 16.00 5971102.02 591253.92 N 70.33076330 W 149.25982205
KOP Crv 10/100 7153.07 71.92 52.50 6599.75 6517.95 927.27 968.64 565.82 0.00 5971109.66 591263.64 N 70.33078384 W 149.25974248
7160.00 72.46 52.95 6601.87 6520.07 933.73 972.64 571.07 10.00 5971113.72 591268.84 N 70.33079477 W 149.25969990
7180.00 74.04 54.23 6607.63 6525.83 952.53 984.00 586.48 10.00 5971125.27 591284.11 N 70.33082580 W 149.25957491
7200.00 75.63 55.50 6612.86 6531.06 971.56 995.11 602.27 ~o.oo 5971136.57 591299.76 N 70.33085615 W 149.25944685
7220.00 77.22 56.75 6617.56 6535.76 990.79 1005.95 618.41 10.00 5971147.60 591315.77 N 70.33088576 W 149.25931594
7240.00 78.81 57.98 6621.71 6539.91 1010.20 1016.50 634.88 10.00 5971158.35 591332.11 N 70.33091458 W 149.25918236
7260.00 80.42 59.19 6625.32 6543.52 1029.76 1026.75 651.67 10.00 5971168.80 591348.77 N 70.33094258 W 149.25904'
7280.00 82.02 60.40 6628.37 6546.57 1049.46 1036.69 668.75 10.00 5971178.94 591365.73 N 70.33096973 W 149.258907
7300.00 83.63 61.60 6630.87 6549.07 1069.26 1046.31 686.10 10.00 5971188.77 591382.96 N 70.33099600 W 149.25876693
7320.00 85.25 62.78 6632.81 6551.01 1089.15 1055.60 703.71 10.00 5971198.27 591400.45 N 70.33102138 W 149.25862410
7340.00 86.86 63.97 6634.18 6552.38 1109.10 1064.54 721.55 10.00 5971207.43 591418.18 N 70.33104580 W 149.25847940
End Crv 7359.03 88.40 65.09 6634.97 6553.17 1128.11 1072.72 738.71 10.00 5971215.81 591435.24 N 70.33106814 W 149.25834023
TD I 4-1/2" Lnr 9927.07 88.40 65.09 6706.80 6625.00 3695.02 2153.94 3066.93 0.00 5972325.00 593750.00 N 70.33402032 W 149.23945406
Legal Description: Northinq (Y) rftUSl Eastinq (X) rftUSl
Surface: 4885 F5L 1591 FEL S11 T11N R11E UM 5970134.34 590709.62
Tie-In: 559 F5L 1043 FEL S2 T11N R11E UM 5971095.01 591245.01
TD 14-1/2" Lnr I BHL : 1758 FSL 3802 FEL 51 T11N R11E UM 5972325.00 593750.00
V-111 (P12) report.xls Page 1 of 1 6/5/2003-11 :57 AM
VERTICAL
Client:
Well:
Field:
Structure:
Section At:
Date:
SECTION VIEW
BP Exploration Alaska
V-lll (P12)
Prudhoe Bay Unit - WOA
V-Pad
64.54 deg
June 05, 2003
5000
5500
.......
- .......
Q)....J
~(/)
0::2:
o Q)
I.() >
II 0
c:.g
.....¢::
-0
..c:CO
- .
0.. .....
Q)CX>
o en 6500
ro~
o.¡..;
:e Q)
Q)O:::
> >
Q)~
2w
I-
'0
V-111PB1
7000
7500
o
500
1000
Vertical Section Departure at 64.54 deg from (0.0, 0.0). (1 in = 500 feet)
1500
End CN
7359 MD 6635 TVO
88.400 65.09" az
1128 departure
2000
2500
3000
Schlumberger
m.. GM2 :3-11)(- ~/[} 510:: ,VD
e
,- eM'! 5876 MD SB2? T\iD
..... Top HRZ 6BSG MD 5302 TVD
8m;,; HRZ 6832 MO 5522 h'D
V..1 '1Ü4\) r,..1{) GSß2 TV)
T>p hUp! {:; 7143 M!) l':~d7 TVO
e
TD 14-1/T' Lnr
9927 MD 6707 TVO
88.40° 65.0go az
3695 departure
3500
2000 -
^
^
^
I
I- 1500-
0:::
o
Z
~~__·___~_w__.·~_m____
1000 -
I
I-
:)
~ 500 ~._.__.._-
v
v
v
0-"-1
PLAN VIEW
Client: BP Exploration Alaska
Well: V-lll (P12)
Field: Prudhoe Bay Unit - WOA
Structure: V-Pad
Scale: 1 in = 500 ft
Date: 05-Jun-2003
o
1
True North
Mag Dee ( E 25.50°
¡
Base Whipstock
7140 tv1D 6596 TVO
71.92Q 1 52.SO° az
Top Whipstock 961 N 1556 E
7128 MD 6592 TVO !
~~;~. ::75~' az ~ :
,
,
!,¡J'/
o
500
,
ì
1000
,,-, ~~~._-- --- -- --- -.--.-- ...-.-.
\
KOP CN 101100
7153 MD 6600 TVO
71.92ð 52.50· az
969 N 566 E
500
1000
«< WEST
1500
,
2000
¡ f"..'\§?Jo
i ó'J'
¡>i\~~\~
'>(\0\6 ¡
6635 TVD
88.40· 65.09° az
1073N 739E
1500
2000
EAST »>
Schlumberger
2500
I
2500
3000
I
rO:/.c.1/T Lnr
99~7 MO 6707 TVO
88~O· 65.09" az
21~ N 3067 E
3000
-..- 2000
e
.------ 1500
- 1000
e
500
-0
e
e
Anticollision Report
Company:
Field: .
Reference Site:
Reference Well:
Reference Well path:
BP Amoco.
Prudhoe Bay
PB V Pad
Plan V-111 (N-U)
Plan V-111
Date: 6/6/2003
Time: 09:29:02
Page:
'Co-ordinate(NE) Reference:
Vertical (TVD) Reference:
Well: plan V-111 (N-U), True North
V-111 plan 81.8
NO GLOBAL SCAN: Using user defined selection & scan criteria
Interpolation Method: MD + Stations Interval: 50.00 ft
Depth Range: 28.50 to 9927.07 ft
Maximum Radius: 3000.00 ft
Reference:
Error Model:
Scan Method:
Error Surface:
Db: Sybase
Principal Plan & PLANNED PROGRAM
ISCWSA Ellipse
Trav Cylinder North
Ellipse + Casing
--~- --.'--..' ......_-_....._~..~-
_________M"____
-.
Survey Program for Definitive Wellpath
Date: 4/24/2003 Validated: No
Planned From To Survey
ft ft
28.50 1800.00
1800.00 7128.07
7128.07 9927.07
Version: 11
Toolcode
Tool Name
Planned: Plan #4 V1 (1)
Planned: Plan #4 V1 (1)
Planned: Plan #12 V2
GYD-GC-SS
MWD+IFR+MS
MWD+IFR+MS
Gyrodata gyro single shots
MWD + IFR + Multi Station
MWD + IFR + Multi Station
Casing Points
'-'--"------'-'---'--
MD TVD Diameter Hole Size Name
ft ft in in
2756.03 2751.80 9.625 12.250 95/8"
7128.07 6591.80 7.000 8.750 7"
9927.07 6706.80 4.500 6.125 4 1/2"
Summary
."R _...__..._. ..___.P"___'__
< Offset Wellpath - > Reference Offset Ctr-Ctr No-Go Allowable
Site Well Wellpath MD MD I}istance Area I>eviation Warning
ft ft ft ft ft .;"'.
__n________.___. ._. . ....._______.__.___.__n
PB V Pad V-03 V-03 V7 999.70 1000.00 42.05 16.36 25.70 Pass: Major Risk
PB V Pad V-100 V-100 V7 1297.11 1300.00 190.70 19.40 171.42 Pass: Major Risk
PB V Pad V-101 V-101 V7 699.07 700.00 294.41 11.76 282.68 Pass: Major Risk
PB V Pad V-102 V-102 V5 847.27 850.00 180.71 16.17 164.57 Pass: Major Risk
PB V Pad V-103 V-103 V6 449.18 450.00 30.23 7.88 22.37 Pass: Major Risk
PB V Pad V-104 V-104 V13 499.48 500.00 237.33 8.36 228.98 Pass: Major Risk
PB V Pad V-105 V-105 V13 1746.76 1750.00 54.98 25.11 29.99 Pass: Major Risk
PB V Pad V-106 V-106 V10 648.79 650.00 58.60 10.39 48.24 Pass: Major Risk
PB V Pad V-107 V-107 V5 2068.30 2050.00 198.63 30.35 168.56 Pass: Major Risk
PB V Pad V-108 V-108 V7 249.48 250.00 327.42 4.41 323.01 Pass: Major Risk
PB V Pad V-109 V-109 V2 2369.86 2400.00 175.73 34.05 141.69 Pass: Major Risk
PB V Pad V-109 V-109PB1 V5 2369.86 2400.00 175.73 34.05 141.69 Pass: Major Risk
PB V Pad V-109 V-109PB2 V2 2369.86 2400.00 175.73 34.05 141.69 Pass: Major Risk
PB V Pad V-113 V-113 V6 599.75 600.00 361.85 9.63 352.24 Pass: Major Risk
PB V Pad V-201 V-201 V8 448.25 450.00 192.16 7.50 184.67 Pass: Major Risk
PB V Pad V-202 V-202 V9 Plan: Plan #7 1961.94 1950.00 218.02 29.96 188.09 Pass: Major Risk
Field: Prudhoe Bay
Site: PB V Pad
Well: Plan V-Ill (N-U)
Wellpath: Plan V-HI
V-107 (V-107)
e
-294
·······200
·····100
V-201 (V-20l)
V-I04 (V-I04) ,
"
-0
90
100
e
'-200
-294
180 194
L
Travelling Cylinder Azimuth (TFO+AZI) [deg] vs Centre to Centre Separation [100ft/in]
"
~
c
o
'fl
~
'"
o
11
ð
o
, \ 1" I )/
vji
-
~ .. It"""
. .,. .. \ .~.. I"'~" .,.........
.'.'. , ~ite: B VPª<l -ol \:
P
, ...... .......... ,..... AT, II, P Ian v~ii (r~-{ ') \
. /
: I! 1" Ian V-U ..... \ / :;
, " .. .
: 1 \/ ;
- : / 1 ..... .............
'v -............ ...... ... ..... ~
. ~
" ..... ........
: I .......... J , .;¡. /
V , ;
- /
. :. I . .
- /
..................... I ....... : ;
,
-- -- . ............. I ........ 1
;/ ,
~ ~ / ,
; ,
. V ---- //..... '-'''- /~-~ Ii
- --- >/
./// .---.-
- ¡ i . .
....... ., , .'
, . 1 1
- //// , ,
30- ¡ :
.
- = .-11
0/ 1
'" 1····1·· ,/ , ....
-...". ,............. '" / ......... , ~..
, ,~-- 1
20- , ; ;
..
- I ...
. .
- I
. :
- , ............... ............... ........ " i' ............ ....... ,
10- . 1 .
i ·ii : : . :
, :
,., ;.............. I ........... ........... 1 , 1 ...... .........
...
- .
- . ... 1· .
:.
I
0 , , , , , , , , , , , , , , , , , I , I , , , I , , , I , ,
0 2.0 510 .0 1000 I; 50 1500 1750 2000 2250
e
;;
ð
Measured Depth [250ft/in]
..
Polygon
]
2
3
4
3
Þ
§
~
§
p
Site: PB V Pad a
Drilling Target Conf.: 95'"
Description:
Map Northing: 5971095.00 ft
Map Easting: 59]245.00 ft
Latitude: 700]9'50.680N
+N/-S ft
I3 ]8.35
1067.]4
-]49.40
IOU]
Target: V -111 KTl
_ell: Plan V-]]] (N-U)
~sed on: Planned Program
Vertical Depth: 6510.00 ft below Mean Sea Leve]
Loca] +N/-S: 954.20 ft
Loca] +E/-W: 547.0] ft
Longitude: ]49°]5'35.622W
Northing ft
5972445.07
5972]95.07
5970945.00
597]] 95.00
+E/-W ft
2641.33
2738.32
-51.8 ]
-98.80
Easting ft
593869.96
593969.97
59]]95.00
59] ]44.99
200
2800
24-00
2000
1500
1200
800
4-00
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
LD 0 J CD N LD 0 J
N N N ('í) ('í) J J
o
o
o
J
o
o
CD
o
o
N
DATE
I I
055065
CHECK NO.
p055065
4/4/2003
DATE
VENDOR
DISCOUNT
NET
INVOICE / CREDIT MEMO
DESCRIPTION
GROSS
4/4/2003 INV# CK0401030
PERMIT TO DRILL FEE
y/\\\
RECE.\\JE.O
JU\'\ 1 0 'LGG3 .
\,ß\'\\ííÍ\SSIOt\
. & Gas Cons.
Mas\C.a \}I\ I\flc\'\Of3ge
THE ATTACHED CHECK IS IN PAYMENT FOR ITEMS DESCRIBED ABOVE.
TOTAL ..
PO BOX 196612
ANCHORAGE, AK99519-6612
PAY:
S· . P··· r. ~ ..,... "'II>. ,.,IIt, "'''1> ..·..1· "'1" .,.
..~ ."..;, J f .! ~~I.': It.~,. .1" .":
. .... .,'. ~ ::1.id. .~".I" 111I" ",.... ......,.....
DATE'
AMOUNT
J '. I **''''''**$1 oo.o~**~..*i_,.~
NOT VAL~:~~~(f~n~~~:.::;:I?:.:;:':{:~'~::::::~;::«; ~ ,"~
... , ..... , L~ ::.,.........~"..... _n..' ..' '(
é'-<f~\ {¡!:~i\:;;:~:i;:¿~::;0\_'
TO THE
ORDER
OF:
. .
. ." ". ...
ALASKA QIL & GAS CONSERVATION COMMISSION
333 W 7TH AVENUE
SUITE 100
ANCHORAGE, AK 99501-3539
April 4, 2003
III D 5 5 D b Sill I: D L. ¡. 2 D ~ B 11 5 I: D ¡. 2 ? 8 11 bill
H
e
e
Rev: 07/10/02
C\jody\templates
e
.
TRANSMIT AL LETTER CHECK LIST
CIRCLE APPROPRIATE LETTERlPARAGRAPHS TO
BE INCLUDED IN TRANSMITTAL LETTER
WELL NAME
PTD#
CHECK WHAT
APPLIES
ADD-ONS
(OPTIONS)
MULTI
LATERAL
(If API number
last two (2) digits
are between 60-69)
PILOT
(PH)
"CLUE"
The permit is for a new wellbore segment of
existing well ~
Permit No, API No.
Production should continue to be reported as
a function' of the original API number stated
above.
HOLE In accordance with 20 AAC 25.005(t), all
records, data and logs acquired for the pilot
hole must be clearly differentiated in both
name (name on permit plus PH)
and API number (SO
70/80) from records, data and logs acquired
for well (name on permit).
SPACING
EXCEPTION
DRY DITCH
SAMPLE
The permit is approved subject to full
compliance with 20 AAC 25.055. Approval to
peñorate and produce is contingent upon
issuance of a conservation order approving a
spacing exception.
(Company Name) assumes the liability of any
protest to the spacing . exception that may
occur.
All dry ditch sample sets submitted to the
Commission must be in no greater than 30'
sample intervals from below the permafrost
or from where samples are first caught and
10' sample intervals through target zones.
WEI:-iLfERM,rr CHECKLíST Company BP EXPLORATION (ALASKA) INC Well Name: PRUDHOE BAY U BORE V-111 Program DEV Well bore seg 0
PTD#: 2031030 Field & Pool PRUDHOE BAY, BOREALIS OIL - 640130 Initial ClassfType DEV I 1-01L GeoArea Unit 11650 On/Off Shore ~ Annular Disposal 0
Administration 1 P~rmitfee attacheø_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2 _Leas~_numberappropriate_ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
3 _U_nlque wellnam~_aod lJl!mb_er _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
4 WelUQcat~d In_a_d_efil'!eøpool_ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
5 WeJUQcat~d proper _dlstance_ from driJling ul'!itb_oUl'!d_ary_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
6 WeJUQcat~d proper _dlstance_ from Qtber welJs_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
7 _S_uffjciel'!tacreage_aYailable in_drillilJg unjt_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
8 Jrd~viated, js weJlbQre platil'!cJuded _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
9 _Operator ol'!ly affected party _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
10 _Operator bas_approprlate_bond InJor~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
11 P~(I1]it c.ao be Issued wjtbQut conservaJiol'! order _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ Y~s _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Appr Date 12 P~rmitcan be IssuedwitbQut ad_mil'!istratÌlle_approvaJ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
RPC 6/10/2003 13 Can permit be approved before 15-daywait Yes
14 WeJUQcated wlthil'! area and_strata _authorIzed byJnjectioo Ord~r # (puUOil in_comm~nts>-<FQr_NA - - - - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - e
15 AJlweIJs-'ftithinJl4Juile_area_ofreYiewid~lJtified(ForservjCjwe[lOI'!M_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
16 Pre-produ~ediojector; øurat.io_n_ofpre-proøuctiool~ss_than3mol'!tbs_(For_serviceweltQnJy)_ _ _NA _ _ _ _ _ _ _ _ _. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
17 _AÇMPFjl'!ding_ofCon$i$teocy_has beeRissued_forJhis proiect _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
18 _C90du_ctor strillgprov[ded _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _
19 _S_urfaCj_casill9-PJotects alLknowll USDWs _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
20 _CMTvoladeQl!ateJo circ_utateo_n_COl'!d_uctor_& SUJtcsg _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
21 _CMT v9l adeQuateJo tie-in Jong string to_surf csg_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ No_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
22 _CMTwilJ coyer_all kl'!ownpro_ductiye bQri¡¡:ons_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ NA _ _ _ _ _ Slotte_d< _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
23 _C_asing designs adeQua_te for C,.T, B.&_permafrost _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
24 AøequateJankageßJ re_serve pit _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ . NabofS_9_ES< _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
25 JtaJe-ørilL has_a_ to,.403 fQr abandOllment be~n apPJoved _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
26 Aøequate-'^le!lboresepªration_propose~L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
27 Jtdivertenequired, doe!> jtmeet reguJatiol'!s_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
28 _DJiUilJg fluid_program sc.hematic_&e(tuipJistadequate _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y~s _ _ _ _ _ _ _ Max MW_tO<3_ppg._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
29 _B_OPEs, dO Jhey meetreguJatiol'! . . . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y~s _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _
30 BOPE-PIes!> raJing appropriate;_test to_(pu_t psig in_commel'!ts)_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y~s _ _ _ _ _ . _ Test t040QO_psi. _MS~ 2740 psi. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
31CMke_manifold compJies w/API R~-53 (May B4L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
32 Work will occur withoutoperatjonshutdown_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
33 Js presence_of H2S gas_probable _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ No_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
34 MecbanicaLcol'!djUoo of wells wlthil'! 80R yerified (For_s_ervjçe w~1J ollly) _ _ _ _ _ _ _ _ _ . _NA _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Engineering
Appr Date
WGA 6/11/2003
Geology
Appr
RPC
Date
6/10/2003
Geologic
Commissioner:
OIÇ
e
35 P~(I1]it can be ISSl!ed w/o hydrogen s_ulfide meas~re!> _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
36 _D_atapJeseoted on pote_ntial oveJpressureZOl'!e!> _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
37 _S~ism[c_analysjs_ of !>haJlow gas zones_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ . _
38 _S~abed _col'!ditiolJ survey -iif off-sh_ore) _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
39 _ Conta_ct l'!amelphOlleJor_weekly progress_reports [e¡cploratory _oolYI- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Date:
Engineering
Commissioner:
Date
Public ~
Commissioner ~ Date
¡:;;;
~~
~
oò/ J I f q .3
e
e
Well History File
APPENDIX
Information of detailed nature that is not
particularly germane to the Well Permitting Process
but is part of the history file.
To improve the readability of the Well History file and to
simplify finding information, information of this
nature is accumulated at the end of the file under APPENDIX.
No special effort has been made to chronologically
organize this category of information.
e
e
Date: 07-14-2006
Transmittal Number:92796
BPXA WELL DATA TRANSMITTAL
Enclosed are the materials listed below. ex 2) If you have any questions, please contact me in the
PDC at 564-4091
SW Name
Date Contractor Log Run Top Depth Bottom Depth Log Type
PETROGRAPHIC ANALYSIS
03-01-2006 ARP,LLC REPORT
PETROGRAPHIC ANALYSIS
03-01-2006 ARP,LLC CD-RON!1t I '-'l ~ t) ,
V-111PB1
V-111PB1
LJ dJJ
Please Sign and Return one copy of this transmittal.
Thank You,
Andy Farmer
Petrotechnical Data Center
Attn: Don Inee
Susan Nisbet
Scott Cooley
Glenn Fredrick
Linda Starr
Howard Okland
~ " J}.U- D'" ~
, "Q, c/" \.. _ ¡J
\~J"'\
'( . """t<\$'~';;I'
~)V;l"~ t;~ ~~..J
\J (~±
Petrotechnical Data Center LR2-1
900 E, Benson Blvd, PO Box 196612
Anchorage, AK 99519-6612
;<O'3-(l)~
F,' { <L
.a 0') · , O:!Þ
PETROGRAPHIC ANALYSIS OF THE
M AND 0 SANDS, 4000-4725',
BP V-IIIPBl, ORION FIELD,
NORTH SLOPE, AK
; . "~;., i'
, é
,'~!<~. ~) ~~.
,'I , ,; I '
, '" ~.'.'.
James J. Hickey
Applied Reservoir Petrology, LLC
March, 2006
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
SUMMARY
Conventional cores from the BP V-Ill PB 1 in Orion Field were recovered from multiple
reservoir horizons ofthe Schrader Bluff Formation, ranging from the Mb1 through the
OBf Sands. A wide range of routine and special core analyses was carried out on a total
of nearly 600 plugs from the cored interval. This petrographic study is part of the effort
to describe the reservoir at many scales, and to enable results from the core to be
extrapolated to other wells and locations in the field. The goals of the petrographic study
are to: (1) describe and document the textural, mineralogical, and pore system
characteristics of the reservoir sands; and (2) to establish the pore-scale controls on
measured petrophysical properties (such as electrical properties and relative permeability)
as a guide to the appropriate extrapolation of the petrophysical analyses of plugs from
this core to other areas. The petrographic study consisted of:
· the description and photomicrography ofthin sections from 139 core plugs;
. quantification of sandstone composition and texture via point counts for 43 samples;
. X-ray di:ffi-action estimates of modal mineralogy (especially clay mineralogy) for 47
samples;
· textural measurements of39 samples by laser particle size analysis; and
· scanning electron microscope investigations of pore-level minerals for 9 samples.
The XRD, LPSA, and SEM studies were carried out by Core Lab (Houston), and the
results are integrated here with new thin-section data. A considerable effort was made to
select samples for thin sections and new XRD analyses that came from plugs used for
special core analyses, and where possible to apply more than one petrographic technique
to the same sample, forming a consistent basis for correlations between selected
petrographic parameters and the petrophysical measurements.
Schrader Bluff sandstones in the V-Ill PB 1 are largely very fine-grained, well sorted,
compacted but only lightly cemented, and composed primarily of quartz and various
metasedimentary and volcanic lithic fragments. More proximal facies are up to fme-
grained, with little or no clay matrix. More distal facies are silty, with moderate to
common biogenic clay as burrow walls, burrow fill, and dispersed matrix. LPSA grain-
size data correlate with point-count data, but are consistently too fine by about 25
microns. Many ofthe lithic fragments comprising the sand grain framework are
argillaceous, resulting in a relatively high content of structural clay in most of the
sandstones. Common secondary detrital phases include chert, alkali and plagioclase
feldspars, micas, dolomite, and stable heavy minerals. Sand provenance exhibits at least
two cycles of evolving composition (OBe to OBc, and OBb to Mbl), with more volcanic-
rich sands at the base of each cycle replaced by sands dominated by metasedimentary
detritus towards the top. Widespread (though typically minor volumetrically) authigenic
phases include calcite (as scattered concretions), siderite (as micritized matrix), kaolinite
eas pore-filling aggregates of booklets), pyrite (pore-lining microcrystals), heulandite (a
pore-lining tabular zeolite cement) and smectite (as a thin grain-coating clay). There are
important stratigraphic (and, to a lesser extent, facies) controls on sand composition and
diagenesis. The most important of these is the increase in unstable volcanic material in
the older zones (at a maximum in the OBe Sand), which is associated with anomalous
gamma ray response and significant amounts of authigenic smectite grain coats and
2
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
heulandite cement. Otherwise, well-cemented sandstones are rare and largely confmed to
scattered calcite concretionary horizons. For most sands, reservoir quality is a function
of sand grain size and matrix content, i.e., depositional facies. The youngest zone, the
Mb 1, is the most proximal depositionally (distributary channel sands), and is distinct
texturally and compositionally rrom the older sands ofthe 0 Series. The 0 Sands are a
series of stacked shoreface parasequences, in which reservoir quality tracks the proximal-
distal trends in depositional facies (modified locally by the volcanic-related diagenesis).
Mechanical compaction, including slight to moderate deformation of ductile grains, is the
dominant diagenetic process in most of these sandstones. Because ofthe high lithic
content, most of the sandstones are relatively ductile-rich (Mb 1 and OA sands less so).
There are no significant depth trends in the degree of deformation or overall extent of
compaction: the depth range is limited, and other factors, such as ductile content and the
presence of early cements, are also important. Most ofthe authigenic phases in these
sands predate any significant compaction; when sufficient amounts (10-15%?) of
mechanically competent cements such as calcite or heulandite are present, compaction is
inhibited. Calcite concretions are associated with carbonate shells and volcanic glass.
Kaolinite content increases in more proximal facies, whereas pyrite increases in more
distal facies. Heulandite and grain-coating smectite are restricted to the volcanic-rich
sands at the base ofthe interval, particularly the OBe Sand; traces of smectite coats can
be found up into the OA Sand. XRD results indicate that kaolinite is the dominant clay in
the Mbl and upper OA Sand, but well-crystallized (bentonitic) smectite is the primary
clay in all deeper sands. There is a narrow (10') transition zone within the OA between
the kaolinitic and smectitic sands. Most of the smectite detected by XRD is present as
altered tuffaceous volcanic rragments, and reworked tuffaceous matrix in shalier facies.
For most measures of reservoir quality or petrophysical properties, depositional facies are
a reliable basis for statistical transforms and reservoir-scale modeling (although some
adjustments must be made for anomalies in the volcanic-enriched intervals around the
OBe). Most facies have a strong unimodal permeability distribution, with modal and
median values decreasing progressively in more distal facies. Petrofacies, based on
probabilistic discriminant analysis of wire line logs tied to core descriptions and routine
plug data, do a good job of separating petrophysically- important differences in rock
properties, and generally align closely with depositional facies. Most of the measured
petrophysical parameters (electrical properties, capillary pressure, relative permeability)
exhibit moderate to good correlation with petrographic textural criteria (mean grain size,
clay content). Exotic phases, such as grain-coating smectite or heulandite, are important
influences locally. Point-count data on the distribution of pore types (macropores,
mesopores, micro pores ) agree very well with parameters such as permeability and end-
point fluid saturations. With the petrographic calibration rrom this core, it is possible to
transform a facies model into a forward 3-dimensional model of fluid saturations and
permeabilities. Because these sandstones contain a mixture of structural and dispersed
clay, significant microporosity, and non-clay radiogenic phases, no single wire line log is
adequate to evaluate the reservoir properly. OR does not distinguish different types of
clay distribution, and the neutron log is insensitive to clay content in the sandstones. A
multi-log statistical approac~ calibrated by core and petrography (e.g., OAMLS) is the
preferred method of formation evaluation.
3
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
TABLE OF CONTENTS
SUMMARY ...................... ............................................................................................. 2
TABLE OF C.ONTENTS ..............................................................................................4
LIST OF FIGURES.. ................................. ........... ..... .... ....... ............ .............. ...... ............5
LIST OF TABLES.... ...... ............. ............. .... ....... ........ ...... ....... ..... ............. .....................9
INTR 0 Due TI ON........... ...... ............. ............................ .............. ........ ....... ................ 11
PE TR OG RAPHY ....... .............................. ............... ...................... ........... ............. ...... 13
SAMPLE SELECTION .. .... ...... ................ ...... ....... ....... ..................... ......... ............... ...... 13
MErnODS ..... ...... ..... ......... .................... ...................................... .... ....... .................... 18
TEXTURE ..... .... ..... ..... ..... ........ ......... ... ........... ....... ..... ........... ........................ .............22
Point count vs. LPSA.... .... ........... ................... ... .......... ................. .............. ...... ..... 26
Clay content....................... ................ ......... ..... ......... ............ ...................... .......... 27
DETRITAL.................................................................................................................. 35
X-ray Dtfj'raction results. ...... ............ ....... .............. ........ ........... ........ ......... ............ 41
DIAGENETIC............................................................................................................... 45
Compaction .................. ........................... .............................................................. 45
Authigenic phases......... ........................ ................................. ................................ 50
RESERVOIR QUALITY ...................... ................................ ......................... ...... ............ 62
INTERPRETATIONS...... ......... ........ .............. ............. ... ...... ........ .......... ......... ................ 66
Stratigraphic ........................ .................. ................................................. .............. 66
Depositional facies.................................... .. .......................................................... 68
Petrofacies ......................... ........... ....................... .......... ......................... .............. 73
PETROPHYSICAL APPLICATIONS ......................................................................79
ROUTINE CORE ANALySES................... ........... ....... ........ ............. .......................... ...... 81
Porosity............... .............. ............ ............................................................ ............ 81
Permeability.......... ................. ....... ......................... ............. ....................... ........... 84
Grain Density............................................ ............................................................ 92
ELEC1RICAL PROPERTIES ......... .... ... ... .......... ... ...... ......... ........ .............. ........ ..... .......... 95
MERCURY INJECTION CAPILLARY PRESSURE..................................... ......................... 106
AIRfOIL CAPILLARY PRESSURE ......... '" ........... ....... .......... .... .......... ....... ......... ..... ...... 120
RELATIVE PERMEABILITY .... ........ ... ........... ......... ........ ... ......... ............. ............ ......... 125
WIRELINE LOG RESPONSE ............ .......... .............. ............ ...................... ........... ........ 136
GAMLS .................................................................................................................. 141
APPENDICES .............. ..... ............. ........................ .......... ........... .......... .................... 146
FILES ON CD. .... .... ...... ..... ........... ........ ........ ..... ...... ........ .......... ............. ........ ... ........ 146
PHOTOMICROGRAPHS.... .......................... ....... ....... .......... ......... ......... .... ....... ............ 147
4
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
List of Figures
Figure 1. Location map, Schrader Bluff/West Sak cored wells, western PBU and KRU 11
Figure 2. Coring program and summary of results, V -lllPB 1...................................... 12
Figure 3. Schematic petrographic log ofthin section observations, Mb1 and OA Sands,
V-Ill PB 1 ............................................................................................................. 19
Figure 4. Schematic petrographic log of thin section observations, OBa through OBc
Sands, V-Ill PB 1 .... ....... .......... ........ .... ... ....... .... ...... ............. ..... ........ ...... .............20
Figure 5. Schematic petrographic log of thin section observations, OBd through OBf
Sands..................................................................................................................... 21
Figure 6. Crossplot of mean grain size by LPSA vs. point-count methods for the same
samples.... ................. ..... .................................... ....... ............ .................. .............. 26
Figure 7. Grain size distribution by size class, via point-count and LPSA methods....... 27
Figure 8. Comparison of point count vs. LPSA measurements of clay-sized material... 28
Figure 9. Comparison of point-count clay-sized vs. XRD clay mineral estimates for
common samples....... .................. ...................... ....................... .............. .......... ..... 30
Figure 10. Crossplot of point-count clay-bearing categories vs. XRD clay mineral
content. ........... .................. ................ ........ ....................... ..................................... 30
Figure 11. Crossplot of point-count smectite vs. XRD smectite estimates ..................... 31
Figure 12. X-ray diffractograms of two smectite-bearing samples: 4420.25' (OA) and
4681.15' (OBe). ..... ........ .............................. ........................... ...... ........................ 33
Figure 13. SEM photomicrograph of clay-free quartz grain surface, 4420.25' (OA) ..... 34
Figure 14. High-magnification SEM view of authigenic grain-coating smectite, 4681.15'
(OBe) ......... .... ................................................. ................. ................ ..................... 34
Figure 15. Monocrystalline quartz - Feldspar - Totallithics ternary plot, averaged by
stratigraphic zone........ ............ ...... ................ ................ .............. .......................... 36
Figure 16. Total quartz - Feldspars - Lithics ternary diagram, averaged by stratigraphic
zone....................................................................................................................... 37
Figure 17. Total quartz - Feldspars - Lithics ternary diagram, by individual samples... 37
Figure 18. Quartz - Chert - Lithics ternary plot, averaged by stratigraphic zone........... 38
Figure 19. Volcanic - Metamorphic - Sedimentary rock fragments ternary diagram,
averaged by zone ......... .... ....... ......... .... ........... ......... .......... ............. ............. .......... 38
Figure 20. Volcanic rock fragments - Metamorphic rock fragments - Plagioclase ternary
plot, by zone.... ................... ............ .............................................. ......... ......... .......39
Figure 21. Monocrystalline quartz - Potassium feldspar - Plagioclase feldspar ternary
plot, by zone ...... ....................... .......... ....... .......... ........... ..... ....... ........................... 39
Figure 22. Selected photomicrographs of detrital grain types, V-111PBl .....................40
Figure 23. Depth plot of smectite abundance (wt%) from XRD analyses ...................... 43
Figure 24. Smectite - Kaolinite - Chlorite clay mineral ternary plot, averaged by
depositional facies.. ...... .... ....... ............ ............. ........................ .... .........................44
Figure 25. Rigid grains - Ductile grains - Matrix ternary plot, averaged by stratigraphic
zone....................................................................................................................... 45
Figure 26. Undeformed - Slightly deformed - Extensively deformed ductile grains
ternary, by zone................. ............. .... ................... ...... ..................... ....... ..............46
Figure 27. Undeformed - Slightly deformed - Extensively deformed mica flakes ternary,
by zone ......... ....... .......... ............ ...... ... ......... ..... ......... ........ ........... ......... ...... .... ......46
5
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
.'
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Figure 28. Ductile grain content vs. intergranular volume, for low- and high-cement
samples................................................................................................................. 48
Figure 29. Pore-filling cement vs. intergranular volume, for low- and high-cement
samples ............. .... ................. ....................... ... ...... ....... ......... ...... ........... ..... ...... ...49
Figure 30. SEM photomicrograph of bladed heulandite crystals, 4681.15' (OBe Sand) 52
Figure 31. Selected photomicrographs of authigenic phases, V-Ill PB 1: calcite, kaolinite
..............................................................................................................................53
Figure 32. More photomicrographs of authigenic phases, V-Ill PB I: pyrite, siderite,
smectite, heulandite . ..... ..... ...................... ....... ...................... .................... ........ ..... 54
Figure 33. Scanning electron photomicrographs of 4051.35' and 4471.25' - Core Labs
photos....... ....... ............................................................... .................. ..................... 55
Figure 34. Scanning electron photomicrographs of 4566.80' and 4721.70' - Core Labs
photos.................................................................................................................... 56
Figure 35. Illite - Smectite - Chlorite clay mineral ternary plot, averaged by stratigraphic
zone............ ........... ..... .............. ................................ ........ ............. ....... .......... ....... 57
Figure 36. Illite - Smectite - Kaolinite clay mineral ternary plot, averaged by
stratigraphic zone......... .......... ........... ....... ........ ..... ....... .......... ............................... 57
Figure 37. Smectite - Kaolinite - CWorite clay mineral ternary plot, averaged by
stratigraphic zone............................. ...................................... ........ ....................... 58
Figure 38. Smectite - Carbonate - Pyrite ternary diagram, averaged by stratigraphic zone
..............................................................................................................................58
Figure 39. Petrographic stratigraphy log, OA through OBb Sands, V-IIIPBI.............. 59
Figure 40. Petrographic stratigraphy log, OBc through OBd Sands, V-I11PBl ............ 60
Figure 41. Petrographic stratigraphy log, OBd through OBfSands, V-llIPBl............. 61
Figure 42. Pores - Cement - Matrix ternary diagram for all point-count samples, by zone
..............................................................................................................................62
Figure 43. Macropores - Mesopores - Micropores ternary plot, averaged by stratigraphic
zone....................................................................................................................... 63
Figure 44. Photomicrographs illustrating a range of reservoir quality........................... 65
Figure 45. Porosity vs. horizontal permeability crossplot for all data points, coded by
depositional facies......... .... ........... ...... ..... .... ...... ....... ......... .................................... 71
Figure 46. Porosity vs. vertical permeability crossplot for all data points, coded by
depositional facies.... ........ ......... ...... ........................ ....................... ....................... 72
Figure 47. Diagram illustrating the five major lithofacies defined for the V-I11PBl 0
Sand interval.. ......... ................................................. ........... .................................. 73
Figure 48. Petrofacies identification rrom core lithofacies, wireline log response, and
poroperm data.................. ................... ........ .... ........... .............. ................. ..... ....... 74
Figure 49. Thin-section porosity vs. helium (core plug) porosity.................................. 82
Figure 50. Thin-section macropores vs. helium (core plug) porosity............................. 82
Figure 51. Core plug porosity vs. estimated microporosity ........................................... 83
Figure 52. Frequency distribution of horizontal plug permeabilities by stratigraphic zone
..............................................................................................................................84
Figure 53. Frequency distribution of horizontal plug permeabilities by depositional facies
.............................................................................................................................. 85
Figure 54. Median porosity vs. median permeability, averaged by depositional facies.. 87
Figure 55. Thin-section porosity vs. core plug horizontal permeability......................... 89
6
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Figure 56. Thin-section macropores vs. core plug horizontal permeability.................... 89
Figure 57. Core plug porosity and thin-section macropores vs. horizontal permeability 90
Figure 58. Macropores - Mesopores - Micropores ternary plot, grouped by horizontal
permeability .......................................................................................................... 91
Figure 59. Frequency distribution of grain density measurements, by stratigraphic zone
..............................................................................................................................92
Figure 60. Frequency distribution of grain density measurements, by depositional facies
..............................................................................................................................93
Figure 61. Core plug porosity vs. grain density, coded by depositional facies ...............94
Figure 62. Point-count mean grain size vs. formation factor ......................................... 96
Figure 63. Point-count %Clay-sized particles vs. formation factor................................ 96
Figure 64. Formation factor vs. horizontal plug permeability........................................ 97
Figure 65. XRD estimates of total smectite content vs. CEC......................................... 98
Figure 66. Qv vs. CEC, samples grouped by stratigraphic zone .................................... 99
Figure 67. Point-count smectite content vs. Qv........................................................... 100
Figure 68. Sum of matrix and ~mectite content vs. Qv................................................ 101
Figure 69. Smectite content ftom XRD vs. Qv ........................................................... 102
Figure 70. Photomicrograph of 4420.25' (OA): FF* = 10.65; Qv = 0.160................... 105
Figure 71. Photomicrograph of 4681.15' (OBe): FF* = 34.88, Qv = 1.549.................105
Figure 72. Mercury/air capillary pressure vs. wetting-phase saturation, averaged by
depositional facies..... .......... ........ .., ........................................ .......... ..... .............. 106
Figure 73. MICP data, averaged by facies, converted to height above ftee water level 107
Figure 74. Calculated relative pore volume as a function of pore throat radius, averaged
by facies.............................................................................................................. 107
Figure 75. Calculated relative pore volume as a function of pore throat radius, for lower
shoreface sands.. ....................... ................. .................... ...... ....... .............. ........... 108
Figure 76. Point-count mean grain size vs. Sw (402) ftom MICP data........................ 109
Figure 77. Point-count mean grain size vs. median pore throat size (R50) .................. 110
Figure 78. Point-count %clay-sized material vs. median pore throat radius (R50)....... 111
Figure 79. Macropores - Mesopores - Micropores ternary plot, grouped by Sw (402)
range................................................................................................................... 113
Figure 80. Macropores vs. median pore throat radii .................................................... 114
Figure 81. Macropores vs. calculated water saturation @402' above ftee water level. 114
Figure 82. Total thin-section porosity vs. median pore throat radii.............................. 115
Figure 83. Calculated microporosity vs. median pore throat radii ............................... 116
Figure 84. Photomicrograph of 4472.1' (OBa): median pore throat = 2.2 microns, Sw
( 402') = 29%....................................................................................................... 119
Figure 85. Photomicrograph of 4643.3' (OBd): median pore throat = 0.7 microns, Sw
(402') = 40%.... ......... ..... .................... ........... ....... ..... ..... ........ ....... ...................... 119
Figure 86. Air/oil Sw (50 psi) vs. horizontal permeability.......................................... 120
Figure 87. Air/oil Sw (50) and Hg/air Sw (402) vs. horizontal plug permeability........ 121
Figure 88. Point-count mean grain size vs. air/oil Sw (50 psi) .................................... 121
Figure 89. Microporosity vs. air/oil Sw (50 psi).......................................................... 122
Figure 90. Point-count macroporosity vs. air/oil Sw (50 psi) ...................................... 122
Figure 91. Photomicrograph of 4471.1' (OBa): 404 md, Sw (50 psi) = 25% ...............124
Figure 92. Photomicrograph of 4682.0' (OBe): 10 md, Sw (50 psi) = 43%................. 124
7
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Figure 93. Point-count mean grain size vs. irreducible water saturation (rrom relative
perm tests)........................................................................................................... 126
Figure 94. Total clay minerals (XRD) vs. irreducible water saturation (rrom relative
perm tests)........................................................................................................... 126
Figure 95. Macropores - Mesopores - Micropores ternary plot, grouped by measured
Swi...................................................................................................................... 127
Figure 96. Point-count mean grain size vs. fmal oil saturation (rrom relative perm tests)
............................................................................................................................ 128
Figure 97. Swi vs. Sofby stratigraphic zone, rrom relative permeability tests............. 128
Figure 98. Point-count mean grain size vs. brine permeability at final oil saturation... 129
Figure 99. Absolute horizontal plug permeability vs. irreducible water saturation (rrom
reI. perm tests) ..... .................... ..... ............. .... ............ ......... ..................... ...... ...... 130
Figure 100. Absolute horizontal plug permeability vs. brine permeability at Sof(rromrel.
perm tests)........................................................................................................... 130
Figure 101. Point-count mean grain size vs. end-point oil permeability (rrom reI. perm
tests)... .......... '" . .. ..... .. ... .. . .,. ..... ....... ...... ... ....... .. ......... .. .. .. .., . . .. . . .. ... ........ . '" ...... . . .. 131
Figure 102. Horizontal plug permeability vs. end-point oil permeability (rrom reI. perm
tests)..... ... ........ ..... ....... ......... .... ....... ......... ............ ..... .................. ......... ..... .......... 131
Figure 103. Macropores - Mesopores - Micropores ternary plot, grouped by measured
Ko @ Swi........ ........................ ..... ......... ............... ............ ........... ...... .................. 133
Figure 104. Photomicrograph of4408.5' (OA): Swi = 21%, Kw @ Sof= 253 md......135
Figure 105. Photomicrograph of 4640.15' (OBd): 8wi = 38%, Kw @ 80f= 8.5 md. .. 135
Figure 106. XRD clay minerals vs. gamma ray response, by stratigraphic zone .......... 136
Figure 107. XRD clay minerals vs. gamma ray response, by petrofacies..................... 137
Figure 108. Point-count estimate of clay matrix content vs. gamma ray response, by
stratigraphic zone ...... ..... .......................... ........ ................................. .................. 138
Figure 109. Point-count estimate of clay matrix and ductile grains vs. gamma ray
response.............................................................................................................. 138
Figure 110. XRD estimate oftotal clay minerals vs. neutron porosity......................... 139
Figure 111. Clay matrix content, rrom point counts, vs. neutron porosity................... 140
Figure 112. Cumulative mode probability plots for four GAMLS clustering runs, V-
111PB 1 ...... ..... ............ .............. ............ .......... .......... ........... ................ .......... ..... 142
Figure 113. Comparison of informal permeability predictions for several GAMLS
clustering runs. ............................... ...... ............ ...... ................ ........... ............ ...... 143
Figure 114. Measured core plug permeability vs. GAMLS predicted permeability..... 143
Figure 115. Composite wire1ine-core-GAMLS-petrographic log (see text for
explanations) ........... ....... .................... .., .... ...... ... ......... .................. ...................... 144
Figure 116. Composite wireline-facies-core-GAML8-petrographic log (see text for
explanations) ....................................................................................................... 145
8
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
List of Tables
Table 1. Petrographic sample distribution by stratigraphic zone.................................... 13
Table 2. Petrographic sample distribution by depositional facies .................................. 13
Table 3. Multi-page listing of petrographic samples and associated special core analyses
......... ........ ............ ............... ................... ............................................................... 17
Table 4. Summary of point-count grain size measurements (see text for discussion)..... 24
Table 5. Summary ofLPSA grain size measurements................................................... 25
Table 6. Summary of clay mineral-related point-count and XRD data for common
samples............. ................................ ..... .............. ................ ........ ... ...................... 29
Table 7. Average detrital composition by zone (%ftamework), V-lIIPB1 ................... 36
Table 8. XRD mineralogy, averaged by stratigraphic zone, for major phases................ 41
Table 9. XRD mineralogy, averaged by depositional facies, for major phases............... 41
Table 10. XRD clay mineralogy, averaged by stratigraphic zone .................................. 42
Table 11. Zonal averages (wt%) of smectite and kaolinite content................................ 42
Table 12. XRD clay mineralogy, averaged by depositional facies................................. 43
Table 13. Zonal averages of compaction parameters, V-IIIPB1 point-count data ........ 47
Table 14. Point-count abundances of authigenic phases, averaged by zone ...................51
Table 15. Point-count abundances of authigenic phases, averaged by depositional facies
.............................................................................................................................. 52
Table 16. Zonal averages of selected point-count parameters........................................ 67
Table 17. Zonal averages of permeability and Sw (402) for lower shoreface sands only67
Table 18. Facies averages of selected point-count textural measures, V-IIIPBI.......... 69
Table 19. Facies averages of selected point-count detrital and diagenetic categories, V-
I11PB 1 ........ ................... ... .... .......... ........... ................... ................. .......... ............ 69
Table 20. Facies averages of selected XRD mineral estimates, V -111PB 1....................69
Table 21. Average petrophysical properties by depositional facies, V-I11PBl .............70
Table 22. Facies-specific poroperm regression parameters and variance, horizontal
permeability. ............. ................ .......... '" .............. ........ .......... ........... ............... ..... 71
Table 23. Variances of core plug porosity and permeability, averaged by zone and by
facies..................................................................................................................... 72
Table 24. Number of core plugs common to depositional facies and petrofacies ........... 75
Table 25. Average petrophysical and petrographic properties by petrofacies ................ 76
Table 26. Variability within Petrofacies 4b by depositional facies ................................ 76
Table 27. Variability within Petrofacies 3 by depositional facies .................................. 77
Table 28. Average porosity and permeability by zone for the three reservoir petrofacies
..............................................................................................................................77
Table 29. Average irreducible water saturation and Qv by zone for the three reservoir
petrofacies............................................................................................................. 78
Table 30. Average XRD clays and point-count matrix by zone for the three reservoir
petrofacies....... ........... ...... .............. ...... ........................... ............ ..... ........... .......... 78
Table 31. Summary of petrographic analyses on SCAL samples................................... 79
Table 32. Stratigraphic and facies distribution of routine and special core analyses ...... 80
Table 33. Core plug porosity values (%BV) averaged by depositional facies ................ 81
Table 34. Arithmetic mean, median, and geometric mean of all plug permeability values
by zone... ......... ....... ..................... ......... .............. ........ .................... ...... ......... ........ 85
9
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Table 35. Arithmetic mean, median, and geometric mean of all horizontal permeability
values by facies.......................................................................................·......·..·..· 86
Table 36. Arithmetic mean, median, and geometric mean of vertical permeability values
by facies ... ....... ............ .... ....... ................. ....... ............ ................ ....... ........... ......... 88
Table 37. Average grain density by depositional facies................................................. 93
Table 38. Selected petrographic properties of plugs with electrical properties
measurements, Mbl through OBb Sands ............................................................. 103
Table 39. Selected petrographic properties of plugs with electrical properties
measurements, OBc through OBf Sands .............................................................. 104
Table 40. Predicted capillary properties for typical values of grain size, matrix, and
heulandite............................................................................................................ 112
Table 41. MICP and petrographic data for individual samples, Mb1 through OBc Sands
........ .......... .... .... ............................... ......... ...................... ............. .......... ............. 117
Table 42. MICP and petrographic data for individual samples, OBd through OBfSands
...................... ................ '" ................ ..................... ............... ............ ........... ........ 118
Table 43. Air/oil capillary pressure and petrographic data for individual samples ....... 123
Table 44. Estimated end-point brine permeabilities as a function of mean grain size.. 129
Table 45. Predicted irreducible saturation and end-point permeabilities based on average
facies properties..... ................ .... ........ ....... ....... .... ........... .,. .,. ............ .................. 132
Table 46. OiVbrine relative permeability and petrographic data for individual plug
samples............................................................................................................... 134
Table 47. List of photomicrographs, by depth, file name, magnification (field of view),
and subject ............................... ........ ......... ........................................... ............... 153
10
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
UCTION
A 398' interval of conventional core through the M and 0 Sands eSchrader
Formation) was recovered from the 11 I well esee Figure I for location in
Orion Field) as part of a major effort to characterize the reservoir and understand its
rock/fluid interactions, contributing to an optimized reservoir model and improved
development planning. discrete intervals of core were cut: from about 4042' to
4095' in the Mbl Sand, and a much longer, essentially continuous cored interval, 4380'
to 4725', from the OA through OBfSands (Figure 2). wide range of analyses has been
performed on the core material, ranging from routine core plug poroperm measurements
to electrical properties, capillary pressure (mercury and air/oil), and relative permeability.
This report is a summary of a petrographic study of the core, aimed at characterizing the
reservoir terms of texture, composition, and system, and to provide context for
evaluating wireline log responses and various core analyses. the extent possible,
the sample material used for the petrographic studies section, diffraction,
scanning microscope, laser particle size analysis) has been ends of the
actual core plugs used for core particularly special core analyses
(SCAL) such as electrical properties permeability. Another sample selection
was to complete coverage of the stratigraphic zones and
depositional facies present in cored of
samples are listed 1 eby
Areas of Current Schrader Bluff or West Sak Development
1. Location map, Schrader Bluff/West Sak cored wells, western PBU and KRU
11
I
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
---
11 1
Orion
Pro{Jram
~: Schrader Bluff 0 sands
Ugnu Mb1 ~and
Focus: Poro-perm, saturations,
electrical propertieß, capillary pressure,
relatIve permeabIlIty, mineralogy,
grain size, geocher'n, and reservoir
facies for log and reservoir model
calibration
Issues: Maximize r~covery in poorly
to unconsolidated sands.
Minimize invasion í:md damage for
high quality rock properties and
fluid saturation measurements,
CuriflY MtllIIULJ::s, Luw water content
mineral oil based mud to minimize
invasion and core jamming and to
maximize recovery, Baker Hydrolift
coring assembly,
Recovery: Cored 403 total feet and
recovered 398 feet using seven 60
foot core barrels (CIne intentional 45
foot core)
Cored 403 feet in 7 cores
Minor Sande Rec, 398 feet
2. Coring program and summary of results, V-IIIPBl
Core Condition: EX!::ellent Virtually no
coring induced damage or mud
filtrate invasion, "Native state" condition,
shales.
samples
concerns
clay mineralogy of
results, plus
accompanymg
smectite-related
12
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
PETROGRAPHY
Sample Selection
Nearly all petrographic samples were obtained 1Ì'om core plugs used for one or more
routine or special core analyses. As discussed above, an effort was made to ensure that
the petrographic sample suite covered fully the stratigraphic range ofthe cored interval
and of the various depositional facies inferred to be represented in the core. In so far as
possible, we tried to include samples 1Ì'om the full range of porosity and permeability,
and to obtain samples 1Ì'om as many different SCAL plugs as possible. In several cases,
the same plug was the subject of multiple petrographic studies (thin section, XRD, and/or
LPSA), in an attempt to cross-calibrate the different approaches. Below are summaries
of the stratigraphic (Table 1) and facies (Table 2) distribution ofthe samples. Following
that is a multi-page listing (Table 3) of individual samples, the type(s) of petrographic
analyses performed, and the SCAL test for which that plug was utilized esamples with no
SCAL method noted are 1Ì'om routine core plugs).
SAND Cored #Thin sections #Point counts #XRD #LPSA
Mbl 53' 13 4 6 4
OA 87' 22 7 8 6
OBa 38' 14 6 7 6
OBb 58' 13 4 6 4
OBc 49' 13 4 5 4
OBd 65' 37 9 9 9
OBe 38' 12 5 3 3
OBf 8' 7 4 3 3
Table 1. Petrographic sample distribution by stratigraphic zone
Number of petrographic samples (thin sections, point-counted thin sections, X-ray diffraction
analyses, laser particle size analyses) broken down by stratigraphic zone (Sand interval), for entire
cored interval. Cored = approximate number of feet cored and recovered for that facies
Depositional Facies Cored #Thin sections #Point counts #XRD #LPSA
Distributary Channel 35' 10 4 4 4
Bay, bay fill, splay 18' 3 0 2 0
Middle shoreface 31 ' 22 8 7 7
Proximal lower SF 46' 39 13 14 16
Lower shoreface 89' 45 17 12 12
Distal lower SF 47' 4 1 2 0
Lower offshore/shelf 125' 8 0 6 0
Table 2. Petrographic sample distribution by depositional facies
Number of petrographic samples (thin sections, point-counted thin sections, X-ray diffraction
analyses, laser particle size analyses) broken down by inferred depositional facies, for entire cored
interval. SF = shoreface. Cored = approximate number of feet cored and recovered for that facies
13
·
·
·
·
·
· en en ....
l- e::: (ij E
I- :::I
0 '0 8 0 ~ < 0 D. ... Õ
Q) .¡::; Q)
· z DEPTH e::: Q) 0::: w en 1:5 0 11. 1:::
< :;::; I/) .... 11.
I/) e::: X en Q) ~ "CD «
en :::I ~ ...J
· 0 'õ ill c:::
c::: (j) 11.
· 4042.95 X X X
· 4047.00 X
· 4049.00 X X X
4049.20 X X
· 4051.35 X X
· 4052.0 X X
· 4058. 0 X X
· ...... 4065.00 X X X
.a
~ 4066.5 X X X X
· 4068. 00 X X
· 4076.0 X X
· 4077.00 X X X
4079.00 X X
· 4079.15 X X
· 4083.00 X X X
· 4085.0 X
· 4398.10 X X
4399.0 X X
· 4406.25 X X
· 4407.10 X X X X
· 4407.65 X X
4408.25 X
· 4408.50 X X X X X
· 4408.70 X X
· 4408.95 X X
· 4409.10 X
4409.25 X X X X X
· < 4409.40 X X X
· 0 4409.55 X X
· 4409.65 X
4413.00 X X
· 4413.30 X X
· 4415.00 X X X
· 4416.00 X X
· 4418.65 X
4419.00 X X
· 4420.25 X X X x X
· 4422.00 X X
· 4423.1 X X
· 4423.10 X X X
·
· 14
·
·
·
·
·
·
·
· CI) CI) -
I- ~ ãi E
I- :3
Q 'C 0 0 ~ « 0 Il. .... Õ
· z () () 0 CI) ";:: Q ()
DEPTH ~ 0:: w Õ a.. 1::
« :;:¡ U) - Il.
· CI) :3 U) ~ >< CI) ....I () :E ã5 «
0 ~ "õ ûj 0::
0:: - D-
· CI)
4428.00 X X X
· « 4430.00 X X
0
· 4464.0 X
· 4470.70 X X
· 4471.10 X X X X
4471.25 X X
· 4472.10 X X X X X
· 4472.25 X X
· 4472.8 X
· 4472.95 X X X X X
4473.1 X X
· co 4473.55 X
III
· 0 4474.10 X X
· 4475,00 X X X
4477.00 X
· 4480.0 X
· 4480.00 X X X X
· 4489.00 X X
· 4489.40 X X X X
4494.00 X X X X
· 4505.0 X X
· 4507.0 X X
· 4509.00 X X
4510.00 X X
· 4511.00 X X X
· 4511.15 X X X X
· 4515.00 X X X X
-
.c 4517.00 X X X
· III
0 4518.00 X X
· 4518.80 X X X
· 4520.0 X X
· 4542.00 X X X
4552.0 X
· 4558.0 X
· 4559.0 X
·
·
·
·
·
· 15
·
·
·
·
·
·
·
· en CJ) .....
l- e:: ãi E
I- ~
Q 'C 0 C ~ ~ 0 a. ... Õ
· z () () 0 'c 0 ()
DEPTH c: 0:: W Õ a. 1::
« :¡::¡ en ..... Q.. ~
· en ~ en e:: X en ..J Q) ëD <
0 ~ 'õ üi 0::
0:: ..... a.
· en
4564.0 X X
· 4564.00 X X
· 4566.1 X X
· 4566.50 X X X
· 4566.80 X X
4567.00 X X X X
· 4570.00 X X X
· 0
m 4570.75 X X X x X
0
· 4578.0 X
· 4579.00 X X X X
4588.0 X
· 4595,00 X X
· 4597.0 X
· 4609.0 X
4610.0 X
· 4614.0 X X
· 4616.00 X X x X
· 4616.15 X X X
· 4618.00 X
4623.00 X X
· 4624.00 X X X
· 4626.20 X X
· 4627.20 X X
4627.40 X X X
· 4627.70 X X
· 4628.05 X
· 4628.20 X
"tJ
m 4628.35 X X X X X
· 0
4628.50 X
· 4628.65 X
· 4628.75 X X
· 4630.80 X X X X X
4633.00 X X X
· 4634.0 X X
· 4635.70 X X X
· 4637.8 X
· 4639.55 X
4639.70 X X X X X
· 4640.15 X X
· 4640.45 X
·
· 16
·
·
·
·
·
·
·
· CI) CI) -
l- e: (ij E
J: I- :¡
Q 'C 0 a ~ ~ <> a. .... Õ
l- () .¡;: ()
· z a. e: () <> 0::: ill Õ 0 a.
« fI) 0- 1:::
ill :;::; fI) - >< CI) ~ <
CI) :¡ e: -J () ã)
· Q 0 e 'õ ¡¡¡ e::::
e:::: - a..
CI)
· 4641.1 X X
· 4643.30 X X X X X
· 4643.75 X X
· 4643.90 X X X
4646.0 X
· 4646.00 X X X X
· 'C
co 4654.0 X
0
· 4654.00 X
· 4657.00 X X X
4661.80 X X X
· 4661.95 X X
· 4671.0 X
· 4674.0 X
4679.0 X X
· 4681.00 X X
· 4681.15 X X X x X
· 4682.00 X X X X
· 4685.00 X X
4689,0 X X
· ()
co 4692.60 X X X X
0
· 4692.75 X
· 4694.0 X X X
4696.00 X X X
· 4702.0 X
· 4708.8 X
· 4710.8 X
· 4718.8 X X
4719.8 X X X
· 4720.8 X X
· - 4721 AO X X X X
co
· 0 4721.70 X X
· 4721.8 X X X
4722.8 X X X X
· 4723.8 X X
· Table 3. Multi-page listing of petrographic samples and associated special core analyses
· Summary of all petrographic samples (thin sections, X-ray diffraction), listing the type of thin section
· (routine vs. impregnated at overburden stress), if selected for point count; and if separate trims of the
same sample were used for X-ray diffiaction (XRD), scanning electron microscope (SEM) analyses,
· or laser particle size analysis (LPSA); and associated special core analyses on the corresponding plug
· (electrical properties, mercury injection capillary pressure (MICP), relative permeability, air/oil Pc.
·
· 17
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Methods
All thin sections, both those prepared with routine impregnation and those impregnated at
overburden stress conditions, have been examined and described qualitatively. Grain size
estimates and relative abundances of selected petrographic parameters for all samples are
illustrated in Figure 3 (Mbl and OA), Figure 4 (OBa to OBc), and Figure 5 (OBd to
OBf). Several digital photomicrographs, at varying magnifications, were obtained for
each sample. These photographs (captured at a resolution of 1024 x 768) are present as
JPEG files on the accompanying CD. The description of the thin sections also served as
a screening tool for selecting candidates for point counts (solely ITom the stress-
impregnated thin sections), based on a mix of stratigraphic and petrophysical criteria.
The thin sections selected for point counting were stained (potassium and dual carbonate)
and sent to Dr. Mike Wilson, a petrographer with extensive North Slope experience. His
point count approach consisted of identifying 300 points, spaced over the area of the thin
section, followed by measurements of the long axes of200 detrital grains (ignoring mica
flakes and similar anomalous shapes).
The categories used to classify the 300 points counted are based on experience of the
range of grain types, diagenetic phases and types of occurrence, and pore types, as well as
a focus on parameters critical to reservoir quality issues. Since mechanical compaction is
a major control on reservoir quality in these relatively lightly cemented sandstones, the
types and degrees of defonnation of ductile grains has been tracked very carefully. For
each sample, appropriate grains were classified into one ofthree categories of
defonnation intensity (undeformed, slightly deformed, extensively deformed) for each of
the following ductile grain types: organic :fragments, shale/mudstone :fragments,
unidentified ductile grains, clay peloids, phyllite :&agments, muscovite, biotite, chlorite,
metasiltstone/metashale :fragments, and mica/chlorite schist :&agments. Among more
rigid grains, :&acturing and leaching are more important processes than mechanical
defonnation: :&actured and leached grains were tallied separately for quartz, chert,
plagioclase, and alkali feldspar. Visible pores were classified as intergranular or
transparticulate (intragranular), and by size (2-20 microns vs. >20 microns). The full list
of point-count categories is included in the original Wilson data files (BPV-
IIIPointCountData6-04.xls and BPV -lllPointCountData( extrasamples)9-04.xls), and
summarized in the point-count database worksheet in VI 1 I_Petrog.xls (on the
accompanying CD). Grain size measurements are captured using projection of the thin
section image onto a digitizing tablet, calibrated to the magnification used. The 200
grains measured for each sample are reported (in phi units) in the original data files
(BPV-ll I GrainSizeData6-04.xls and BPV-IIIGrainSizeData(extrasamples)9-04.xls);
grain size distributions, by size class, are summarized in the point-count data worksheet
ofVlll_Petrog.xls.
18
Grain Size ë () :ê
() $ () - E
E .t: '6 !:!2
> () :~ t) c 0 ã3
c: E Ü ro (5
..... w (5 () J:::,
ï:: () ::;¡ E '3 0
C .0 ro en
=> 0.. >. ü:: ill '6 '- ~ en () -
() ro ..... c () ro I ()
0 Depth Ü ü5 > ü:: :;;¡: Matrix Pyrite ü 0
4042.95
4047.00
4049,00
4052,0
ü 4058.0
0 4065,00
,,-
.0 4066,5
:;;¡: 4068,00
4076,0
4077,00
4079,00
4083,00
4085.0
4398.10
4399,0
4407,10
4407,65
4408,25
4408,50
4408. 95
4409,10
4409,25
IJ.. 4409.40
en
:2
4409,65
4413,00
4415,00
4416,00
4419,00
4420,25
4422,00
4423,1
4423,10
4428,00
4430,00
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
3. Schematic petrographic log of thin section observations, Mb 1 and OA Sands, V-IllPBl
Schematic depth log of selected petrographic parameters, listed by sample (note: no vertical scale).
Samples are identified by stratigraphic zone (Unit) and depositional facies (Dep The grain size
range (clay through medium sand) is indicated for each sample, as are the relative amounts of matrix
(brown = clay, blue = micritic siderite), pyrite, carbonate cement, kaolinite, smectite, heulandite,
detrital dolomite, and shells (CF = calcareous AF = arenaceous foraminifer), More filled
squares (left to right) and/or darker colors for Pyrite, and Carb Cement greater relative
abundance, Depositional facies include distributary channel (DC), bay fill middle shoreface
(MSF), and lower shoreface (LSF). Additional facies on other figures include proximal lower
shoreface (PLSF), distal lower shoreface (DLSF), and lower offshore to shelf (LOS).
19
·
·
·
·
·
·
·
·
·
>
c
:g UJ
::J g-
o
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Depth
4471.10
4472,10
4472,8
4472,95
4473,1
4473,55
4474,10
4475,00
4480.0
4480,00
4489,00
4489.40
4494,00
4505,0
4507,0
4509,00
4510,00
4511,00
4511.15
4515,00
4517.00
4518,00
4518.80
4520,0
4542,00
4552,0
4559,0
4564,0
4564,00
4566,1
4566,50
4567. 00
4570,00
4570,75
4578.0
4579,00
4588,0
4595.00
4597,0
4610,0
ë (j)
(j) (j) $ :t=
E $ - 'õ E !!2
(j) ï:: 1:5 c 0 ã)
ü (5 (j) ro (5
E :¡ 0 ..c
.c ro (j)
'- :::.:::: (j) (j) (j)
ro I
Ü 0
Grain Size
>-
~
ü
(j)
c
¡¡:
?
AF
AF
Figure 4. Schematic petrographic log of thin section observations, OBa through OBc Sands, V -Ill PB 1
Matrix
?
20
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
>
<::
<:: W
::J âr
o
Depth
4614,0
4616.00
4616.15
4618,00
4623.00
4624,00
4626.20
4627.20
4627.40
4627.70
4628,05
4628.20
4628.35
4628.50
4628,65
4628.75
4630.80
4633.00
4634. °
4635 70
4637.8
4639.55
4639.70
4640,15
4640,45
4641.1
4643.30
4643.75
4643.90
4646,0
464600
4654,0
4654.00
4657.00
4661,80
4661,95
4674.0
4679,0
468100
4681.15
4682,00
4685,00
4689.0
4692,60
4692.75
46940
469600
4702.0
4710,8
4718.8
47198
4720.8
4721,40
4721,8
4722,8
4723,8
Grain Size
<:: 2 2
Q) 2 ,g¡ 'Ë
E '6 !!2
Q) :~ õ <: 0 (i)
Ü '0 Q) -'!1 Õ ,,<:
.0 co E ::¡ 0 (f)
ro ::.::: (f) Q) (¡)
Ü I 0
J
co
Õ
Q)
<:
ü:
E
::¡
'6
Q)
:;¡¡;
Matrix
CF
5. Schematic petrographic log of thin section observations, OBd through OBfSands
21
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Texture
This study utilized three direct methods of describing the texture (grain size distribution,
matrix content) of sandstones:
· qualitative visual estimates from all thin sections (see Figure 3 through Figure 5),
· measurements ofthe apparent long axes of200 grains for all point count samples,
and
· laser particle size analysis of selected samples.
In addition, some evidence (albeit potentially misleading) about the clay content of a
sample can be gleaned from X-ray diffraction analysis. XRD reports the estimated total
abundance of clay minerals (which is not equivalent to the amount of clay-sized material,
which may consist of many non-clay minerals as well), and can make no distinction as to
the distribution of the clays (e.g., dispersed as matrix or present within argillaceous lithic
fragments as structural clay). Clay content is an important parameter for formation
evaluation, as matrix clay has a major impact on permeability, and much ofthe clay of
any type will be a primary control on microporosity and water saturation. For a limited
number of samples, the texture was measured by more than one of the more quantitative
methods (point-count, LPSA, XRD), and so some preliminary cross-calibration is
possible. It is desirable to identify the simplest and quickest reliable method of
measuring sand texture (especially clay content), for use in wells without conventional
core. In terms of sample preparation and analysis time, LPSA is far superior to either
point counts or XRD, so it will be worthwhile to understand and calibrate the grain size
data obtained by LPSA.
The majority ofV-lllPBl sandstones (particularly those from the 0 Sands) are very
fme-grained and very well sorted. Samples from more distal facies may be sandy
siltstones; many of the sandstones in the most proximal facies (e.g., Mbl) are lower fme-
grained. Clay matrix is almost exclusively biogenic, present as (1) discrete burrow walls
or burrow fill, and (2) as dispersed intergranular matrix with no clearly identifiable
discrete burrow structures. In rare instances, usually associated with hiatal surfaces or
other stratigraphic contacts, the clay matrix has been replaced by microcrystalline
siderite; such replacement is most common in the OA Sand, and quite limited in the older
sands. As a rule, because the intensity of burrowing and incorporation of clay into
burrow structures generally increases in an offshore direction in a shoreface depositional
setting, there is a good correlation between decreasing sand grain size and increasing clay
content (thereby dealing a double blow to the average size and connectivity of the pore
system).
22
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Point count grain size data are summarized in Table 4, below. For each sample,
identified by stratigraphic zone and depositional environment, the table lists:
· mean grain size (MGS, in microns),
· overall sorting (SORT, in phi units),
· rramework mean grain size (Fw _MGS, in microns, incorporating only rramework
grains 30 microns in diameter or larger),
· rramework sorting (Fw_SORT, in phi units, taking into account only grains 30
microns across or larger), and
· the rrequency percent distributions within grain size classes (clay, silt, very fine
sand, fine sand, and medium sand).
Table 5 is a similar summary listing ofLPSA data. Samples that have been measured
both by point counting and by LPSA are highlighted in
23
·
·
·
·
·
· CMD SAND DepEnv MGS SORT Fw_MGS Fw_SORT %CLA Y %SILT %VFINE %FINE %MED
· 4049.00 Mb1 DC 0.146 0.364 0.146 0.363 0.0 0.0 25.5 no 2.5
· 4065.00 Mb1 DC 0.113 0.314 0.113 0.313 0.0 0.5 69.5 30,0 0.0
4066.5 Mb1 DC 0,123 0.388 0.123 0.387 0.0 0.0 57.0 41.5 1.5
· 4077.00 Mb1 DC 0.086 1.221 0.096 0.520 2.0 5.0 78,0 12.0 3,0
· 4407.10 OA MSF 0.099 0.747 0.104 0.351 0.5 3.0 75.0 21,5 0,0
· 4408.5 OA MSF 0.099 0.727 0.102 0.334 0,5 2.5 78.0 19.0 0,0
· 4409.25 OA MSF 0.092 0.796 0.097 0.364 1.0 4.0 80.5 14.5 0,0
4409.40 OA MSF 0.108 0.666 0.112 0.321 0.5 0.0 73.5 26.0 0,0
· 4415.00 OA MSF 0.102 0.323 0.102 0.323 0.0 1.0 80.0 19,0 0.0
· 4420.25 OA MSF 0.088 1.084 0.097 0.357 2.0 3.5 81.0 13.5 0.0
'. 4423.10 OA MSF 0,086 1.507 0.102 0.367 3.0 2.0 80.0 14.5 0.5
4471 ü OBs PLSF 0.096 0.356 0.096 0.355 0.0 2.0 84.5 13,5 0.0
· 4472 OBs PLSF 0,090 0.638 0.092 0,366 0,5 6.5 80.5 12,5 0.0
· 4412.95 OBs PLSF 0,086 0.759 0.090 0.365 1.0 5.0 83,5 10.5 0,0
· 4480,00 OBs LSF 0.063 1.692 0.079 0.394 4,0 17.0 75.5 3,5 0,0
· 4489.40 OBs MSF 0,080 1.256 0.091 0.314 2.5 4.0 85.5 8,0 0,0
4494.00 OBs LSF 0.054 2.136 0.084 0.375 9.0 11.5 73.0 6.5 0,0
· 4511.00 OBb PLSF 0.083 1.337 0.097 0.326 3.0 2.0 82.5 12.5 0.0
· 4511.15 OBb PLSF 0,058 2.114 0,090 0.330 9,0 4.5 78.5 8.0 0,0
· 4515.00 OBb PLSF 0.067 1.774 0.086 0.307 4.5 4.0 87.0 4.5 0.0
· 4517.00 OBb PLSF 0.059 2.058 0.085 0.342 6.5 9,0 78.5 6.0 0.0
4567,00 OBc PLSF 0.083 0.395 0.083 0.394 0.0 14.5 79.0 6.0 0.5
· 4570.00 OBc PLSF 0.090 1.305 0.102 0.492 2.5 4,5 69,0 22,5 1.5
· 4570,75 OBc PLSF 0.098 1,699 0.122 0.477 3.5 0.5 54.0 38.5 3.5
· 4579,00 OBc DLSF 0.028 2.765 0.063 0.425 15,5 45.0 37.5 1.5 0,5
4616,00 OBd LSF 0.078 1.171 0.088 0,322 2.0 5.5 87.0 5.5 0.0
· 4628.35 OBd PLSF 0.101 1.240 0.114 0.352 2.0 1.0 65.0 31.5 0,5
· 4630.8 OBd PLSF 0.092 0.892 0.098 0.374 1.0 3.5 78.5 17.0 0.0
· 4633.00 OBd PLSF 0.090 0.612 0.092 0.363 0.5 6.5 81.0 12.0 0.0
· 4635.70 OBd LSF 0,070 1.827 0.093 0.324 5.0 2.5 81.0 11,5 0.0
4639 7 OBd LSF 0.Q75 1.122 0.083 0.324 1.5 11.5 82.5 4.5 0,0
· 4643.3 OBd LSF 0.080 0.686 0.083 0.327 0.5 10,0 86.5 3.0 0.0
· 4646,00 OBd LSF 0.081 1,010 0.089 0.352 1.5 7.0 84.0 7.5 0.0
· 4657,00 OBd LSF 0.048 2.388 0.084 0.329 10.5 7.0 79,5 3.0 0.0
4681.15 OBe LSF 0.106 0.690 0.111 0.361 1.0 0.5 66.5 32.0 0,0
· 468200 OBe LSF 0.077 1.700 0.097 0.364 4.0 4.5 76.0 15.5 0.0
· 4692.60 OBe LSF 0.080 1.551 0.098 0.423 4.0 3.0 77.5 15.0 0,5
· 4694.0 OBe LSF 0.088 1.514 0.106 0.487 3.5 2.0 68.0 26.0 0,5
· 4696.00 OBe LSF 0.100 1.704 0.124 0,503 3.5 0.5 51.5 41.5 3,0
4719,8 OBt LSF 0,089 1.485 0.108 0.359 3.5 0.5 65.5 30.5 0.0
· 4721.40 OBt LSF 0.079 1.698 0.099 0.337 4.0 1.5 79.0 15.5 0.0
· 4721.8 OBt LSF 0.073 2.029 0.105 0.347 6.5 0.5 72.0 21,0 0.0
· 4722,8 OBt LSF 0,071 1,936 0.099 0.345 6.0 1.5 78.5 14.0 0.0
· Table 4. Summary of point-count grain size measurements (see text for discussion)
·
· 24
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
VS.
samples were grain size measurements count (long
axis measurements of200 grains LPSA. Typically, grain size
measurements sections tend to underestimate particle sizes
unavoidable geometric effects of a two-dimensional view. The
particles may also to that obtained SIevmg or
methods, because microscope because clays
are tightly to counted a
disaggregated state. A LPSA measurements
indicates mean is strongly correlated,
LPSA are
this range of
due to
clay-sized
100
MGS
80
UJ
C)
:t 60
«
UJ
Q..
..J
40
= 0,7511*MGS(PtCt) - 3,4852
= 0.4351
20
20
40
60
ptet MGS
80
100
6. Crossplot of mean size by LPSA vs. methods for the same samples
Crossplot of mean grain size as determined methods MGS, microns) against the
mean grain size calculated from the laser particle size analysis results (LPSA MGS, The
linear regression line for the two variables is together with the of the regression
line and the regression coefficient.
7, below, compares
count versions as
is remarkably consistent
measurements, exhibiting a very well
are less consistent, appear to less sorted, a more skewed
observations most samples are very sorted, supporting
data. comparison suggests LPSA data accurately record relative
mean grain size to a lesser size but also
not be calibrated over this range, absolute grain size
values be used (e.g., to calculate considerable
26
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
., 4408.5PC ··4408.5LP
90 4409PC 4409LP
~4423PC ~4423LP
80 ---+~- 4471 PC "4471LP
~~-··~4472,1PC 4472.9PC
70 4472.1LP 4472.9LP
4480PC 4480LP
~... ···4567PC 4567LP
60 4628PC 4628LP
4630PC 4630LP
50 4639PC 4639LP
..~.~~ 4643PC 4643LP
40 ¡ 4646PC ~4646LP
4682PC . ·4682LP
30 -
20
o
CLAY
SILT
VFINE
FINE
MED
CRS
VCRS+
7. Grain size distribution by size class, via
and LPSA methods
Frequency histograms of the measured size distributions (frequency % by size class) for
individual samples. Distributions based on count data are indicated by solid lines;
distributions from LPSA measurements are shown by dashed lines. With one exception,
the data are consistent
are
content
1
1
samples:
41
analyses;
41
.
.
are a
content: logs respond
values clay-sized
sandstones); it is
(argillaceous
clay
response of logs to
are not
approximation is good most
among dispersed clay (matrix), clay
interbeds), logs do so directly, nor
clay-size values counts or
(potassium-bearing) clays, and
occurs small amounts many V -
metasedimentary
flakes). Muscovite biotite mica
response, even on
clay
flakes are
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
content of rock fragments is liable to vary widely, depending on nature and
It be to
sandstones is to that
clay results, below). neutron
water-saturated
clay crystal current dataset
methods of clay
degree
assume clay
adjacent shale
log responds to
micro porosity ) and as
presents a rare
some cases on
As discussed are samples
laser size analysis. There are 19
analysis were performed, on
other. 8 compares the
14 common samples.
as observed
LPSA.
spaees
disaggregate
can
10
8
>-
« 6
..J
()
~
.,
« 4
U)
Il.
..J
2
0
0
~~,._.~._~-
-~-,
8
2
4 6
Pì Ct o/oCLA Y
10
8. Comparison of point count VS. LPSA measurements of clay-sized material
Crossplot of the % clay-sized material as determined by point-count methods (PtCt %CLA Y) VS. that
determined by laser particle size analysis (LPSA %CLA V). The overall correlation is poor, with
LPSA values tending to be higher than the corresponding estimates.
count and XRD
sandstone.
it is possible to
some coarser clays),
clay (e.g., clay
28
·
·
-
·
·
..
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
argillaceous lithic fragments, glauconite). Using the two techniques together can provide
much more useful information than can be garnered from either approach alone. Table 6
is a summary of clay-related data for samples with point-count and XRD results.
Point Count X-ray Diffraction
Depth SÄND Matrix Lithics Smectite Mica XRD Clay XRD Smec
4049.00 Mb1 0.0 11.0 0.0 0.0 3 0
4066.50 Mb1 0.0 12.0 0.0 0.0 9 0
4408.50 OA 1.3 19.7 0.0 0.3 10 0
4420.25 OA 1.7 22.3 0.0 1.0 19 9
4471.10 OBa 0.3 27.0 0.0 0.7 14 7
4472.10 OBa 0.7 30.0 0.0 1.3 12 5
4489.40 OBa 3.0 24.0 0.0 1.0 17 7
4494.00 OBa 8.3 25.0 1.0 1.3 20 10
4511.15 OBb 9.0 25.7 0.0 3.0 17 9
4515.00 OBb 4.3 33.0 0.0 0.3 19 9
4567.00 OBc 0.0 20.7 0.0 0.3 17 9
4570.75 OBc 2.3 16.3 0.3 1.3 14 8
4579.00 OBc 15.7 19.7 0.0 3.0 23 10
4616.00 OBd 3.0 25.7 0.0 1.7 22 12
4681.15 OBe 2.0 21.0 4.0 0.0 13 9
4692.60 OBe 5.7 24.3 2.0 0.0 15 10
4721.40 OBf 4.0 24.0 0.0 1.3 15 9
4721.80 OBf 5.7 23.0 1.0 0.3 12 7
4722.80 OBf 8.3 24.7 1.3 1.0 17 11
Table 6. Summary of clay mineral-related point-count and XRD data for common samples
This table is a summary listing of clay mineral-related parameters trom point counts and XRD
analyses, for those samples subject to both techniques (or for samples within 0.2' of each other). Note
in particular the contrast in smectite content, which is uniformly low and near zero, except in the OBe
and OBfSands, according to the point-count data, but which is consistently around 10%, except for
the Mbl and uppermost OA, according to the XRD results.
29
Ii
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
I 25
20
5~
o
o
5
10
15
20
9.
vs. XRD
mineral estimates for common
20 ----~
c
!ex:
)(
5-
-,._-~
~,~-"~
o
o
10 20 30
Mtx Llthics Smec
40
50
L-
10.
Crossplot ofthe
matrix + Lithic
determined
linear regression
vs. XRD
mineral content.
+ Lithics + Smec + Mica = Clay
+ Smectite + against the total clay mineral content as
diffraction (XRD Clay, A modest positive correlation is with a
XRD "" 0,44 '* Point-cmUl.t + r = 0.54.
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
œ
-
;¡ 6
u
œ
E
UJ 4
2
0
0
2
Smectite
3
1
5
n.
smectite vs. XRD smectite estimates
Crossplot of the estimated smectite content based on counts, Smectite VS. the
estimate from Smectite wt %, for all for which both analyses are
available. No correlation is the XRD appears to up a level of 8-10%
smectite that is not counts.
3
I I
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
The identification of smectite ftom the X-ray difftaction patterns is indisputable (Figure
12); in fact, the smectite patterns are unusually sharp and well-crystallized, typical of
bentonites and related altered volcanic ash deposits. As a check, careful SEM studies of
a number of samples with high XRD smectite values but no point-count smectite, and
samples with both XRD and point-count smectite, were undertaken (Figure 13). No
authigenic smectite could be identified in samples that had no point-count smectite. In
samples with point-count smectite (generally zeolite-rich), a small amount of probable
smectitic clay coats and alteration rinds could be recognized (consistent with point-count
values ofa few percent at most). The best explanation for the apparent disagreement
between XRD and point-count smectite data is that a significant proportion of the
argillaceous lithic grains present in these sandstones (up through the middle ofthe OA)
are in fact quite smectite-rich. XRD recognizes this smectite, but in point counts the
grains are counted as various lithic ftagment types, and cannot be identified as to their
clay mineral content. Crossplots ofXRD smectite against various combinations of point-
count smectite and different lithic ftagment types (including volcanic: Figure 10) are a
slight improvement over point-count smectite alone (Figure 11), but still do not exhibit a
strong correlation. Given the apparent bentonitic nature of the smectite, it is likely that
the smectite-rich ftagments would appear to be rather non-de script shale and argillite
grains, and have not been recognized as volcanic in origin (understandable given the very
fme grain size of most samples). Grains classified as volcanic rock ftagments, in this size
range, tend to be at least partially crystallized, with a devitrified ground mass or
plagioclase laths and phenocrysts. An altered ash (bentonite) would be very difficult to
recognize. Volcanic glass has been recognized in several samples, so it is not
unreasonable to believe that altered ash ftagments are present as well.
32
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
... I'" "'!'" I'" I'" f'" ¡, ,. .,. I"'!'" I'" ,., I'" ... i'" I'" I'" '" ¡,., '" i
[!J30482GgOD,ra",j 03048213 4420,26 glycol <2T(O)=0,266>
f!J30482G,:¡26.raw 03048213 460Lj5 øJvcol <27(1))=0.235>
10
15
TWð- Theta (deg)
20
205
30
of two
4420.25'
of reflection
green to the trom 4420.25', the red
reflections of~mectite at about 6,9, and 2-theta are
vs. reflection the
to 468 U 5'. The basal
and consistent between the two
C:,\ÚFFS\NANCY,\B442025S.ÚF 4429~25 £1;.
Log: 407B0 Mag=B09 FOV=132.7S3153 20.9KV 10-2B-2994 11:07a~
20.0uM
Figure 13. SEM photomicrograph of clay-tree quartz grain surface, 4420.25' (OA)
C:'\TIFFS'\NANCY'\B4S8115A.TIF46B1.15 £1;.
Log: 49780 Mag=4999 FOV=26.552631 29.9KV 19-28-2994 91:91p~
5.Ø9uM
Figure 14. High-magnification SEM view of authigenic grain-coating smectite, 4681.15' (OBe)
SEM photomicrographs of clay-tree grain surfaces at 4420.25' (with some authigenic kaolinite in the
lower center of the view), and of smectite-coated grain surfaces at 4681.15'. Scale bars are at lower
left of each photomicrograph: Figure 13 is at 800X, Figure 14 at 4000X. Photos by N. Houghton
(Core Lab, Houston).
34
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Detrital
Sandstones ofthe M and 0 Sands in the V-111PB1 are composed predominantly of
quartz and lithic :&agments. Extrabasinal sediments are derived :&om a mixture of
recycled siliciclastic sediments and low-grade metasediments (Brookian), and recycled
dolomitic rocks, with episodic input :&om an active pyroclastic volcanic center. With the
exception of the volcanic-related detritus, composition is relatively uniform throughout,
with small systematic stratigraphic trends in the relative proportions of rock :&agment
types. Intrabasinal material (shell :&agments, foraminifera, glauconite, rip-ups) is
generally minor and concentrated in specific facies. All sands are lithic arenites and
sublitharenites, dominated by mono crystalline quartz. Important secondary grain types
include polycrystalline quartz and chert, shale and argillite rock :&agments, quartz-mica
schists, alkali feldspar, plagioclase feldspar (especially in the more volcanic-rich
horizons), detrital dolomite crystals, a variety oflarge mica flakes (including muscovite,
biotite, and metamorphic chlorite), volcanic rock :&agments (mostly intermediate to
acidic in composition, with devitrification textures; occasionally more mafic with
plagioclase laths and small phenocrysts), and stable heavy minerals (zircon, tourmaline,
rutile, sphene). Many samples have traces of a bright greenish, altered, microporous rock
:&agment type, of presumed metavolcanic origin. There are rare instances (in the OBb
Sand) where the heavy mineral suite includes traces of amphibole. Intrabasinal grain
types, present in trace to minor quantities, include shale rip-up clasts, macrofossil shell
:&agments (mostly mollusks), calcareous and arenaceous foraminiferal tests, and
glauconite clay pellets.
Table 7 presents a summary ofthe zonal averages for major detrital grain types. A series
of ternary plots illustrate the compositional character of the sands, both as individual
samples and as zonal averages. Figure 15 is a plot of quartz - feldspar - totallithics
(including polycrystalline quartz and chert) average zonal compositions. Figure 16
(zonal averages) and Figure 17 (individual samples) are total quartz (including
polycrystalline quartz and chert) - feldspars -lithics ternary plots. A ternary plot of
quartz- chert -lithics is included as Figure 18 (zonal averages). Other plots of zonal
averages include volcanic rock :&agments - metamorphic rock :&agments - sedimentary
rock :&agments (Figure 19), volcanic :&agments - metamorphic :&agments - plagioclase
feldspar (Figure 20), and monocrystalline quartz - potassium feldspar - plagioclase
feldspar (Figure 21). Some of the trends evident in these plots are discussed in the
following paragraphs.
The Schrader Bluff sandstones in the V-Ill PB 1 are lithic arenites in composition,
dominated by quartz, chert, and metasedimentary rock :&agments; feldspars, volcanics,
sedimentary rock :&agments and detrital dolomite crystals are common phases as well. It
is possible that the volcanic component has been slightly underestimated: XRD data
suggests that bentonitic tuff :&agments may be present through much of the interval, but
have not been recognized as such in thin section (such grains would be non-descript
argillaceous :&agments that would probably be identified as sedimentary or
metasedimentary rock :&agments). Secular trends in detrital composition are discussed
further in the section on Stratigraphic interpretations.
35
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
ern
1ìlb1
Qð.
0Ba
0I3b
'f'0Bc
0Bd
0Ba
0Bf
U
20 30 40 60 70 80 90
15. Totallithics averaged zone
Ternary total and totallithics
chert and averaged zone.
32.4
Table 7. Average detrital
Zonal averages
7.3
3.9
1
13.1 11.1
11 1
15.1 1
zone
detrital phases, based on
feldspars (plagioclase and
23.2
V~llIPB
6.2
and
rock
detrital dolomite crystals and shell
converted to % detrital framework.
·
·
·
·
·
· C!
·
· 1'vb1
· Qí\
0Ba
· 0Bb
· "f Œ3c
· Â 08d
0Be
· œ
·
·
·
·
·
· Uthics
· 20 30 40 50 60 70 80 90
·
· 16. Total averaged zone
· and chert and
· and lithic
·
· at
·
· ,80
·
·
·
·
·
·
· Fspa- Lí!hics
· 10 20 30 4û 50 60 70 80 90
· 17. Total - Lithics individual
· oftotal {Qt, and chert and
· total feldspars, and lithic zone.
·
·
·
·
·
·
·
·
·
·
· Quartz
· iVb1
· OA
· œa
0Bb
· .cec
· . J¡.0Bd
.. œa
· œ
·
·
·
·
· O1ert lithìcs
· 10 20 30 40 50 60 70 60 90
·
· 18. - Chert - Lithics zone
· Ternary and and lithic fragments,
·
· VRF
·
· iVb1
· OA
œa
· 0Bb
· .cec
0Bd
· œa
· œ
·
·
·
· .
· M1F SRF
· 10 20 30 40 50 60 70 80 90
· 19. Volcanic- rock zone
· rock and
·
·
·
·
·
·
·
·
·
·
·
· VRF
· 1IIb1
· QiI.,
· œa
CI!b
· " œc
· .&0Bd
œa
· œ
·
·
·
· "
· IlifF .
· 10 20 30 40 50 60 70 80 00
·
· 20, Volcanic rock rock zone
ofvoIcanic rock rock and
· averaged by
·
· em
·
· 1IIb1
+QiI.,
· C&
· 08b
" œc
· .& 03d
· C&
œ
·
·
·
·
· !<spar Rag
· 10 20 30 40 50 60 70 SO 00
·
· 21. quartz - Potassium zone
· feldspar (Kspar), and plagioclase
zone.
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
..
..
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
X-ray Diffraction results
Forty-seven samples have been analyzed by X-ray diffraction methods (Core Lab, Mike
Kelton) for estimates of modal mineralogy, with an emphasis on clay minerals.
Complete results are available in the Vl11_Petrog.xls spreadsheet file. The X-ray
diffraction (XRD) samples were run in several different groups, including one early
group as part of a formation damage study, and a small group of shale samples analyzed
to compare the clay assemblage with that of associated sandstones. Details ofthe
analytical conditions and sample preparation techniques can be found in the
corresponding reports from Core Lab. Summaries of the major minerals present,
averaged by zone (Table 8) and facies (Table 9), are presented in the following tables.
The major phases identified by XRD are quartz, plagioclase and alkali feldspars,
dolomite (ferroan in part), pyrite, and clay minerals. Minor phases present in a few
samples include calcite, siderite, and heulandite (called clinoptilolite in the early Core
Lab reports). The clay mineral assemblage is dominated by illite, kaolinite, and chlorite
in the Mbl and upper OA; and by smectite, illite, and chlorite in the lower sands (Table
10). See Figure 35 through Figure 37 for ternary plots of clay mineral stratigraphic
distribution.
SAND Quartz Kspar Plag Dol Sid Pyrite Heul Clays
Mbl 90 1 1 0 1 0 0 7
OA 66 3 10 3 1 1 0 17
OBa 65 4 10 5 0 2 0 15
OBb 57 3 11 5 1 3 0 21
OBc 55 2 11 4 5 2 0 20
OBd 57 4 12 3 0 2 1 20
OBe 55 5 14 0 1 2 5 18
OBf 59 3 16 1 2 5 0 15
Table 8. XRD mineralogy, averaged by stratigraphic zone, for major phases
Zonal averages of major mineral phases (wt%) as determined by XRD: quartz, potassium feldspar
(Kspar), plagioclase feldspar (Plag), dolomite (Dol, includes ferroan dolomite), siderite (Sid), pyrite
(includes maracasite), heulandite (Heul, originally identified as clinoptilolite), and total clay minerals.
Note the low feldspar and clay content in Mbl, and the high plagioclase content in OBe
and OBi Heulandite is confmed to the most volcanic-rich zones.
FACIES Quartz Kspar Plag Dol Sid Pyrite Heul Clays
DC 93 1 0 0 0 0 0 5
MSF 69 3 10 3 1 1 0 14
PLSF 62 4 10 4 2 3 0 15
LSF 58 4 13 3 1 3 2 17
DLSF 51 3 12 5 1 3 0 27
LOS 52 4 12 3 0 1 0 28
Table 9. XRD mineralogy, averaged by depositional facies, for major phases
Facies averages of major mineral phases (wt%) as determined by XRD: quartz, potassium feldspar
(Kspar), plagioclase feldspar (Plag), dolomite (Dol, includes ferroan dolomite), siderite (Sid), pyrite
(includes maracasite), heulandite (Heul, originally identified as clinoptilolite), and total clay minerals.
41
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
There is a progressive increase in clay content in the more distal facies, with a
concomitant decrease in quartz abundance. Pyrite is slightly more abundant further
offshore; other minerals do not exhibit any strong facies trends.
SAND
Mbl
OA
OBa
OBb
OBc
OBd
OBe
OBf
Clays
7
17
15
21
20
20
18
15
Smectite
o
21
49
50
48
50
64
60
IIIite/Mica
22
30
23
25
24
25
21
23
Kaolinite
61
22
7
6
10
6
3
2
Chlorite
17
28
21
19
18
19
12
15
Table 10. XRD clay mineralogy, averaged by stratigraphic zone
Zonal averages of total clay minerals (wt%) and relative amounts of smectite (includes minor high-
expandability illite/smectite), illite/mica, kaolinite, and chlorite.
Looking more specifically at the transition zone within the OA Sand (around 4410-20'
CMD), from smectite-rich clay assemblage in the lower part ofthe zone to a kaolinite-
rich, smectite-free assemblage in the upper part of the zone, the following table looks at
zonal averages of absolute amounts (rather than relative amounts, as in Table 10) of
kaolinite and smectite, while subdividing the OA.
SAND
Mbl
Upper OA
Lower OA
OBa
OBb
OBc
OBd
OBe
OBf
Smectite
o
1
10
7
10
9
10
11
9
Kaolinite
4
4
2
1
1
2
1
1
o
Table 11. Zonal averages (wt%) of smectite and kaolinite content
Zonal averages of absolute abundances (XRD, wt%) of smectite and kaolinite clays. The OA Sand
has been subdivided into upper (above 4419' core depth) and lower (below 4419') sub-zones, with the
boundary placed within a transition zone :trom a smectitic to a kaolinitic clay assemblage.
In a few samples, the smectitic clay was identified as a high-expandability (80-90%)
mixed-layer illite/smectite. The smectitic component ofthese mixed-layer clays has been
used to calculate averages. In most cases, the smectite clay is very well crystallized, and
resembles the bentonitic alteration product of volcanic ash (Figure 12). Figure 23 is a
depth plot of the absolute smectite abundances in individual samples.
42
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
18 -
16
14
12
10
8
6
4
2
o
4350 4400
Smectite
4450 4500
4550 4600 4650
4700 4750
Figure 23. Depth plot of smectite abundance (wt%) from XRD analyses
most zones, smectite abundance is distinctly the lower, more distal part of the
parasequences. Mixed-layer illite/smectite makes up smectitic clay
distal lower shoreface, and of the smectitic clay in offshore/shelf sample
(Table 12). For discussions and illustrations smectite and its distribution, see
discussion of clay content section on Texture.
FACIES Clays Smectite lHitelMica Kaolinite Chlorite
5 0 21 63 17
MSF 14 19 29 24 28
15 50 23 7 20
LSF 17 56 23 5 17
27 29 7 21
LOS 28 47 29 8 18
Table 12. XRD clay mineralogy, averaged by depositional facies
Facies averages of total day minerals (wt%) and relative amounts of smectite (includes minor high-
expandability illite/smectite), kaolinite, and chlorite.
Kaolinite is more common most proximal facies (especially the
channel facies developed only to a lesser extent the most
shoreface deposits Sands). Pure, smectite is most
abundant proximal lower shorefaee lower shoreface sandstones, while mixed-
layer illite/smectite is dominant clay more distal environments. 24 is a
ternary plot illustrating contrast clay assemblage among various
depositional facies. difference nature of the smectitic clay - pure and
in shoreface sands, high-expandability mixed-layer in more offshore
muddy settings - may a different location for clay (tuffaeeous fragments
sands, clay matrix offshore sediments), and/or a greater degree of
reworking degradation smectite deposited the offshore
43
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Smectite
DC
MSF
PLSF
LSF
DLSF
LOS
Kaol
10 20 30 40 50 60 70 80 90
Chi
24. Smectite - Kaolinite - Chlorite clay mineral ternary plot, averaged by depositional facies
Ternary plot of the normalized abundances of smectite (induding the smectitic component of mixed
illite/smectite), kaolinite, and chlorite, averaged by depositional facies: channel (DC),
middle shoreface (MSF), proximal lower shoreface lower shoreface distal lower
shoreface (LSF), and lower offshore/shelf (LOS).
Samples a channel setting are smectite-free, are also exclusively
Mbl Sand. shoreface sands are from OA smectite-free) and
zones, so the intermediate position MSF average may mixing of
smectite-free and smectite-rich stratigraphic occurrences. Samples aU the more
distal depositional facies are from zones, and share a very clay
assemblage. Samples described as "shale" nearly lower
offshore/shelf facies classification comes a distal lower shoreface
interval). Shale samples have a higher clay content sands,
clay assemblage is very of sands
BP-Sunbury undertook a mineralogical analysis (CI1002-8 XRD.doc) of seven samples
V -Ill 1 core as part of an assessment of damage potential. Based
on X-ray diffraction results on clay fractions, samples from the upper OA Sand are
( <10% of clay assemblage), two samples lower OA
moderate amounts smectite 5-30%), two samples OBd are
smectite-rich (about 85% of clay suite). These results are very to those
obtained present study, and stratigraphic controls on
44
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Diagenetic
Diagenesis of Schrader sandstones in the V-IIIPBI is dominated by mechanical
compaction, with the precipitation of significant authigenic cements largely confined to
the volcanic-rich sands and around the OBe and to isolated carbonate concretions.
Compaction
Mechanical compaction is the primary diagenetic mechanism altering the porosity and
permeability of reservoir sandstones V-Ill PB 1 core. Mechanical compaction
comprises the decrease in the absolute bulk volume of the sediment. At shallow
depths, individual grains are squeezed closer together, and rearrange themselves via
rotation and slippage. Sand grains relatively low compressive strength (termed
"ductile" grains) begin to deform plastically increasing wherever such grains
are common enough to be load-bearing. deformation becomes progressively more
severe increasing Ultimately, highly ductile grains can be squashed entirely,
oozing adjacent intergranular pores to what is termed "pseudomatrix", no
longer recognizable as discrete grains. extreme level of deformation is rarely ever
approached the relatively shallow reservoir sands of the V-II , but strongly
deformed grains are common these ductile-rich deposits. Grains a higher
compressive strength (known as "rigid" grains) behave brittlely than plastically.
Grains crystal boundaries (such as chert) or cleavage planes (feldspars) can
by fracturing when stresses exceed the mechanical strength of the grain. Some
fracturing of grains is observed in the V-Ill PB 1. mechanical composition of
sands (in terms of relative amounts rigid and ductile grains clay matrix),
averaged by zone, is illustrated Figure 25. The degree of plastic deformation of
grains is compared by zone Figure 26 ductiles) and Figure 27 (mica
Rgid
1Vb1
+OA
0Ba
0Bb
'If 08c
Á 0Bd
0Be
0Bf
D.Jctile
10 20 30 40 50 60 70 80 90
I\IBtrix
25. Rigid grains - Ductile grains Matrix ternary plot, averaged by stratigraphic zone
of rigid grains, ductile grains, and matrix (commonly referred to as the RDM plot),
averaged by stratigraphic zone.
45
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
UlD9f [l¡c!iles
1\Ib1
CA
0Ba
CEb
08c
"'0Bd
0Be
0Bf
SI cef
10 20 30 40 50 60 70 80 90
Ext D9f
26. Undeformed Slightly deformed Extensively deformed ductile grains ternary, by zone
Ternary ofundeformed (Uille£), slightly deformed (Sl De£), and extensively deformed (Ext De£)
ductile grains, averaged by stratigraphic zone
UlD9f Mea
1\Ib1
CA
0Ba
CEb
'V 08c
0Bd
0Be
0Bf
SI cef
10 20 30 40 50 60 70 80 90
Ext D9f
Figure 27. Undeformed - Slightly deformed Extensively deformed mica flakes ternary, by zone
Ternary ofundeformed (Uille£), deformed (Sl De£), and extensively deformed (Ext De£)
mica flakes, averaged by stratigraphic zone. Mica is essentially absent from the Mb 1 Sand; in aU
zones, absolute amounts of mica are low, leading to considerable scatter when normalized.
46
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
The primary measure of the degree of mechanical compaction which a sandstone has
undergone is intergranular volume, the point count-based amount of total volume not
occupied by the detrital grain ftamework (or by secondary pores or replacement minerals
in locations originally occupied by ftamework grains); a related term is "minus-cement
porosity". The intergranular volume ofa clean sandstone at deposition is equal to its
porosity, typically on the order of 40% (depending on sorting and facies). Porosity
decreases due to compaction and cementation; intergranular volume measures only the
compactional part of porosity loss. In the following table, zonal averages for
intergranular volume are given, along with several other related measures of volume
change and ftamework contraction.
Compo Volume MacrolTotal Deformed
SAND IGV Loss Porosity Ductile Grains
Mb1 32.7 8.5 0.78 0.65
OA 29.9 12.6 0.62 0.57
OBa 27.5 15.0 0.57 0.71
OBb 28.2 14.8 0.46 0.77
OBc 30.6 10.8 0.49 0.70
OBd 32.3 9.3 0.47 0.69
OBe 32.4 8.4 0.08 0.67
OBf 28.9 13.9 0.55 0.67
Table 13. Zonal averages of compaction parameters, V -lllPB 1 point-count data
Zonal averages of intergranular volume (lGV, %BV), compactional volume loss (%BV, corrected for
change in bulk volume), ratio of macropores to total thin-section porosity, and ratio of deformed
ductile grains (slightly to extremely deformed) to total ductile grains. Compactional volume loss is
the percent change in bulk volume suffered by a given initial aggregate of sand grains due to
compaction. Pores visible in thin section have been classified as macropores (>20 microns across) or
mesopores «20 microns). Smaller values of the Macro/Total Porosity ratio indicate a greater
proportion of smaller (compacted and/or cemented) visible pores.
It is evident ftom the figures in Table 13 that there is no significant or consistent increase
in the effects of mechanical compaction over the depth range ofthe cored interval. The
OBe Sand has one of the highest average IGV values, possibly because the relatively
high level of early-formed zeolite cement served to stiffen the ftamework. The
preponderance of small pores in OBe sandstones cemented by heulandite and smectite is
reflected in the anomalously low proportion of macropores. IGV is at minimum, and the
proportion of deformed ductile grains is at a maximum, in the OBa and OBb Sands.
Clearly other factors are involved in controlling the extent of mechanical compaction.
These other factors probably include sorting, the amount and distribution of clay matrix
(which may act to enhance grain rotation and catalyze incipient pressure solution), the
amount and type of ductile grains (argillite ftagments are probably softer than dacite
grains); and the amount, location, and timing of pore-filling cements (early-formed pore-
filling cements being the most effective at minimizing compaction). A series of charts
(Figure 28 and Figure 29) and correlations quantify the relationships between IGV and
the abundance of ductile grains (without trying to differentiate among different grain
types or degrees of ductility) and the amount of pore-filling cement (also with no attempt
to distinguish different types of cement, relative timing, or distribution).
47
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
..
·
·
·
·
·
·
·
·
·
·
·
·
·
~~--'
40 J,
.
35 . HiCmt
. .
30 --~
:>
~ 25-
20
15 ~_.~,.~~.-
10
0 5 10 15 20 25 30
Ductiies
Figure 28. Ductile grain content vs. intergranular
for low- and high-cement samples
Crossplot of point-count data (%BV): total ductile grain content (DucHIes) vs. intergranular volume
(IGV), grouped by the amount of pore-filling cement Low-cement samples have less than 10%
cement, high-cement samples have 10% or more cement.
high-cement samples the highest lowest IGV are both cemented by
and smectite. appears to be a amount ofheulandite cement
(somewhere between 4 19%) to create a mechanically framework to
resist compaction. and are ineffective at retarding compaction, at
least the abundances observed these samples (less than about 6%). Separate
regressions for samples yield
equations.
samples e <10%
cement):
IGV=
r2 =
samples (> 10%
IGV = 38.9 - O.35*Ductiles
r2 = 0.34
standard error estimate ofIGV these correlations is
poor correlations reflect the uncertainties in types
cements.
48
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
.\
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
40 1
35
.
.
.
I
.
30
~ 25
20 -
.
15
10
o
5
10
15
Cement
20
25
30
Figure 29. Pore-filling cement vs. inter granular volume, for low- and high-cement samples
Crossplot of point-count data (%BV): pore-filling cement (Cement) and intergranular volume (lGV),
grouped by cement content Low-cement samples have less than 10% cement, high-cement samples
have 10% or more cement
For samples, there is no relationship between amount of cement and
intergranular volume. For samples that are cemented, there is a good correlation
between the amount of cement IGV. probably means the cements
or zeolite) are generally during diagenesis, and the only
variable is whether or not there is a amount cement to have an impact on
sand's behavior. linear regression correlation
between IOV and eement content samples only:
IGV=
+
r2 =0.62
regression of IOV against ductile grain content and
following correlation is
amount of
= 34.8 -
r2 0.48
+
Standard error (JOV) = 3.1
It is that the moderate correlation this relationship is
of threshold effects both ductile grain cement abundances: at
grains or cement, the correlation is very poor to non-existent,
geometric factors playa role. When ductile content or surpass some
become significant, there is a very good
the available data, it appears thresholds are somewhere
20% for and on order of 5% for these cements (early-forming
or
49
·
·
·
·
·
·
·
·
·
·
e'
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Authigenic phases
Important authigenic phases in these sandstones include: calcite, primarily as a coarsely-
crystalline pore-filling cement within concretionary bodies; siderite, as a microcrystalline
replacement of clay matrix along certain stratigraphic horizons; kaolinite, as a grain-
replacing and pore-filling phase, usually a fmely-crystalline, microporous aggregate of
numerous book-like particles; pyrite, as widespread, pore-lining microcrystalline (10
microns or less) ftamboids and occasional larger crystal aggregates; heulandite, a zeolite
mineral commonly associated with unstable volcanic deposits, as small (10-20 microns),
stubby tabular pore-lining crystals and microporous aggregates; and smectite, as a
widespread grain-coating phase in the volcanic-rich sands, in many cases intimately
associated with heulandite as a microporous, pore-filling mixture. The following
paragraphs contain more details on the occurrences ofthe major authigenic phases.
Calcite: Calcite occurs as a coarsely-crystalline to poikilitic pore-filling cement in
patches or spots up to 1 mm across that occur in association with similar patches to form
vuggy or spongy concretionary bodies with diameters up to several centimeters (see
upper right and center left photomicrographs in Figure 31). Such concretions are most
common in the upper OBd Sand, but occur rarely in younger and older sands as well. In
some cases the concretions develop in sands with carbonate shell ftagments, or with
volcanic glass shards (now preserved only as molds within a patch of calcite cement). In
some cases the calcite patches are rimmed by microcrystalline pyrite. Sand grain packing
density within the patches is very open, suggesting that the cement formed prior to any
significant compaction.
Siderite: The primary occurrence of siderite is as a microcrystalline replacement of
biogenic clay matrix, particularly in the OA Sand. Siderite also occurs as widespread but
sparse, minute (10 microns) pore-lining rhombic crystals through much of the OA Sand,
in association with the micritized matrix. A third occurrence of siderite, throughout the
cored interval, is as the microcrystalline replacement of dilated, splayed biotite flakes to
form large, irregular micritic aggregates.
Kaolinite: Kaolinite is a common (and probably underestimated) pore-filling authigenic
phase, occur most commonly as small patches of finely-crystalline, microporous
aggregates of book-like crystals filling several adjacent intergranular pores (see lower
two photos in Figure 31). Kaolinite is widespread in the Mbl, OA, and OBd Sands; it is
rare to absent in the OBb, OBc, OBe, and OBf Sands.
Pyrite: Pyrite is present in consistently high amounts (1-3%) throughout most of the OBa
through 0 Bf Sands. Pyrite occurs as small (10-20 microns diameter) pore-lining crystals
and ftamboids, crystal aggregates, and occasional grain-replacing microcrystalline
masses (after argillaceous ftagments or lignitic flakes). Pyrite forms relatively early, and
much of it is probably associated with near-surface microbial sulfate-reduction activity.
Heulandite: Heulandite is a zeolite mineral, commonly found as a diagenetic product in
volcanogenic sands. It forms a solid solution series with clinoptilolite. In fact, this phase
was identified as clinoptilolite by the original XRD analyses, but later chemical
information (energy-dispersive spectra during SEM studies) confirm that this is actually
50
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
calcium heulandite (empirical formula Ca1.5Nao.75A4Si14036.12(H20)), with an unusual
elongate bladed crystal habit (Figure 30). Ca-heulandite has a grain density of2.2 glcc, a
calculated electron density of2.18 glcc, and a calculated photoelectric factor (PEF) of
4.18 barns/cc. In these sandstones, heulandite occurs as fmely-crystalline (up to 10
microns in the longest dimension) tabular and bladed crystals growing in ftom pore walls
to form microporous pore-filling masses, in some cases associated with smectitic clay.
Heulandite is present only in sands of the OBf, OBe, and lower OBd zones; it is most
abundant towards the top of the OBe Sand.
Smectite: Smectite occurs as a grain-coating clay (Figure 34) and within intergranular
pores as a microporous fill (in association with heulandite), in sandstones with high
volcanic (in particular, tuffaceous volcanic) content, such as the OBe Sand. Smectitic
grain coats are quite thin, on the order of 5-10 microns, and may be below optical
resolution in some cases. Traces of smectitic coats are recognized sporadically up into
the OBa Sand, but such coats are consistently present only over limited intervals (5-10')
ofthe OBe and OBd Sands. Based on XRD data, smectite is also present as an alteration
and replacement of tuffaceous volcanic rock ftagments, now recognizable only as
indeterminate argillaceous grains. The XRD signature of smectite in these sandstones is
quite distinct and well crystallized, typical of bentonites (altered tuffaceous deposits).
Smectite-rich bentonitic grains probably overwhelm the XRD response of any authigenic
grain coats. These bentonitic grains are inferred to be present ftom about the middle of
the OA Sand through the OBi There is a transition zone in the OA (around 4410-20'), in
which bentonite-bearing middle shoreface sands are rapidly replaced upwards by
bentonite-ftee middle shoreface sands, with no obvious physical contact or change in
petrographic character. The detailed stratigraphic distribution ofXRD smectite (Figure
23) suggests that some of the clay matrix in distal shaly sands is bentonitic in origin.
A series of petrographic stratigraphy logs, Figure 39 through Figure 41, document the
approximate stratigraphic distribution of the major authigenic phases (where present in
greater than trace amounts). Average abundances of major authigenic phases, by zone
and by depositional facies, are summarized in Table 14 and Table 15, respectively.
SAND Calcite Siderite Kaolinite Pyrite Heulandite Smectite
Mb1 0.0 0.5 0.3 0.1 0.0 0.0
OA 0.0 1.8 1.0 0.0 0.0 0.0
OBa 0.0 0.6 0.2 0.9 0.0 0.4
OBb 0.0 1.0 0.3 2.1 0.0 0.5
OBc 0.0 7.9 0.2 1.3 0.0 0.1
OBd 0.3 0.6 0.2 2.7 1.9 1.1
OBe 0.0 1.1 0.0 1.3 9.1 3.1
OBf 0.0 2.1 0.0 3.0 0.2 0.9
Table 14. Point-count abundances of authigenic phases, averaged by zone
Zonal averages (point-count data, %BV) of major authigenic phases. Averages may be misleading for
phases with a strong bimodal distribution, such as the carbonates: carbonate cement is largely
concentrated within discrete concretions, which are not representatively sampled by the point-count
assemblage.
51
FACIES Calcite Siderite Kaolinite Pyrite Heulandite Smectite
-.
DC 0.0 0.5 0.3 0.1 0.0 0.0
MSF 0.0 1.6 0.9 0.1 0.0 0.0
PLSF 0.2 2.9 0.3 1.7 0.0 0.3
LSF 0.0 1.1 0.1 2.1 3.7 1.8
DLSF 0.0 1.3 0.0 3.3 0.0 0.0
Table 15. Point-count abundances of authigenic phases, averaged by depositional facies
Average content (point count, %BV) of major authigenic phases, by depositional facies. No point
count samples were selected from the Lower Offshore/Shelffacies; the Distal Lower Shoreface
(DLSF) is represented by a single sample.
,-- -~."I'" ....."",..". ....,"'....: ..... ,..~~ .'.,
C:~TIFFS~NANCV~B468115B.TIF 4681.15 £t.
Log: 49789 Mag=3999 FOV=35.493597 29.9KV 19-28-2994 91:94PM
19.9uM
Figure 30. SEM photomicrograph of bladed heulandite crystals, 4681. J 5' (OBe Sand)
High-magnification view (note 10 micron scale bar) of abundant elongate crystals of Ca-heulandite
lining and partially filling pores in a sample from 4681.15', in a heulandite-rich interval near the top
of the OBe Sand, XRD analysis indicates 10 wt% heulandite in this sample. Photo by Core Lab.
52
32.
~.~.
: '" .
~..
~,
~~~'
Y¿~~TIFFS'4566_8E.TIF 4566.8 *~
Log: S84BZ "ag=1888 FOV=18S.Z1e5ZS Z8.8K~
Z8.8uM
4566.80' (OBc): Pore-filling authigenic kaolinite (Ka); note thin smectitic coats on grain surfaces.
Scale bar = 20 microns
,;.:.,t~~::~7~:~~r~ chit,; .,,; ,;
.}':t ¿ "'_'.j"':'''':' .\¡~lii-J~' '.L~ , iC'.
,,-'- ,". ~_:-~:::;. .,:,,!~; -.'" _;..'f'......~~~;~ . ."...:~.'_..:f"7.ì'.-
Z8.8K~
4721.70' (OBf): extensive grain-coating smectite (Sm); authigenic Kspar (Kf: upper left).
Scale bar = 20 microns.
Figure 34. Scanning electron photomicrographs of 4566.80' and 4721.70' -. Core Labs photos
56
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Illite
Mb1
OA
OBa
OBb
'Y OBc
 OBd
OBe
OBf
Chi
Smec
10 20 30 40 50 60 70 80 90
35. Illite - Smectite - Chlorite clay mineral plot, averaged by stratigraphic zone
Ternary based on XRD data, of the relative abundances ofillitic clays, smectite (Smec), and
chlorite (Chi), averaged by stratigraphic zone.
Illite
Mb1
OA
OBa
OBb
30 'Y OBc
OBd
OSe
OSf
30
~
10
Smec Kaol
10 20 30 40 50 60 70 80 90
Figure 36. Illite - Smectite - Kaolinite clay mineral ternary plot, averaged by stratigraphic zone
based on XRD data, of the relative abundances of illitic clays, smectite (Smec), and
kaolinite (Kaol), averaged by stratigraphic zone.
57
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Smectite
Mb1
OA
OBa
OBb
'" OBc
À OBd
OBe
OBt
Kaol
10 20 30 40 50 60 70 80 90
Chi
37. Smectite - Kaolinite - Chlorite clay mineral ternary plot, averaged by stratigraphic zone
Ternary plot, based on XRD data, of the relative abundances smectite, kaolinite (Kaol), and chlorite
averaged by stratigraphic zone.
Smectite
Mb1
OA
OBa
OBb
VI OBc
.. OBd
OBe
OSt
Carb
10 20 30 40 50 60 70 80 90
Pyrite
38. Smectite - Carbonate - Pyrite ternary diagram, averaged by stratigraphic zone
plot (based on XRD data), of smectite, total carbonate (calcite, dolomite, siderite; may
include some detrital dolomite or calcite shells), and averaged by stratigraphic zone.
58
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
>
¡::
"E W
::::> 5J-
o
'"
'"
.~
u.
o
~
a.
Grain Size Carb Cmt
Ü :;;: 2
'" ct C c: 2 Ë
¡:: w >. () + 'õ :2
"- ro ¡:: () 2 2 15 0
c. Õ
E ~ J:: ¡¡: ¡:: ¡:: [I! ¡¡: :£ ß ¡:: !!J
() (/) ¡¡: ~ " i! '" 0
00 > 'ã. ¡:: Õ () '3 \ij
>. N 5:, -' 0 0 '" E () " J::
(/) U "- "- u "- ;.:: (/) :r: 0 (/)
C§
Depth
4398
---¡¡¡¡o
4402
~
4406
-4408
4410-
4412
~
~
4418
~
4422
-4424
'0
¡::
'"
(/)
--~--
'"
Q)
o
4506
D
Q)
o
_m__~"~_
39. Petrographic stratigraphy log, OA
OBb Sands, V-IllPBl
59
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Grain Size Carb Cmt
(}) 1:5 :;¡ 2
> () œ 0:: ë c: .2< Ë
c: "(3 I- W >. <D + "õ 0
<= W ro a. ëii c: <D ~ 2 2 '6 0
~ ü: c: Q, LÇ c: 0
:::J Q, LL .c: c: :š 13 2
Q) e (/) ü: 2 ,s. 0 ro 0
0 > c: c: ~ 0 () :; (jj
ã) '" >.-' 0 0 ro E Q) .c:
a. ü a. Ü a. >::: (j) I (/)
o
co
o
'0
co
o
4664
4666
4668
4670
4672
4674
~
" 4678-
40. Petrographic stratigraphy log, OBc through OEd Sands, V -Ill PEl
60
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Grain Size Carp Cmt
t) 2 I I 2
> [I! 0:: >,1 I ë c: 2 Ë
c: I- LU () + 'õ 0
'ë: w CL ro~ c: () ~ 2 'ö 0
Q. E '" '<:1 ¡:¡: c: Q. t5 c: "
:::J () ¡:¡: 2 c: " '" 0 !!2
() 1ñ 5 (f) > 'õ, c: () :; ãj
0 >, '" .~ -' 0 E () ill .<:
(f) Ü CL Ü (f) I 0 (f)
"
c: .
'"
(f)
()
co
o
"
c:
'"
(f)
"
co
o
Cõ
o
Figure 41. Petrographic stratigraphy log, OBd through OBf Sands, V -111PBl
61
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
reservoir Schrader sandstones cored in
good to excellent, permeabilities dean sandstones rangmg
from many tens to hundreds of millidarcies. Because very grain size of most
of these sandstones, pore are also rather smalL This does the sandstones
vulnerable to major damage by relatively amounts of pore-lining authigenic phases.
sandstones such good permeability, the capillary properties are not that
advantageous (small pores throats, area). As a result, irreducible
water saturations are fairly high all the best sandstones. Sandstones such
very fine pores are liable to damage by capillary blocking (loss of wellbore
filtrate the formation that is very slow to produce back) by migrating fines (loose
is present sandstones, usually at fairly low levels, nor are
velocities of high-gravity to be to kaolinite). Two
ternary plots provide an overview of pore system of these sandstones. 42,
Pores - Matrix, it is dear youngest sands (Mbl, OA, OBb) have
mostly open pores, whereas those the more volcanic-rich older zones (OBd-OBt) have
amounts of cement The character of the system itself is
documented Figure 43, Macropores - Mesopores - Micropores.
Fbres
1Vb1
OA
08b
0Bc
"Y0Bd
.À 08e
08e
0Bf
Cerrant
10 20 30 40 50 60 70 80 90
M3trix
Figure 42. Pores - Cement Matrix ternary diagram for all point-count samples, zone
data) of macropores, cement, and averaged
62
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
'.
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
IVBcroFbr
MJ1
Q/\
0Ba
08b
T 0Bc
0Bd
0Be
0Bf
lVèsoFbr
10 20
30 40
McroFbr
50 60 70 80 90
43. Macropores - Mesopores Micropores ternary
averaged by stratigraphic zone
Ternary and routine core data) of macropores (>20 microns across), mesopores
(visible but <20 microns in and micropores (not optically resolvable; calculated ITom
difference between core porosity and total visible porosity)
Most sand
out: , coarser-
sands, a pore system
OBe, extensive heulandite
a pore system about evenly
may be a progression increasing
OBb upwards, not conform to
44 provide visual evidence of the character of
varymg and pore types. type proportions correlate
Compare, example, two photographs Figure 44,
4511.15' and 4567.0'. porosity is very for both sandstones,
proportion of macropores is significantly greater 4567.0': absolute permeability is
nearly twice as high 4567.0' than 4511.15'. appears to be:
porosity is mostly macropores = 100-1000 permeability; macropores < mesopores =
100 porosity primarily micropores = 1-10 terms
petrographic parameters mix types, most are
size, clay cement. Multivariate linear regression analyses
of permeability as a size, amount
cement correlation equations.
63
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Log(HPERM) = 10.8*MGS - 0.09*Matrix - 0.06*Cement + 1.68
r2 = 0.71 Standard error (Log Permeability) = 0.35
Log(HPERM) = 2.82 - 0.11 *Matrix - 0.065*Cement
~ = 0.67 Standard error (Log Permeability) = 0.38
where HPERM is the horizontal plug permeability, in millidarcies; MGS is mean grain
size :fYom point counting, in microns; Matrix is total matrix content, :fYom point counts
(%BV); and Cement is the total pore-filling cement content, :fYom point counts (%BV).
These standard errors translate to a factor of about 2 to 2.5.
Microporosity is present in these sandstones primarily within clay matrix and
argillaceous rock :fYagments, with some associated with authigenic smectite when present.
The multivariate linear regression equation for microporosity is as follows:
Microporosity = 0.21 *Lithics + 0.84*Matrix + 1.36*Smectite + 0.37
~ = 0.64 Standard error (Microporosity) = 2.2
where Microporosity is the estimated amount of pores too small to resolve optically (the
difference between measured core plug porosity and total thin-section porosity, %BV);
Lithics is the total lithic :fYagment content :fYom point counts (not including chert or other
polycrystalline quartzose grains, %BV); Matrix is total matrix content, :fYom point counts
(%BV); and Smectite is the amount of authigenic smectite identified during point
counting (%BV). The coefficients for both matrix and smectite are too high to be
physically meaningful, and probably reflect the difficulties in properly quantifying such
microcrystalline phases in a very [me-grained sand by point counting. Reasonable values
of microporosity associated with matrix or smectite rims are apt to be quite high, on the
order of50% (possibly more, for smectite) of the total amount counted.
64
6%
9%
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Interpretations
Stratigraphic
Multiple stacked sandstone reservoirs are present in the cored interval of the V-IIIPBl.
These reservoirs represent various depositional facies, some more proximal and some
more distal. The 0 Sands reservoirs consist of a series of incomplete, shallow marine
shoreface successions punctuated by stratigraphic discontinuities. None of the 0 Sands
exhibit a continuous vertical facies succession; individual sands are typically incomplete
upwards-shoaling progradational sequences with transgressive caps. The Mbl Sand, also
cored in the VIIIPBl, is stratigraphically separated ITom the 0 Sands, and records a
transition ITom marine to deltaic depositional environments (S. Phillips, written
communication).
Textural attributes such as grain size and clay content are functions of depositional facies
and are the major controls on reservoir quality. First-order differences in reservoir
quality between stratigraphic intervals can be largely explained in terms of facies
differences. There is a small difference in depth of burial, as the shallowest sands have a
few hundred feet less overburden and lower effective stress. Differences in the degree of
compaction between reservoirs, however, are not evident, and only rather subtle signs,
such as the distribution of pore throat radii (see section on Mercury injection capillary
pressure results) attest to the impact of increasing stress with depth. The most important
change of a truly stratigraphic nature in this interval is the evolution of sand detrital
composition (with some zones being volcanic-rich, others much less so), and the
consequent differences in diagenesis. The more volcanic-rich zones are liable to suffer
considerable precipitation of pore-lining and pore-bridging heulandite and smectite.
These microcrystalline phases serve as baffles in the pore system, and, because of their
widespread distribution and high cation exchange capacity, have a strong impact on the
sandstone's electrical properties. As discussed above in the section on Detrital properties
(e.g., Figure 20), volcanic input peaks during the OBe Sand, having increased slightly
after deposition of the OBf. After the OBe, the influx of volcanic detritus dropped back
to previous levels in the OBd, and then continued to fall steadily throughout the rest of
the cored interval. Active pyroclastic volcanism waned, and volcanic-derived sand was
gradually diluted and replaced by sands of a metasedimentary origin. The table below
compares a selection of point-count parameters averaged by zone to illustrate this
evolution.
66
I I
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
SAND Fw MGS FELDSPAR VRF HEUL SMEC
Mb1 119 1.2 0.2 0.0 0.0
OA 102 5.0 2.2 0.0 0.0
OBa 89 5.3 2.8 0.0 0.4
OBb 90 4.3 2.0 0.0 0.5
OBc 92 5.3 1.4 0.0 0.1
OBd 91 7.5 3.3 1.9 1.1
OBe 107 10.7 5.3 9.1 3.1
OBf 103 9.3 3.3 0.2 0.9
Table 16. Zonal averages of selected point-count parameters
Zonal averages of selected point-count parameters: ttamework mean grain size (Fw _ MOS, in
microns: mean size of all grains at least 30 microns in diameter); total feldspars (plagioclase and
alkali); volcanic rock ftagments (VRF); heulandite (Reul); and smectite (Smec). All values except
grain size are in units of%BV.
Note the maximum in feldspar, VRF, heulandite, and smectite content in the OBe,
accompanied by a local peak in grain size. The dominant depositional facies in the OBe
and OBfis lower shoreface, a bit more distal than the facies developed in most of the
younger sands. So the relatively coarse mean grain size is all the more noteworthy, and
may reflect an overall coarser and less recycled shoreface system.
The differences in composition and diagenesis are reflected in the petrophysical
properties of the sandstones. The table below is a summary of two such properties,
horizontal permeability and Sw (402'), the calculated water saturation at a capillary
pressure equivalent to an oil column height of 402' above the free water level, as a
function of stratigraphic zone. To minimize variations due solely to facies differences,
only samples from the lower shoreface depositional facies have been included in the
averages.
SAND
Mbl
OA
OBa
OBb
OBc
OBd
OBe
OBf
Lower Shoreface
HPERM Sw (402)
366
16
37
23
72
14
85
33
41
61
Table 17. Zonal averages of permeability and Sw (402) for lower shoreface sands only
Averages, by stratigraphic zone, ofhorÍzontal (air) penneabiJity, in md, and calculated water
saturation at 402' above ftee water level (Sw (402)), based on MICP data, using data ftom lower
shoreface sandstones only. No such sandstones are present in the Mbl, OBb, or OBc Sands. There
are significant variations in the zonal averages of both penneability (20x variabiJity) and irreducible
water saturation (2-3x), even though the samples are drawn ftom a single depositional facies with
relatively uniform grain size, sorting, clay content, and burrowing. Nor does reservoir quality
increase systematically with depth.
67
I I
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Depositional facies
The V -lllPB 1 cored interval has been interpreted in terms of depositional facies based
on the sedimentological and ichnological descriptions ofthe core by a number of
workers. The facies recognized are part ofa delta/bay complex (Mbl) or a shallow-
marine shoreface system (OA through OBi). Depositional facies of the Mbl (and not
found anywhere else in the core) include distributary channel sands (DC), splay sands,
bay-fill muddy sands and bay muds. The shallow marine facies present throughout the 0
Sands, and arranged in a series of complex upwards-coarsening parasequences, include
middle shoreface (MSF), proximal lower shoreface (PLSF), lower shoreface (LSF), distal
lower shoreface (DLSF), and lower offshore/shelf (LOS). No single parasequence
contains a complete distal-to-proximal facies progression. Instead, individual sand
bodies are interpreted to consist of a lower progradational highstand component, capped
by a discontinuity (falling-stage sequence boundary), and overlain by an upwards-
deepening transgressive component (S. Phillips, written comm.). Distinctions among the
various shoreface environments are based on differences in burrow types and intensity,
diversity and abundance of palynoflora, relative clay content, and the types and
preservation of primary depositional structures. There are ranges of petrophysical and
petrographic properties in a given shoreface environment that can partially overlap the
ranges of adjacent facies (e.g., MSF and PLSF or LSF and DLSF). Assignment of a
given plug within such a transitional contact to a specific facies is somewhat arbitrary,
and may have the effect of biasing global averages of properties for that facies. Bearing
in mind this caveat, there typically are still significant differences between depositional
facies in the averages of many properties. Thin-section descriptions have been sorted by
facies in the "Dep Env" worksheet of the Vlll_Petrog.xls spreadsheet file. The typical
petrographic character ofthe major depositional facies is summarized in the following
paragraphs.
Lower Offshore / Shelf (8 samples, OBb through OBe): silty shale and sandy siltstone,
moderately to well sorted, common to abundant biogenic clay matrix (in rare cases
replaced by micritic siderite), common to abundant pyrite; carbonate cement is rare to
absent (due to the lack of macropores to be filled).
Distal Lower Shoreface (4 samples, OBb and OBc): silty very fme sandstone, moderately
to well sorted, common biogenic clay matrix, common ductile grains, common to
abundant pyrite, minor authigenic carbonate crystals.
Lower Shoreface (45 samples; OA, OBa, OBd, OBe, OBi): very fme to fine-grained,
occasionally slightly silty, well to very well sorted; biogenic clay matrix is typically rare
to absent; ductile grains are common, pyrite is minor to abundant (largely due to
stratigraphic variations), and carbonate cement is rare to absent except within
concretionary zones.
Proximal Lower Shoreface (39 samples, OBa through OBd): very fme to fine-grained,
very well sorted, generally matrix-rree, with common to abundant pyrite, and localized
concretionary carbonate cement.
Middle Shoreface (22 samples, mostly OA and a few OBa): very fine to fme-grained,
very well sorted, with widespread minor micritized biogenic matrix (in the OA Sand),
little or no pyrite, and rare to absent carbonate cement.
68
~ t
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Distributary Channel (10 samples, all Mbl): fme-grained, very well sorted, matrix-tree,
with few ductile grains, no pyrite, and very rare authigenic carbonate cement.
Point-count properties, averaged by depositional facies, are summarized in Table 18
(texture and pore system) and Table 19 (detrital and diagenetic); XRD mineralogy
averages for the facies are presented in Table 20.
FACIES MGS Fw MGS %CLAY Matrix MacroPor MesoPor MicroPor
DC 117 119 0.5 0.7 24.5 6.9 3.6
MSF 94 101 1.3 1.6 16.5 10.0 7.1
PLSF 84 96 2.6 2.6 13.0 9.8 9.8
LSF 77 96 4.1 4.6 5.4 11.1 11.9
DLSF 28 63 15.5 15.7 0.0 6.7 20.0
Table 18. Facies averages of selected point-count textural measures, V -lllPB 1
Point-count textural and pore-system parameters, averaged by depositional facies: mean grain size
(MGS) and rramework mean grain size (Fw_MGS), both in microns; %Clay-sized material; % clay
matrix; macropores, mesopores, and micropores; all values except grain sizes are %BV.
~ ~ ....
y
.... ~ ~ =
.= .... ~
~ .... ....
.. .... y = ~ "C e
....
= ..:¡ .... «I = .... = ~
c. = .... .... ~
= .... ~ .... = .... ~ U
~ - .... ,.Q y - .. ....
"C «I y .. .. ~ = ~ .... ~
- .... - "Z = e ~ "C ..
~ ~ ~ .... ~ I
FACIES ~ ~ ~ ~u 00 == 00 ~ ~
DC 1.2 30.4 0.2 0.1 0.0 0.0 0.5 0.1 1.1
MSF 5.0 34.8 2.2 0.8 0.0 0.0 1.6 0.1 2.8
PLSF 5.1 34.0 2.3 3.9 0.3 0.0 2.9 1.7 6.1
LSF 8.8 33.2 3.9 2.4 1.8 3.7 1.1 2.1 9.5
DLSF 6.7 24.3 1.0 2.0 0.0 0.0 1.3 3.3 4.7
Table 19. Facies averages of selected point-count detrital and diagenetic categories, V -lllPB 1
Point-count detrital and diagenetic parameters, averaged by depositional facies (all %BV): total
feldspars, total lithic rragments (including chert), volcanic rock rragments, detrital carbonate (shells,
dolomite crystals); smectite; heulandite; siderite; pyrite; and pore-filling cement (P-F Cement).
~
....
....
~ ~ ....
,.Q .... - - y
.... = ~ ~
.. .. = .... «I e
= ~ ~ ~-
FACIES U ~ == ~u 00
DC 0.3 0.0 0.0 5.3 0.0
MSF 3.6 0.6 0.0 14.0 3.1
PLSF 6.5 2.7 0.0 15.0 7.5
LSF 3.7 2.5 1.7 17.3 9.5
DLSF 5.5 3.0 0.0 26.5 10.6
LOS 3.3 1.3 0.3 28.0 11.9
Table 20. Facies averages of selected XRD mineral estimates, V -lllPBl
Average XRD mineralogy by facies: total carbonates (Carb), pyrite, heulandite (Heul), total clay
minerals, total smectite (including smectitic portion of mixed layer clays).
69
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Much of the apparent variation in mineralogy with depositional facies is probably better
explained in terms of stratigraphic changes in provenance and diagenesis. These
depositional facies are generally very distinct in tenns of petrophysical properties, which
raises the possibility of using statistical means to recognize the facies :from wire line data.
Global averages for selected petrophysical properties are summarized in Table 21.
DC MSF PLSF LSF DLSF LOS
CORE
Porosity 34.7 30.2 30.7 27.3 24.3 22.4
Horiz. Penneability 1895 330 245 84 6 4
Vert. Penneability 1796 107 145 9 2 1
Kv/Kh 0.83 0.75 0.40 0.64 1.4 1.4
Grain Density 2.65 2.69 2.71 2.70 2.73 2.74
Sw 68 39 44 60 83 90
ELECTRICAL
Archie "m" 1.73 1.86 1.84 1.86
Archie "n" 1.90 1.78 1.78 1.67
Qv 0.03 0.15 0.64 0.75
MICP
SW @ 402' aFWL 7 20 25 36 72
WIRELlNE
GR 29 54 53 66 72 84
RHOB 2.07 2.16 2.17 2.24 2.34 2.36
NPHI 45 45 45 43.5 42 42
RD 6.7 26.3 13.4 7.2 4.5 4.3
PEF 2.2 2.7 2.9 3.2 3.2 3.3
DT 119 112 118 112 108 107
DTS 255 231 242 227 232 229
Table 21. Average petrophysical properties by depositional facies, V-IIIPBI
Selected petrophysical properties averaged by depositional facies over the entire cored interval.
Measurements from routine core plugs include porosity (%BV), horizontal and vertical permeability
(millidarcies), KvIKh ratio, grain density (g/cc), and water saturation (%PV). Electrical properties
special core analyses include the Archie exponents "m" and "n" (not clay-corrected), and the
Waxman-Smits Qv factor (from CoCw tests). A representative value from mercury injection capillary
pressure measurements is the calculated wetting phase saturation at a pressure equivalent to a
hydrocarbon column height of 402' above free water level (aFWL) in an oillbrine system. Average
values for wireline logs are given for: gamma ray (OR, API units), bulk density (RHOB, g/cc),
neutron porosity (NPHI, %BV), deep resistivity (RD, ohm-m), photoelectric factor (PEF), sonic
slowness (DT, msec/ft), and shear sonic slowness (DTS, mseclft).
Properties that depend primarily on various textural criteria (e.g., different measures of
clay content or mean grain size) tend to be well correlated with depositional facies. On
the other hand, properties that are significantly affected by changes in composition or
pore-system parameters (subject to diagenetic modification) are much more likely to
exhibit an equal or stronger control by stratigraphic setting. Some ofthese properties
were discussed in the preceding section. As volcanism-related minerals are largely
70
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
coníìned to the older sands (OBd, DBe, pore-scale properties such as conductivity
and relative are to be significantly different these zones than
similar depositional facies in younger sands. Compare the permeability and Qv values
21. A log model for formation needs to be zone- lithofacies-specific.
Poroperm crossplots of all data points are included as Figure 45 ehorizontal permeability)
and 46 (vertical permeability). Facies-specific regression parameters and
descriptive statistics for porosity and horizontal permeability are listed Table 22. See
the section below on Routine core analyses for further comparisons of permeability
distributions different facies.
10000
1000 --
100
E
...
()
Il.
J: 1 0 --
1 -
0,1
o
5
10
15
20
POI"
25
30
35
40
45. Porosity vs. horizontal permeability crossplot for an data points, coded by depositional facies
Semi-logarithmic crossplot of core plug porosity and horizontal permeability, for all samples by
depositional facies: DC distributary MSF middle shoreface, PLSF - proximal lower
shoreface, LSF -lower shoreface, DLSF - distal lower shoreface, LOS lower offshore/shelf
regression
A b Max
0.0002 0.4398 0.922 0.68 4300
0.0005 0.4107 0.817 1.07 2240
0.3754 0.739 0.09 0.79 843
0.0003 0.4156 0.571 0.09 18 3310
0.0257 0.199 0.137 0.11 1.19 35
0.0107 0.227 0.261 0.13 1.86 50
FACIES
DC
MSF
LOS
Table 22. Facies-specific poroperm regression parameters and variance, horizontal permeability
regression parameters form HPERM = A *exp(b*POR)) and iTactional variances
for core plug porosities and horizontal permeabilities, averaged by depositional facies. Note the
single high maximum value in the LSF facies Gust below a contact with a more proximal
facies).
10000 ~-_. '--
1000 -
MSF
E 100 -
...
(,)
a..
> 10 -
1 n
0.1
0 5 10 15 35 40
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
.._n-.
46. Porosity vs. vertical permeability crossplot for all data points, coded by depositional facies
Semi-logarithmic crossplot of core plug and vertical permeability, for all samples by
depositional facies: DC - distributary channel, MSF - middle shoreface, PLSF - proximal lower
shoreface, LSF - lower shoreface, DLSF - distal lower shoreface, LOS -lower offshore/shelf
general, classifying data points by facies
more tightly-grouped categories a
the two schemes is the
categories.
SAND
OBc
zone results a
way to compare
divided by the mean
Val" Val" (HPERM)
0.19 1.06 DC 0.11 0.68
0.17 2.29 MSF 0.09 1.07
0.17 2.03
0.13 2.03 LSF 0.09 18
0.20 2.74 0.11 1.19
0.14 1.62 LOS 0.13 1.86
0.09 1.25
0.06 0.87
Table 23. Variances of core porosity and permeability, averaged by zone and by facies
Variance of core plug porosity (Var (POR)) and permeability (Var (HPERM»), averaged by
stratigraphic zone (SAND) or depositional facies (F AGES).
penneability is
as stratigraphic categories),
have a variance greater
depositionaL reflects the fact
facies, and is the
more proximal facies and consistently
to porosity to
exception of lower shorefaee deposits,
other category, stratigraphic or
lower shoreface is more defined
zone between the consistently clean sands
sands of more distal deposits.
72
I:
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
order to extrapolate the results learned cored interval the V-III, the
cored of the 0 Sands was described terms of lithofacies characteristics (Figure
47), forming the basis for a petrofacies classification scheme. lithofacies description
was used combination with petrophysical data as the basis to classify intervals
core into one of several petrofacies. Discriminant analysis logs was then
carried out in an effort to match the classifications based on core description,
generally very good (Figure 48).
Schrader Bluff Lithofacies
C)
o
Highly bioturbated,
vf- fg sandstone
(>80% md perm)
Stratified vf-fg sandstone,
low-angle H CS
(>80% sand; 70-175 md perm)
o
(0
sandstone
(;¡ . G.!ôld..'d &w>d Be<.!':>
M Mõ::'5i"o
IJ,·OI/;,,;url)J:llm:'$
R- ft.~jl:-:"}C'
and siltstone
(50-80%
21
Siltstone wi
(20-50%
vfg sandstone
md
l
J
Siltstone
« 20%
47. Diagram illustrating the five major lithofacies defined for the V-IIIPBl 0 Sand interval
diagram of the main reservoir and non-reservoir lithofacies identified in the cored interval
ofthe 0 Sands in the V -Ill PB L The lithofacies scheme has not been formally extended to cover the
more deltaic environments encountered in the Mb 1 Sand core.
73
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
I.
Lithofacies
Log Model Transform
Well; V·111PB1
4381.0 - 467S.0 FEET
Filter: CORE_FACIES,CORE_FACIES::> 0
"" ., '" -:.¡ '"
c'-' '" In '" ..,..
'=' - .,.. N '"
"" ~ '" ? 0
~
ëi5
o
"-
o
a..
Ê
"-
IV
a..
G . Graded Sand Beds
M . Massive
Bioturbated
Rippled
--;7
lithofacies :3 Histogram
100
80
>.
(,) 80
<:
'"
::¡
~ 40
...
20
0
CALC_SB_MVOL_ILUTE_1 0
Color:
Facies Classification
11IIIII
1 2 :3 4 48
Perm 8in (md)
Facies 48 >175 me!
Facies 4 70-115 me!
Facies 3 10-10 me!
0.01 20.4 40.7 61.1 81.4 101.8 122.1 142.5 More
48. Petrofacies
from core
wire line log response, and poropenn data
This summarizes the various used in constructing a model for the 0 Sands
in the V-Ill PB 1 : lithofacies identified from the description of the conventional core, statistical
of core plug poropenn data associated with each lithofacies, and wireline log response.
correspond to
facies corresponding to
Petrofacies 1, shale, corresponds
/ facies. 2, siltstone
sandstone, corresponds to a range of depositional Shoreface,
Lower Lower / Reservoir petrofacies 3,
as a constituent depositional facies, is very strongly correlated
the Lower setting. Petrofacies and sandstone,
corresponds to Shoreface depositional facies, some overlap
the Shoreface Middle Shoreface
Petrofacies sandstone, is to best-quality shoreface facies:
Lower Shoreface and Middle following table is a concordanee
petrofacies classification values
of core plugs common to and depositional
facies are
Lower
74
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Petrofacies
Dep. Facies 1 2 3 4 4b
MSF 2 3 13 14 32
PLSF 0 3 10 37 48
LSF 5 34 77 18 0
DLSF 14 37 1 0 0
LOS 127 21 1 0 0
Table 24. Number of core plugs common to depositional facies and petrofacies
The major depositional facies listed in the concordance above are: MSF - middle shoreface; PLSF -
proximal lower shoreface; LSF - lower shoreface; DLSF - distal lower shoreface; LOS - lower
offshore/shelf. The values listed are the number of core plugs common to both the depositional facies
and the petrofacies corresponding to that cell (e.g., 2 plugs assigned to the Middle Shoreface facies
are also assigned to Petrofacies 1,3 to Petrofacies 2, and 13 to Petrofacies 3,etc.). Note that these
values are the number of common plugs, which does not necessarily correspond to thickness of cored
interval due to high-density plugging of selected reservoir zones.
In terms of stratigraphic distribution, the heterolithic petrofacies 3 is an important
component ofthe OA, OBa, and OBb Sands, and the primary petrofacies for the OBd and
older intervals. Petrofacies 4 is a small part of the OA, OBa, and OBd intervals, and the
major petrofacies in OBb and OBc. Petrofacies 4b is a minor part ofthe OBb, OBc, and
OBd reservoirs, and the dominant petrofacies in the OA, and OBa Sands. Selected
average petrographic and petrophysical properties of the five main petrofacies (including
the non-reservoir petrofacies I and 2) are summarized in Table 25, below. Petrofacies 4b
is, by most measures, the highest quality group of reservoir sandstones: it is the coarsest-
grained (due in large part to the influence ofMb1 distributary channel sandstones), most
porous and permeable, with the least clay and the lowest irreducible water saturation
(e.g., SW( 402') :&om MICP analyses). The pore system of 4b sandstones is dominated by
macropores, with subordinate mesopores and minor micropores. Reservoir petrofacies 4
is much less permeable (especially in terms of vertical permeability, as expected for a
strongly laminated sand), with a finer grain size and more clay than 4b, and a pore system
dominated by mesopores rather than macropores. Petrofacies 3 is of similar grain size to
Petrofacies 4, with slightly more clay and slightly higher Sw(402'), but has a pore system
dominated by micropores. If the influence of the Mbl distributary channel sandstones
were excluded :&om the averages for Petrofacies 4b, the gap in reservoir quality between
4b and the other reservoir petrofacies would narrow somewhat, but 4b would remain the
best by nearly all measures (Table 26 and Table 28 through Table 30).
75
Petrofacies 1 2 3
Core Porosity (%BV) 22.4 25.2 27.5
Core horizontal perm (md) 4.1 15.5 104
Core vertical perm (md) 1.4 3.7 14.5
Grain Density (glee) 2.73 2.71 2.71
Core water saturation 90 76 61
MICP Sw@402' aFWL 94 48 32
XRDClayminerals(wt%) 30 18 17
Mean Grain Size (microns) 75 72
Pt Count Matrix (%BV) 6.3 5.5
Macroporosity (%BV) 0.6 6.9
Mesoporosity (%BV) 10.3 10.1
Microporosity (%BV) 15.8 11.7
Archie "m" 1.84 1.88
Archie "n" 1.62 1.68
Gamma Ray (API units) 83 75 62
NPHI (%BV) 41.8 43 43.9
RHOB (glee) 2.37 2.30 2.24
Table 25. Average petrophysical and petrographic properties by petrofacies
Selected average core, X-ray dif:traction, point-count, electrical, and wireline properties for the 5
major petrofacies: core plug porosity, horizontal permeability, vertical permeability, grain density,
and Dean-Stark water saturation; equivalent water saturation at 402' above :tree water level (aFWL),
based on mercury injection capillary pressure data (MICP); point-count estimates of mean grain size,
matrix content, pore types (macro, meso, and micro); calculated apparent Archie "m" and "n"
exponents (not clay-corrected); and average values of the gamma ray, neutron porosity, and bulk
density wireline logs. NOTE: averages for Petrofacies 4b include data :trom the Mbl Sand
(distributary channel depositional facies, corresponding to Lithofacies 4b), although the petrofacies
scheme has not been extended to the Mbl.
For petrofacies that correspond to several different depositional facies, these global
averages may be somewhat misleading. For example, Petrofacies 4b, corresponding to
proximal lower shoreface and middle shoreface facies, exhibits significant internal
variability when subdivided by inferred depositional setting and compared to deltaic
sands of the Mbl Sand:
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
4
29.6
174
51
2.71
42
28
17
79
3.0
8.9
12.1
8.4
1.83
1.76
54
45.6
2.19
4b
33.5
1007
1115
2.68
49
19
11
102
1.1
19.3
8.6
5.2
1.79
1.87
42
45.6
2.10
Depositional Facies DC
Core Porosity (%BV) 35.5
Core horizontal perm (md) 2048
Grain Density (glee) 2.65
XRD Clay minerals (wt%) 5.3
Mean Grain Size (microns) 127
,Macroporosity (%BV) 30.7
Mesoporosity (%BV) 3.7
Microporosity (%BV) 1.9
Qv (based on CoCwtests) 0.03
Table 26. Variability within Petrofacies 4b by depositional facies
A verage properties for Petrofacies 4b (and Lithofacies 4b of the Mbl Sand), by depositional facies
MSF
32.4
474
2.68
12.3
100
18.1
8.9
5.9
0.09
PLSF
32.2
355
2.71
13.0
93
15.8
10.2
6.1
0.33
76
I I
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Petrofacies 3, despite its heterolithic character, exhibits somewhat less variation among
the depositional facies that it corresponds to, as summarized in the following table.
Depositional Facies MSF PLSF LSF
Core Porosity (%BV) 28.3 27.9 27.7
Core horizontal perm (md) 92 32 124
Grain Density (g/cc) 2.69 2.72 2.71
XRD Clay minerals (wt%) 15.0 19.0 17.9
Mean Grain Size (microns) 63 74
Table 27. Variability within Petrofacies 3 by depositional facies
Average core and petrographic properties for Petrofacies 4b, by depositional facies. Variability is
generally modest, with the largest range exhibited by permeability values (factor of 4x). Depositional
facies are: MSF - middle shoreface, PLSF - proximal lower shoreface; LSF - lower shoreface.
Because Petrofacies 3 probably includes the better quality samples ITom the lower
shoreface and the lower quality samples from more proximal settings (high-quality
samples being classified into Petrofacies 4 or 4b), the average permeability for
Petrofacies 3 is actually higher in its more distal examples. A similar anomaly is
apparent in the average mean grain size, where lower shoreface samples are slightly
coarser than those ITom the proximal lower shoreface. As the basis for a log model of
permeability, the petrofacies classification scheme may actually prove to be a more
objective (and more sensitive to controls on log response) basis than the more traditional
depositional facies (Figure 48).
Another potential concern with a classification scheme such as the petrofacies defined for
the V-I11PB1 is the presence of significant stratigraphic variation. The following tables
present zonal averages of selected core and petrographic parameters for the three
reservoir petrofacies (3, 4, and 4b).
ZONE
Mbl
OA
OBa
OBb
OBc
OBd
OBe
OBf
Core Porosity (%BV)
3 4 4b
26.3 31.5 35.5
28.6 30.3 32.2
28.2 30.4 33.3
27.3 30.0 31.9
29.1 30.7
27.0 28.6 31.9
26.9
28.3
Horizontal Permeability (md)
3 4 4b
81 190 2045
311 319 401
38 128 453
26 132 348
137 461
87 157 355
15
94
Table 28. Average porosity and permeability by zone for the three reservoir petrofacies
Zonal averages of core plug porosity and of core plug permeability (horizontal air permeability) for
the three major reservoir petrofacies. No data are available for entries marked by "---". NOTE:
averages ITom the MbI Sand (strictly speaking, Lithofacies 3, 4, and 4b) have been included for
comparison; the petrofacies scheme has not been extended to the Mbl.
77
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
í.
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Sw @ 402' aFWL (MICP) Qv (CoCw)
ZONE 3 4 4b 3 4 4b
Mb1 24.7 6.6 0.078 0.029
OA 36.6 23.5 17.3 0.160 0.091
OBa 23.2 26.9 0.257 0.284
OBb 31.8 33.0 0.987
OBc 15.4 0.574 0.379
OBd 24.7 37.3 21.4 0.400 0.719
OBe 36.6 0.629
OBf 60.9 0.449
Table 29. Average irreducible water saturation and Qv by zone for the three reservoir petrofacies
Zonal averages of irreducible water saturation (as represented by the calculated water saturation at
402' above fÌ"ee water level in an oillbrine system, as calculated fÌ"om MICP data) and ofQv
(calculated fÌ"om CoCw electrical properties tests) for the three major reservoir petrofacies. NOTE:
averages fÌ"om the Mbl Sand (strictly speaking, Lithofacies 3, 4, and 4b) have been included for
comparison; the petrofacies scheme has not been extended to the Mbl.
ZONE
Mb1
OA
OBa
OBb
OBc
OBd
OBe
OBf
XRD Total Clays (wt%)
3 4 4b
11.5 5.3
17.5 19.0 12.3
20.0 17.0 13.0
19.0 17.3
16.5
16.0
Point Count Clay Matrix (%BV)
3 4 4b
2.0 0.2
2.3 1.0
5.8 3.0 0.7
5.3 6.0
0.0 2.7
6.1 2.7 1.4
5.0
5.2
20.7
15.0
14.7
14.0
12.0
Table 30. Average XRD clays and point-count matrix by zone for the three reservoir petrofacies
Zonal averages of total clay mineral content (based on X-ray diffraction analyses) and of clay matrix
content (based on point-count data fÌ"om thin sections) for the three major reservoir petrofacies.
NOTE: averages fÌ"om the Mbl Sand (strictly speaking, Lithofacies 3, 4, and 4b) have been included
for comparison; the petrofacies scheme has not been extended to the Mbl.
78
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
PETROPHYSICAL APPLICATIONS
It is important to have a solid understanding ofthe petrographic basis (texture,
mineralogy, clay distribution, etc.) for core plug petrophysical measurements, in order to
extrapolate the core results reliably and appropriately to other wells. Core coverage and
core analysis is unusually extensive and comprehensive in the V-IIIPBI, and this well
affords a unique opportunity to correlate petrographic characteristics with a variety of
petrophysical measurements on core plugs. The following sections deal with specific
types of routine and special core analyses, and compare results with the petrographic
properties of the plugs. During the selection of petrographic samples, considerable effort
was made to include plugs which were to be used for various special core analyses and,
when possible, to carry out more than one type of petrographic analysis (thin section, X-
ray difftaction, SEM, LPSA) on the same plug to allow cross-correlation of petrographic
parameters. Table 31 is a summary list of the number ofSCAL samples that were also
studied petrographically, by the type of special core analysis and the type of petrographic
technique used. Following that, in Table 32, is a summary of the total number of plug
samples used for the different routine and special core analyses, grouped by stratigraphic
zone and by depositional facies. Some feel for how representative the petrographic data
are can be gleaned by comparing the number of petrographic samples to the total number
of plugs for a given analysis. For any particular SCAL test, the number of samples is
rarely more than 5% ofthe number of routine plugs in a given zone or facies.
ê C,)
~ ~ ~ ~
.-
U () U .-
~ 0
0 ~ .- ~ ì::;
U ()
p:: .-
<I:;
ANALYSES
Thin Sections 12 15 21 28 15
Point Counts 11 8 5 18 11
X-ray Di:f&action 16 1 4 7 14
LPSA 1 1 7 10 6
Table 31. Summary of petrographic analyses on SCAL samples
Number of petrographic analyses, by type of analyses, for each of the major special core analyses:
values are the number of petrographic analyses of a specific type (thin section, point count, XRD,
LPSA) performed on the same or adjacent (within 0.35') plug (usually a trim end from the plug) as
the special core analysis (CoCw - multiple salinity electrical properties, FF-RI - standard electrical
properties; ReI Perm - oillbrine relative permeability; MICP - mercury injection capillary pressure at
overburden stress; Air/Oil Pc - air/oil capillary pressure). In some cases more than one type of
special core analysis was performed on the same plug (e.g., relative permeability and MICP).
79
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
(!) (!)
1-0 5 u
0 ~ öI)
u ð ~ ~ ~
-
(!) u Õ
¡:: I ~ 'r::
~ 0 ~ ~ ~ ì::; ~
u ~ p::: < (!)
U
Stratigraphic Zone
Mbl 73 3 3 0 3 3 0
OA 124 3 3 4 6 4 3
OBa 60 2 1 4 4 2 3
OBb 74 2 2 0 3 2 0
OBc 64 2 2 0 2 2 0
OBd 103 2 3 10 8 3 8
OBe 52 2 2 0 2 2 0
OBf 12 1 1 0 1 1 0
Depositional Facies
DC 49 2 3 0 2 2 0
Bay+ 24 1 1 0 1 1 0
MSF 61 4 3 4 5 4 3
PLSF 92 5 5 9 8 5 7
LSF 133 5 6 5 11 7 4
DLSF 53 0 0 0 2 0 0
LOS 150 0 0 0 0 0 0
Table 32. Stratigraphic and facies distribution of routine and special core analyses
Number of plugs analyzed for routine and special core measurements, by stratigraphic zone (sand
intervals Mbl through OBf) and by depositional facies. Numbers for routine core analyses include all
plugs for which routine properties were measured (including most SCAL plugs). Special analyses:
CoCw - multiple salinity electrical properties; FF-Rl- standard electrical properties; ReI Perm -
oil/brine relative permeability; MICP - mercury injection capillary pressure; Air/Oil Pc - air/oil
capillary pressure; Centrifuge - oil/brine endpoint saturations). Depositional facies: DC - distributary
channel; Bay+ - bay, bay fill, splay; MSF - middle shoreface; PLSF - proximal lower shoreface; LSF
- lower shoreface; DLSF - distal lower shoreface; LOS -lower offshore/shelf
80
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Routine core analyses
Routine measurements of core plug porosity, permeability, and grain density, as well as
oil and water saturations, reflect the petrographic characteristics of the plug. Most of the
Schrader Bluff sandstones in this core are well sorted and lightly cemented. Porosity
differences in a given facies tend to be small outside of concretionary horizons, but there
are significant differences between facies. Permeability is rather sensitive to subtle
differences in petrographic properties such as grain size and clay matrix content (and so,
indirectly, to changes in depositional facies). Grain density reflects mineralogy. There
are some variations in detrital composition, primarily in the abundances of different lithic
fTagments, between stratigraphic zones, but the resulting density differences are usually
minimal. High-density authigenic phases, such as siderite, ankerite, and pyrite, have a
larger impact on plug-scale grain density. In the more volcanogenic sands within and
near OBe, the locally high contents of low-density heulandite cement can also have a
material effect on measured grain densities. There are brief discussions of some of the
petrographic aspects of porosity and grain density values, and a more extended treatment
of permeability, in the following sections.
Porosity
Due to increasing clay matrix and compaction, total porosity decreases progressively in
an offshore direction (Table 33). Zonal average porosity values are less consistent, and
depend to a large extent on the mix of facies sampled in a given stratigraphic interval.
Facies
Distributary Channel
Middle Shoreface
Proximal Lower Shoreface
Lower Shoreface
Distal Lower Shoreface
Lower Offshore/Shelf
Porosity
34.7
30.2
30.7
27.3
24.3
22.4
Table 33. Core plug porosity values (%BV) averaged by depositional facies
Core plug helium porosity values (%BV) averaged (arithmetic mean) by depositional facies. All
samples were weighted equally, so the averages for some facies may be slightly skewed by intensive
sampling of the best quality and/or most homogeneous sands for special core analyses.
Another important aspect of porosity is the fTaction of the total porosity which is effective
at storing and transmitting hydrocarbons, so-called "effective porosity". Poorly-
connected or dead-end pores contribute little to fluid flow, and micro pores tend to be
water-filled except at very high capillary pressures; such pores are part of the total
measured ("helium") porosity, but are not effective for reservoir purposes. One method
of estimating the amount of effective porosity is to compare the amount of porosity
visible in thin section with the total (helium) core plug porosity (Figure 49).
Extrapolating the observed good correlation to zero visible porosity suggests that nearly
23 porosity units consist of ineffective micropores. Restricting the thin-section values to
macropores (> 20 microns) only results in a marginally better correlation (Figure 50).
81
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
difference indicates the connectedness
of size, pores are about equally
40
35
30
25
20
( 15
J:
10----
5
0
0 5
He POR = 0,3499*TS_Por + 22.77
R2 = 0.7616
10
15
20
25
30
35
40
TS
49. Thin-section porosity vs. helium (core plug) porosity
Crossplot of thin-section porosity ITom point counts (TS Porosity, %BV, both macropores
and mesopores) and total (helium) porosity ITom routine core plug analyses (%BV). The linear
regression line and its equation are included on the graph.
45
40
35
30
25
20 -...
ø
J:
15 -~-----
10
5 ----..--
0
0 5
He POR = 0,3104*MacroPor + 26,719
R2 = 0.8141
10
15
20
25
30
35
40
50. Thin-section macropores vs. helium (core porosity
Crossplot ofthin-section macropores (apparent diameter < 20 microns) from counts (%BV) and
total porosity ITom routine core plug analyses (%BV). The linear regression line and its
equation are included on the
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
40
30
20
10
0
0 10 20 30 40
He
51. Core plug porosity vs. estimated microporosity
Crossplot of core plug helium porosity %BV) and microporosity estimated by the
difference between helium porosity and visible (thin-section) porosity from point counts (Micropores,
%BV).
amount of microporosity is not consistent sample to
fact, it varies inversely amount porosity, as would be expected.
porosities 25% or the porosity consists of
microporosity. As porosity increases, clay decreases, and absolute and relative
amounts of microporosity decrease as decreasing
increasing is described regressIOn
and
samples
-
porosities correspond to a greater
sharp corresponding increases penneability.
consequent
83
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Absolute permeabilities are a strong and generally consistent of porosity these
sandstones. Unless otherwise stated, "permeability" to horizontal plug air
permeability this discussion. but ineffective micropores have a significant
impact on the ability of a sandstone to transmit fluids at a given porosity. Even rather
values of total porosity correspond to quite permeabilities, as porosity is almost
entirely ineffective for values less than about 25%. The pay cutoff for porosity is liable
to be surprisingly
distribution of measured permeability values is quite striking and polymodal, when
viewed from a stratigraphic and a facies perspective. stratigraphic distribution
of permeabilities is illustrated Figure 52. Most zones exhibit three major modes, at
about 1-5 10-50 md, 100-500 mixture of modes is largely the result of
presence of facies in each zone, more distal facies constituting the
modes more facies values. facies
Sand is unique cored and distributary sandstones
this zone a at darcy-level permeabilities. OBe Sand,
extensive zeolite and smectite cement even more proximal facies, lacks 100-
500 mode The 1 mode is also well developed OBb and OBc
Sands, because these zones of the more distal facies.
50
45 Mb1 OBa
aBc OBd ~,~.._.~.~ OBe
40
35
30
25
20
15
10
5
0
5 10 50 100 500 1000 >1000
52. Frequency distribution of horizontal plug permeabilities by stratigraphic zone
Frequency distribution histogram (smoothed line graph) of horizontal Klinkenberg permeability
values for aU core plugs SCAL plugs), grouped by stratigraphic zone. Note the trimodal
nature of the distribution in most zones.
84
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Various measures of the average zonal permeability values are listed
ZONE MEAN MEDIAN GEOMEAN
Mb1 1294 687 205
OA 168 15.5 18.3
OBa 168 42.7 38.5
OBb 39.2 5.4 7.5
OBc 56.1 2.9 4.2
OBd 132 39.8 26.9
OBe 9.5 4.9 4.5
84.6 61.6 52.6
Table 34. Arithmetic mean, median, and geometric mean of all plug permeability values by zone
Summary of average horizontal permeabilities, in millidarcies, weighting all plugs equally, for each
stratigraphic zone: arithmetic mean (Mean), median, and geometric mean (Geomean).
averages incorporate data a zone,
proportions of facies; some zones are more heavily
analyses others, skewing averages towards values. It is misleading to
the quality of the zones from these averages alone.
Interpretations are more are viewed terms
depositional facies. Figure 53 presents by
facies.
70
DC MSF PLSF
60 LSF DLSF LOS
50
40
30
20
10
0
5 10 50 100 500 1000 >1000
HPERM
Figure 53. Frequency distribution of horizontal plug permeabilities by facies
Frequency distribution histogram (smoothed line graph) of horizontal Klinkenberg permeability
values for all core plugs (including SCAL plugs), grouped by depositional facies (DC - distributary
channel; MSF - middle shoreface; PLSF - proximal lower shoreface; LSF - lower shoreface; DLSF -
distal lower shoreface; LOS - lower offshore/shelf). Note the trimodal nature ofthe distribution in
individual stratigraphic zones reflects an upwards-shoaling facies sequence, with
modes representing shallower-water facies.
85
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
All facies have a single dominant mode of permeability values; most have at least
secondary mode as well. The primary mode for distributary channel sandstones (making
up the Mb1 Sand) is 1000-5000 md, much higher than and quite distinct from that of any
other facies. Distributions for middle shoreface and proximal lower shoreface sandstones
are quite similar, with a strong primary mode at 100-500 md; it would be worth a brief
look to compare other aspects of these facies (e.g., electrical and capillary properties) to
decide whether it would be justified to combine them into a single composite facies for
reservoir description purposes. Distal lower shoreface and lower offshore/shelf
sandstones are also quite similar to each other in terms of permeability distributions, with
a strong primary mode at 1-5 md and a significant fraction of samples at <1 md. Lower
shoreface sands fit quite symmetrically between the two pairs of more proximal and more
distal facies, with a well-developed normal distribution and a strong primary mode at 10-
50 md. Looking back at Figure 52, it is clear that the multiple modes that characterize
most of the stratigraphic zones are simply the sum ofthe various facies that make up that
zone. Various facies-based averages of permeability are listed in the table below.
FACIES MEAN MEDIAN GEOMEAN
Distributary Channel 1895 1780 944
Middle shoreface 330 293 155
Proximal lower shoreface 230 190 146
Lower shoreface 84 22 23
Distal10wer shoreface 5.9 2.9 3.4
Lower offshore/shelf 4.1 1.8 1.7
Table 35. Arithmetic mean, median, and geometric mean of all horizontal permeability values by facies
Summary of average horizontal permeabilities, in millidarcies, weighting all plugs equally, for each
depositional facies: arithmetic mean (Mean), median, and geometric mean (Geomean).
There is a marked progressive decrease in permeability from proximal to distal
depositional settings, no matter how the average is computed. As illustrated in Figure 53,
the shoreface facies of the 0 Sands fall naturally into three groups in terms of average
permeability: high-quality proximal facies (middle and proximal lower shoreface) with
average permeabilities around 200 md; low-quality distal facies (distal lower shoreface
and lower offshore/shelf) that average around 2 md; and the intermediate group oflower
shoreface sands. Note that for most facies the skewness (departure from a normal
distribution, as indicated qualitatively by the difference between the arithmetic mean and
the median value) of the distribution is on the order of a factor of 2, whereas for the lower
shoreface sands it is nearly a factor of 4. This means that there are a small number of
high-permeability outliers in the lower shoreface (the maximum permeability for a lower
shoreface sand is 3310 md, in the OA Sand just below a contact with middle shoreface
deposits), an important concern when modeling a dynamic situation such as a waterflood.
86
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
1 0000 --
1000
p
f5 100 - LSF
,
~ DO
w
~ 10 - LOS
0.1
o
5
10
15
20
Por-50
25
30
35
40
54. Median porosity vs. median averaged by depositional facies
Semi-logarithmic cross plot of median core plug porosity (por-50, %BV) and median horizontal
permeability (HPERM-50, %BV), averaged by depositional facies: distributary channel (DC), middle
shoreface (MSF), proximal lower shoreface lower shoreface (LSF), distal lower shoreface
(DLSF), and lower offShore/shelf (LOS).
regression of porosity on
results
r2 = 0.994
standard error
value
shoreface
between
87
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Vertical permeabilities
FACIES MEAN MEDIAN GEOMEAN Kv/Kh
Distributary Channel 1796 1645 1097 0.83
Middle shoreface 107 27.6 38.8 0.75
Proximal lower shoreface 145 34.0 50.1 0.40
Lower shoreface 9.2 5.5 4.4 0.64
Distal lower shoreface 2.4 2.3 1.8 1.4
Lower offshore/shelf 1.2 0.44 0.47 1.4
Table 36. Arithmetic mean, median, and geometric mean of vertical penneability values by facies
Summary of average vertical permeabilities, in millidarcies, weighting all plugs equally, for each
depositional facies: arithmetic mean (Mean), median, and geometric mean (Geomean). Kv/Kh is the
ratio of vertical permeability to horizontal permeability from an adjacent plug location.
The situation for facies-average vertical permeabilities is similar to that for horizontal
permeabilities, with a distinct proximal-to-distal gradient of decreasing K v. Unlike the
distribution of horizontal values, however, the distribution of vertical permeabilities is
most skewed for the proximal shoreface settings (middle shoreface and proximal lower
shoreface) rather than for the lower shoreface. Average vertical permeability is slightly
higher in proximal lower shoreface sands than in middle shoreface sands, perhaps due to
the influence of increased burrowing activity on primary depositional structures such a
planar laminations. The homogenizing effect of bioturbation is quite evident in the distal
facies, where Kv/Kh, the ratio of vertical to adjacent horizontal permeability, averages
greater than one.
Taking the discussion of effective porosity (see section on Porosity, above) a step further,
there should be a good correlation between effective porosity and permeability, since it is
the effective pores that are actually responsible for transmitting fluids. A strong
relationship is evident between permeability and either total thin-section porosity (Figure
55) or macropores (Figure 56). The relationships were quantified by calculating the
regression of thin-section porosity or macropores on the logarithm of horizontal
permeability, resulting in the following equations:
LOG (HPERM) = 0.08*(Thin-Section Porosity) + 0.35
r2 = 0.75 Standard error (Log Perm) = 0.32
LOG (HPERM) = 0.07*Macropores + 1.2
r2 = 0.84 Standard error (Log Perm) = 0.26
When core plug (helium) porosities are used rather than thin section-derived porosity
values, the correlation is just as good (Figure 57):
LOG (HPERM) = 0.2*(He Porosity) - 4.1
r2 = 0.81 Standard error (Log Perm) = 0.28
88
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
:æ
a::
w
a..
J:
1 0000 ~--
1000
100
10
0.1
o
5
10
15
20
25
TS
55. Thin-section porosity vs. core plug horizontal permeability
Semilogarithmic crossplot of visible section) porosity (TS
and horizontal permeabilities from core analyses
10000
1000
I
I :¡¡ 100
11:1::
w
a..
J: 10
0.1
o
5
10
15 20 25
Macropores
56. Thin-section macropores vs. core plug horizontal permeability
Semilogarithmic crossplot of macropores (>20 microns apparent
and horizontal permeabilities from core analyses md).
30 35 40
%BV) from counts,
30 35 40
%BV) from point counts,
89
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
_.__..~~.
10000 -----
1 000 -~-
10
:æ
IX:
w
!:I.
:r::
0,1
o
5
10
15 20 25
POROSITY
30
35
40 '
I
I
,
57. Core plug porosity and thin-section macropores vs. horizontal penneability
Semilogarithmic crossplot of macropores (>20 microns apparent diameter, %BV) from
point counts, and total (helium) porosity from core analyses POR, %BV) against horizontal plug
penneabilities md).
proportions of
between total porosity
IS
Because of
phases, inverse
correlation between total core
macropores
of ineffective
core porosity/permeability trend,
permeability orders
is to lose over 30
as good as
type of pores) and
steeper
translates to a decrease
decrease
it
most
terms pore size 58 the
mesopores, and micropores as a absolute
pore systems consisting occur only
sands, on order a darcy.
as the of mesopores micropores increase.
30% porosity consists macropores, the
50 Macropores do appear to have a bigger impact on permeability
mesopores: a sand with about 60% mesopores 40% micropores have a
on the order of20 based on 58, whereas a sand 60%
macropores and 40% micropores a closer to 200
is some between classes, ternary
serve as basis a of a section of a
percussion sidewall core, was available
90
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
MesoPor
MacroPor
< 20 md
20-50 md
A 50-100 md
100-200 md
200-501 md
>501 md
10 20 30 40 50 60 70 80 90
MicroPor
Figure 58. Macropores Mesopores - Micropores ternary plot, grouped by horizontal permeability
-- -- --------------------'---..
91
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Density
density range major detrital grain types that make up
sandstones this core is fairly and generally not too different density of
quartz e2.65 g/cc). density phases, such as detrital dolomite and chlorite, do occur
only minor amounts. Differences measured grain density are due largely to the
abundances of authigenic phases, high-density phases such as pyrite and
ferroan carbonates, or low-density minerals such as heulandite. Zonal averages of grain
density are an average of distal and proximal depositional settings, and changes high-
density authigenic mineral contents are largely averaged out. Because strong
between locally abundant volcanogenic detritus (predominantly the OBe Sand) and
low-density zeolite cement, the average grain density of only the volcanic-rich zone is
affected. average grain density ofllie stratigraphic zones is about 2.72 glee for
zones except the has little way of distal facies to balance clean
sands, and the OBe, an average grain density of2.66 glee
because significant content specific to that zone.
density measurements by stratigraphic zone are displayed Figure 59.
70
60
50 --
40 -,
30-
20-
10 ~
0
2,60 2.64
2,68
2.72
2.76
2,80
>2,80
59. Frequency distribution of grain density measurements, by stratigraphic zone
distribution histogram of an grain density measurements on core plugs, grouped by
stratigraphic zone.
of density values for most sands are
better sorted or more skewed others.
a strong primary mode around 2.67 glee and a
bay deposits zone), OBe,
a secondary <2.60 glee.
are most common OBe Sands.
also has a mode
density values (>2.80)
92
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
terms
an offshore
depositional facies, there is a trend of increasing grain density
as indicated following table.
FACIES
DC
MSF
PLSF
LSF
DLSF
LOS
GRAIN DENSITY
2.65
2.69
2.71
2.70
2.73
2.74
Table 37. Average grain density by depositional facies
Sample-based average of grain density (glee) by depositional facies: DC - distributary channel; MSF
- middle shoreface; PLSF proximal lower shoreface; LSF -lower shoreface; DLSF distal lower
shoreface; and LOS - lower offshore/shelf.
progressIve mcrease density a distal direction is inferred to be the result of
increasing and content offshore. facies reservoir potential
emiddle to lower shoreface), the range average grain density is
use a limestone the computation
more accurate values. An exception to this
needs to be treated to its zeolite content
DC
BAY
MSF
PLSF
LSF
DLSF
LOS
60. Frequency distribution of grain density measurements, by depositional facies
Frequency distribution histogram of aU grain density measurements on core plugs, grouped by
depositional facies.
average IS
lower shoreface sands are
scattered.
93
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Sinee increasing grain density is associated increasing contents of clay matrix and
cements being a complication to the there is a good
relationship between grain density and porosity.
----
2,50
2,60 DC --~
2,70 BAY
MSF
2,80 PLSF
2,90 LSF
... 3.00 DLSF
C)
LOS
3.10
3,20 --
3.30
0 5 10 15 20 25 30 35 40
Par
61. Core plug porosity vs. grain density, coded by depositional facies
Crossplot of core plug porosity (%BV) and density (Gr Density, glee) for all samples, identified
by depositional facies: DC - distributary BAY bay fill and splay, MSF - middle shoreface,
PLSF - proximal lower shoreface, LSF -lower shoreface, DLSF - distal lower shoreface, LOS -
lower offshore/shelf Note that the scale ofthe grain density axis is inverted.
a few exeeptions two carbonate-eemented MSF
Figure 61), there is a consistent progression to more facies
increasing porosity decreasing grain Changes grain density porosity
are subtle porosity values between 20 35%. porosities,
carbonate pyrite cements, and porosity drops rapidly as grain
porosities, sandstones of Mb 1
there is a correlation porosity
density increases.
Sand are involved,
density.
94
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Electricalproperlies
In order to improve calculations of fluid saturations ÍÌom wireline log data, electrical
properties measurements (formation factor, resistivity index) were carried out by Core
Lab (Houston) on a total of 34 samples. The analyses were divided into two groups: for
the ftrst group 17 samples), measurements of apparent formation factors were made at a
single salinity (approximately that of formation brine), followed by a series of
measurements of resistivity indices at decreasing values of water saturation. For the
second group of 17 samples, formation factor measurements were made at a number of
water salinities (ranging ÍÌom formation brine near 15,000 ppm NaCI up to 200,000 ppm)
- known as CoCw measurements, which allow the calculation of any electrical
conductivity through the rock matrix rather than the pore fluids. The CoCw tests were
then followed by resistivity index measurements at multiple water saturations. When the
matrix conductivity is known (usually expressed in terms ofQv), it is possible to
compute "clay-corrected" values for the formation factor and resistivity index, and ÍÌom
them to compute corrected values of the Archie cementation (m) and saturation (n)
exponents. Traditionally electrical properties values corrected for matrix conductivity are
marked with an asterisk: thus F* (or FF*) is the corrected version of the formation factor
(the uncorrected version is sometimes noted as Fa for apparent formation factor), RI* is
the corrected resistivity index, m* and n* the corrected Archie exponents. Table 38 and
Table 39 present a compilation of the apparent and corrected (when available) values of
formation factor and resistivity index for all electrical properties samples, together with
selected petrographic properties relevant to the electrical character ofthe sample.
The ability of the rock matrix to conduct electricity is related to its effective cation
exchange capacity, in which electrical current is able to flow by way of cations moving
between pore fluid and mineral surfaces. For many minerals, the cation exchange
capacity (CEC) is near zero; for others, such as smectite with a very high specific surface
area and a clay crystal structure with an intermediate layer charge deftciency, the CEC
(measured on a per gram basis) is quite high. The effective CEC can be calculated ÍÌom
the results of CoCw measurements. More commonly, wet chemical techniques are used
to determine a bulk CEC value for a powdered sample of the rock. Such chemical
measurements ofCEC were done for most of the CoCw samples, a total of 16 in all.
These measured values are also listed in Table 38 and Table 39.
The electrical properties of a reservoir sandstone are a function of its pore system
(number, size, connection of pores), saturation state, and fluid properties, as modifted in
some rocks by significant matrix conductivity in parallel to the current conducted through
the pore fluids. It is reasonable to expect correlations between petrographic and
petrophysical parameters related to the pore system and matrix conductivity (e.g., grain
size, clay content, smectite, permeability) and the various measures ofthe reservoir's
electrical properties. The following section illustrates some ofthese correlations, with
the goal of estimating electrical properties in these sandstones in uncored wells, either
from physical samples (cuttings or sidewall cores), or indirectly from wire line log
responses.
95
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
14 -
12
10
8
u.
u.
6
4
2
0
50 70
90
110
130
150
MGS
62. Point-count mean
size ys. formation factor
Crossplot
clay-corrected).
mean grain size (MOS,
and the measured formation factor
not
14
12
10
8
u.
u..
6
4
2---
o
o
2
4
6
8
10
% CLAY
63. Point-count %Clay-sized particles YS. formation factor
Crossplot of the
clay-corrected).
estimate of clay-sized material (%
and formation factor
not
is correlated, with
eFigure 62) and content 63).
followed by an electrical current through
expected. is also sensitive to
good correlation with
scatter, mean SIze
tortuosity of
sandstone, so some correlation is
size and content, and exhibits a
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
10000
1000 -----
:æ
œ: 100
III
Q.
::t:
10
o
2
4
6 8
Formation Factor
10
12
14
64. Formation factor vs. horizontal plug permeability
Semi-logarithmic crossplot of formation factor (uncorrected for clay effects) and horizontal plug
permeability
regression of the logarithm of horizontal permeability on
correlation
factor
Formation Factor =
r2 0.66
- 2.5*Log
error (FF) = .2
exchange capacity
current by surface
are Via
is a measure of a
of charged (cations).
tests on a powdered of the
gram emeq/g). any geometric factors
conductive minerals are to the properties sandstone,
is not reflected the CEC tests. One situation
results must of sandstones significant
day, as Schrader sandstones oftms study. X-ray
measurements of total day and content are performed on
samples no geometric Smectite is a a
exchange capacity, due to its surface area and moderate
zeolites also CEC, are
conducting electrical current these samples, is no correlation
content. There is a good as expected,
smectite content 65).
where
very
layer
not effective
between CEC
CEC XRD
97
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
---
16 -~-
14
12
10
(,)
w 8
(.)
6
4
2
o
o
2
4
6 8
XRD Smectite
10
12
14
65. XRD estimates of total smectite content vs. CEC
Crossplot of X -ray diffraction estimates of smectitic clays (XRD Smectite, wt%) and measured cation
exchange capacity (CEC, meq/g).
A
regression analysis
above
yields
correlation
CEC=
r2 =
+ 0.99
error (CEC) = 1
measures of day and
less good, even though these phases are a
conductive portion of sandstones total day or smectite content,
CEC measurement does not discriminate
occurrences of the same
-
+ 0.83*Smectite +
error (CEC) = 3
r2 =
where is cation capacity (meq/g), Matrix is estimate of
day content (%BV), and Smectite is point-count measurement
authigenic smectite content (%BV).
A more accurate measure a sandstone's electrical 1S a porosity-
cation exchange capacity calculated results of
(CoCw tests). tests measure actual exeess
of a sandstone to presence effective cation
exchange capacity - surfaees are exposed to pore
conduction of current.
98
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
measurements of CEC and conductivity-based measurements of Qv vary with the
composition sandstone of conductive phases. the Schrader
Bluff sandstones V -11 is generally a reasonably good correlation
between CEC and Qv, fact that amount of ineffective cation exchange
capacity, though rather large, is consistent sample to sample.
16
14
12
10 ~
9
() 8 ~
!.I.i
()
6- .
4 -~
2 ~ 2
o ~
0 0.5
Qv
. Mb1
19% Heul
Shaly
1.5
2
Figure 66. Qv vs. CEC, samples grouped by stratigraphic zone
Crossplot ofQv (calculated from CoCw results) and cation exchange capacity (CEC, meq/g, from
chemical measurements whole rock). Samples are identified by stratigraphic zone.
Numbers next to the OA samples are the weight% smectite values from XRD. Two samples with
Qv fall far off the general one with 19% heulandite, the other with extensive clay matrix.
samples at
CEC
Qv,
regressIOn
two
between
CEC=
+
clay)
one end
CEC only
ideal approach
to
base correlations to
OA Sand.
general
Note
Smectite-poor samples have
deeper sample 9% smectite has
Qv, and above the
only those phases
conductivity, such as
properties on
occurrences,
up less 5%
phases
be to
and
consistent
IS
these
good (Figure 67).
99
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
1,6
1,2
0,8
0.4
o
o
2 3
pt Ct Smectite
4
5
67. Point-count smectite content vs. Qv
Crossplot of the point-count estimate of authigenic smectite content (%BV) and Qv (calculated from
CoCw electrical properties
is a general
correlation is
phases be
amount
increasing Qv
especially
Qv,
smectite,
or no suggests
particular the clay matrix. Using samples
correlation equation is obtained.
Qv=
r2 = 0.89
+ 0.236
error
=
18
where Smectite is
zero values
1S
correlating Qv
smectite content (%BV, non-
all possible samples are considered, the possible
obtained by smectite and and
clay matrix content.
-
error = 0.165
r2 = 0.85
where Matrix is the point-count estimate clay content (%BV).
sum is considered, correlation is good, not as good as
1S alone (Figure 68). Because it is to quantify
smectite, correlations such values are not as good as they
of the smectite is marked, as indicated
1
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
1.6
1.4
Qv = 109*(Matrix+Smectite)
1.2
R2 = 0.71
1--~
d 0.8
0.6
0.4
0.2
o
o
2
4 6
Matrix + Smectite
8
10
Figure 68. Sum of matrix and smectite content vs. Qv
Crossplot ofthe sum of point-count clay matrix and authigenic smectite (%BV) and Qv (calculated
from CoCw electrical properties measurements). Linear regression equation and correlation
coefficient are displayed on the chart. The anomalous data point (orange square) is the only sample
with abundant heulandite.
linear regression
following equation:
clay
authigenic
onQv
-
+ O.095*Clay Matrix +
Standard 1
effective conductivity of clay dispersed a sandstone as a pore-
matrix is less smectite occurs as gram
coats. greater effectiveness of smectite is probably to greater cation
exchange capacity surface area of compared to more
and to geometry smectite, leading to a
proportion content directly to
Even though it is clear that the smectite content derived from X-ray analyses
comprises authigenic smectite a impact on the sand's
properties) and smectite altered fragments (presumably
or on influence on electrical properties, not involved the sand's system),
there is nevertheless a decent between Qv and XRD smectite content, at
Qv<O.l, as 69. This to
of a amount against a
constant background of relatively structural clay.
1
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
1,8
1.6
1.4
1.2 -
1 ~
0.8 --~
----.
0.6 ~
0.4
0.2
o
o
2
4
6
8
10
12
14
XRD Smectite
69. Smectite content from XRD vs. Qv
Crossplot of smectite content detennined by X-ray diffraction analysis (XRD Smectite, wt%) and Qv,
calculated from CoCw tests. Two samples with very Qv values are annotated (Heul = abundant
heulandite cement, Shaly = abundant clay matrix), and are not induded in the regression calculations.
two anomalous samples
cement or
Qv
very Qv values (due to
regression of XRD smectite
-
+
r2 = 0.65
correlation convenient, as it is generally easier
reliable estimates of content diffraction
point counts provide a more direct measure electrically active
to
counts, even
of the
102
............................................
SAMPLE Electrical LPSA Point Count XRD
() I;IJ I;IJ I;IJ
() ~ I;IJ ~
~ ~ ..... ~ () () ~ ()
I;IJ ~ ~ .¡::: ',¡:i "'0 0 S I-< ~ .....
() () U r;r.¡ r;r.¡ ~ 0 - ',¡:i "'0
= ..... µ.. * > ~ ~ ~ (.) ~ Po Po u ~
µ.. ~ u - () (.)
0 (.) µ.. CI u 1 s - ()
N Cd µ.. U ~ ~ ~ I;IJ I-< ";; S ~
µ.. r;r.¡ ~ () (.) õ
~ ~ ~ ~ ~ r;r.¡
Depth ~ E-i
4047.00 Mbl DC 5.81
4049.20 Mbl DC 5,81 5.96 0.024 0.51 146 0 0 0 0 33 3 0 3 0 0
4066.50 Mbl DC 5.59 5.79 0.034 0.92 123 0 0 0 0 33 4 9 9 0 0
4068.00 Mbl DC 6,23
4077.00 Mbl DC 7.65 86 2 2 0 0 6 17 9
4079.15 Mbl BF 9.00 9.75 0,078 1.66 12 0 0
4406.25 OA MSF 7.46 8,00 0.065 0.96 12 0 0
4408.95 OA MSF 7.62
4413.30 OA MSF 8.35 9.46 0.117 1.46 13 2 0
4415.00 OA MSF 8.05 102 0 0 0 0 14 10 8
4420.25 OA MSF 9.02 10.65 0.160 8.25 88 2 2 0 0 10 11 9 19 9 0
4422,00 OA MSF 12.51
4470.70 OBa PLSF 7.57 10.01 0.284 13 7 0
4489.40 OBa MSF 8.51 10.98 0.257 7.70 80 2.5 3 0 0 20 11 3 17 7 0
4494.00 OBa LSF 11.10 54 9 8 1 0 7 10 12 20 10 0
4510.00 OBb PLSF 9.46
4511.15 OBb PLSF 9.94 25.32 1.379 7.93 58 9 9 0 0 5 10 12 17 9 0
4515.00 OBb PLSF 9.63 67 4.5 4 0 0 10 10 11 19 9 0
4518.80 OBb PLSF 10.35 17.37 0.594 11.33 14 8 0
Table 38. Selected petrographic properties of plugs with electrical properties measurements, Mbl through OBb Sands
103
............................................
SAMPLE Electrical LPSA Point Count XRD
() $ rJJ rJJ rJJ rJJ $
~ ..... :.a ~ ~ () ~ $
rJJ ~ ~ 'fi 6 .-
() () U (/) (/) 'C ª - 'fi "'t:I
s:: ¡;.;¡. * :> ~ ~ 1i:i ) ~ ~ u ã
.- ¡;.;¡. ~ - - ()
0 u ¡;.;¡. a u u ::E 8 - ()
N t1:I ¡;.;¡. U ~ ~ ~ rJJ ts ~ 8 ~
¡;.;¡. ~ (/) ~
~ ~ (/)
~ E-i
Depth
4564.00 OBc PLSF 9.01 35 8
4566.50 OBc PLSF 12,70 20.93 0.574 8.29 16 8 0
4570.00 OBc PLSF 10.12 90 2.5 3 0 0 10 10 8
4570.75 OBc PLSF 8.76 12.53 0.379 6.37 98 2 98 3.5 2 tr 0 11 9 10 14 8 0
4616.15 OBd LSF 8.82 12.82 0.400 9.93 78 2 3 0 0 11 10 7 22 12 0
4618.00 OBd LSF 9.83
4633.00 OBd PLSF 7.23 90 0.5 1 1 0 17 10 6
4635.70 OBd LSF 8.92 16.12 0.719 13.85 70 5 5 1 1 9 13 7
4658.00 OBd LSF 10.02
4681.00 OBe LSF 12.37
4681.15 OBe LSF 12.63 34.88 1.549 8.48 106 1 2 4 19 1 12 12 13 9 10
4692.60 OBe LSF 12.26 21.06 0.629 9.74 80 4 6 2 7 1 15 11 15 10 3
4694.00 OBe LSF 10.20 88 3.5 3 3 2 1 13 15
4719.80 OBf LSF 9.00 89 3.5 3 1 0 12 8 10
4721.40 OBf LSF 11.50 17.34 0.449 8.18 79 4 6 1 0 7 8 14 15 9 0
Table 39. Selected petrographic properties of plugs with electrical properties measurements, OBc through OBfSands
104
7L
9%
9<;"0.
properties of the Schrader 11 PB 1 been
measured a variety of ways, drainage tests.
preserve original framework and pore geometry ofthe sandstone
samples, capillary (MICP) measurements were carried out
on at net overburden stress, to approximate reservoir
stress conditions. tests were performed by Core Lab on a total of 29
samples. Measured capillary properties are a strong function sandstone
absence of any significant cements. 72,
by depositional facies, and there is a clear distinction between the coarser,
sandstones facies sandstones more distal facies.
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
5000
4500 DC
MSF
4000 PLSF
3500 LSF
DLSF
3000
2500
t)
i:l. 2000
1500
1000
500
0
0.0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sw
72. Mercury/air pressure vs. wetting-phase averaged by depositional facies
Crossplot phase saturation (Sw, %PV) and pressure for
capillary pressure measurements on all samples, averaged by depositional facies (DC distributary
channel; MSF - middle shoreface; PLSF - lower shoreface; LSF lower shoreface; DLSF
distal lower no MICP measurements oflower offshore/shelf samples).
1
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
40
35
OA
OSa
OBd
OSe
osr
25
~
co
[20
...
u.
15
5
o
<0,025 0,050 0.075 0,10 0,25 0,50 0.75 1,0 2.5 5,0
Pore Throat Radius
7.5
10
25
50
75. Calculated relative pore volume as a function
throat
for lower shoreface sands
Frequency distribution of pore throat radii weighted by the incremental pore
volume accessed by throats of a given radius, for all samples from a lower shoreface depositional
facies, by zone.
comparison to
results
water level an
saturation, Sw
water
to Orion As evident
significant microporosity present many of these sandstones,
de saturation continues
characteristics, two parameters
to serve as proxies
above
system,
can be
for a reservoir
73, reflecting
is a relative
pressure to
are
1
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Two petrographic parameters exert a
cemented sandstones Schrader
clay matrix content. sizes of pores and pore
distribution absolute values be
correlations are the following charts.
on capillary properties the
11 PB 1 : mean grain and
set grain
These
are
by
100
80
60
~ 40
UJ
20
0
20 40 60 80 100 120
PtCt MGS
76. Point-count mean grain size vs. Sw (402) ftom MICP data
Crossplot ofthe mean grain size ftom
water saturation at 402' above the ftee water
and Sw the
based on MICP measurements.
2
r =
-
water is strongly
Coarser sandstones
phase saturations.
pressures (or heights above
relates Swi to position as a
1
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
10
8
6
0
It)
Il::
4
2
0
20 40 60 80 100 120
PtCt MGS
77. Point-count mean
size vs. median pore throat size (R50)
Crossplot of the mean size from (PtCt MGS,
radius (R50, calculated from MICP measurements. Data
stratigraphically into two groups: younger sands from the Mb 1
from the more volcanic-influenced OBd OBfintervaL
and the median pore throat
are classified
OBc Sands, and older sands
gram SIze
groups,
cluster coarser
deposits.
are fÌ'om
samples have no
-
. ..
mcreases mcreasmg mean SIze,
IS presenee of widespread pore-filling and
cements. range of detrital content most of these
IS the effects matrix are incorporated to a
extent mean grain size variable not case
mean size been used as
clay effects on
110
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
10
8
6
o
II)
~
4 -
2
o
o
5
10
PtCt '%ClA Y
15
20
78. Point-count %clay-sized materia! VS. median pore throat radius (R50)
Crossplot of the percentage of day-sized from counting %CLA Y, %BV) and the
median pore throat radius (R50, microns), calculated ftom MICP measurements. Data are
classified stratigraphically into two groups: younger sands ftom the Mb 1 OBc Sands, and
older sands ftom the more volcanic-influenced OBd OBf interval.
types of are
IS no
size) exert a
3%
content is
-
or
irreducible water
cementeas
IS
suggesting a
SEM photos).
It is
analyses R50
correlation equations:
(Hg Perm)
r2 = 0.66
-
error (R50) = 1.2
111
·
·
·
·
· = + 11
· r2 = 0.73
· multivariate equations, it is possible to
·
properties as a of mean grain and clay contents. The
· table below illustrates range of capillary properties predicted common
· petrographic situations.
· MGS Sw Facies
· 60 0 0 1.3 56
· 60 0 5 33 <0.1 16
· 60 5 0 33 1.3 22
· 60 5 5 39 <0.1 6
60 10 0 39 1.3 9
· 75 0 0 24 2.2 79
· 75 0 5
· 75 5 0 32
· 75 5 5 37 9
75 10 0 37 2.2 13
· 85 0 0 2.8 1
· 85 0 5 .3 28
· 85 5 0 29 2.8
· 85 5 5 35 1.3 11
85 10 0 35 16
· 95 0 0 3.4 126
· 95 0 5 27 1.9 35
· 95 5 0 27
· 95 5 5
95 10 0 33 3
· 0 0 19 158
· 105 0 5 25 2.5
· 105 5 0 25 63
· 1 5 5 32 2.5 18
105 10 0 32 25
· 115 0 0 7 200
· 115 0 5 23 3.1
· 115 5 0 23 4.6
· 115 5 5 30 3.1 22
115 10 0 30 4.6 32
· Table 40. Predicted capillary properties for typical values of grain size, matrix, and heulandite
·
of predicted values ofSw (402), the phase saturation (%PV) at 402' above the tree
· water level; R50, the median pore throat radius (microns); and the calculated absolute
· for selected values of mean grain size (MOS, microns), clay matrix content (%BV),
· and heulandite content (%BV). facies are indicated at the corresponding average MOS.
·
· 112
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
MacroPor
.
..
MesoPor MicroPor
10 20 30 40 50 60 70 80 90
Sw < 20
. Sw 20-30
Sw 3040
. Sw > 40
.
.
79. Macropores - Mesopores -
ternary plot, grouped by Sw (402) range
of macropores (pores with diameters> 20 mesopores pores
with apparent diameters < 20 and (pores not resolved in thin section,
calculated by difference between core and thin section porosity based on data,
with classified by the corresponding value of Sw the estimate of irreducible water
saturation (calculated phase saturation at 402' above free water from MICP
measurements.
capillary IS tenus system.
large are apt to have a pore system composed
A sandstone whose behavior is very
is to possess a pore system consisting largely of micropores.
Figure 79 approach. Sandstones are coarse
contain significant biogenic or cement are
tenus of pore system tenus texture.
Since diagenetic modification of these sandstones been generally a correlation
radius be expected. of pore types
on 79. relationships between
count-based macropores (Figure or total
are also developed. is also a moderate
(core porosity) R50 83),
content R50 (Figure 78).
113
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
7
6
5
4
o
In
0:::
3
2
o
o
5
10
15
20
25
30
80. Macropores vs. median pore throat radii
Crossplot of macropores from counts (pores> 20 microns
calculated median pore throat radii from MICP tests (R50, microns).
%BV) and
regressIOn
and
is:
-
r2 = 0.85
A
can
between
60
50
40
30
20
10
0
0 5 10 15 20 25
M
81. Macropores vs. calculated water saturation @402' above free water level
Crossplot of macropores from counts > 20 microns apparent %BV) and
calculated water saturation at 402' above free water level in an oil/brine system from MICP tests (Sw
1
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
regressIOn
equation for macroporosity
Sw
IS:
Sw (402) =
- 1.25*Macropores
r2 = 0.91
Sw (402) is calculated water
above free water level (an approximation of
expected in Macropores is
mIcrons across.
(%PV) an oillbrine system at
"irreducible" water saturation to be
measure (%BV) of pores larger
7
6
5
4
0
10
a::: 3 -
2
o
o
10
20
30
40
TS
82. Total thin-section porosity vs. median pore throat radii
Crossplot of total thin-section porosity from
radii from MICP tests (R50, microns).
counts (%BV) and calculated median pore throat
regressIOn
porosity
R50 is:
-
r2 = 0.68
where
porosity,
is median pore
%BV.
radius,
and TS-Por is
Correlations macroporosity are
Macroporosity is a
or possibly using digital image
basis for capillary
sidewall core.
both Sw (402) and R50.
sections, by
But these correlations do provide a
a section a rotary or percussion
15
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
7
6
5
4
<::I
It)
0::: 3
2
o
o
5
10
15
20
25
83. Calculated
vs. median pore throat radii
Crossplot of micropores (%BV), calculated as the difference between measured core plug porosity
and total thin-section porosity from counts, and median pore throat radii (R50, microns).
regression correlation equation
and
IS:
-
Selected
samples, accompanied
to
85 are photomicrographs
properties.
116
........ ..~....~.. ... .........................
SAMPLE MICP LPSA Point Count XRD
() 00 00 00 00 ()
() .....
'@j -- ..... () () () ~
>< ..... '"'0 I-< S () .....
M ~ ~ 'fš S ..... .....
() 00 Ö 0 í/1 í/1 .¡:: § 0 - 'fš '"'0
() 0 «i § ~ U §
I:i ..... 0 ~ ö - ~ - () ~
0 u 5 l/) :r: '-" u u ~ S - ()
~ ~ ã3 ~ -
N cd ~ '$. '$. 00 I-< S ã3
~ '$. í/1 () u
í/1 '$. :r: cd ~ ~ í/1
p.. '$. ~ E-I :r:
Depth
4042.95 Mbl DC 1660 13 4 5 4 0 0
4065.00 Mbl DC 374 5.8 9 8 113 0 1 0 0 26 4 6
4083.00 Mbl Splay 16.2 0.9 7 25 11 0 0
4408.50 OA MSF 201 4.1 10 18 57 7 99 0.5 1 0 0 21 13 0 10 0 0
4409.25 OA MSF 238 4.5 10 16 55 8 92 1 1 0 0 20 7 4
4409.40 OA MSF 202 4.1 13 18 108 0.5 1 0 0 19 6 9
4416.00 OA MSF 157 3.8 13 18
4423.10 OA MSF 24 1.1 18 29 70 5 86 3 3 0 0 12 13 5
4430.00 OA LSF 8.3 0.6 29 37
4472.10 OBa PLSF 120 2.2 13 29 66 8 90 0.5 1 0 0 16 8 8 12 5 0
4472.95 OBa PLSF 103 2.3 14 28 77 6 86 1 1 0 0 16 11 4
4475.00 OBa PLSF 135 3.2 14 23 14 7 0
4480.00 OBa LSF 27 1.4 20 23 43 5 63 4 3 1 0 4 7 18
4509.00 OBb PLSF 208 4.7 13 33
4517.00 OBb PLSF 14 1.0 23 32 59 6.5 6 1 0 8 9 12
4542.00 OBb DLSF 0.02 0,026 135 94 30 11 0
4569.10 OBc PLSF 148 3.7 12 15
4579.00 OBc DLSF 2.1 0.22 43 50 28 16 16 0 0 0 7 20 23 10 0
Table 41. MICP and petrographic data for individual samples, Mbl through OBc Sands
117
........ ............ ...-. ..-...-........ .-. .....
SAMPLE MICP LPSA Point Count XRD
Q.) r:f.¡ r:f.¡ r:f.¡
~ 2 ..... r:f.¡ Q.)
-. ~ ..... Q.) ~ ~ ~
M "0 t) Q.) .....
r:f.¡ ~ ~ .¡:: ..... ..... :.a
Q.) Q.) 0 0 í/J í/J t) ~ 0 0 - .~
::: ..... It) 0 ~ ~ - ö - 1d Q.) ~ ~ ~ U ~
0 ~ ~ U U -
N 5 ~ ~ ~ S ~ I-< I-< ëa Q.) -
~ is 'èf!- 'èf!- u r:f.¡ S ~
'èf!- í/J ~ ~ Q.) u Õ
p.¡ í/J 'èf!- ~ ~ í/J
Depth 'èf!- E-;
4623.00 OBd LSF 399 6.4 5 14
4624.00 OBd LSF 14.6 0.26 16 49 17 5 0
4628.35 OBd PLSF 290 5.2 9 21 69 6 101 2 2 0 0 20 10 2
4630.80 OBd PLSF 301 5.0 9 21 77 6 92 1 1 tr 0 20 11 3
4639.70 OBd LSF 40 1.5 22 34 43 10 75 1.5 2 3 4 5 14 10
4643.30 OBd LSF 14 0.68 31 40 49 9 80 0.5 1 4 5 3 16 7
4646.00 OBd LSF 26 1.5 22 25 57 4 81 1.5 4 1 8 4 16 9
4657.00 OBd LSF 21 1.1 18 35 48 10 12 1 0 6 6 16
4685.00 OBe LSF 4.3 0.42 22 46
4696.00 OBe LSF 6.8 0.69 43 37 100 3.5 4 1 5 2 16 10
4722.80 OBf LSF 3.4 0.06 41 61 71 6 8 1 1 5 9 14 17 11 0
Table 42. MICP and petrographic data for individual samples, OBd through OBf Sands
118
8.
29%
40%
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
pressure
In addition to mercury injection capillary pressure measurements, another type of
capillary pressure measurement was performed, using air as wetting phase and a
simulated reservoir as the non-wetting phase a porous plate apparatus. The air/oil
capillary pressure measurements are meant to supplement the MICP data, and to serve as
a check on the of the MICP results when recalculated to a more realistic fluid
system. These tests, like the MICP measurements, were carried out by Core Lab
(Houston) on 19 core plugs held at net overburden pressure conditions that approximate
stress conditions.
Data from the air/oil capillary pressure tests consist of saturation values at a series
pressures, 1 to 50 psi. The saturation at the maximum pressure, Sw (50), has been
selected for use comparisons petrographic parameters, the value the
greatest contrasts between samples properties. Because the aspects
pore system capillary properties of a reservoir rock are largely the same
as those there is a good correlation between Sw (50) and core
values, as illustrated below.
1 0000 .
.
~~._.._--_.
100 .
10 .
1 .
o 10
86. Air/oil Sw (50 psi) vs. horizontal permeability
Semi-logarithmic crossplot of air/oil wetting phase saturation at 50 psi (Sw (50), %PV) and horizontal
core plug permeability md).
regression of the
of horizontal permeability on Sw (50) yields the
Sw (50 psi) = 65 -16.8*Log (HPERM)
r2 = 0.85 error (Sw) =
relationship of Sw (50) and
between Sw (402) permeability
air/oil system is closely
mercury/air
to
120
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
100 ~
80
Sw (402')
60
:::>
a..
~
C>
20 -
40
o
1
10
100
HPERM
1000
1
87. Air/oil Sw (50) and Hglair Sw (402) vs. horizontal plug permeability
Semi-logarithmic crossplot of horizontal core plug permeability and wetting phase
saturations (%PV): Sw (50 - 50 psi air/oil capillary pressure; and Sw (402'), the Hglair capillary
pressure equivalent to a position 402' above free water level in an oillbrine system.
A
regressIOn
on Sw (402) yields the
(402') =
r2 = error (Sw) = 6.8
50
40
I 30
I
I~ 20
10
o
50
70
90
110
130
150
MGS
88. Point-count mean grain size vs. air/oil Sw (50
Crossplot of mean grain size (MGS, microns), as determined by point-count methods, and air/oil
wetting phase saturation at 50 psi (Sw (50), %PV).
A linear regression of mean grain size on Sw
Sw (50 psi) =
r2 = 0.68
1
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
50
40
Ô 30
~
~
en 20
10
0
0 5 10 15 20
Figure 89. Microporosity vs. air/oil Sw (50 psi)
Crossplot of micro porosity (%BV, as determined by the difference between core porosity and thin-
section porosity) and air/oil wetting phase saturation at 50 psi (Sw (50), %PV).
regression of micro porosity on Sw (50) yields
Sw = 2.3*Microporosity +
r2 = 0.63
50
40
30
3:
00 20
10
0
0 5 10 15 20 25 30 35
90. Point-count macroporosity vs. air/oil Sw (50 psi)
Crossplot of macro porosity (%BV, point-count pores> 20 microns across) and air/oil wetting phase
saturation at 50 psi (Sw (50), %PV).
regression of micro porosity on Sw (50) yields the equation:
Sw (50 psi) = -1.2*Macroporosity
r2 = 0.84
............................................
SAMPLE Air/Oil Pc LPSA Point Count XRD
,,-., a.> ¡;I) ¡;I) ¡;I) ¡;I)
~ ... a.>
i ,,-., ,,-., .... ~ .... ~ a.> e ~ ~ ...
.... .... ¡;I) "0
¡;I) ¡;I) ¡;I) 0.. ~ ~ .¡:: 'B ¡.., ....
a.> a.> 0.. 0.. í/'1 í/'1 § 0 0 - 'B "0
§ .... 0 ~ - ò ëJ ~ a.> ~ ~ ~ U §
u - 00 Vi U S ] a.>
N ro '-" '-" '-" ~ :::E ~ ¡.., ¡.., ] S ~
~ ~ ~ ~ í/'1 ~ ~ u
í/'1 í/'1 ~ ~ ~ ~ 0 í/'1
í/'1 ~ Eo-<
Depth
4049.00 Mbl DC 3370 22 12 8 146 0 0 0 0 33 3 0 3 0 0
4066.10 Mbl DC 1720 62 16 10 124 2 113 0 1 0 0 26 4 6
4079.00 Mbl BF 48 97 41 34 12 0 0
4407.10 OA MSF 431 52 22 14 100 2 99 0.5 1 0 0 16 8 9
4413.0 OA MSF 259 84 30 19 13 2 0
4419.00 OA MSF 62 98 57 41 15 3 0
4428,00 OA LSF 18 97 60 43 20 7 0
4471.10 OBa PLSF 404 70 33 25 76 4 96 0 tr 0 0 15 11 7 14 7 0
4489.00 OBa MSF 45 97 47 34 17 7 0
4511.00 OBb PLSF 116 87 41 30 83 3 3 1 0 9 9 12 17 9 0
4518.00 OBb PLSF 76 97 44 30
4567.00 OBc PLSF 109 97 34 25 56 5 83 0 0 0 0 10 7 10 17 9 0
4571.10 OBc PLSF 595 78 28 22 98 2 98 3.5 2 tr 0 11 9 10 14 8 0
4616.00 OBd LSF 86 96 41 29 78 2 3 0 0 11 10 7 22 12 0
4637.80 OBd LSF 27 96 58 45
4661.95 OBd LSF 52 97 51 42 15 10 3
4682.00 OBe LSF 10 100 52 43 57 7 77 4 4 6 12 0 10 17
4693.00 OBe LSF 35 99 55 46 80 4 6 2 7 1 15 11 15 10 3
4721.80 OBf LSF 62 97 51 41 73 6.5 6 1 0 7 8 14 12 7 0
Table 43. Air/oil capillary pressure and petrographic data for individual samples
123
Pore
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Relative permeability
Steady-state relative oil/brine permeability tests were carried out on composite core plugs
in the laboratories ofExxonMobil. The composite plugs consisted ofmuItiple standard
1.5" plugs from adjacent depths with very similar properties, as measured by routine core
analyses, visual inspection, and CT inspection. Tests were run on composite plugs from
4 intervals: one in the OA Sand (about 4407-10', with absolute permeabilities on the
order of500 md), one in the OBa (4472-74', permeabilities around 150 md), and two in
the OBd (4626-29' and 4640-44'). In the OBd sand, the upper composite plug was from
an interval of planar-bedded sands with permeabilities averaging around 250 md , while
the lower plug was composed of samples from an interval of laminated sands, with
measured permeabilities of individual core plugs around 25 md, an order of magnitude
lower than in the upper OBd zone. For this report, three end-point parameters have been
selected from the relative permeability results to serve as comparative parameters for
understanding the impact of petrographic characteristics on the reservoir's two-phase
fluid behavior. These end-point values are:
. irreducible water saturation, Sw¡' %PV;
· fmal oil saturation, Sof, %PV; and
· brine permeability at fmal oil saturation, Kw @ Sof, in millidarcies.
In a well-sorted, lightly cemented sand reservoir like the Schrader Bluff, the expectation
would be that Swi and Sof both decrease with increasing grain size in a water-wet
reservoir, as the specific surface area ofthe sand grains decreases. The introduction of
micropores, via interstitial clay matrix or microporous pore-filling cements such as
heulandite and smectite, can complicate this relationship. The number of individual
plugs used for relative permeability tests that were also the subject of point-count or XRD
analysis is unfortunately fairly small, so relationships are not always clearly defmed.
There is, as expected, a good correlation between Swi and mean grain size (Figure 93).
There is an excellent correlation between the weight% clay minerals from XRD and Swi
(Figure 94). Since a large fraction of the total clay content of these sandstones is
composed of structural clay (argillaceous lithic fragments), which presumably plays little
role in fluid flow characteristics such as relative permeability, it is at first surprising to
see such a strong correlation with XRD clay content. Because the sample suite was
deliberately chosen to be homogeneous, it may well be that the amount of structural clay
is quite similar in all the samples, and small variations in dispersed clay (biogenic clay
matrix) result in a significant impact on Swi.
Linear regression analyses of these two correlations result in the following equations:
8wi (%PV) = 103 - 0.77*MG8 (microns)
~ = 0.71
8wi (%PV) = 4.5*XRD Clay (wt%)- 24
r2 = 0.995
125
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
The strong relation between total clay content and Swi suggests the possibility of a
transform for log-based V sh to Swi. The number of measured samples is limited, and the
required precision in V sh may be problematic, but it may be a useful approach.
60
50
40
'i 30
fJ)
20
10
0
20 40
Ià
^
60 80
ptCt M GS
100
120
Figure 93. Point-count mean grain size vs. irreducible water saturation (from relative penn tests)
60 -.
50
40
I~ 30
20
10
0
0
---
<>
B
<>
5
10
XRD Clay
15
20
Figure 94. Total clay minerals (XRD) vs. irreducible water saturation (from relative penn tests)
126
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
MacroPor
Swi < 30
. Swi 30-40
Swi > 40
.
.
MesoPor
10 20 30 40 50 60 70 80 90
MicroPor
95. Macropores - Mesopores - Micropores plot, grouped by measured Swi
plot of macropores (pores with diameters> 20 mesopores (visible pores
with apparent diameters < 20 and (pores not resolved optically in thin section,
calculated by difference between core and thin section porosity values), based on data,
with samples classified the corresponding value of Swí, the estimate of irreducible water saturation
from oiJ/brme steady-state relative measurements.
system, terms Swí, appears to be the
amounts of macroporosity mesoporosity; microporosity, at least to
total porosity, as seen samples, does not have a significant
terms pore system, larger pores translate a lower
Differences (core porosity
associated a greater
relative pore
Swí and pore size
samples both relative petrographic data, representing a
range of porosity grain size.
the oil/brine saturation
measurements
to
petrographic data are
saturation (Sot).
changes mean
Kw @ SOf, does
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
50---
40
30 -~~
.....
o
en
20 -
10
o
20
40
60 80
PtCt MGS
100
120
96. Point-count mean grain size VS. fInal oil saturation relative perm tests)
Crossplot of mean grain size from point-count measurements MGS, microns) and the final
oil saturation after waterflood, Sof (%PV).
60
50~-
40 ~--~--
.....
o 30
en
20~-
10 --~
o
o
10
20
30
Swi
40
50
60
97. Swi vs. Sofby stratigraphic zone, from relative permeability tests
Crossplot of the endpoint saturations Swi and Sof, from relative permeability tests, grouped by
stratigraphic zone: OA, OBa, upper OBd (OBd-U), and lower OBd
There is no no
is a good correlation between Swi
-
128
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
1000 -
100
....
o
w
@ 10
3:
~
0.1
20
40
60 80
PtCt MGS
100
120
98. Point-count mean grain size vs. brine permeability at fmal oil saturation
Semi-logarithmic crossplot of mean grain size ftom point-count measurements (PtCt MGS, microns)
and the permeability to brine at final oil saturation, K w @ Sof (md).
A regression
@ Sof and mean
size yields
(Kw @ Sof) = O.023*MGS - 0.11
r2 = 0.47 Standard error (Log Kw) = 0.3
regression can be to set a
depositional facies.
of Kw as a function of grain
and,
MGS
65
75
85
95
105
115
Kw Sof
Facies
70
119
Table 44. Estimated
brine permeabilities as a function of mean grain size
Calculated brine permeabilities at final oil saturation, K w @ Sof, in millidarcies, as a function of
mean grain size (MGS, microns). The depositional facies with the average MGS is noted
in the Facies column (LSF -lower shoreface, PLSF - proximal lower shoreface, MSF - middle
shoreface, DC - distributary The calculations are based on the regression equation derived
ftom 98.
Other
measured
relative
results are those between the
Figure 99, between measured
Sw¡'
at Sof
1
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
60
50
40
.~ 30
(f)
20
10
0
0
300 400
HPERM
500
100
200
600
700
Figure 99. Absolute horizontal plug permeability vs. irreducible water saturation (from reI. perm tests)
Crossplot of the measured horizontal plug permeability (HPERM, and the irreducible water
saturation determined during steady-state relative permeability tests (Swi, %PV).
regression of permeability on Swi
Swi = 44.3 -
r2 = 0.65
600
500 -
400
...
0
(f)
300
~
200
100
0
0 100 200 300 400 500
HPERM
~~--,--~-~._~-
Figure 100. Absolute horizontal plug
Crossplot of horizontal plug
@ Sof, md).
600
---~.~
vs. brine permeability at Sor(from reI. perm tests)
at final oil saturation
and brine
130
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
permeability is strongly correlated to absolute permeability
sandstones. Regression analysis, excluding the anomalous at (591, 28)
the intercept to zero, results the following equation:
Kw @ Sof= O.4466*HPERM
r2 = 0.87 Standard error eK w) = 36
400
300
.¡
rn
@ 200
0
~
100
0
20 40
60 80
PtCt MGS
100
101. Point-count mean grain size ys. end-point oil permeability reL perm tests)
Crossplot of mean grain size from measurements MGS, microns) and oil
permeability at irreducible water saturation (Ko @ Swi,
700
600
500
j 400
rn
@
o 300
~
200
_...~"~~
100
o
o
100
200
300 400
HPERM
500
600
102. Horizontal plug permeability ys.
Crossplot of absolute horizontal permeability
saturation (Ko @ Swi,
oil permeability (from reL perm tests)
these
setting
120
700
and oil
at irreducible water
131
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Correlations with end-point permeabilities, Ko @ Swi, are illustrated Figure 101
(mean grain size and Ko) and Figure 102 (horizontal permeability and Ko).
regression equations derived for the MGS-Ko and HPERM-Ko correlations are as
follows:
Ko @ Swi = 8.3993 *M GS - 664
r2 = 0.76
Ko @ Swi = O.5484*HPERM
r2 0.79
As an example ofthe potential applications of the correlations developed this section,
below (Table 45) is a summary of average properties major reservoir
facies, predicted irreducible water saturations and permeabilities that
correspond to facies' properties. the correlations used these calculations are
based on linear regressions: assumption of a linear relationship is a reasonable one
over a range of data, the assumption breaks down at extreme values of the
predicted variable ee.g., the coarse grain and absolute permeability
distributary sandstones). pore system 103), coded by
permeability, does not give a consistent relationship between
pore size distribution and permeability, to an of data
points.
Facies Average Swi Ko Kw Median Swi Ko Average Swi
77 <10 46 22 43 10 1 51
84 38 42 66 190 35 104 85 14.5 41
94 31 126 113 31 161 131 39
117 13 319 381 1780 <10 976 795 5.0 <10
Table 45. Predicted irreducible saturation and end-point permeabilities based on average facies properties
Summary of average properties (mean grain microns; horizontal permeability, millidarcies; XRD
Clay minerals, wt%) for the major reservoir depositional facies, and the predicted values of
irreducible water saturation (Swi, %PV), oil permeability at irreducible water saturation (Ko,
millidarcies), and brine permeability at final oil saturation (Kw, millidarcies) based on correlations
with the corresponding facies property. Average values for mean grain size and XRD Clay are
arithmetic means, while that for horizontal permeability is the median. For the distributary channel
(DC) facies, median permeability is too high, and average XRD clay content too low, to permit
meaningful results from the global correlations developed for Swi. Similarly, mean grain size of lower
shoreface (LSF) sandstones is too fine to conform to the linear relationship derived from the fuJl data
set.
132
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
MacroPor
Ko = 255 md
Ko = 193 md
Ko = 79 md
Ko=41md
Ko = 3 md
MesoPor
10
20
30
40
50
60
70
80
90
MicroPor
Figure 103. Macropores Mesopores - Micropores ternary plot, grouped by measured Ko @ Swi
Ternary plot of macropores (pores with apparent diameters> 20 microns), mesopores (visible pores
with apparent diameters < 20 microns), and micropores (pores not resolved in thin section, calculated
by difference between core and thin section porosity values), based on data; measured
values of oil permeability at irreducible water saturation are given for each of the data points.
133
............................................
() "-' "-' "-'
~ ..... "-' ()
~ '~ 'S ~ ..... () () () ~ () .....
"-' 00 ~ ~ ..... '.¡:J "'0 5 ¡.., 5 ..... :.e
() () 00 00 00 ¡.., ~ 0 - 'B
§ '~ <.., ® c.? ~ 1d u ~ ~ ~ u ~
'0 ® 0 - - ()
tI:I 00 00 ~ u u ~ S ] ¡.., ëa () ]
N p;.¡ [$ J ~ ~ ~ "-' ~ S
0 ~ 00 ~ () õ
~ ~ ~ ~ 00 ~
Depth ~ Eo-<
4407,65 OA MSF 591 24 283 16 28
4408.70 OA MSF 558 21 255 18 253 57 7 99 0.5 1 0 0 21 13 0 10 0 0
4408.85 OA MSF 385 21 165
4409.55 OA MSF 387 26 193 18 170 108 0.5 1 0 0 19 6 9
4472.25 OBa PLSF 257 30 78.6 17 66 66 8 90 0.5 1 0 0 16 8 8 12 5 0
4473.10 OBa PLSF 144 36 40.7 77 6 86 1.0 1 0 0 16 11 4
4473.15 OBa PLSF 94 42 32.9 22 24 68 4
4474.10 OBa PLSF 55 42 15.5 23 4.7
4626.20 OBd PLSF 389 15 392 19 267 65 5
4627.20 OBd PLSF 133 29 120 38 23
4627.40 OBd PLSF 64 32 54.1 46 2.6 12 6 0
4627.70 OBd PLSF 241 46 142
4628.75 OBd PLSF 386 24 273 27 136
4640.15 OBd PLSF 53 38 22.6 19 8.5 49 6
4641.10 OBd PLSF 10 51 4.12 15 1.2
4643.60 OBd PLSF 16 47 3.10 49 9 80 0.5 1 4 5 3 16 7
4643.75 OBd PLSF 32 40 5.89 16 1.9
4643.90 OBd PLSF 22 53 2.82 18 0.6 17 11 3
Table 46. Oil/brine relative permeability and petrographic data for individual plug samples
134
H»4.
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
logs respond to and petrophysical characteristics of the
Schrader sandstones that comprise the reservoirs this well. Properties of
interest include the presence amounts of clay and argillaceous
sand grains fragments), along some authigenic clays esmectite and kaolinite).
these clays have an impact on neutron porosity, some on gamma ray;
water saturations affected. Clay how
a amount of clay permeability. presenee some
radioactive phases (potassium feldspars, volcanic rock fragments)
complicates the evaluation from logs. a
informed by stratigraphic facies contexts) be needed to
obtain a reliable diagnosis reservoir Some of results of such
approaches are discussed sections on GAMLS. section we
just at some or neutron
logs selected
a
sand grains)
so
GR
to
90
80
70
60
«I 50
E 40 Mb1 OA
E
1«1
Ie!) 30 AOBa .OBb
I
20 OBc OBd
10 OBe OBf
0
0 5 10 15 20 25 30 35
XRD
106. XRD clay minerals vs. gamma ray response, by stratigraphic zone
136
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
IS a
content (wt%)
GR response is
OBe and, to a lesser extent,
volcanic content and most
same data, classified by petrofacies (or lithofacies,
between
ray response
to
estimate of clay
at log depth.
content for some samples, especially those
Sands - the highest
107 presents
case
90
80
70
60
II! 50
E 40
E
~ 30
20
10
0
0
1
3
4
5
10
15
XRD
20
25
30
35
107. XRD clay minerals vs. gamma ray response, by petrofacies
cleanest
a good
due
=
+
on clay
a
even
other sands
character.
content.
137
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
100
90 ~--
80
70
60
!II 50
E .
E 40 Mb1 OA
!II
C) 30-
OBc
20
10 OBe OBf
0
0 5 10 15 20
PtCt Matrix
108. Point-count estimate of clay matrix content vs. gamma ray response, by stratigraphic zone
Cross plot of clay matrix content from counts
units), classified by stratigraphic zone.
%BV) and gamma ray log response
1 00 ---~
90
80
70
60
!II 50
E
E 40
!II
C) 30
20
10
o
o
10
20 30
Matrix -I- Ductiles
40
50
109. Point-count estimate of clay matrix and ductile
vs. gamma ray response
Crossplot of the sum of clay matrix and all ductile grains, from point counts (Matrix + Ductiles,
%BV) and gamma ray log response units),
zones,
138
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
is not itself radioactive. It does
it is possible to adsorb even large
the heulandite-cemented sandstones
filling zeolite.
a rather open crystal structure,
so anomalously response
be the result of adsorbed
to most
can be radioactive:
radioactive volcanic rock fragments.
as smectite and
elements formerly contained volcanic glass has now been
phases. case, GR response is a good
as measured not of dispersed clay
clay content is most
and volcanic
GR values may reflect increased
of the more labile volcanics may
radioactive
into
of total clay content,
between
zones (OBe).
neutron log responds to hydrogen atoms, and so provides an estimate
porosity clays.
neutron study is
because
between
at
to changes
60 ~.
50
40
:J: 30
Q.
:z
20
10
0
0 5 10 15 20 25 30 35
XRD
no. XRD estimate of total clay minerals vs. neutron porosity
Crossplot oftotal clay minerals from X-ray diffraction (XRD Clay, wt%) and neutron porosity (NPHI,
%BV).
anything, a very weak inverse correlation between clay and
to fact that most tend to the lowest porosities,
sands are more porous less compacted (leaving more
clay do
139
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
60
50
40
J: 30
Il.
Z
20
10
0
0 5 10 15 20
PtCt Matrix
111. Clay matrix content, from point counts, VS, neutron porosity
Crossplot of day matrix content from
%BV).
counts
Matrix, %BV) and neutron porosity
as
total porosity,
content of clays zeolites.
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
GAMLS
GAMLS (Geologic Analysis via Maximum Likelihood System) is a multipurpose
computer program whose basic approach is a clustering analysis. Also, predictions can be
made using the relationships developed within a clustering analysis. Any type of
numerical data can be clustered, though the system was developed with wire line log data
in mind. Different types of data can be included as variables within the same clustering
run. For instance, well log data, XRD data, and core analysis data could be included in
the same run. The user has the ability to specify which and how many input variables to
use, how many modes (clusters) to partition samples into, and how to initialize the
clustering run. GAMLS has the ability to cluster using datasets with much missing data
and to do multi-well clustering in the same run. Missing parameters in a ''test'' well can
be predicted based on clustering results rrom a model well(s). GAMLS develops a
generalized multi-dimensional solution that results in an n-dimensional relationship for
each mode, where "n" is the number of input variables used. GAMLS assigns samples to
modes in a probabilistic fashion, so that transitional or gradational relationships are
clearly highlighted. Further information about GAMLS is available at
www.albany.net/~mulchone/gamls.htm.
Some preliminary clustering runs have been carried out as part ofthis petrographic study
to compare the statistically-defmed modes or clusters rrom GAMLS analysis to
depositional facies and petrographic characteristics rrom the core, and to investigate an
independent approach to permeability prediction. Several clustering runs were
completed, using different combinations of input variables (wireline logs, core porosity
and core permeability), and different values for the targeted number of modes. The depth
range studied was 4350-4800', spanning the cored interval ofthe 0 Sands but omitting
the Mb1 Sand. In all clustering runs, missing values for input variables (in this case, core
data for depths without plug coverage) are filled in based on clustering results and
consistent with the n-dimensional relationships with the other variables for that sample.
So informal predictions of missing core data are available rrom all the clustering runs.
One of the clustering runs ("C2W3-PERM") was used as the basis for making a more
formal explicit prediction of permeability. The probabilistic mode assignments for
several of the runs are illustrated in Figure 112. Figure 113 is a comparison of the
informal permeability predictions rrom selected clustering runs. Agreement is generally
good, despite differences in input variables, number of modes, and initialization. The
predicted values of permeability rrom the formal effort using C2W3-PERM are compared
to measured core plug values in Figure 114. A linear regression of the logarithms of
measured on predicted values yields the following correlation equation:
Log (HPERM) = 0.81 Log (Predicted Perm) + 0.18
r2 = 0.80 Standard Error (Log (HPERM)) = 0.42
where HPERM is the measured horizontal core plug permeability and Predicted Perm is
the GAMLS-generated predicted value. The standard error is equivalent to a factor of
about 2.6.
141
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
112. Cumulative mode probability plots for four GAMLS clustering runs, V -IIIPB I
Different colors represent different modes in each track, with no relationships
between tracks.
1
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
10000
1000
-C2W3-PERM
Core2W10M
C2W3M10
100
:æ
I:t:
w
Il.
x:
10 -
O,1~~
0,01
4350
4400
4450
4500
4550
4600
4650
4700
4750
4800
113. Comparison of informal permeability
for several GAMLS clustering runs
plot of the informal values generated
GAMLS runs. Each of the runs utilized measured permeability as one of the
variables, and measured values are of the displayed curves. Agreement between the different
runs is generally good, particularly within the cored interval where the is better
constrained.
10000
1000
E
... 100
II»
Il.
¡-g
.....
.~ 10
"C
~
Il.
0,1
0.1
10
100
1000
10000
HPERM
114. Measured core plug permeability vs. GAMLS predicted permeabilíty
Logarithmic crossplot of measured horizontal core plug permeability and predicted
permeability (Predicted md) based on the C2W3-PERM GAMLS clustering run. The ideal
one-to-one correlation is shown as a dashed line.
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Well BP V·111 PB1
,:;
:::;)
GR
'"
c:
W
"-
OJ
o
GAMLS
7V12M C2VV3-Perm
Matrix
RD
PEF
POf
o
20
- 4350
- 4375
Cfj
- 4400
:2 _
«
o
-:::;- - 4425
Cfj - 4450
'"
OJ
o
no.....· a... _
-- 4475
-'
:2
mm...:..d..:-
Cfj =-- 4500
.......... a.. -
'" ,
OJ
o
4525
o "
- 4550
Cfj -
"- "
o - 4575
w'
OJ
o
Cfj "
- 4600
-'
-;;::- - 4625
'" "
OJ
o
-' -
- 4650
Cfj -
'",
OJ
o
Cfj
-' .
- 4725
Cõ"
o
- 4750
4775
- 4800
115. Composite wireline-core-GAMLS-petrographic log (see text for explanations)
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Well SP V·111 PSi
~ GR
30-130
~ ¡ß
'ü .~
'ê ~
1P Q)
Il 0
~
o
u"
Z
- 4475
'"
m
0
- 4500
-4525
-'"
m
0
4550
u
m
0
4600
- 4625
-0
m
0
- 4650
- 4675
w
m
0 -4700
-4725
ã:i
0
- 4750
-4775
- 4800
RD
1·100
GAMLS
Mode
Probabilities
C2W3-Perm
OT
50-150
NPm
0-30
4350
116. Composite wireline-facies-core-GAMLS-petrographic log (see text for explanations)
I
·
·
·
·
·
·
'.
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
APPENDICES
Files on CD
The following list is a summary ofthe digital files included on the CD accompanying this
report.
Vlll_Report.doc............... ...... ............ ............. ..This report (MS-WORD format)
VI 1 l_Report.pdf.. . .., ...... ...... ..... ... .... ..... .........This report (Adobe Acrobat format)
Vlll_Petrog.xls... .., ..... ............ ....Petrographic observations, point counts, XRD data
Vlll_ GAMLS.xls............ ..................... ........ .....Integrated wireline and core data
Vlll_ GrSize.xls...................... ............... .LPSA, point-count grain size data, charts
VI 1 l_LPSA.xls... ......... .... ...... ... ............... ........ ...Compilation ofLPSA data files
Vlll_Petrofacies.xls..... ................. . Petrographic data sorted, averaged by petrofacies
VI 1 l_PKS.xls. ............................... ........... ...Statistics, charts for routine core data
V 111_ SCAL-stats.xls. . . . . . . . . . . . . . . .. . . . . . . . ... Statistics, charts for special core analysis data
Vlll_ Wireline.xls................ ........ ............ .... .... ...Petrographic data vs. GR, NPHI
V -Ill PB 1 PB 1 (D pper )Log_ CoreDescription. pdf. . . . . . . . . . . . . . .... . . . Core description, Mb 1
Sand
V-lllPBlPBlLog_CoreDescriptionJan04.pdf..... ...Core description, OA through OBf
Sands
BPV-l1 lPBlGrainSizeData6-04.xls... ... ..... ...M. Wilson grain size data (fIrst sample
group)
BPV-l1 lPBlGrainSizeData(extrasamples)9-04.xls.......M. Wilson grain size data (2nd
group)
BPV -11lPBlPointCountData6-04.xls.......... ..M. Wilson point count data (1 st sample
group)
BPV-l1 lPBlPointCountData(extrasamples)9-04.xls....M. Wilson point count data (2nd
group)
LogData05.xls............................................. . Wire line log data, at 0.5' increments
V_Ill_FINAL _Routine _PP _ Ko _ wSCAL _ data.xls............... ..Sample list and database
VI 1 l_CoreAnnotated.pdf.. . ......... ...... ..... ....... ... ... ... .....Annotated core description
MICP............ ....Folder with Core Lab MICP data files, related compilation spreadsheet
SEM............................................. . Folder with Core Lab SEM photomicrographs
TernPlots... ... ..... ......... .... .... ................ .....Folder with all ternary plots (Zetaware)
VIII_Photos................................... ...Folder with all thin section photomicrographs
146
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
Photomicrographs
The following table is a list of the digital,photomicrographs included on the CD. The
photos are identified by sample depth, file name (all in JPEG format), magnification
factor (expressed as the approximate horizontal field of view), and brief comments on the
subject ofthe photo.
DEPTH FILE
V111_ 4042a
4042.95 V111_ 4042b
V111_ 4042c
V111 4047a
4047.00 V111_ 4047b
V111_ 4047c
V111_ 4049a
4049.00 V111_ 4049b
V111_ 4049c
V111_ 4052a
4052.00 V111_ 4052b
V111_ 4052c
V111_ 4058a
4058.00 V111_ 4058b
V111_ 4058c
V111_ 4062a
4062.00 V111_ 4062b
V111 4062c
V111_ 4066a
4066.50 V111_ 4066b
V111_ 4066c
V111_ 4068a
4068.00 V111_ 4068b
V111_ 4068c
4076.00 V111_ 4076a
V111_ 4076b
V111_ 4077a
4077.00 V111_ 4077b
V111_ 4077c
V111_ 4079a
4079.00 V111 4079b
V111_ 4079c
V111_ 4083a
4083.00 V111_ 4083b
V111_ 4083c
V111_ 4085a
4085.00 V111_ 4085b
V111_ 4085c
FoView
5
2.5
0.65
5
2.5
0.65
5
2.5
0.65
2,5
0.65
5
2.5
0.65
5
5
2.5
0.65
5
2.5
0.65
5
2.5
0.65
2.5
0.65
5
2.5
0.65
5
2.5
0.65
5
2.5
0.65
2.5
0.65
5
Notes
Open framework, excellent porosity
Unconsolidated quartz-chert sand
Chert grains, pore-filling kaolinite
Porous uncemented quartz -chert sand
Very well-sorted, open framework
Microporous Ls/Lms
Porous quartz-chert sandstone
Large chert grain in porous sandstone
Small kaolinite patch; leached Kspar
Porous quartz-chert sand
Microporous green RF
Clean very well-sorted sand
Porous very well-sorted sand
Sedimentary/metasedimentary RF
OveNiew of porous sand
Very well-sorted very fine porous sand
Porous quartz-lithic sandstone
Ductile microporous lithic grains
Large chert grain in porous sandstone
Open framework, excellent porosity
Kaolinite patch; chert-Kspar
Isolated outsize grains in porous sand
Dark chert in open framework
Moderately open framework
More lithics, less WS than above
Compaction, microporous RF
Outsize grains; mod. close-packed
Large quartz, chert grains
Microporous ductile grains
Compacted bimodal slightly shaly sand
Outsize grains in compacted sand
lithics in VF-F sand
Clean bimodal sand
Coarse quartz-chert in bimodal sand
Compacted VF sand matrix
Silty burrow-fill in shale
Sandy shale matrix
Pyrite, lignitic OM
147
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
DEPTH FILE
V111_ 4398a
4398.10 V111_4398b
V111_ 4398c
4399.00 V111_ 4399a
V111_ 4399b
V111 4407a
4407.10 V111 4407b
V111_ 4407c
V111_ 44076a
4407.65 V111_ 44076b
V111_ 44076c
V111_ 44085a
4408.50 V111_ 44085b
V111_ 44085c
V111_ 4408a
4408.95 V111_ 4408b
V111_ 4408c
V111_ 44092a
4409.25 V111_ 44092b
V111_ 44092c
V111_ 4409a
4409.40 V111_ 4409b
V111_ 4409c
V111_4413a
4413.00 V111_ 4413b
V111_ 4413c
V111_4415a
4415.00 V111_4415b
V111_4415c
V111_4416a
4416.00 V111_ 4416b
V111 4416c
V111_4419a
4419,00 V111_4419b
V111 4419c
V111_ 4420a
4420.25 V111_ 4420b
V111_ 4420c
V111_ 4422a
4422.00 V111_ 4422b
V111 4422c
V111_ 4423a
4423.10 V111_ 4423b
V111_ 4423c
FoView Notes
5 Bioturbated fabric, biogenic matrix
2.5 Relatively coarse porous sand lams
0.65 Shaly burrow-fill
2.5 Very well-sorted, lithic-rich
0.65 Muscovite, chert
5 Micritic burrow-fill in lithic sandstone
2.5 Patchy micrite, porosity
0.65 Pore-lining micrite near burrow-fill
5 Clean, very well-sorted sand
2.5 Mod. open framework, good porosity
0.65 Pinpoint pore-lining carbonate crystals
5 Very well sorted. open framework. porous
2.5 Quartz-Kspar-lithic sand
0.65 Quartz grains, intergranular porosity
5 Micritic burrow-fill
2.5 Lithics in mod open framework
0.65 Quartz-Lms very fine sand
5 Micritic burrow-fill
2.5 Open framework, intergranular pores
0.65 Small patch of pore-filling kaolinite
5 Very well-sorted porous sand
2.5 Porous quartz-lithic sandstone
0.65 Pore-filling kaolinite, detrital chlorite
5 Very well-sorted porous sand; lithics
2.5 Outsize chert; Ls/Lms
0.65 Ls/Lms, carbonate rock fragment (CRF)
5 Micritic burrow-fill
2.5 Porous quartz-lithic sandstone
0.65 Pore-lining micrite
5 Micritic burrow-fill
2.5 Micritic burrow-fill
0.65 Edge of small micritic burrow-fill
5 Slightly bioturbated fabric
2.5 Small micritic burrow-fill
0.65 Mod close-packed framework
5 Burrow matrix patches
2.5 Mod. open quartz-lithic sandstone
0.65 Muscovite, chert, metasedimentary RF
5 Micritic burrow-fill in bioturbated sand
2.5 Irregular bioturbated packing
0.65 Green RF, chert, Lms
2.5 Bioturbated lithic sand
0.65 Slightly shaly burrow-fill
5 Clean/shaly bioturbated fabric
148
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
DEPTH FILE
V111_ 44231 a
4423.10 V111_44231b
V111_44231c
V111_ 4428a
4428.00 V111_ 4428b
V111_ 4428c
V111_ 4430a
4430.00 V111_ 4430b
V111_ 4430c
V111_ 4471a
4471.10 Y111_4471b
V111_4471c
V111 44721a
4472.10 V111_44721b
V111_ 44721c
V111_ 44729a
4472.95 V111_ 44729b
V111_ 44729c
Y111_4474a
4474.10 V111_4474b
V111_ 4474c
V111_ 4480a
4480.00 V111_ 4480b
V111_ 4480c
V111 44800a
4480.00 V111_ 44800b
V111_ 44800c
V111_ 4489a
4489.40 V111_ 4489b
V111_ 4489c
V111 4494a
4494.00 V111_ 4494b
V111_ 4494c
V111_ 4505a
4505.00 V111_ 4505b
V111_ 4505c
4507.00 V111_ 4507a
V111_ 4507b
Y111_4511a
4511.00 V111_4511b
V111_4511c
V111_ 45112a
4511.15 V111_45112b
V111 45112c
FoView Notes
5 Mod. open quartz-lithic sandstone
2.5 Porous quartz-lithic sandstone
0.65 Intergranular pores, pore-filling kaolinite
5 Laminated very fine sand
2.5 Pyrite nodules in massive sand
0.65 Close-packed silty sand
5 Pyrite nodule in very fine sand
2.5 Lignitic flakes in close-packed sand
0.65 Lms flakes in silty sand
5 Pyrite nodules in porous sandstone
2.5 Mod. open framework; pyrite nodules
0.65 Mica, kaolinite, metasedimentary RF
5 Pyrite nodule
2.5 Porous uncemented sand
0.65 Slightly deformed mica flake, Lms
5 Pyrite aggregates; open framework
2.5 Mod. close-packed, porous
0.65 Chert, Lms, K-feldspar
5 Honeycomb carbonate concretion
2.5 Patchy carbonate cement
0.65 Carbonate spot; pyrite
2.5 Clean/shaly; pyrite
0.65 Pyrite, Fe-carbonate, Ls/Lms
5 Clean/shaly planar laminations
5 Planar laminations
2.5 Pyrite nodules
0.65 Lignitic organics; metasedimentary RF
5 Pyrite nodule in porous sandstone
2.5 Intergranular pores, open framework
0.65 Very fine to fine quartz-lithic-Kspar sand
5 Planar laminations, pyrite nodules
2.5 Mod. close-paced framework
0.65 Pyrite framboids, pores
2.5 Pyrite nodule in lithic sand
0.65 Ls/Lms, sphene
5 Slightly shaly planar lams
2.5 Close-packed, lithic-rich
0.65 Mica, chert, pyrite, Ls/Lms
5 Porous quartz-lithic sandstone
2.5 Mod. open framework
0.65 Pyrite, kaolinite
5 Pyrite nodules in porous sandstone
2.5 Quartz-lithic-mica sandstone
0.65 Carbonate, pyrite, metasedimentary RF
149
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
DEPTH FILE
V111_ 4515a
4515.00 V111_ 4515b
V111_4515c
V111_4517a
4517.00 V111_ 4517b
V111_ 4517c
4520.00 V111_ 4520a
V111_ 4520b
4552.00 V111_ 4552a
V111_ 4552b
4559.00 V111_ 4559a
V111_ 4559b
V111_ 4564a
4564.00 V111_ 4564b
V111_ 4564c
4566.00 V111_ 4566a
V111_ 4566b
V111_ 4567a
4567.00 V111_ 4567b
V111_ 4567c
V111 4570a
4570.00 V111_ 4570b
V111_ 4570c
V111_ 45707a
4570.75 V111_ 45707b
V111 45707c
V111_ 4578a
4578.00 V111_ 4578b
V111_ 4578c
V111_ 4579a
4579.00 V111_ 4579b
V111 4579c
V111_ 4588a
4588.00 V111_ 4588b
V111_ 4588c
4597.00 V111 4597a
V111_ 4597b
V111_ 4610a
4610.00 V111_ 4610b
V111_ 4610c
4614.00 V111_ 4614a
V111_ 4614b
V111_ 4616a
4616.00 V111_ 4616b
V111_ 4616c
FoView Notes
5 Pyrite in mod. close-packed sandstone
2.5 Pore-lining pyrite framboids
0.65 Mica, metasedimentary RF, pyrite
5 Planar laminations, pyrite
2.5 Shaly/clean laminations
0.65 Chert-mica-metasedimentary RF in lamina
2.5 VWS; lithics, G-R pyrite
0.65 Microcrystalline pyrite
2.5 OM, pyrite in sandy shale
0.65 Microcrystalline pyrite, carbonate crystals
2.5 Tunnel AF in bioturbated sandy shale
0.65 Microporous shaly sand
2.5 Slightly lignitic planar lams
0.65 Very fine, lithic-rich
5 Cleanllignitic lams
2.5 VWS, lithic-rich
0.65 Mica, Ls/Lms, carbonate
5 Shaly lens, spotty calcareous cement
2.5 Patchy carbonate, porosity
0.65 Quart-Kspar-chert, carbonate cement
5 Compacted porous quartz sand
2.5 Patchy carbonate cement
0.65 Quartz-metasedimentary RF-chert sand
5 Intergranular pores in coarser sand
2.5 Patchy carbonate cement
0.65 Microcrystalline pore-lining pyrite; carbonate
2.5 Silty burrow-fill in shale
0.65 Silty burrow-fill, pyrite
5 Silty burrow-fill in shale
5 Clay burrow-fill in siltstone
2.5 Lignite, pyrite in bioturbated siltstone
0.65 Pyritic siltstone
2.5 Clean/shaly laminations
0.65 Uncemented silt
5 Pyrite nodule; burrows
2.5 Bioturbated sandy shale
0.65 Silty matrix with pyrite
2.5 Bioturbated micritic shale
0.65 Micrite matrix
5 Silty burrow-fill in micritic shale
2.5 Faint lams in lithic sand
0.65 Carbonate, pyrite in clean lam
5 Close-packed clean sandstone
2.5 Quartz-Kspar-lithic sand
0.65 Intergranular pores, microcrystalline pyrite
150
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
~
·
·
·
-
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
DEPTH FILE
V111_ 4626a
4626.20 V111_ 4626b
V111_ 4626c
V111_ 4626d
V111_ 4627a
4627.40 V111 4627b
V111_ 4627c
V111_ 4628a
4628.35 V111 4628b
V111_ 4628c
V111. 4630a
4630.80 V111_ 4630b
V111_ 4630c
V111 4630d
V111_ 4633a
4633.00 V111_ 4633b
V111_ 4633c
463400 V111_ 4634a
. V111_4634b
V111_ 4635a
4635.70 V111_ 4635b
V111_ 4635c
V111_ 4639a
4639 70 V111_ 4639b
. V111 4639c
V111_ 4639d
V111_ 4640a
4640.15 V111_ 4640b
V111_ 4640c
V111_ 46433a
4643.30 V111_ 46433b
V111_ 46433c
V111_ 46433d
V111_ 4643a
4643.90 V111_ 4643b
V111_ 4643c
4646.00 V111. 4646a
V111_ 4646b
V111_ 46460a
4646.00 V111_ 46460b
V111 46460c
V111_ 46460d
V111_ 4651a
4651.00 V111_ 4651b
V111_ 4651c
FoView Notes
5 Honeycomb carbonate concretion
2.5 Edge of carbonate concretion
0.65 Kaolinite patch; pyrite
0.65 Carbonate cement patch
5 Mod. close-packed quartz-lithic sand
2.5 Pores, pyrite in compacted sand
0.65 Pyrite framboids, pores
5 Pyrite in porous sandstone
2.5 Pores, pyrite, mod. open framework
0.65 Pore-lining pyrite, metasedimentary RF
5 Spongy calcite concretion
2.5 Mod. compacted sand at edge of concretion
0.65 Large pores, pore-lining pyrite
0.65 Pyrite framboids
5 Open framework, pyrite aggregates
2.5 Pyrite in porous sandstone
0.65 Pore-lining pyrite in very fine sandstone
2.5 Pyrite nodules; open framework
0.65 Microcrystalline pyrite, Fe-carbonate
5 Porous, slightly pyritic sandstone
2.5 Pyrite, planar laminations
0.65 Metasedimentary RF, pyrite, pores
5 Faint planar laminations
2.5 Close-packed, lithic-rich
0.65 Microcrystalline pyrite; pore-filling heulandite
0.31 Stubby pore-filling heulandite (COVER PHOTO)
5 V. well-sorted, mod open framework, porous
2.5 Pyrite aggregates in porous sand
0.65 Splayed mica; pyrite aggregates
5 Close-packed; pyrite aggregates
2.5 Lithic-rich sand
0.65 Microcrystalline pyrite; pore-filling heulandite
0.31 Heulandite, pyrite
5 Mod. close-packed; pyrite, lithics
2.5 Quartz-lithic sand with pyrite
0.65 Pore-filling heulandite-smectite(?), pyrite
2.5 Planar-lam lithic sand
0.65 Very fine quartz-chert-lithic sand
5 Shale wisp; close-packed framework
2.5 Pores, smectite(?)
0.65 Pore-filling smectite(?); metasedimentary RF
0.31 Pore-filling smectite(?)
5 Clean/shaly planar laminations
2.5 Pyrite nodule in shaly lamination
0.65 Good porosity in clean lamination
151
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
DEPTH FILE
V111_ 4659a
4659.00 V111 4659b
V111_ 4659c
4674.00 V111_ 4674a
V111_ 4674b
V111_ 4679a
4679.00 V111 4679b
V111_ 4679c
V111_ 4681a
4681.15 V111_4681b
V111_4681c
V111_ 4681d
V111_ 4682a
4682.00 V111_ 4682b
V111_ 4682c
V111_ 4682d
V111_ 4689a
4689.00 V111_ 4689b
V111_ 4689c
V111_ 4692a
4692.60 V111_ 4692b
V111_ 4692c
V111_ 4694a
4694.00 V111_ 4694b
V111_ 4694c
V111_ 4694d
V111_ 4696a
4696.00 V111_ 4696b
V111_ 4696c
V111_ 4696d
V111 4702a
4702.00 V111_ 4702b
V111_ 4702c
V111_4711a
4711.00V111_4711b
V111 4711c
V111_ 4719a
4719.00 V111_4719b
V111_ 4719c
V111_ 4719d
V111_47198a
4719.80 V111_ 47198b
V111 47198c
4721.00 V111_4721a
V111 4721b
Fo~ew Notes
2.5 Lam/burrowed sand
0.65 Clean silty lam
5 Vertical burrow in planar lam sand
2.5 Silty slightly lignitic shale
0.65 Microcrystalline pyrite in shale matrix
2.5 Sandy burrow-fill, coarse carbonate crystals
0.65 Compacted lithic sand; Fe carbonate
5 Sandy carbonate burrow-fill
5 Pyrite aggregates; close-packed
2.5 Compacted; pore-filling heulandite
0.65 Pore-filling zeolite cement
0.31 Heulandite, pyrite
5 Pyrite nodule; microporous pore-filling zeolite
2.5 Close-packed; microporous cement
0.65 Extensive heulandite, microcrystalline pyrite
0.31 Microporous heulandite cement
2.5 Compacted lithic sand
0.65 Sphene, microcrystalline pyrite in VF sand
5 Carbonate concretionary burrow(?)
5 Open/closed framework
2.5 Intergranular pores; mod. open framework
0.65 Microporous pore-filling smectite(?)
5 Small pores; mod. close-packed
2.5 Quartz-lithic compacted sandstone
0.65 Pore-filling heulandite
0.31 Pore-filling microporous heulandite
5 Shaly burrow-fill
2.5 Compaction, small pores
0.65 Pore-filling microporous heulandite
0.31 Pore-filling microporous heulandite
2.5 Clean/shaly lams with pyrite
0.65 Microcrystalline pyrite in porous silt
5 Sand/shale contact
2.5 Bioturbated shaly sand
0.65 Compacted quartz-lithic silt
2.5 Sand/shale contact; AF
2.5 Compacted quartz-lithic sand
0.65 Microxtln pyrite; microporous P-F zeolite(?)
0.31 Close-up of tabular zeolite(?)
5 Carbonate shell
5 Mod. open porous very fine sandstone
2.5 Quartz-Kspar-lithic-muscovite sandstone
0.65 Pore-lining pyrite, intergranular pores
2.5 Porous lithic-rich sand
0.65 Lithics, pyrite, intergranular pores
152
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
DEPTH FILE FoView Notes
V111_ 47214a 5 Very well-sorted porous sand
4721.40 V111_ 47214b 2.5 Quartz-lithic sand
V111_ 47214c 0.65 Leached Kspar; andesitic VRF
V111_ 47218a 5 Mod. open quartz-lithic sandstone
4721.80 V111 47218b 2.5 Mod. close-packed lithic arkose
V111 47218c 0.65 Lithic-rich; pyrite
V111_ 4722a 5 Pyrite nodule in porous sandstone
4722.80 V111_ 4722b 2.5 Pyritized grains in lithic sandstone
V111_ 4722c 0.65 Pyritized grains in porous sandstone
V111_ 4722d 0.31 Pore-filling heulandite; muscovite
V111_ 4724a 2.5 Lithic-rich/-poor lams; pores
4724.00 V111_ 4724b 0.65 Ductile RF, microcrystalline pyrite
V111 4724c 0.65 Lithic-poor; Fe-carbonate, pores
Table 47. List of photomicrographs, by depth, file name, magnification (field of view), and subject
153