Alaska Logo
Department of Commerce, Community, and Economic Development
Alaska Oil and Gas Conservation
Commission
Loading...
HomeMy WebLinkAbout203-1033URSHUW\'HVLJQDWLRQ /HDVH1XPEHU  2SHUDWLRQV 3HUIRUPHG 2SHUDWRU1DPH $GGUHVV :HOO&ODVV%HIRUH:RUN3HUPLWWR'ULOO1XPEHU $3,1XPEHU :HOO1DPHDQG1XPEHU /RJV /LVWORJVDQGVXEPLWHOHFWURQLFGDWDSHU$$& )LHOG3RRO V  $EDQGRQ 6XVSHQG 3OXJIRU5HGULOO 3HUIRUDWH1HZ3RRO 3HUIRUDWH 3OXJ3HUIRUDWLRQV 5HHQWHU6XVS:HOO 2WKHU6WLPXODWH )UDFWXUH6WLPXODWH $OWHU&DVLQJ 3XOO7XELQJ 5HSDLU:HOO 2WKHU &KDQJH$SSURYHG3URJUDP 2SHUDWLRQVVKXWGRZQ 3UHVHQW:HOO&RQGLWLRQ6XPPDU\ &DVLQJ /HQJWK 6L]H 0' 79' %XUVW &ROODSVH ([SORUDWRU\ 6WUDWLJUDSKLF 'HYHORSPHQW 6HUYLFH $WWDFKPHQWV UHTXLUHGSHU$$&  :HOO6WDWXVDIWHUZRUN ,KHUHE\FHUWLI\WKDWWKHIRUHJRLQJLVWUXHDQGFRUUHFWWRWKHEHVWRIP\NQRZOHGJH 2,/ *$6 :,1- :$* *,1- :'63/ *6725 6XVSHQGHG 63/8* $XWKRUL]HG1DPHDQG 'LJLWDO6LJQDWXUHZLWK'DWH $XWKRUL]HG7LWOH &RQWDFW1DPH &RQWDFW(PDLO &RQWDFW3KRQH 3%89 0LOO&HPHQW3OXJ +LOFRUS1RUWK6ORSH//& &HQWHUSRLQW'U6XLWH$QFKRUDJH$.    &RQGXFWRU 6XUIDFH ,QWHUPHGLDWH 3URGXFWLRQ /LQHU                    1RQH    1RQH      /   6WUXFWXUDO %DNHU63DFNHU  6WDQ*ROLV 6U$UHD2SHUDWLRQV0DQDJHU %URGLH:DJHV 'DYLG:DJHV#KLOFRUSFRP  358'+2(%$<%25($/,62,/ 7RWDO'HSWK (IIHFWLYH'HSWK PHDVXUHG WUXHYHUWLFDO IHHW IHHW IHHW IHHW PHDVXUHG WUXHYHUWLFDO PHDVXUHG PHDVXUHG IHHW IHHW IHHW IHHW PHDVXUHG WUXHYHUWLFDO 3OXJV -XQN 3DFNHU 0HDVXUHGGHSWK 7UXH9HUWLFDOGHSWK IHHW IHHW 3HUIRUDWLRQGHSWK 7XELQJ VL]HJUDGHPHDVXUHGDQGWUXHYHUWLFDOGHSWK 3DFNHUVDQG6669 W\SHPHDVXUHGDQGWUXHYHUWLFDOGHSWK 6WLPXODWLRQRUFHPHQWVTXHH]HVXPPDU\ ,QWHUYDOVWUHDWHG PHDVXUHG  7UHDWPHQWGHVFULSWLRQVLQFOXGLQJYROXPHVXVHGDQGILQDO 5HSUHVHQWDWLYH'DLO\$YHUDJH3URGXFWLRQRU,QMHFWLRQ'DWD 2LO%EO *DV0FI :DWHU%EO &DVLQJ3UHVVXUH 7XELQJ3UHVVXUH 3ULRUWRZHOORSHUDWLRQ 6XEVHTXHQWWRRSHUDWLRQ :HOO&ODVVDIWHUZRUN ([SORUDWRU\ 'HYHORSPHQW 6HUYLFH 6WUDWLJUDSKLF'DLO\5HSRUWRI:HOO2SHUDWLRQV &RSLHVRI/RJVDQG6XUYH\V5XQ (OHFWURQLF)UDFWXUH6WLPXODWLRQ'DWD 6XQGU\1XPEHURU1$LI&2([HPSW $'/ 1R6669,QVWDOOHG  1$ 1$           1$ 67$7(2)$/$6.$ $/$6.$2,/$1'*$6&216(59$7,21&200,66,21 5(32572)681'5<:(//23(5$7,216 6U3HW(QJ 6U3HW*HR )RUP5HYLVHG6XEPLW:LWKLQGD\VRU2SHUDWLRQV 6U5HV(QJ   By Samantha Carlisle at 3:13 pm, Dec 01, 2021 'LJLWDOO\VLJQHGE\6WDQ*ROLV  '1FQ 6WDQ*ROLV   RX 8VHUV 'DWH  6WDQ*ROLV  SFD 12/3/2021 RBDMS HEW 12/1/2021 DSR-12/1/21MGR18JAN2022 $&7,9,7<'$7(6800$5<  /56:HOO7HVW8QLW%HJLQ:65)&2$VVLVW&78,/92/9 6SRWXS8QLW58376%IRU:6'LYHUW:HOO7KUX7HVW8QLW&RQWLQXH:65RQ  )UHH]HSURWHFW)/IRUWHVWHUV3XPSEEOVGRZQ)/SUHVVXUH)/WRSVL  /56:HOO7HVW8QLW&RQWLQXH:65IURP)&2$VVLVW&78,/92/ 9&RQWLQXH)ORZLQJ:HOO&RQWLQXH:65RQ  &78&7:7-RE2EMHFWLYH0LOO&HPHQW 7UDYHOIURP6/%\DUGWRORFDWLRQ &RQWLQXHGRQ  /56:HOO7HVW8QLW&RQWLQXH:65IURP)&2$VVLVW&78,/92/ 9&RQWLQXH)ORZLQJ:HOO)ORZLQJWRWDQNV3KDVH&RQWLQXH:65RQ  &78:77UDYHOIURP6/%EDVHWR958RQ96WDUW%23 7HVW%RQQHW6HDOOHDNLQJ:HDSKROHOHDNLQJRQXSSHUUDP&DOO6/%6&(DQG UHTXHVWQHZ%RQQHW6HDODQGUHSODFHPHQW%23%23UHSDLUHGFRQWLQXHZLWK%23( WHVWSVLSVL%RG\8SSHU%OLQG6KHDU5DP/RZHU%OLQG6KHDU5DP3LSH 5DPVDQG3XVK3XOO6OLS5DP&RQWLQXH:65RQ  &78&7:7-RE6FRSH0LOOWKURXJKEDODQFHGFHPHQWSOXJWR DFFHVVORZHULQWHUYDOWRGRXEOHFXUUHQWRLOSURGXFWLRQRQZHOO5,+Z&7& '%39*)RUFH-DU 7-'LVFREDONUXSWXUHGLVN &HQWUDOL]HU;7UHPH0RWRU%L&HQWHU%LW'U\WDJWRSRI EDODQFHGFHPHQWSOXJDW &70'0LOOIURP FWPGWR FWPG)UHH]H SURWHFWFRLOZLWK0H2+32+WRVXUIDFHDQGZDLWIRU3KDVH,,ZHDWKHUWRSDVV &RQWLQXHGRQ  /56:HOO7HVW8QLW&RQWLQXH:65IURP)&2$VVLVW&78,/92/ 9&RQWLQXH)ORZLQJ:HOO3KDVH&RQWLQXH:65RQ  &78&7:7-RE6FRSH0LOOWKURXJKEDODQFHGFHPHQWSOXJWR DFFHVVORZHULQWHUYDOWRGRXEOHFXUUHQWRLOSURGXFWLRQRQZHOO:DLWIRU3KDVH,, ZHDWKHUWRSDVV(QGZHDWKHUKROG5,+ZLWKVDPH[ELFHQWHUPLOOLQJ DVVHPEO\5,+DQGWDJJHGDW 0LOOHGDWWRISPWR ZKHUHWKHUH ZHUHPXOWLSOHVWDOOV&RQWLQXHGWRPLOOWR DYHUDJLQJISP%URNHWKURXJK FHPHQWDW&70 -RE&RQWLQXHGRQ  &78&7:7-RE6FRSH0LOOWKURXJKEDODQFHGFHPHQWSOXJWR DFFHVVORZHULQWHUYDOWRGRXEOHFXUUHQWRLOSURGXFWLRQRQZHOO &LUFRXWJHOSLOOWRVXUIDFHDQGWKHQ5,+IRUGU\GULIW'ULIWHGWR7'DW&70 3XPSODUJHJHOSLOODQGVZHHSKHHOSULRUWR322+32+WRVXUIDFH&ORVH&URZQ 9DOYH5'02WR: -RE&RPSOHWH  /56:HOO7HVW8QLW&RQWLQXH:65IURP)&2$VVLVW&78,/92/ 9&RQWLQXH)ORZLQJ:HOO&78&RQWLQXH0LOOLQJ&78FRPSOHWHMRE6WDEOHZHOO %HJLQKUZHOOWHVW$ERUWWHVWGLYHUWLQ:36KUSLJJ\EDFNZHOOWHVW%'5' &RQWLQXHRQ:65  /56:HOO7HVW8QLW&RQWLQXH:65IURP)&2$VVLVW&78,/92/ 9&RQWLQXH5'02(1'RQ:65-2%&203/(7( 'DLO\5HSRUWRI:HOO2SHUDWLRQV 3%89 Operator Name:2. Exploratory Development Service… …5 … Permit to Drill Number:203-103 6.API Number:50-029-23161-00-00 PRUDHOE BAY, BOREALIS OIL Hilcorp North Slope, LLC 5. Field/Pools:9. Well Name and Number: ADL 028240 Property Designation (Lease Number):10. 8. PBU V-111 7.If perforating: What Regulation or Conservation Order governs well spacing in this pool? Will planned perforations require a spacing exception? Stratigraphic Current Well Class:4. Type of Request:1.Abandon …Plug Perforations …Fracture Stimulate 5 Repair Well … Operations shutdown … Op Shutdown GAS … GSTOR…WAG … SPLUG … … Abandoned Oil 5 WINJ … Exploratory …Development 5Stratigraphic……Service WDSPL … 12. Attachments: PRESENT WELL CONDITION SUMMARY 9850 Effective Depth MD: L80 11. 4/30/2021 Commission Representative: 15. Suspended … Contact Name:Aras Worthington Contact Email:Aras.Worthington@hilcorp.com Authorized Name: Stan Golis Authorized Title:Sr. Area Operations Manager Authorized Signature: Plug Integrity …BOP Test …Mechanical Integrity Test …Location Clearance … Other: Yes …No …Spacing Exception Required?Subsequent Form Required: Approved by:COMMISSIONER APPROVED BYTHE COMMISSION Date: …OtherAlter Casing Pull Tubing … Conditions of approval: Notify Commission so that a representative may witness Sundry Number: COMMISSION USE ONLY 17. I hereby certify that the foregoing is true and the procedure approved herein will not be deviated from without prior written approval. Detailed Operations Program Packers and SSSV Type: No SSSV Installed Packers and SSSV MD (ft) and TVD (ft): Perforation Depth MD (ft):Tubing Size: Size Total Depth MD (ft):Total Depth TVD(ft): 6694 Effective Depth TVD:Plugs (MD):Junk (MD): …Other Stimulate Re-enter Susp Well Suspend … …Plug for Redrill 5Perforate …Perforate New Pool 7043, 6534 No SSSV Installed Date: Liner Well Status after proposed work: 16. Verbal Approval: … … …Change Approved Program 29 - 2746 29 - 2741 14. Estimated Date for Commencing Operations: BOP Sketch 30 - 108 Structural 7240 Proposal Summary 13. Well Class after proposed work: 4-1/2" Baker S3 Packer 7285 - 9772 6650 - 6699 3-1/2" 9.2#24 - 7103 Production 9813 6697 None None 30 - 108 9-5/8" 7" Contact Phone:907.564.4763 Date: 5410 78 20"Conductor 3090 …GINJ 5 Post Initial Injection MIT Req'd? Yes No … 5 …… 5 Comm. STATE OF ALASKA ALASKA OIL AND GAS CONSERVATION COMMISSION APPLICATION FOR SUNDRY APPROVALS 20 AAC 25.280 Surface 2717 5750 Intermediate 7195 26 - 7221 26 - 6621 2714 4-1/2"7101 - 9815 6562 - 6696 8430 7500 Address:3800 Centerpoint Dr, Suite 1400, Anchorage, AK 99503 3. …No 5Yes Casing Length MD TVD Burst Tubing Grade:Tubing MD (ft):Perforation Depth TVD (ft): Collapse MPSP (psi): Wellbore Schematic … 2340 Comm.Sr Pet Eng Sr Pet Geo Sr Res Eng Form 10-403 Revised 03/2020 Approved application is valid for 12 months from the date of approval. By Samantha Carlisle at 3:45 pm, Apr 09, 2021 321-185 Digitally signed by Stan Golis (880) DN: cn=Stan Golis (880), ou=Users Date: 2021.04.09 13:04:10 -08'00' Stan Golis (880) MGR21APR21 DSR-4/12/21 X DLB 04/16/2021 10-404 CDW 4/21/2021 Yesn Required? Comm 4/21/21 dts 4/21/2021 RBDMS HEW 4/23/2021 Fracture Stimulation Well: V-111 PTD: 203-103 Well Name:V-111 API Number:50-029-23161 Current Status:Kuparuk Injector Rig:N/A Estimated Start Date:April 30, 2021 Estimated Duration:N/A Reg.Approval Req’d?Yes Regulatory Contact:Abbie Barker First Call Engineer:Aras Worthington 907-440-7692 (M) Second Call Engineer:David Wages 713-380-9836 (M) AFE 212-00354 IOR 100 COST $430k Current Bottom Hole Pressure:2951 psi @ 6600’ TVDss Maximum Expected BHP:3000 psi @ 6600’ TVDss Max. Anticipated Surface Pressure:2340 psi Gas Column Gradient (0.1 psi/ft) BHST:146϶ F MITIA:Passed to 3500 psi on 9/16/2003 History V-111 is a un-frac'd horizontal Borealis producer completed with slotted liner. Objective The objective of this program is to perform a fracture stimulation to improve well performance. The proposed work is to dummy the GLMs and obtain MITs, then isolate the heel with an IBP and perforate the C4 just outside the window. Frac, a contingent coil FCO, install live GLVs and flow with Portable-Well-Test-Unit to flowback any sand then pull the IBP. WBL Steps: 1 S DRIFT FOR IBP/PERFS, SET TTP, DGLVs, MITs, PULL TTP 2 F A/SL; LOAD WELL, MITT & MITIA 3 F LOAD WELL PRE-IBP SET, MITIA 4 E PERFORATE, SET IBP 5 F FRAC 6 C CONTINGENT FCO 7 S RUN LGLVs 8 T PORTABLE TEST SEPARATOR FLOWBACK 9 S PULL IBP Fracture Stimulation Well: V-111 PTD: 203-103 Procedural steps Slickline/Fullbore 1. Drift for IBP & Perf guns. 2. Set TTP. 3. DGLVs & Load IA. Max IAP & Tbg pressures 2500 psi: ¾~150 bbls 2% KCL with corrosion inhibitor ¾~70 bbls crude or diesel FP 4. Load tubing: ¾~70 bbls 2% KCL ¾~25 bbls crude or diesel FP 5. Set TTP. 6. MITT to 3500 psi (see tubing stress analysis below) 7. MITIA to 3500 psi (see tubing stress analysis below) 8. Pull TTP. 9. Injectivity test into slotted liner with crude or diesel to establish injectivity before setting IBP and perforating the heel. ¾Max rate achievable with pump @ 2500 psi max WHP Fullbore 1. No more than 2 days before setting IBP, Load tubing as follows. Max Tubing pressure 2500 psi. ¾~70 bbls 2% KCL ¾~25 bbls crude or diesel FP E-Line 1. Perforate per attached tie-in log with 2-7/8” 175 MaxForce HMX guns (or similar) 6-spf, 60 deg phased. 2. Set 2-1/2” Baker IBP with ME @ 7272’ ELM. Fullbore 1. Injectivity test into perforations with crude or diesel to establish injectivity after setting IBP and perforating the heel (to verify IBP is set by difference in injectivity). ¾Max rate achievable with pump @ 2500 psi max WHP Fracture Stimulation Well: V-111 PTD: 203-103 Special Projects (Frac) 1. MIRU Frac Fleet Pressure testing Maximum Allowable Treating Pressure:5000 psi Stagger Pump Kickouts between:4500 psi and 4750 psi (90% to 95% of MATP) Global Kickout 4750 psi (95% of MATP) Treating Line Test Pressure 6000 psi Sand Requirement 85,000# 16/20 Carbolite, 50,000# CarboBond Minimum Water Requirement 1500 bbls (pump schedule: 1370 bbls) Min IA Hold Pressure 2400 psi (Tubing stress analysis) Max IA Pop-Off Set Pressure 3200 psi (90% of MIT-IA) OA Monitor and/or maintain open to atmosphere 2. Frac well per pump schedule 3. RDMO Slickline 1. Drift & Tag TOS. 2. Run generic GLVs. Coiled Tubing (Contingent FCO) 1. RIH w/ JSN, FCO as needed. Test Separator 1. Flowback well as directed by OE/Ops. Slickline 1. Pull IBP. Fracture Stimulation Well: V-111 PTD: 203-103 Fracture Stimulation Well: V-111 PTD: 203-103 WELL NAME: V-111 60 Packer Pressure Loads Notes:PKR MD TVD Fluids Grad Press Fluid Grad Press Delta 10177 0 0 3500 0 3500 -8590 2500 2500 diesel 0.353 4383 diesel 0.353 883 3500 223778 6380 6200 seawater 0.444 6026 seawater 0.444 2526 3500 7040 6540 seawater 0.444 6177 seawater 0.444 2677 3500 dP 3500 PASS Notes: MD TVD Fluids Grad Press Fluid Grad Press Delta 0 0 0 3500 -3500 2500 2500 diesel 0.353 883 diesel 0.353 4383 -3500 6380 6200 seawater 0.444 2526 seawater 0.444 6026 -3500 7040 6540 seawater 0.444 2677 seawater 0.444 6177 -3500 dP -3500 PASS Notes: MD TVD Fluids Grad Press Fluid Grad Press Delta 0 0 5000 3000 2000 2500 2500 12 ppa Frac Fluid 0.684 6710 diesel 0.353 3883 2827 6380 6200 12 ppa Frac Fluid 0.684 9241 seawater 0.444 5526 3715 7040 6540 12 ppa Frac Fluid 0.684 9473 seawater 0.444 5677 3797 Force 80,658 PASS dP 3797 PASS MIT-T with 2500' freeze protect Deviation at Packer 1 Tubing IA 2 MIT-IA with 2500' freeze protect 3 Frac (5000 tbg w/ 12 ppa frac fluid, 3000 IA) P Rating Burst p Rating Coll Tensile Rating 0 1000 2000 3000 4000 5000 6000 7000 -10000 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000 10000 MIT-T with 2500' freeze protect MIT-IA with 2500' freeze protect Frac (5000 tbg w/ 12 ppa frac fluid, 3000 IA)Burst Envelope Collapse Envelope Fracture Stimulation Well: V-111 PTD: 203-103 Date: April 7, 2021 Subject: V-111 Fracture Stimulation From: Aras Worthington O: (907) 564-4763 C: (907) 440-7692 To: AOGCC Estimated Start Date: 4/30/2021 Attached is Hilcorp’s proposal and supporting documents to perform a fracture stimulation on well V- 111 in the Kuparuk reservoir of the Prudhoe Bay Unit. V-111 is an un-frac'd horizontal Borealis producer completed with slotted liner. The objective of this program is to perform a fracture stimulation to improve well performance. The proposed work is to dummy the GLMs and obtain MITs then isolate the heel with an IBP and perforate the C4 just outside the window. Frac, a contingent coil FCO, install live GLVs and flow with Portable-Well-Test-Unit to flowback any sand then pull the IBP. Hilcorp requests a variance to sections 20 AAC 25. 283, a, 3- 4 which require identification of fresh - water aquifers and a plan for base-water sampling. Please direct questions or comments to Aras Worthington. Affidavit of Notification (20 AAC 25. 283, a, 1): Partners notified 04/ 01/ 2021: ConocoPhillips ExxonMobil Chevron Department of Natural Resources Plat Identifying Wells (20 AAC 25. 283, a, 2): Plat of wells within one-half mile of V-111 wellbore trajectory. List of wells in Plat 20 AAC 25.283, a, 2 Well Name Well Classification Well Status V-202 Development Oil Producer Gas Lift V-01 Development Oil Producer Shut-In V-202L1 Development Oil Producer Gas Lift V-02 Development Oil Producer Gas Lift V-202L2 Development Oil Producer Gas Lift V-03 Development Oil Producer Gas Lift V-203 Development Oil Producer Gas Lift V-04 Development Oil Producer Gas Lift V-203L1 Development Oil Well V-05 Service Water Injector Injecting V-203L2 Development Oil Well V-07 Development Oil Producer Shut-In V-203L3 Development Oil Well V-08 Development Oil Producer Shut-In V-203L4 Development Oil Well V-08PB1 Development Plugged Back For Redrill V-204 Development Oil Producer Gas Lift V-100 Service Water Injector Injecting V-204L1 Development Oil Well V-101 Development Oil Producer Gas Lift V-204L1PB1 Development Plugged Back For Redrill V-102 Development Oil Producer Gas Lift V-204L2 Development Oil Well V-103 Development Oil Producer Gas Lift V-204L2PB1 Development Plugged Back For Redrill V-104 Service Water Injector Injecting V-204L3 Development Oil Well V-105 Service Water Injector Injecting V-204PB1 Development Plugged Back For Redrill V-106 Development Abandoned V-204PB2 Development Plugged Back For Redrill V-106A Development Oil Producer Gas Lift V-205 Development Oil Producer Shut-In V-106APB1 Development Plugged Back For Redrill V-205L1 Development Oil Well V-106APB2 Development Plugged Back For Redrill V-205L2 Development Oil Well V-106APB3 Development Plugged Back For Redrill V-207 Development Oil Producer Gas Lift V-107 Development Oil Producer Gas Lift V-207L1 Development Oil Well V-108 Development Oil Producer Gas Lift V-207L2 Development Oil Well V-109 Development Oil Producer Gas Lift V-207L3 Development Oil Well V-109PB1 Development Plugged Back For Redrill V-207L4 Development Oil Well V-109PB2 Development Plugged Back For Redrill V-207L4PB1 Development Plugged Back For Redrill V-111 Development Oil Producer Gas Lift V-207L4PB2 Development Plugged Back For Redrill V-111PB1 Development Plugged Back For Redrill V-207PB1 Development Plugged Back For Redrill V-111PB2 Development Plugged Back For Redrill V-210 Service Miscible Injector Shut-In V-111PB3 Development Plugged Back For Redrill V-211 Service Water Injector Shut-In V-112 Service Water Injector Injecting V-212 Service Miscible Injector Operating V-113 Development Oil Producer Gas Lift V-213 Service Water Injector Injecting V-114 Development Abandoned V-213PB1 Service Plugged Back For Redrill V-114A Service Water Injector Injecting V-214 Service Miscible Injector Operating V-115 Development Oil Producer Gas Lift V-214PB1 Service Plugged Back For Redrill V-115L1 Development Oil Well V-214PB2 Service Plugged Back For Redrill V-115L2 Development Oil Well V-214PB3 Service Plugged Back For Redrill V-115L2PB1 Development Plugged Back For Redrill V-214PB4 Service Plugged Back For Redrill V-115PB1 Development Plugged Back For Redrill V-215 Service Miscible Injector Shut-In V-117 Development Oil Producer Shut-In V-216 Service Water Injector Injecting V-117PB1 Development Plugged Back For Redrill V-217 Service Water Injector Injecting V-117PB2 Development Plugged Back For Redrill V-218 Service Water Injector Injecting V-119 Service Suspended V-219 Service Water Injector Injecting V-120 Service Water Injector Injecting V-220 Service Water Injector Injecting V-121 Service Water Injector Injecting V-221 Service Miscible Injector Operating V-122 Development Oil Producer Gas Lift V-222 Service Water Injector Injecting V-122PB1 Development Plugged Back For Redrill V-223 Service Water Injector Injecting V-122PB2 Development Plugged Back For Redrill V-224 Service Water Injector Injecting V-123 Service Miscible Injector OperatingV-224PB1 Service Plugged Back For Redrill V-200 Exploratory Abandoned V-225 Service Water Injector Injecting V-201 Service Suspended V-227 Service Water Injector Shut-In V-202 Development Oil Producer Gas Lift V-229 Service Water Injector Injecting Exemption for Freshwater Aquifers (20 AAC 25. 283, a, 3- 4): Well V-111 is in the West Operating Area of Prudhoe Bay. Per Aquifer Exemption Order No. 1 dated July 11, 1986 where Standard Alaska Production Company requested the Alaska Oil and Gas Conservation Commission to issue an order exempting those portions of all aquifers lying directly below the Western Operating Area and K Pad Area of the Prudhoe Bay Unit for Class II Injection activities. Findings 1- 4 state: 1. Those portions of freshwater aquifers occurring beneath the Western Operating and K pad areas of the Prudhoe Bay Unit do not currently serve as a source of drinking water. 2. Those portions of freshwater aquifers occurring beneath the Western Operating and K pad areas of the Prudhoe Bay Unit are situated at a depth and location that makes recovery of water for drinking water purposes economically impracticable. 3. Those portions of freshwater aquifers occurring beneath the Western Operating and K pad areas of the Prudhoe Bay Unit are reported to have total dissolved solids content of 7000 mg/ I or more. 4. By letter of July 1, 1986, EPA- Region 10 advises that the aquifers occurring beneath the Western Operating and K pad areas of the Prudhoe Bay Unit qualify for exemption. It is considered to be a minor exemption and a non-substantial program revision not requiring notice in the Federal Registrar. Per the above findings, " Those portions of freshwater aquifers lying directly below the Western Operating and K Pad Areas of the Prudhoe Bay Unit qualify as exempt freshwater aquifers under 20 AC 25. 440" thus allowing BP exemption from 20 AAC 25. 283, a, 3- 4 which require identification of freshwater aquifers and establishing a plan for base-water sampling. Detailed Casing and Cement Information (20 AAC 25. 283, a, 5- 6A): Well V-111 was spudded 07/02/2003 The bore of well V-111 had a 12-1/4" hole drilled to 2763' MD where 9-5/ 8", 40#, L- 80, BTC casing was run (casing shoe at 2746' MD) and cemented in place with 377 bbls of Permafrost “L” 10.7-ppg lead and 55 bbls of 15.8-ppg Class G cement with ~100 bbls of cement returned to surface. Prior to exiting the 9- 5/ 8" casing, a passing pressure test was performed (3500 psi for 30 min). 20' of formation was drilled to 2783' MD and leak off testing was completed with 9.7-ppg mud to 450 psi surface pressure at 2740' TVD (12.86 ppg LOT). An 8-3/4" intermediate hole was drilled to 7560' MD where 7", 26#, L- 80, BTC-M casing was run (casing shoe at 7546' MD) and cemented in place with 112 bbls of 12. 5-ppg lead Micro Lite cement and 33 bbls of 15.8-ppg tail Class G cement. Casing was successfully pressure tested to 3500 psi for 30 min. An EZSV bridge plug was set @ 7239’ MD and a whipstock was set @ 7221’ MD. A window was milled from 7221’ – 7233’ MD. New formation was drilled to 7249’ MD with a 6-1/8” Mill where a FIT was performed with 9.0-ppg mud (860 psi surface pressure, 6634' TVD, 11.5 ppg EMW). A 6-1/ 8" production hole was drilled to TD at 9850' MD. Uncemented 4-1/ 2", 12.6#, L- 80, IBT-M slotted liner was run to 9815' MD. The completion assembly consisting of 3-1/ 2", 9.2#, L-80 IBT-M tubing was run to 7103' MD with the packer at 7043' MD. See Mechanical report and cement evaluation Table 4 in section "Location of Wells and Faults (20 AAC 25.283, a, 10- 11)" for conformance with 20 AAC 25.283, a, 6B) Pressure Testing (20 AAC 25. 283, a, 7): Table 1— Tubing and Production Casing Pressure Testing Tubing Date Tubing Pressure (psi) Production Casing Pressure (psi) Differential Pressure (psi) TBD 3500 0 3500* TBD 2000 3500 2500 *The tubing will be pressure tested to 3500 psi which is greater than 110% of max differential pressure (2500 psi) during fracture stimulation per 20 AAC 25. 283, c, 2. Accurate Pressure Ratings of Tubulars and Schematic (20 AAC 25. 283, a, 8): Figure 1— Wellbore schematic for well V-111 Table 2— Tubular Ratings Size/Name Weight Grade Connection ID Burst, psi Collapse, psi 9-5/8” Surface 40#L-80 BTC 8.835”5750 3090 7” Intermediate Casing 26#L-80 BTC-M 6.276”7240 5410 3-1/2” Production Tubing 9.2#L-80 IBT-M 2.992”10,160 10,530 4-1/2” Production Liner 12.6#L-80 IBT-M 3.958 8430 7500 Wellhead FMC manufactured wellhead, rated to 5, 000 psi. Figure 2— Well S- 44A FMC wellhead. Tubing head adaptor: 11" 5, 000 psi x 4-1/16" 5,000 psi Tubing Spool: 11" 5, 000 psi w/ 2-1/16" side outlets Casing Spool: 11" 5, 000 psi w/ 1-1/16" side outlets Tree: Cameron 4-1/16" 5,000 psi Geological Frac Information (20 AAC 25. 283, a, 9): Table 3— Geological Information Formation Formation MD Top MD Bot TVDss Top TVDss Bot TVD Thickness Frac Grad psi/ft Lith. Desc. THRZ*6682 7043 -6278 -6452 174 Shale TKLB*7043 7205 -6452 -6532 80 Shale TKUP*7205 7236 -6532 -6547 15 SS TKC2D*7236 7250 -6547 -6554 7 SS TKC2C*7250 7277 -6554 -6567 13 SS TKC2B*7277 7312 -6567 -6585 18 SS TKC2A*7312 7348 -6585 -6602 17 SS TKC1C*7348 7383 -6602 -6620 18 SS TKC1B*7383 7407 -6620 -6632 12 SS TKC1A*7407 7421 -6632 -6639 7 SS LCU*7421 -6639 -6665 26 Silts/SS TKA5**Est. Top -6665 -6690 25 Silts/SS TKA6**Est. Top -6690 -6738 48 Silts/SS TMLV**Est. Top -6738 Shale * Tops are from the V-111PB3 ** Estimated from V-107 Location of Wells, Mechanical Information and Faults (20 AAC 25. 283, a, 10- 11): Figure 3b— Plat of wells within one-half mile of V-111 wellbore reservoir trajectory and location of faults. The blue line indicates the approximate fracture length and orientation in the toe of V-111. Hilcorp’s technical analysis based on seismic, well and other subsurface information available indicates that there are 6 mapped faults that transect the Kuparuk interval and enter the confining zone within the ½ radius of the production and confining zone trajectory for V-111. Fracture gradients within the confining zone (Kalubik and HRZ) will not be exceeded during fracture stimulation and would therefore confine injected fluids to the pool. The HRZ and Kalubik in this area are predominately shale with some silts with an estimated fracture pressure of ~13.5ppg. There were no faults intersected when the production hole was drilled. Fault 1 is encountered in the confining zone 230’ TVD above top Kuparuk. Faults 1-6 intersect the production interval and confining zone within the ½ mile radius of the planned fracs. Their displacements, sense of throw, and zone in which they terminate upwards are given below. The wellbore trajectory is essentially NE/SW. maximum stress direction is estimated to be ~30 deg W of N which will result in transverse fractures. The fracs should not reach any of the mapped faults. Fault Throw Direction Top Bottom 1 60-100' DTSW Ugnu Ivishak 2 0-40' DTSW Colville Miluveach 3 0-70' DTSW Ugnu Basement 4 30' DTW Colville Basement 5 100' DTS Colville Basement 6 80-110' DTSW Sagavanirktok Basement Mechanical report and cement evaluation Table 4 – Mechanical Report and Cement Evaluation Well Name Casing type Hole Size Vol cmt TOC est. via TOC TOC Top of pay Interval Zonal Isolation? Latest MITIACommentsin lbs/ft MD feet TVDss feet in Bbls MD feet TVDss feet TVDss feetV-111Intermediate 7 26# 7221 6539 8.75 145 Volumetric 3216 3126 6533 YesMITIA, 3500 psi,8/16/2003Production Liner 4.5 12.6# 9815 6615 6.125 0 N/A N/AV-02Intermediate 1st Stage 7 26# 9255 8677 8.75 130 Volumetric 5357 5271 6561 YesCMIT TxIA, 2500psi, 7/9/20162nd Stage 7 26# 4189 4104 8.75 52 Volumetric 2712 2627Second stage volumetrically brought cement upto SC shoe. FP'd OA after cement job.Production Liner 4.5 12.6# 15084 6.125 149 Volumetric 9076 8531Circ 30 bbls cement to surface; cmt'd to LinerHanger.V-03Intermediate 1st Stage 7 26# 9763 8645 8.75 125 Volumetric 6025 5656 6544 YesMITIA, 2000 psi,6/18/2007Intermediate 2nd Stage 7 26# 5102 4890 8.75 54 Volumetric 3487 3398Production Liner 4.5 12.6# 12589 6.125 82 Volumetric 9619 8536Circ 25 bbls cement to surface; cmt'd to LinerHanger.V-05Intermediate 7 26# 10344 8627 8.75 220 Bond Log 3300 2906 6509 YesMITIA, 3334 psi,3/28/2020Bond log shows TOC @ 3300' MD and stringersto 2650' MD.Production Liner 4.5 12.6# 12962 9054 6.125 72 Volumetric 10217 8519Circ 20 bbls cement to surface; cmt'd to LinerHanger.V-07Intermediate 7 26# 9927 8647 8.75 Bond Log 3270 2715 6490 YesMITIA, 3500 psi,12/9/2007Second stage volumetrically brought cement upto SC shoe. FP'd OA after cement job.Production Liner 4.5 12.6# 13316 8959 6.125 134 Volumetric 9770 8499Circ'd 36 bbls of contaminated cement tosurfaceV-100Intermediate 7 26# 8388 7038 8.75 200 Bond Log 6850 5580 6599 YesMITIA, 2709 psi,7/21/2019Bond log shows TOC @ 6850' MD.V-105Intermediate 1st stage 7 26# 8243 7041 8.5 35 Bond Log 7660 6466 6545 YesMITIA, 2814 psi,2/13/2021Bond log shows TOC @ 7660' MD.Intermediate 2nd Stage 7 26# 6011 4908 8.5 69 Bond Log 4404 3574V-107Intermediate/Production Liner5.5x3.515.5#/ 9.2#6630/7418 6289/ 70466.75 41 Volumetric 6150 5831 6505 YesCMIT TxIA, 2500psi, 7/28/2016V-109Intermediate 1st Stage 7 26# 7574 6595 8.75 21 Volumetric 6790 6096 6595 YesMITIA, 4000 psi,11/11/2012Intermediate 2nd Stage 7 26# 5573 4940 8.75 60 Volumetric 3780 3465V-115Intermediate 7 26# 8153 6610 8.75 Volumetric 3459 3069 6607 YesMITIA, 3500 psi,6/25/2008Production Liner 4.5 12.6# 10140 6626 6.125 Volumetric 7613 6401Casing SizeCasing Depth Hydraulic Fracture Program (20 AAC 25.283, a, 12): Fracture Stimulation Pump Schedule A data frac will be pumped prior to the frac. Total Fluid volume: 1020 bbls. STEP STAGE AVERAGE COMMENTS FLUID PUMP CF DIRTY VOLUME DIRTY VOLUME PROPPANT # # PPA TYPE RATE RATE STAGE CUM STAGE CUM STAGE CUM SIZE GROSS CUM (BPM)(BPM)(BBL) (BBL) (GAL) (GAL) (LBS) (LBS) (BBL) (BBL) 0 28# X-Link 0.0 0 00 00 0 0.0 0 Step-Rate-Test N/A 40 40.0 0 00 00 1 Prime up, pressure test FreezeProt 5 5.0 10 10 420 420 10 10 2 ~KCl 5 5.0 10 0420 010 3 Injection test ~KCl 20 20.0 10 0420 010 Shut down and monitor pressure 0.0 10 0420 010 4 Calibration Test ~KCl 40 40.0 50 60 2,100 2,520 50 60 5 Flush ~KCl 40 40.0 64 124 2,667 5,187 64 124 HARD SHUTDOWN, MONITOR PRESSURE TILL CLOSURE. FLUID PUMP CF DIRTY VOLUME DIRTY VOLUME PROPPANT CLEAN VOLUME STEP STAGE AVERAGE COMMENTS TYPE RATE RATE STAGE CUM TOT JOB STAGE CUM STAGE CUM SIZE GROSS CUM # # PPA (BPM)(BPM)(BBL) (BBL) (BBL) (GAL) (GAL) (LBS) (LBS) (BBL) (BBL) Volume to Top Perf 63.5 6 1PAD28# X-Link 40 40.0 125 249 5,250 10,437 0 0 125 249 7 1 0.5 FLAT 28# X-Link 40 39.1 50 299 2,100 12,537 1,027 1,027 16/20 C-Lite 49 297 8 1PAD28# X-Link 40 40.0 125 424 5,250 17,787 0 1,027 125 422 9 1 1 FLAT 28# X-Link 40 38.3 80 504 3,360 21,147 3,218 4,245 16/20 C-Lite 77 499 10 1 2 FLAT 28# X-Link 40 36.7 50 554 2,100 23,247 3,859 8,103 16/20 C-Lite 47 546 11 1 3 FLAT 28# X-Link 40 35.3 50 604 2,100 25,347 5,562 13,665 16/20 C-Lite 45 591 12 1 4 FLAT 28# X-Link 40 34.0 50 654 2,100 27,447 7,137 20,802 16/20 C-Lite 43 634 13 1 5 FLAT 28# X-Link 40 32.8 50 704 2,100 29,547 8,598 29,400 16/20 C-Lite 42 676 14 1 6 FLAT 28# X-Link 40 31.6 50 754 2,100 31,647 9,957 39,357 16/20 C-Lite 40 716 15 1 7 FLAT 28# X-Link 40 30.5 50 804 2,100 33,747 11,224 50,581 16/20 C-Lite 39 755 16 1 8 FLAT 28# X-Link 40 29.5 50 854 2,100 35,847 12,408 62,989 16/20 C-Lite 38 793 18 1 9 FLAT 28# X-Link 40 28.6 80 934 3,360 39,207 21,628 84,616 16/20 C-Lite 58 851 19 1 10 FLAT 28# X-Link 40 27.7 80 1,014 3,360 42,567 23,294 107,910 16/20 CBL 56 907 20 1 11 FLAT 28# X-Link 40 26.9 80 1,094 3,360 45,927 24,861 132,771 16/20 CBL 55 962 22 1 FLUSH ~KCl 40 40.0 20 1,114 859 46,786 0 132,771 20 982 23 1 FLUSH FreezeProt 40 40.0 38 1,152 1,598 48,384 0 132,771 38 1,020 TOTALS 1152 132,771 1,020 Total Chems CLEAN VOLUME Anticipated Treating Pressures Table 5 – Anticipated Pressures Maximum Anticipated Treating Pressure:4500 psi Maximum Allowable Treating Pressure:5000 psi Stagger Pump Kickouts Between:4500 psi and 4750 psi (90% to 95% of MATP) Global Kickout:4750 psi (95% of MATP) IA Pop-off Set Pressure:3300 psi IA Minimum hold Pressure:2400 psi Treating Line Test Pressure:6000 psi Sand Requirement:85,000 lbs CarboLite, 50,000 lbs CarboBOND Minimum Water Requirements:1420 bbls (Pump Schedule: 1020 bbls) OA Pressure:Monitor and maintain open to atmosphere There are three overpressure devices that protect the surface equipment and wellbore from overpressure. 1) Each individual frac pump has an electronic kickout that will shift the pumps into neutral as soon as the set pressure is reached. Since there are multiple pumps, these set pressures are staggered between 90% and 95% of the maximum allowable treating pressure. 2) A primary pressure transducer in the treating line will trigger a global kickout that will shift all the pumps into neutral. 3) There is a manual kickout that is controlled from the frac van that can shift all pumps into neutral. All three of these shutdown systems will be individually tested prior to high pressure pumping operations. Additionally, the treating pressure, IA pressure and OA pressure will be monitored in the frac van. Based on a regional stress map, the maximum horizontal stress in the Kuparuk sands is determined to run 30-45° W of N). The heel and lateral of the well are drilled perpendicular to the maximum horizontal stress meaning the induced fracture will also be perpendicular to the wellbore. Frac Dimensions: Frac #MD Location, ft TVD top, ft TVD Bottom, ft Frac Half-Length, ft 1 7230’-7260’6533’6603’~250’ The above values were calculated using modeling software. Maximum Anticipated Treating Pressure: 4500 psi Surface pressure is calculated based on a closure pressure of ~0.6 psi/ ft or ~4000 psi. Closure pressure plus anticipated net pressure to be built (500 psi) and friction pressure minus hydrostatic results in a surface pressure of 5500 psi at the time of flush. 4000 psi (closure)+ 500 psi (net)+ 2900 psi (friction)- 2900 psi (hydrostatic)= 5500 psi (max surface press) The difference in closure pressures of the confining shale layers determines height of the fracture. Average confining layer stress is anticipated to be ~0.7 psi/ ft limiting fracture height to ~100 ft TVD. 4500 4500 4500 4500 Fracture half-length is determined from confining layer stress as well as leak-off and formation modulus. The modeled frac is anticipated to reach a half-length of ~250 ft. Pre-Job Anticipated Chemicals to be pumped: 42,840 gal W5 -103 Up Date: 11/18/2019 Transmittal Number: 93714 r< BPXA WELL DATA TRANSMITTAL Enclosed is a disc with the requested core photos and analysis. 32002 If you have any questions please contact Merion Kendall: 907-564-5216; merion.kendall@bp.com. APl_We1lNo Wl_+ermit Wei.UNm Core Photos Core Analysis, Description, etc 50029229780000 2001620 PRUDHOE BAY UN BORE Z-101 J 50029229880000 2001960 PRUDHOE BAY UN AURO S-104 50029229950000 2002080 PRUDHOE BAY UNIT Z-39 50029230080000 2010590 PRUDHOE BAY UN BORE V-100 50029231610000 2031030 PRUDHOE BAY UN BORE V-111 J 50029233880000 2080530 PRUDHOE BAY UN ORIN L-205 L-205PB1* *Plug -back analysis located in BP archive database. Please sign and email a copy of this transmittal to. G NNCPDCna bo365 onmicrosoft com Thank you, Mer .Merion Xendaff SIM Specialist - SIM BP Exploration AlaskaJ900 E. Benson B1vd.jRoom: 716BIAnchorage, AK Subsurface Information Management 900 E. Benson Blvd. PO Box 196612 Anchorage, AK 99519-6612 �� lY'ay VR fYY. R 6t S4s JAN 3 0 2020 1 AOGCC Image ptject Well History File c.er Page XHVZE This page identifies those items that were not scanned during the initial production scanning phase. They are available in the original file, may be scanned during a special rescan activity or are viewable by direct inspection of the file. ~ 03 - t Q'3 Well History File Identifier Organizing (done) o Two-sided 111111111111111111I o Rescan Needed 11111111I1111111111 RESCAN DIGITAL DATA ~skettes, No. t+- O Other, NolType: OVERSIZED (Scannable) o Maps: o Other Items Scannable by a Large Scanner o Color Items: o Greyscale Items: o Poor Quality Originals: OVERSIZED (Non-Scannable) o Other: o Logs of various kinds: Date 1;)..1 ;:4 Ð5 o Other:: NOTES: BY: ~ /5/ mfJ Datel:J-j ß / oS :3 X 30 = 00 +!l.tl = TOTAL PAGES II q . j 7/..' '-" kount does not include cover sheet) IIIA.P· Date: J ~ ¡~J (JI..<::) /5/ r r ~ 1111111111111111111 11/1111111111111111 Project Proofing BY: ~ /5/ mP Scanning Preparation BY: ( Maria) Production Scanning Stage 1 Page Count from Scanned File: I ~,n (Count does include cover sheet) .page Count Matches Number in scannin¡ pre~aration: VYES BY: ~ Date: 18--.[ 13/05 Stage 1 If NO in stage 1, page(s) discrepancies were found: /5/ N~r YES NO BY: Maria Date: /5/ 1/11111111111111111 Scanning is complete at this point unless rescanning is required, ReScanned 1111111111111111111 BY: Maria Date: /5/ Comments about this file: Quality Checked 1111111111111111111 10/6/2005 Well History File Cover Page,doc • BP Exploration (Alaska) Inc. "~ Attn: Well Integrity Coordinator, PRB-20 Post Office Box 196612 Anchorage, Alaska 99519-6612 ~, . ,.~ ~ a fl' ~~J~S, ~, '1+i23~G~wla' `~,:''~ ~ .: AUgUSt 14, 2009 '"~~ ~ Mr. Tom Maunder Alaska Oil and Gas Conservation Commission 333 West 7ih Avenue Anchorage, Alaska 99501 Subject: Corrosion Inhibitor Treatments of GPB V-Pad Dear Mr. Maunder, . bp ~~~~~~~~ OCT 0 6 2009 ~~ca pil & Gas Cons. Cammi~~inn Anchorap~ ~,,03:~~3 ~ f -- t l l Enclosed please find multiple copies of a spreadsheet with a list of wells from GPB V- Pad that were treated with corrosion inhibitor in the surface casing by conductor annulus. The corrosion inhibitor is engineered to prevent water from entering the annular space and causing external corrosion that could result in a surface casing leak to atmosphere. The attached spreadsheet represents the well name, API and PTD numbers, top of cement depth prior to filling and volumes of corrosion inhibitor used in each conductor. As per previous agreement with the AOGCC, this letter and spreadsheet serve as notification that the treatments took place and meet the requirements of form 10-404, Report of Sundry Operations. If you require any additional information, please contact me or my alternate, Anna Dube, at 659-5102. Sincerely, Torin Roschinger BPXA, Well Integrity Coordinator ~ , BP Exploration (Alaska ) Inc. Surface Casing by Conductor Annulus Cement, Corrosion inhibitor, Sealant Top-off Report of Sundry Operations (10-404) Date V-pad 8/13/2009 Well Name PTD # API # Initial top of cement Vol. of cement um ed Final top of cement Cement top off date Corrosion inhibitor Corrosion inhibitod sealant date ft bbls ft na al V-01 2040900 50029232t00000 NA 2 NA 17 6/30/2009 V-02 2040770 50029232090000 NA 3 NA 43.4 7/11/2009 V-03 2022150 50029231240000 Surf8C2 NA NA NA NA V-04 2061340 50029233220000 NA 1.5 NA 20.4 6/29/2009 V-05 2080930 50029233910000 NA 1.75 NA 20.4 5/10/2009 V-07 2071410 50029233720000 NA 0.25 NA 1.7 6/29/2009 V-100 2010590 50029230080000 NA 1.5 NA 20.4 5/9/2009 V-101 2020560 50029230740000 NA 3.75 NA 32.3 7/10/2009 V-102 2020330 50029230700000 NA 7.75 NA 98.2 8/7/2009 V-103 2021860 50029231170000 NA 0.5 NA 9.4 7/12/2009 V-104 2021420 50029231030000 NA 1.5 NA 21.3 7/11/2009 V-105 2021310 50029230970000 NA 2.25 NA 23.8 6/29/2009 V-106A 2041850 50029230830100 NA 1.75 NA 17 6/29/2009 V-107 2021550 50029231080000 NA 1.75 NA 13.6 7/11/2009 V-108 2021660 5002923t120000 NA 1.5 NA 14.5 7/10/2009 V-109 2022020 50029231200000 NA 1.2 NA 10.2 6/30/2009 V-111 2031030 50029231610000 NA 1.5 NA 11.9 7/12/2009 V-112 2060200 50029233000000 NA 1.5 NA 15.3 5/10/2009 V-113 2022160 50029231250000 NA 2.5 NA 37.4 5/10/2009 V-114A 2031850 50029231780100 NA 2.5 NA 34 6/30/2009 V-115 2040270 50029231950000 NA 1.5 NA 13.1 5/9/2009 V-117 2030900 50029231560000 NA 1.25 NA 22.1 5/10/2009 V-119 2040410 50029232010000 NA 2 NA 18.7 6/30/2009 V-120 2041790 50029232250000 NA 1.5 NA S.5 7/12/2009 V-121 2070360 50029233480000 NA 1.9 NA 17 6/30/2009 V-122 2061470 50029233280000 NA 1.5 NA 6.8 5/10/2009 V-2o1 2012220 50029230540000 SC leak NA 4 NA 90.6 8/7/2009 V-202 2030770 50029231530000 NA 1.75 NA 12.8 7/11/2009 V-203 2051680 50029232850000 NA 2 NA 12.8 7/10/2009 V-204 2041310 50029232170000 NA 2 NA 22.1 6/30/2009 V-205 2061800 50029233380000 NA 1.8 NA 13.6 6/30/2009 V-207 2080660 50029233900000 NA 1.75 NA 18.28 1/9/2009 V-210 2042100 50029232310000 NA 2 NA 18.7 7/11/2009 V-211 2042200 50029232320000 NA 1.5 NA 13.6 7/10/2009 V-212 2051500 50029232790000 NA 12 NA 11.9 6/29/2009 V-213 2041160 50029232130000 NA 1.75 NA 6.3 5/9/2009 V-214 2051340 50029232750000 NA 0.5 NA 9.4 7/11/2009 V-215 2070410 50029233510000 NA 2.8 NA 30.6 6/30/2009 V-216 2041300 50029232160000 NA 1.5 NA 13.6 6/29/2009 V-217 2061620 50029233340000 NA 2.3 NA 25.5 6/30/2009 V-218 2070400 50029233500000 NA 2 NA 17.9 7/12/2009 V-219 2081420 50029233970000 NA 1 NA 16.2 7/12/2009 ",-'~^ 2080200 50029233830000 NA 1.75 NA ~ 3/9/2008 V-221 2050130 50029232460000 NA 0.8 NA 8.5 6/29/2009 V-222 2070590 50029233570000 NA 2.5 NA 21.3 7/11/2009 V-223 2080220 50029233840000 NA 2 NA 20.5 9/7/2008 o2i2o/os ~~~I~mbe~~r NO. 4590 Alaska Data & Consulting Services Company: State of Alaska 2525 Gambell Street, Suite 400 bed' tn) Alaska Oil & Gas Cons Comm Anchorage, AK 99503-2838 ~~ ~ ~~~ ~ ~'"0~ Attn: Christine Mahnken ATTN: Beth 333 West 7th Ave, Suite 100 Anchorage, AK 99501 Field: P.Bay,Milne Pt,Endicott,Borealis,Polaris,Lisburne Well Job # Lea Descrietion Date Bl_ Cnlnr CD 18-32A 11968923 SCMT / - ! 02112/08 1 MPE-12 11978438 MEM INJ PROFILE UZL'-aU~ ~ C3Cv 02/08/08 1 4-141R-34 11996383 USIT L 02112/08 1 V-07 40016096 OH MWD/LWD EDIT "~ - G / C/C 12/04/07 2 1 L1~14 11626482 RST ~ '- / 1 9~l3 05/09/07 1 1 L2-18A 11657124 RST C 05/10/07 1 1 L2-33 11626484 RST ~ (o - ) 'nj C / 05111107 1 1 G-31A 11962778 RST - vS ~( ~~ 01/01/08 1 1 V-111 11978439 MEM GLS ~ 02/10108 1 W-216 12031441 CH EDIT PDC GR (USIT) 9 01111108 1 W-214 40016055 OH MWD/LWD EDIT V=, _ I 11/15107 2 1 Y-07A 11962576 USIT '' _ 12/18/07 1 C-358 11978432 MEM DDL _ / 01/02/08 1 PLEASE ACKNOWLEDGE RECEIPT BY SIGNING AND RET RNI,I~G..O~!t~`COPY EACH TO: BP Exploration (Alaska) Inc. ~ ~ ~ T wi_r. F~ Petrotechnical Data Center LR2-1 900 E. Benson Blvd. Anchorage, Alaska 99508 s t a „ -, } Date Delivered: s ;; Alaska Data & Consulting Services 2525 Gambell Street, Suite 400 Anchorage, AK 99503-283 ATTN. Beth Received by: • /~ • • -.-~ -_~ MICROFILMED 03/01/2008 DO NOT PLACE ~~,, ~N . ~~ ANY NEW MATERIAL UNDER THIS PAGE F:~LaserFiche\CvrPgs_Inserts~Microfilm_Marker. doc 02/12/2007 Schlumbergel' NO. 4133 Schlumberger-DCS 2525 Gambell St, Suite 400 Anchorage, AK 99503-2838 A TTN: Beth [XB-/63 "#¡¿¡s:XJ Company: Alaska Oil & Gas Cons Comm Attn: Christine Mahnken 333 West 7th Ave, Suite 100 Anchorage, AK 99501 Field: Borealis Orion Well Job# Log Description Date BL Color CD L-217 11212874 CH EDIT USIT IPDC-GR 07/13/06 1 Z-103 PB2 40011520 OH EDIT MWD/LWD 02115/05 2 1 V-111 PBI 40009265 OH EDIT MWD/LWD 07116/03 6 1 V-111 PB2 40009265 OH EDIT MWD/LWD 07126/03 2 1 . PLEASE ACKNOWLEDGE RECEIPT BY SIGNING AND RETURNING ONE COpy EACH TO: BP Exploration (Alaska) tne Petrotechnical Data Center LR2~1 900 E Benson Blvd Anchorage AK 99508-4254 Schlumberger-DCS 2525 Gambell St, Suite 400 Anchorage. AK 99503-2838 A TTN: Beth Date Delivered: Received by' . n ZnOJ SCANNED FEB 2 1 2007 ~ 02/12/2007 Schlumberger NO. 4133 Schlumberger-DCS 2525 Gambell St, Suite 400 Anchorage, AK 99503-2838 A TTN: Beth Company: Alaska Oil & Gas Cons Comm Attn: Christine Mahnken 333 West 7th Ave, Suite 100 Anchorage, AK 99501 Field: Borealis Orion Well Job # Log Description Date BL Color CD L-217 11212874 CH EDIT USIT IPDC-GRI 07/13/06 1 Z-103 PB2 40011520 OH EDIT MWD/LWD 02/15105 2 1 V·111 PB1 40009265 OH EDIT MWD/LWD 07/16103 6 1 V-111 PB2 40009265 OH EDIT MWDILWD 07/26103 2 1 - . PLEASE ACKNOWLEDGE RECEIPT BY SIGNING AND RETURNING ONE COpy EACH TO: BP Exploration (Alaska) Inc. Petrotechnicar Data Center LR2-1 900 E Benson Blvd. Anchorage AK 99508-4254 Schlumberger·DCS 2525 Gambell St, Suite 400 Anchorage, AK 99503-2838 A TTN Beth Date Delivered" Received by· . ~ fEB 2 () 2007 ¿yð3 -/03 ~ (¿¡L¡CJb s Permit to Drill 2031030 MD 9850 /' REQUIRED INFORMATION I r- j;j- DATA SUBMITTAL COMPLIANCE REPORT 11/23/2005 Well Name/No. PRUDHOE BAY UN BORE V-111 Operator BP EXPLORATION (ALASKA) INC TVD 6694 -----Completion Date 8/15/2003 ,..--- Completion Status 1-01L Mud Log No Samples No DATA INFORMATION Types Electric or Other Logs Run: Well Log Information: Log/ Data Type Electr Digital Dataset Med/Frmt Number ~ D Asc ~t I3Pt ..EJr' D Asc -RPt ttPt sr' D Asc -R'pt ..r(pt ~ y(t -Rf)t .ED -'ÍD D Asc C Lis C Pds /Log .JED ~ C Lis C Pds 12473 12473 12473 12473 MWD, GR, RES, PWD, PEX, NEU, DN, DIPOLE DT / CMR, USIT, AS Name Log Log Run Scale Media No Directional Survey Directional Survey Directional Survey Directional Survey Directional Survey Directional Survey Directional Survey Directional Survey Directional Survey Directional Survey Directional Survey Directional Survey Induction/Resistivity I nd uction/Resistivity Induction/Resistivity Density Density 25 25 Blu 1-15 1-15 1-15 13-15 13-15 25 Current Status 1-01L sp~J... lJJ~ A)) 0.1 API No. 50-029-2316~-OO-OO UIC N ~on:;urvey ~--.. (data taken from Logs Portion of Master Well Data Maint) Interval OH I Start Stop CH o o o 108 108 108 7221 7221 o 9850 o o 9850 9850 o o o o 7635 7635 7635 7210 o o 7210 7210 7560 7560 7560 9850 9850 9850 9850 9850 . Received Comments 9/26/2003 Schlumberger 9/26/2003 9/26/2003 9/26/2003 9/26/2003 9/26/2003 9/26/2003 9/26/2003 9/26/2003 Open Open Open Open Open 9/26/2003 9/26/2003 9/26/2003 3/26/2004 3/26/2004 3/26/2004 3/26/2004 3/26/2004 Schlumberger Anadrill Schlumberger - PB1 Anadrill- PB1 Schlumberger - PB1 Schlumberger - PB2 Schlumberger - PB2 Anadrill - PB2 . Schlumberger - PB3 Anadrill - PB3 Schlumberger - PB3 Vision Resistivity Vision Resistivity Vision Resistivity Vision Density Neutron Vision Density Neutron DATA SUBMITTAL COMPLIANCE REPORT 11/23/2005 Permit to Drill 2031030 Well Name/No. PRUDHOE BAY UN BORE V-111 Operator BP EXPLORATION (ALASKA) INC API No. 50-029-23161-00-00 MD 9850 TVD 6694 Completion Date 8/15/2003 Completion Status 1-01L Current Status 1-01L UIC N 1;5 Density 25 Slu 13-15 7221 9850 Open 3/26/2004 Vision Density Neutron ED C Lis 12473 Neutron 13-15 7221 9850 Open 3/26/2004 Vision Density Neutron ~ C Pds 12473 Neutron 25 13-15 7221 9850 Open 3/26/2004 Vision Density Neutron J&g Neutron 25 Slu 13-15 7221 9850 Open 3/26/2004 Vision Density Neutron /ÊD C Lis 12474 Gamma Ray 1-10 140 7490 Open 3/26/2004 PowerPulse Gamma Ray ./ ED C Pds 12474 Gamma Ray 25 1-10 140 7490 Open 3/26/2004 PowerPulse Gamma Ray . .-/ Log Gamma Ray 25 Slu 1-10 140 7490 Open 3/26/2004 PowerPulse Gamma Ray Well Cores/Samples Information: Sample Interval Set Name Start Stop Sent Received Number Comments ADDITIONAL INFORMATION Well Cored? ~ N Chips Received? (9N Y@) Daily History Received? (1N Q)N Formation Tops Analysis Received? Comments: (\\.\\~ \uv. \~ ",,~~k ~ S~ L.{- y ~ ~8) rÀ ~ NI ,rH O~ UJ, It Stvl¿ C~V-L G,~..... ~\A..J-\,,; \ ~~~II~ '\.~ t)JQ.}ð jt. ! ~ '3 q~ ~ .¡(LoS ¡:.....,r ~ ~v\~dJ . Compliance Reviewed By: Date: ~) N\ý~\ ~ S£~I.~epgøp Alaska Data and Consulting Services 3940 Arctic Blvd, Suite 300 Anchorage, AK 99503-5711 ATTN: Beth Well V-111 ~ V-111 Y-11.· (l ~-'Ir:::"'-, V-111 V-11/, V-111 PB3) V-111 PB3 gj().~·IO~ V-111 PB3 Job# 21006 21006 21006 21006 21006 40009265 40009265 40009265 Log Description ADN,CDR,ARC & POWERPULSE MD VISION RESISTIVITY TVD VISION RESISTIVITY MD VISION DENSITY NEUTRON TVD VISION DENSITY NEUTRON POWERPULSE GR & ROP MD POWERPULSE-GR TVD POWERPULSE-GR PLEASE ACKNOWLEDGE RECEIPT BY SIGNING AND RETURNING ONE COPY EACH TO: BP Exploration (Alaska) Inc. Petrotechnical Data Center LR2-1 900 E. Benson Blvd. Anchorage, Alaska 99508 Date Delivered: "~~'br,\ ~ RECEIVED [1.~ . 2 6 2004 '.!¡jska Oil & Gas Cons, Comm~.31! Anchorage dú3--IQ3 3/2/2004 NO. 3119 Company: Alaska Oil & Gas Cons Comm Attn: Lisa Weepie 333 West 7th Ave, Suite 100 Anchorage, AK 99501 Field: Borealis Date Color BL CD 08/13/03 1 J ;JJ../ '-:¡ ~~ 08/13/03 1 08/13103 1 08/13/03 1 08/13/03 1 08/04/03 08104/03 08/04/03 J8Lf1i 1 1 1 Schlumberger DCS 3940 Arctic Blvd Suite 300 Anchorage AK 99503-5789 ATTN: Beth .~J ~ ì ... -........;, Received bY:~C) ~ \..t jy\'\" \ '- c....c"'\.'"~"\ e'~ f , STATE OF ALASKA ~ ALASKA oiL AND GAS CONSERVATION COMM N WELL COMPLETION OR RECOMPLETION REPORT A D LOG - 1a. Well Status: !HI Oil 0 Gas 0 Plugged 0 Abandoned 0 Suspended 0 WAG 20MC 25.105 20MC 25.110 21, Logs Run: MWD, GR, RES, PWD, PEX, NEU, DN, Dipole DT / CMR, USIT, ASM DENS, AIM 22. CASING, LINER AND CEMENTING RECORD SE'TTING.Defltli HOLE I OP BOTTOM SIZE CEMENTING RECORD Surface 108' 42" 260 sx Arctic Set (Approx.) 29' 2746' 12-1/4" 510 sx PF 'L', 269 sx Class 'G' 26' 7221' 8-1/2" 266 sx Class 'G', 160 sx Class 'G' 7101' 9815' 6-1/8" Uncemented Slotted Liner o GINJ 0 WINJ 0 WDSPL No. of Completions 2. Operator Name: BP Exploration (Alaska) Inc. 3. Address: P.O. Box 196612, Anchorage, Alaska 99519-6612 413. Location of Well (Governmental Section): Surface: 4886' NSL, 1591' WEL, SEC. 11, T11N, R11E, UM . Top of Productive Horizon: 571' NSL, 746'WEL, SEC. 02, T11N, R11E, UM Total Depth: 1714' NSL, 1599' EWL, SEC. 01, T11N, R11E, UM 4b. Location of Well (State Base Plane Coordinates): Surface: x- 590710 y- 5970134 Zone- ASP4 TPI: x- 591541 y- 5971110 Zone- ASP4 Total Depth: x- 593871 y- 5972282 Zone- ASP4 18, Directional Survey !HI Yes 0 No GRADE 20" 91.5# H-40 9-5/8" 40# L-80 7" 26# L-80 4-1/2" 12.6# L-80 23. Perforations open to Production (MD + TVD of To,e and Bottom Interval, Size and Number; if none, state' none"): 4-1/2" Slotted Section MD TVD MD TVD 7285' - 7327' 6650' - 6664' 7407' - 7450' 6680' - 6680' 7543' - 7746' 6666' - 6639' 7830'-8031' 6641'-6649' 8040' - 8246' 6650' - 6658' 8379' - 8504' 6670' - 6677' 8514' - 8722' 6677' - 6684' 8846' - 8930' 6684' - 6688' 8939' - 9772' 6689' - 6699' 26. One Other 5. Date Comp., Susp., or Aband. 8/15/2003 6. Date Spudded 7/2/2003 7. Date T.D. Reached 8/12/2003 8. Elevation in feet (indicate KB, DF, etc.) RKB = 81.8' 9. Plug Back Depth (MD+ TVD) 9850 + 6694 Ft 10. Total Depth (MD+TVD) 9850 + 6694 Ft 11. Depth where SSSV set (Nipple) 2209' MD 19. Water depth, if offshore N/A MSL 24. SIZE 3-1/2", 9.2#, L-80 25. Revised: 11/17/03, Put on Production 1 b. Well Class: !HI Development 0 Exploratory o Stratigraphic 0 Service 12. Permit Number 203-103 303-214 13. API Number 50- 029-23161-00-00 14. Well Number PBU V-111 15. Field and Pool Prudhoe Bay Field / Borealis Pool 16. Lease Designation and Serial No. ADL 028240 17. Land Use Permit: 20. Thickness of Permafrost 1900' (Approx.) AMOUNT PULLED ReCORD DEPTH SET (MD) 7103' PACKER SET (MD) 7043' DEPTH INTERVAL (MD) 7239' 7221' CEMENT. SQUEEZE, AMOUNT & KIND OF MATERIAL USED Set EZSV for Plug back Kickoff Set Whipstock on top of EZSV Freeze Protect with 130 Bbls of Diesel Date First Production: October 19, 2003 Date of Test Hours Tested PRODUCTION FOR 11/5/2003 6 TEST PERIOD .. Flow Tubing Casing Pressure CALCULATED ........ Press. 345 24-HoUR RATE"'" PRODUCTION TEST Method of Operation (Flowing, Gas Lift, etc.): Gas Lift Oll-Bsl 2,533 Oll-Bsl . 10,132 GAs-McF 3,122 GAs-McF 12,488 W A TER-BsL -0- WATER-BsL -0- CHOKE SIZE I GAS-OIL RATIO 176 1232 OIL GRAVITY-API (CORR) 27. CORE DATA Brief description of lithology, porosity, fractures, apparent dips and presence of oil, gas or water (attach separate sheet, if necessary). Submit core chips; if none, state "none". Core Description Summary is attached. RBOMSBfL MO~ 2 1ntr3 Form 10-407 Revised 2/2003 CONTINUED ON REVERSE SIDE 01-- ~.. 28.' ".. ... GEOLOGIC MARKERS 29. ,{MAnON TESTS NAME MD TVD Include and briefly summarize test results. List intervals tested, and attach detailed supporting data as necessary. If no tests were conducted, state "None". Ugnu 2950' Ugnu M Sands 4008' Schrader Bluff N Sands 4247' Schrader Bluff 0 Sands 4409' Base Schrader / Top Colville 4771' HRZ 6682' Kalubik 7043' Kuparuk C 7209' Kuparuk C 9819' 2945' None 3993' 4232' 4394' 4756' 6360' 6534' 6615' 6696' 30. List of Attachments: Summary of Daily Drilling Reports, Surveys, Core Description Summary 31. I hereby certify that the foregoing is true and correct to the best of my knowledge. Signed Terrie Hubble ~~ ~ Title Technical Assistant Date II· / 7.. œ PBU V-111 203-103 303-214 Prepared By NamelNumber: Terrie Hubble, 564-4628 Well Number Permit No. / Approval No. Drilling Engineer: Neil Magee, 564-5119 INSTRUCTIONS GENERAL: This form is designed for submitting a complete and correct well completion report and log on all types of lands and leases in Alaska. ITEM 1a: Classification of Service Wells: Gas Injection, Water Injection, Water-Alternating-Gas Injection, Salt Water Disposal, Water Supply for Injection, Observation, or Other. Multiple completion is defined as a well producing from more than one pool with production from each pool completely segregated. Each segregated pool is a completion. ITEM 4b: TPI (Top of Producing Interval). ITEM 8: The Kelly Bushing elevation in feet above mean low low water. Use same as reference for depth measurements given in other spaces on this form and in any attachments. ITEM 13: The API number reported to AOGCC must be 14 digits (ex: 50-029-20123-00-00). ITEM 20: True vertical thickness. ITEM 22: Attached supplemental records for this well should show the details of any multiple stage cementing and the location of the cementing tool. ITEM 23: If this well is completed for separate production from more than one interval (multiple completion), so state in item 1, and in item 23 show the producing intervals for only the interval reported in item 26. (Submit a separate form for each additional interval to be separately produced, showing the data pertinent to such interval). - ITEM 26: Method of Operation: Flowing, Gas Lift, Rod Pump, Hydraulic Pump, Submersible, Water Injection, Gas Injection, Shut-In, or Other (explain). ITEM 27: If no cores taken, indicate "None". ITEM 29: List all test information. If none, state "None". Form 10-407 Revised 2/2003 . eðC3-- /03 MWD/LWD Log Product Delivery Customer BP Exploration (Alaska) Inc. Dispatched To: Lisa Weepie Well No V-111 Date Dispatched: 2-May-03 I nstallation/Rig Nabors 9ES Dispatched By: Nate Rose Data No Of Prints No of Floppies Surveys 2 . ~ . ~. ',. Please sign and return to: James H. Johnson Received By: «..\ ~ \ >\t.;-u"£,, l~\,,~~jV""'\... . BP Exploration (Alaska) Inc. (' - ...: .. Petrotechnical Data Center (LR2-1) 900 E. Benson Blvd. Anchorage, Alaska 99508 Fax: 907-564-4005 e-mail address:johnsojh@bp.com (0 LWD Log Delivery V1.1, Dec '97 '~~~,\\~ . . 19C,-==) ~. ) Q~ MWD/LWD Log Product Delivery Customer BP Exploration (Alaska) Inc. Dispatched To: Lisa Weepie Well No V-111PB1 Date Dispatched: 2-May-03 Installation/Rig Nabors 9ES Dispatched By: Nate Rose Data No Of Prints No of Floppies Surveys 2 Received By: ~~_~ )~~JV""'\... Please sign and return to: Anadrill LWD Division 3940 Arctic Blvd, Suite 300 Anchorage, Alaska 99503 nrose1 @slb.com Fax: 907-561-8417 LWD Log Delivery V1.1, Dec '97 'K~'D ,V\~ · .03- J03 MWD/LWD Log Product Delivery Customer BP Exploration (Alaska) Inc. Dispatched To: Lisa Weepie Well No V-117PB2 Date Dispatche 10-Jun-03 Installation/Rig Nabors 9ES Dispatched By: Nate Rose Data No Of Prints No of Floppies Surveys 2 '""~ _ \ ~. Please sign and return to: James H. Johnson Received BY:~\ ~ J"" ~).,O C'1ì. ~~ BP Exploration (Alaska) Inc. Petrotechnical Data Center (LR2-1) 900 E. Benson Blvd. Anchorage, Alaska 99508 Fax: 907-564-4005 r e-mail address:johnsojh@bp.com '\.,,1 LWD Log Delivery V1.1 , Dec '97 K~~r\\~ . . (Yn:-=3 - 10A- ~ MWD/LWD Log Product Delivery Customer BP Exploration (Alaska) Inc. Dispatched To: Lisa Weepie Well No V-111 PB3 Date Dispatched: 2-May-03 Installation/Rig Nabors 9ES Dispatched By: Nate Rose Data No Of Prints No of Floppies Surveys 2 """~ \ ~ ~ Please sign and return to: James H. Johnson Received By:'\~~\\..~!¥",,\ ..l \.sJ~_ BP Exploration (Alaska) Inc. Petrotechnical Data Center (LR2-1) 900 E. Benson Blvd. Anchorage, Alaska 99508 Fax: 907-564-4005 e-mail address:johnsojh@bp.com LWD Log Delivery V1.1 , Dec '97 --~~~(\\~ .. STATE OF ALASKA _ ALASKA~L AND GAS CONSERVATION COMI\ì..\:)SION WELL COMPLETION OR RECOMPLETION REPORT AND LOG 1a. Well Status: SOil 0 Gas 0 Plugged 0 Abandoned 0 Suspended 0 WAG 20MC 25.105 20MC 25.110 o GINJ 0 WINJ 0 WDSPL No. of Completions 2. Operator Name: BP Exploration (Alaska) Inc. . 3. Address: P.O. Box 196612, Anchorage, Alaska 99519-6612 4a. Location of Well (Governmental Section): Surface: 4886' NSL, 1591' WEL, SEC. 11, T11 N, R11 E, UM Top of Productive Horizon: 571' NSL, 746' WEL, SEC. 02, T11 N, R11 E, UM Total Depth: 1714' NSL, 1599' EWL, SEC. 01, T11N, R11E, UM 4b. Location of Well (State Base Plane Coordinates): Surface: x- 590710 y- 5970134 Zone- ASP4 TPI: x- 591541 y- 5971110 Zone- ASP4 Total Depth: x- 593871 y- 5972282 Zone- ASP4 18. Directional Survey S Yes 0 No 21. Logs Run: MWD, GR, RES, PWD, PEX, NEU, DN, Dipole DT I CMR, USIT, ASM DENS, AIM CASING, liNER AND CEMENTING RECORD S!:TTINGDEPTH HOLE lOP BOTTOM SIZE Surface 108' 42" 29' 2746' 12-1/4" 26' 7221' 8-1/2" 7101' 9815' 6-1/8" 22. CASING SIZE 20" 9-5/8" 7" 4-112" WT,PER FT. 91.5# 40# 26# 12.6# GRADE H-40 L-80 L-80 L-80 One Other 5. Date Comp., Susp., or Aband. 8/15/2003 6. Date Spudded 7/2/2003 7. Date T.D. Reached 8/12/2003 8. Elevation in feet (indicate KB, DF, etc.) RKB = 81.8' 9. Plug Back Depth (MD+ TVD) 9850 + 6694 Ft 10. Total Depth (MD+TVD) 9850 + 6694 Ft 11. Depth where SSSV set (Nipple) 2209' MD 19. Water depth, if offshore NIA MSL 1b. Well Class: S Development 0 Exploratory o Stratigraphic 0 Service 12. Permit Number 203-103 303-214 13. API Number 50- 029-23161-00-00 14. Well Number PBU V-111 15. Field and Pool Prudhoe Bay Field I Borealis Pool 16. Lease Designation and Serial No. ADL 028240 17. Land Use Permit: 20. Thickness of Permafrost 1900' (Approx.) CEMENTING RECORD 260 sx Arctic Set (Approx.) 510 sx PF 'L" 269 sx Class 'G' 266 sx Class 'G', 160 sx Class 'G' Uncemented Slotted Liner 23. Perforations open to Production (MD + TVD of Top and Bottom Interval, Size and Number; if none, state "none"): 4-112" Slotted Section MD 7285' - 7327' 7407' - 7450' 7543' - 7746' 7830' - 8031' 8040' - 8246' 8379' - 8504' 8514' - 8722' 8846' - 8930' 8939' - 9772' TVD 6650' - 6664' 6680' - 6680' 6666' - 6639' 6641' - 6649' 6650' - 6658' 6670' - 6677' 6677' - 6684' 6684' - 6688' 6689' - 6699' MD 26. Date First Production: Not on Production Date of Test Hours Tested PRODUCTION FOR TEST PERIOD .. Flow Tubing Casing Pressure CALCULATED ..... Press. 24-HoUR RATE""" 27. 24. SIZE 3-1/2", 9.2#, L-80 TVD TUSING RECORD DEPTH SET (MD) 7103' PACKER SET (MD) 7043' 25. ACID, FRACTURE, CEMENT SQUEEZE, ETC. DEPTH INTERVAL (MD) 7239' 7221' PRODUCTION TEST Method of Operation (Flowing, Gas Lift, etc.): NIA OIL-BsL GAs-McF WATER-BsL OIL-BsL Form 10-407 Revised 2/2003 GAs-McF WATER-BsL CONTINUED ON REVERSE SIDE RBDMS aft Sf? 1 7 ?nn~ AMOUNT & KIND OF MATERIAL USED Set EZSV for Plugback Kickoff Set Whipstock on top of EZSV Freeze Protect with 130 Bbls of Diesel CHOKE SIZE I GAS-OIL RATIO OIL GRAVITY-API (CORR) ..s.. Gas Con~L CORE DATA kl-< ;[- ¡ Vi- t; Brief description of lithology, porosity, fractures, apparent dips and presence of oil, gas or water (attach separate sheet, if necessary). Submit core chips; if none, state "non::¿;:;;:.'¡:;";;;l SEP 1 5 Z003 : .,ct.".., .,,- .,..,'. r Core Description Summary is attached. I-Ø.~%~ ¡ I i;Jm I ORIGINAL t/ ,-_. J ?8. r··......", 29. .ORMATlON TESTS Include and briefly summarize test results. List intervals tested, and attach detailed supporting data as necessary. If no tests were conducted, state "None". GEOLOGIC MARKER:", ~ NAME MD TVD Ugnu 2950' Ugnu M Sands 4008' Schrader Bluff N Sands 4247' Schrader Bluff 0 Sands 4409' Base Schrader / Top Colville 4771' HRZ 6682' Kalubik 7043' Kuparuk C 7209' Kuparuk C 9819' 2945' None 3993' 4232' 4394' 4756' 6360' 6534' 6615' 6696' SEP 1 ~ 30. List of Attachments: Summary of Daily Drilling Reports, Surveys, Core Description Summary 31. I hereby certify that the foregoing is true and correct to the best of my knowledge. Signed . .--,:::;.....~ LL. (] /Ja. r<\ l5 03 Terrie Hubble MVU\Lf ,~ Title Technical Assistant Date U""{ - . PBU V-111 203-103 303-214 Prepared By Name/Number: Terrie Hubb/e, 564-4628 Well Number Drilling Engineer: Neil Magee, 564-5119 Permit No. I Approval No. INSTRUCTIONS GENERAL: This form is designed for submitting a complete and correct well completion report and log on all types of lands and leases in Alaska. ITEM 1a: Classification of Service Wells: Gas Injection, Water Injection, Water-Alternating-Gas Injection, Salt Water Disposal, Water Supply for Injection, Observation, or Other. Multiple completion is defined as a well producing from more than one pool with production from each pool completely segregated. Each segregated pool is a completion. ITEM 4b: TPI (Top of Producing Interval). ITEM 8: The Kelly Bushing elevation in feet above mean low low water. Use same as reference for depth measurements given in other spaces on this form and in any attachments. ITEM 13: The API number reported to AOGCC must be 14 digits (ex: 50-029-20123-00-00). ITEM 20: True vertical thickness. ITEM 22: Attached supplemental records for this well should show the details of any multiple stage cementing and the location of the cementing tool. ITEM 23: If this well is completed for separate production from more than one interval (multiple completion), so state in item 1, and in item 23 show the producing intervals for only the interval reported in item 26. (Submit a separate form for each additional interval to be separately produced, showing the data pertinent to such interval). ITEM 26: Method of Operation: Flowing, Gas Lift, Rod Pump, Hydraulic Pump, Submersible, Water Injection, Gas Injection, Shut-In, or Other (explain). ITEM 27: If no cores taken, indicate "None". ITEM 29: List all test information. If none, state "None". ORIGINAL Form 10-407 Revised 2/2003 Legal Name: Common Name: Test Date I .........._.l 7/5/2003 LOT 8/8/2003 FIT V-111 V-111 Test Type Test Depth (TMD) ------.. 2,745.0 (ft) 7,221.0 (ft) BP Leak-Off Test Summary -.........._......_.._.._.._.~--...- Test Depth (TVD) ---------...-.. 2,740.0 (ft) 6,621.0 (ft) AMW .-...-----...-...-.... 9.70 (ppg) 9.00 (ppg) . .........................- Suñace Pressure 450 (psi) 860 (psi) Leak Off Pressure (BHP) 1,831 (psi) 3,956 (psi) '" Page 1 of 1 EMW 12.86 (ppg) 11.50 (ppg) e e Printed: 8/18/2003 9:22:17 AM ,I e e Page 1 of 22 BP Operations Summary Report legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRill +COMPlETE NABORS ALASKA DRilLING I NABORS 9ES i ~a~~_~om - To Hours 7/1/2003 Task Code NPT: Phase 7/2/2003 18:00 - 22:00 4.00 RIGU P PRE 22:00 - 00:00 2.00 RIGU P PRE 00:00 - 03:30 3.50 RIGU P PRE 03:30 - 04:00 0.50 RIGU P PRE 04:00 - 05:30 1.50 BOPSURP PRE 05:30 - 06:00 0.50 BOPSURP PRE 06:00 - 07:00 1.00 BOPSURP PRE 07:00 - 07:30 0.50 BOPSURP PRE 07:30 - 09:30 2.00 DRILL P SURF 09:30 - 11 :30 2.00 DRILL P SURF 11 :30 - 12:00 12:00 - 22:30 0.50 DRILL P 10.50 DRILL P SURF SURF 22:30 - 23:00 0.50 DRILL P SURF 23:00 - 00:00 1.00 DRILL P SURF 7/3/2003 00:00 - 01 :00 1.00 DRILL P SURF 01 :00 - 02:00 1.00 DRILL P SURF 02:00 - 03:00 1.00 DRILL P SURF 03:00 - 05:00 2.00 DRILL P SURF 05:00 - 06:30 1.50 DRILL P SURF 06:30 - 11 :00 4.50 DRILL P SURF 11 :00 - 12:30 1.50 DRILL P SURF 12:30 - 13:00 0.50 DRILL P SURF 13:00 - 14:30 1.50 DRILL P SURF 14:30 - 15:00 0.50 DRILL P SURF 15:00 - 15:30 0.50 DRILL P SURF 15:30 - 17:00 1.50 DRILL P SURF 17:00 - 18:00 1.00 DRILL P SURF 18:00 - 20:30 2.50 DRILL P SURF Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 Description of Operations . -..------------... Move 9-ES off V-117. Move to and RIU over V-111. Spot and level Pits and Sub. Ready rig for drilling operations. ACCEPT RIG @ 22:00 HRS. Nipple up diverter system. Take on water to mix spud mud. Mix spud mud. Nipple up diverter system, riser and flowline. Load pipeshed with surface tools and strap same. Service topdrive. Continue to rig up floor and ready rig for spud. P/U HWDP and jars. Stand back in derrick. Function test diverter system. Pick up and clean up rig. Remove trash generated from rig move. Pre-spud meeting discussing the surface hole plan, hazards and fluid segregation objectives. Build BHA with 12 1/4 Hughes MX-C1, 1.5 degree 4.5 stage motor and MWD. Fill stack and test for leaks. Drill surface hole from 108 to 355. Drilling parameters: WOB=15K RPM=50 GPM= 600 @ 900 PSI on and 850 off TRQ= 2.2 on and 1.2 off AST=O ART=1.15 POH to P/U stand from the derrick with jars. Drill 12 1/4 surface hole from 355 to 1,653. Drilling parameters: WOB=15 RPM=80 GPM=600 @ 1850 on and 1,530 off TRQ.=4,500 on and 1,000 off ART=5.99 AST=1.78 CBU x 1.5 prior to POH for wiper trip & bit change. POH. POH with no adverse hole condions. Wipe minor overpulls. Break and grade bit M/U new Hughes MX-C1. Clear floor. RIH to 1,560 and wash last stand to bottom. Began seeing resistance on TIH at approx 500 ft. Worked several spots to bottom. No pumps or rotating required. Drill 12 1/4 surface hole from 1,653 to 1,933. Run Gyro survey due to questionable survey. Magnetic interference from close approach. Survey every 100 ft. on TOH with gyro. Drill 12 1/4 surface hole from 1,933 to 2,763. Hydrates seen from 2,120 to 2,450: Drilling parameters: WOB=25 -40 RPM=80 TRQ=5-7,000 on and 2,000 off GPM=650 @ 2,350 off and 2,750 on AST= 1.2 ART=2.3 Circulate 2.5 times bottoms up @ 80 RPM, 650 GPM. POH to 2,600. Hole began to overpull and swab. Backream out of the hole from 2,600 to 1,653 @ 650 GPM. (Last bit run) CBU. POH from 1,653 to HWDP @ 900 with no adverse hole condions. RIH to hole TD of 2,763 with no adverse hole conditons or fill. Washed last stand to bottom as precautionary measure. Circulate and condition mud. POH to HWDP with no adverse hole conditons. Hole in good shape. Lay down BHA. Break and grade bit Clear floor of all vendors excess equipment Printed: 8/1812003 9:22:41 AM e . Page 2 of 22 BP Operations Summary Report Legal Well Name: V-111 Common Well Name: V-111 Event Name: DRILL +COMPLETE Start: Contractor Name: NABORS ALASKA DRILLING I Rig Release: Rig Name: NABORS 9ES Rig Number: Date I From - To i Hours Task, Code NPT ¡Phase __-1-_.... . ! 20:30 - 22:00 1.50 CASE P 7/3/2003 SURF 22:00 - 00:00 2.00 CASE P SURF 7/4/2003 00:00 - 02:30 2.50 CASE P SURF 02:30 - 03:00 03:00 - 05:00 0.50 CASE 2.00 CEMT P P SURF SURF 05:00 - 07:30 2.50 CEMT P SURF 07:30 - 08:30 1.00 CEMT P SURF 08:30 - 10:30 2.00 CEMT P SURF 10:30 - 15:30 5.00 CEMT P SURF 15:30 - 19:00 3.50 BOPSUR P SURF 19:00 - 19:30 0.50 BOPSURP SURF 19:30 - 00:00 4.50 DRILL P INT1 7/5/2003 00:00 - 03:00 3.00 DRILL P INT1 03:00 - 05:30 2.50 DRILL P INT1 05:30 - 06:00 0.50 CASE P INT1 06:00 - 07:30 1.50 DRILL P INT1 07:30 - 08:00 0.50 DRILL P INT1 08:00 - 08:30 0.50 DRILL P INT1 08:30 - 20:30 12.00 DRILL P INT1 7/2/2003 8/15/2003 Spud Date: 7/8/2003 End: 8/15/2003 Description of Operations Rig up to run 9 5/8 surface casing. Dummy run landing joint and hanger. P/U shoe track and bakerlok bottom 3 connections. Fill pipe and check floats. RIH to 350' with 9 5/8" L-80, BTC 40# surface pipe. Average torque @ 8,000. Continue to RIH with 66 jts 9 5/8" L-80, BTC 40# casing from 350 to 2746'. Torque each connection to 8,000. Saw some hole resistance from 400 to 500 ft and nothing on the remaining TIH. Circulate down last joint at 5 BPM @ 255 PSI. RID Franks fillup tool and P/U cement head. Break circulation and stage up to 8 BPM with full returns. Circulate and conditon mud for cement job @ 8 BPM and 400 PSI. Lower Vis. to 70 to 90 and drop YP from 15 to 18. Reciprocate pipe in 5 ft. strokes all while circulating and conditioning. ( Hanger catching diverter spool on up stroke) Pump 10 bbls. preflush and test lines to 3,500. Pump remaining 20 bbls. of preflush followed by 75 bbls. of 10.5 ppg. Alpha spacer. Drop bottom plug and pump 377 bbls. of 10.7 ppg. lead cement(510 sks. @ 4.15 yield) Switch to tail and pump 55 bbls., class "G" 15.8 ppg. cement (270 sks. @ 1.15 yield) Kick out top plug with 10 bbls. water. Switch to rig pumps and chase cement with 192 bbls. of mud, bumping plug at 94 % eft. ( Casing was landed 93 bbls. from bumping the plug due to sticky hole conditons) Pressure up to 1,800 and hold 5 minutes. Release pressure and confirm floats are holding. C.I.P. @ 07:10. App. 100 bbls. of cement and 75 bbls spacer circulated out of the hole during displacement RID casing equipment Back out landing joint Flush and drain stack. Flush cement returns into cellar pump. Remove 4" valves in conductor. NID surface diverter system. N/U speed head and tubing spool. Install 5,000 # BOP stack and riser / flowline. Pressure test BOP's as per policy 250 low and 4,000 high. Witness of test waived by AOGCC. Install wear bushing and RID testing equipment Pick up drillpipe 1x1 and rack back in derrick. P/U used Hycalog 8 1/2" PDC bit, 1.15 degree motor,MWD tools, jars and HWDP. Orient and shallow test same. RIH 1 x 1 with 4" HT-40 drillpipe to app. 2550. Circulate and get air out of system. Pressure test casing to 3,500 for 30 minutes. Wash down and tag F/C @ 2,609. Drill shoe track plus 20 ft. of new hole to 2,783. CBU @ 525 GPM, 1,830 PSI. Perform LOT:===12.86 EMW TVD==2,740 Test MW==9.7 Surface pressure==450 Clean and ready pits for "Oil base mud system". Flush all lines and dry pits with rags and hot air heaters. Clean area under rotary table. Isolate drip pans from running into drilling nipple. Printed: 8/18/2003 9:22:41 AM e e BP Operations Summary Report Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Date I From - To Hours Task Code I N~T . Phase I ~..__.... n___.__._.. 7/7/2003 00:00 - 02:00 2.00 EVAL P INT1 02:00 - 04:00 2.00 EVAL P INT1 04:00 - 04:30 0.50 EVAL P INT1 04:30 - 05:30 1.00 EVAL P INT1 05:30 - 07:00 1.50 EVAL P INT1 07:00 - 08:30 1.50 EVAL P INT1 08:30 - 13:30 5.00 EVAL P INT1 13:30 -15:30 2.00 EVAL P INT1 15:30 - 16:30 1.00 EVAL P INT1 16:30 - 17:30 1.00 EVAL P INT1 17:30 - 18:30 1.00 EVAL P INT1 18:30 - 19:00 0.50 EVAL P INT1 19:00 - 21 :00 2.00 EVAL P INT1 21 :00 - 22:00 1.00 EVAL P INT1 22:00 - 23:30 1.50 EVAL P INT1 23:30 - 00:00 0.50 EVAL P INT1 7/8/2003 00:00 - 00:30 0.50 EVAL P INT1 00:30 - 01 :00 0.50 EVAL P INT1 01 :00 - 02:00 1.00 EVAL P INT1 02:00 - 04:00 2.00 DRILL P INT1 04:00 - 04:30 0.50 DRILL P INT1 04:30 - 05:30 1.00 DRILL P INT1 05:30 - 06:00 0.50 DRILL P INT1 Page 1 of 4 Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 7/8/2003 8/15/2003 Description of Operations Hold PJSM. MU 60' core barrel per Baker coring tech. MU coring stand and rack back in derrick. MU remaining coring BHA. RIH with core barrel at modest pace. Fill string every 20 stands run. Hole in good shape. At casing shoe (2,745) Up==86K Dwn.==79K RIH and tag bottom at 4,042. Calculate number and length of DP pups needed to start coring operation with a full stand. POH and pick up space out pups. Circulate mud around 1 circulation as per on site core specialist Drop 1" ball and pump to seat above barrel. Observe pressure increase as ball seats and puts barrel in coring mode. Core from 4,042 to 4,102 with 200 GPM @ 640 PSI, 40-70 rotary, and torque at 1,100 off and 2-2,300 on. Up==109K Dwn==105K Rotating==108K Drop 1.125" ball to activate core catcher and divert flow. Stand back kelly stand (used for coring) and rack back in derrick. Drop Baker 2" circ. sub dart and shear open sub. CBU at 250 gpm @ 520 PSI. POH at designated core tripping speeds. No adverse hole condions. Hole taking proper fill. Break down and layout core barrel. Recovered app. 55 ft. of the 60 ft. cored. PJSM / HACL P/U and dummy run 3 sections of core barrel to confirm the rig is capable of suspending a 90 ft. barrel and have room to M/U the coring bit Confirmed that a 90 ft. barrel can be run. P/U and stand back next core barrel to be run. (The first run in the 2nd coring interval will start with 60 ft. barrel. If coring goes well, with no jams or other problems, the next run will be with a 90 ft. section.) Power vac. and clean floor of residual MOBM from trip and laying down core. Service topdrive. P/U rotary assembly as per DD with RR 8 1/2 Hycalog bit RIH to casing shoe @ 2745 and fill pipe. Slip and cut 78' of drilling line. Check brakes and service crown. Check crown saver. RIH from 2,745 to 2,764. RIH from 2764 to 3,950 and position bit for MAD pass. Stage up pumps from 450 to 600 gpm to keep mud on shaker screens. MAD pass from 3,950 to 4,102 with 600 GPM @ 3,250. Began taking wt app. 7 ft. off bottom. (Suspect missing section from core trip laying on bottom) Rotary drill from 4,102 to 4,340 with 600 GPM and 130 + rota ry. P/U off bottom and circulate while MWD logs are printed and evaluated for picking next core point Rotary drill from 4,340' to 4,380' at a controlled drilling rate of <100 FPH as per geologist 120 klbs up, 112 klbs down, 117 klbs rotate. 600 gpm, 3230 psi. Circulate and condition mud for core #2. 600 gpm, 3220 psi. Printed: 8/18/2003 9:27:36 AM e e BP Operations Summary Report Page 2 of 4 Legal Well Name: V-111 Common Well Name: V-111 Spud Date: 7/8/2003 Event Name: DRILL +COMPLETE Start: 7/8/2003 End: Contractor Name: NABORS ALASKA DRILLING I Rig Release: 8/15/2003 Rig Name: NABORS 9ES Rig Number: Date I Hours Task Code NPT Phase Description of Operations I ~ro~.- To 7/8/2003 06:00 - 06: 15 0.25 DRILL P INT1 Monitor well - static 06:15 - 08:30 2.25 DRILL P INT1 Pump dry job and POH for core #2. 124 klbs up, 115 klbs down. 08:30 - 09:00 0.50 DRILL P INT1 LD MWD, LWD, bit sub, bit 09:00 - 10:00 1.00 DRILL P INT1 Clean and clear rig floor 10:00 - 12:00 2.00 EVAL P INT1 PU & MU BHA #6, core barrel and bit 12:00 - 13:30 1.50 EVAL P INT1 RIH with BHA #6. Fill pipe at csg shoe. 89 klbs up, 80 klbs down. Wash down and tag bottom at 4380'. 13:30 - 14:30 1.00 EVAL P INT1 CBU, 250 gpm, 750 psi. Drop 1" ball to divert fluid from inner core barrel. MU kelly stand and pump to seat at 200 gpm, 445 psi. 14:30 - 16:00 1.50 EVAL P INT1 Cut core #2 from 4380' to 4440'. 115 klbs up, 107 klbs down, 114 klbs rotate. 200 gpm, 610 psi. 65-70 rpm, 4-5 klbs WOB, 1-3 klbs torque. 16:00 -17:30 1.50 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand to activate core catcher. Pump to seat at 250 gpm, 910 psi. Stand back kelly stand. Drop 2-1/4" dart to open circ sub. Pump to seat at 200 gpm, 710 psi. After circ sub opened CBU at 300 gpm, 855 psi. 17:30 - 17:45 0.25 EVAL P INT1 Monitor well -static. 17:45 - 22:00 4.25 EVAL P INT1 Pump dry job and POH per coring protocol. 117 klbs up, 111 klbs down. 22:00 - 22:30 0.50 EVAL P INT1 PJSM with Baker, Core Labs, BP, and all rig personnel on laying down core barrels. 22:30 - 00:00 1.50 EVAL P INT1 LD core barrels. Recovered 57' of core from 60' cut 7/9/2003 00:00 - 00:30 0.50 EVAL P INT1 Clean and clear rig floor. 00:30 - 02:00 1.50 EVAL P INT1 MU BHA #7, core barrel #3 02:00 - 04:00 2.00 EVAL P INT1 RIH to core point at 4440'. Fill every 20 stands 04:00 - 04:30 0.50 EVAL P INn Wash down and tag up at 4440'. Space out DP for core #3. 04:30 - 05:00 0.50 EVAL P INT1 Circulate and condition mud for core #3. 200 gpm, 450 psi. Drop 1" ball to divert fluid from inner core barrel. MU kelly stand and pump to seat ball at 200 gpm @ 450 psi. 05:00 - 06:00 1.00 EVAL P INT1 Core from 4440' to 4500'. 113 klbs up, 110 klbs down, 115 klbs rotate. WOB 2-5 klbs, torque 1-3 klbs. 200 gpm @ 630 psi. 06:00 - 07:00 1.00 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand and pump down to activate core catcher. Stand back kelly stand. Drop 2-1/4" dart to open circ sub, pump onto seat, sheared at 1900 psi. 07:00 - 07:45 0.75 EVAL P INn CBU, 250 gpm @ 617 psi. 07:45 - 08:00 0.25 EVAL P INn Monitor well - static. 08:00 - 12:30 4.50 EVAL P INT1 Pump dry job and POH per coring protocol. 119 klbs up, 111 klbs down. 12:30 -13:00 0.50 EVAL P INT1 PJSM with Baker, Core-lab, BP and all rig personnel on laying down core barrels. 13:00 - 14:00 1.00 EVAL P INT1 LD core barrels and BHA. 14:00 - 14:30 0.50 EVAL P INT1 Clean and clear rig floor. 14:30 - 16:30 2.00 EVAL P INn MU BHA #8, Core run #4, RIH with HWDP and jar stand from derrick. 16:30 - 18:00 1.50 EVAL P INT1 RIH with drill pipe 4446'. Fill pipe at csg shoe. 18:00 - 19:00 1.00 EVAL P INT1 Wash down to core point at 4500'. space out DP for core run #4. Circulate and condition mud. 200 gpm, 500 psi. Drop 1" ball to divert fluid from inner core barrel. MU kelly stand and pump to seat 19:00 - 20:30 1.50 EVAL P INT1 Cut core #4 from 4500' to 4560'.116 klbs up, 110 klbs down, 114 klbs rotate. 200 gpm @ 655 psi. WOB 3-4 klbs. Printed: 8/18/2003 9:27:36 AM . . BP Operations Summary Report Page 3 of 4 legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRill +COMPlETE NABORS ALASKA DRilLING I NABORS 9ES Start: Rig Release: Rig Number: 7/8/2003 8/15/2003 Spud Date: 7/8/2003 End: Date From - To : Hours: Task Code NPT Phase Description of Operations --.....--.... ----.-. 7/9/2003 20:30 - 22:00 1.50 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand and pump down to activate core catcher, pump on seat at 250 gpm, 980 psi. Stand back kelly stand. Drop 2-1/4" dart to open circ sub, pump on seat at 200 gpm @ 710 psi. CBU, 250 gpm @ 670 psi. 22:00 - 22:15 0.25 EVAL P INT1 Monitor well - static. 22: 15 - 00:00 1.75 EVAL P INT1 POH per coring protocol. 118 klbs up, 110 klbs down. 7/10/2003 00:00 - 02:30 2.50 EVAL P INT1 Continue POH with core #4 per coring protocol 02:30 - 02:45 0.25 EVAL P INT1 PJSM with Baker, Core-lab, BP and all rig personnel on laying down core barrels. 02:45 - 04:00 1.25 EVAL P INT1 LD core #4 04:00 - 04:30 0.50 EVAL P INT1 Clean and clear rig floor 04:30 - 05:30 1.00 EVAL P INT1 MU core barrels and BHA for core #5 05:30 - 08:00 2.50 EVAL P INT1 RIH to core point at 4560'. Fill every 20 stands 08:00 - 08:30 0.50 EVAL P INT1 Wash down and tag up at 4560'. Space out DP for core #5. 08:30 - 10:30 2.00 EVAL P INT1 Drop 1" ball to divert fluid from inner core barrel. MU kelly stand and pump to seat ball. Core from 4560' to 4605'. 116 klbs up, 112 klbs down, 116 klbs rotate. WOB 2-5 klbs, torque 2 klbs. 200 gpm @ 650 psi. 10:30-11:00 0.50 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand and pump down to activate core catcher. Stand back kelly stand. Drop 2-1/4" dart to open circ sub, pump onto seat 11 :00 - 12:00 1.00 EVAL P INT1 CBU, 250 gpm @ 645 psi 12:00 - 12:15 0.25 EVAL P INT1 Monitor well - static. 12:15 - 16:30 4.25 EVAL P INT1 Pump dry job and POH per coring protocol. 119 klbs up, 110 klbs down. 16:30 - 17:00 0.50 EVAL P INT1 PJSM with Baker, Core-lab, BP and all rig personnel on laying down core barrels. 17:00 - 18:00 1.00 EVAL P INT1 LD core barrels and BHA. 18:00 - 18:30 0.50 EVAL P INT1 Clean and clear rig floor 18:30 - 19:30 1.00 EVAL P INT1 MU BHA #10, Core run #6, RIH with HWDP and jar stand from derrick. 19:30 - 21 :30 2.00 EVAL P INT1 RIH to 4557'. Fill every 20 stands 21 :30 - 22:00 0.50 EVAL P INT1 Wash down to core point, tag up at 4605'. Space out DP for core #6. 22:00 - 22:30 0.50 EVAL P INT1 Circulate and condition mud for core #6. 200 gpm @ 530 psi. Drop 1" ball to divert fluid from inner core barrel. MU kelly stand and pump to seat ball. 22:30 - 00:00 1.50 EVAL P INT1 Core from 4605' to 4665'. 117 klbs up, 114 klbs down, 116 klbs rotate. WOB 3-4 klbs, torque 2-3 klbs. 200 gpm @ 650 psi. 7/11/2003 00:00 - 00:30 0.50 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand and pump down to activate core catcher. Stand back kelly stand. Drop 2-1/4" dart to open circ sub, pump onto seat 00:30 - 01 :30 1.00 EVAL P INT1 CBU, 250 gpm @ 670 psi 01 :30 - 01 :45 0.25 EVAL P INT1 Monitor well - static. 01 :45 - 06:00 4.25 EVAL P INT1 Pump dry job and POH with core #6 per coring protocol. 120 klbs up, 112 klbs down. 06:00 - 06:30 0.50 EVAL P INT1 PJSM with Baker, Core-lab, BP and all rig personnel on laying down core barrels. 06:30 - 07:30 1.00 EVAL P INT1 LD core barrels and BHA. 55' feet recovery on core run #6 07:30 - 08:00 0.50 EVAL P INT1 Clean and clear rig floor 08:00 - 09:00 1.00 EVAL P INT1 MU BHA #11, Core run #7. RIH with HWDP and jar stand from derrick. 09:00 - 11 :30 2.50 EVAL P INT1 RIH with HWDP, jars and DP stands from derrick to 4655'. Fill Printed: 8/18/2003 9:27:36 AM e . BP Operations Summary Report Page 4 of 4 Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Start: Rig Release: Rig Number: 7/8/2003 8/15/2003 Spud Date: 7/8/2003 End: Date From - To Hours Task Code NPT Phase Description of Operations ---.-.-.... -... ..........-.--. ........--..-..---- 7/11/2003 09:00 - 11 :30 2.50 EVAL P INT1 every 20 stands. 11 :30 - 12:00 0.50 EVAL P INT1 Wash down to core point Space out DP for core #7. Circulate and condition mud 200 gpm @ 540 psi 12:00 - 14:00 2.00 EVAL P INT1 Drop 1" ball to divert fluid from inner core barrel. MU kelly stand and pump to seat ball. Core from 4665' to 4723'. 120 klbs up, 108 klbs down, 115 klbs rotate. WOB 2-5 klbs, torque 2-3 klbs. 200 gpm @ 650 psi. 14:00 - 15:30 1.50 EVAL P INT1 Drop 1-1/4" ball from drop sub on kelly stand and pump down to activate core catcher. Stand back kelly stand. Drop 2-1/4" dart to open circ sub, pump onto seat 15:30 - 15:45 0.25 EVAL P INT1 Monitor well -static. 15:45 - 21 :30 5.75 EVAL P INT1 Pump dry job and POH with core #7 per coring protocol. 121 klbs up, 112 klbs down. 21 :30 - 22:00 0.50 EVAL P INT1 PJSM with Baker, Core-lab, BP and all rig personnel on laying down core barrels. 22:00 - 00:00 2.00 EVAL P INT1 LD core barrels and BHA. 60+ feet recovery on core run #7. Rig down core barrels and related equipment 7/12/2003 00:00 - 00:30 0.50 EVAL P INT1 Continue LD core #7 00:30 - 01 :00 0.50 EVAL P INT1 Clean and clear rig floor 01 :00 - 01 :30 0.50 EVAL P INT1 Pull wear ring. RU BOPE test equipment 01 :30 - 04:30 3.00 EVAL P INT1 Pressure test BOPE 250 psi low, 4000 psi high. Test Annular to 250 psi low, 3500 psi high. Witness of BOPE test waived by John Spaulding, AOGCC. 04:30 - 05:00 0.50 EVAL P INT1 Blow down stack and choke manifold. RD BOPE test equipment Run wear ring. LD test joint 05:00 - 07:30 2.50 DRILL P INT1 PU & MU BHA #12, 8-1/2" drilling assembly to drill rathole for e-line logs. 07:30 - 08:00 0.50 DRILL P INT1 Rig service, top drive, blocks and crown. 08:00 -10:30 2.50 DRILL P INT1 RIH. Fill DP and break circulation at the csg shoe. 94 klbs up, 85 klbs down. 10:30 -11 :00 0.50 DRILL P INT1 Wash last stand to bottom. Stage pumps up to drilling rate, 550 gpm @ 2960 psi. 122 klbs up, 115 klbs down, 120 klbs rotate. 11 :00 - 14:30 3.50 DRILL P INT1 Drill from 4723' to 4930'.121 klbs up, 116 klbs down, 120 klbs rotate. 120 rpm, 5 klbs WOB, 2.5 klbs torque. 555 gpm @ 2950 psi. 14:30 - 15:00 0.50 DRILL P INT1 Circulate the hole clean, 555 gpm @ 2895 psi. 15:00 -15:15 0.25 DRILL P INT1 Monitor well - static. 15:15 - 17:30 2.25 DRILL P INT1 Pump dry job and POH for logs. 132 klbs up, 118 klbs down. 17:30 - 18:00 0.50 DRILL P INT1 Clean and clear rig floor. 18:00 - 18:30 0.50 EVAL P INT1 PJSM with SWS and all rig personnel on picking up and laying down logging tools, nuclear sources and wireline safety. 18:30 - 19:30 1.00 EVAL P INT1 RU SWS. MU logging tools, load source, shallow test 19:30 - 00:00 4.50 EVAL P INT1 Run Platform ExpresslDSI (dipole sonic) log combo. Printed: 8/18/2003 9:27:36 AM e e BP Operations Summary Report Page 3 of 22 Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES 7/2/2003 8/15/2003 Spud Date: 7/8/2003 End: 8/15/2003 Start: Rig Release: Rig Number: Date i From - To Hours Task Code NPT Phase Description of Operations ___L---.. o..._.____n_ 7/5/2003 08:30 - 20:30 12.00 DRILL P INT1 Gel off pipe rack drains. 20:30 - 00:00 3.50 DRILL P INT1 Take on MOBM into rig pit system. Line up spacers from Vac. trucks directly to mud pumps. Pump 50 bbls. Safekleen/NaCI brine spacer, 60 bbl. Viscosified Brine spacer then 50 bbl. Viscosified OBM spacer. Chase with new 10. ppg. MOBM @ 7 BPM with 800 PSI. 7/6/2003 00:00 - 02:00 2.00 DRILL P INT1 Complete displacement of MOBM. Remove all spacers from slope tank. Clean out from under shakers, trough etc. 02:00 - 03:30 1.50 DRILL P INT1 Drill from 2783 to 2803. Circulate, shear and warm mud. Screen down all shakers. Replaced 84's front and back on all three shakers to 140's on the back and 110's on the front. Record clean hole ECD's: 10.55 @ 600 GPM and 40 rotary. 03:30 - 15:00 11.50 DRILL P INT1 Drill ahead from 2,803 to 4,042. Control drill for first couple circulations @ 200 to 225 fph. Backreaming each connection at 600 GPM @110 RPM on up stroke and 450 GPM with 100 RPM down. Maintain less than 1 ppg over calculated ECD during all drilling, reaming and circulating. (Circulated at 3,900 and 4,000 while geologist reviewed MWD data) Drilling parameters: WOB=5-10 RPM=100 GPM=600 @ 3,340 on and 3,240 off TRQ=1.5k on and 1.25 off ART=5.38 AST=O. 15:00 - 18:00 3.00 DRILL P INn CBU and clean hole at 600 GPM. Circ tracer into mud system @ 450 GPM with 2065 PSI. Drop 2.25 rabbit. 18:00 - 20:00 2.00 DRILL P INT1 POH to BHA @ 930. No adverse hole conditions. Up wt. off bottom ==125K DWN=110K Strap drillpipe on TOH with no correction. 20:00 - 23:00 3.00 DRILL P INT1 Rack back and lay down BHA. Break and grade bit. Pipe displacement correct for TOH. 23:00 - 00:00 1.00 DRILL P INT1 Clear and clean floor of all vendors excess equipment. Power vac MOBM off floor. Wipe down and clean up oil from floor and floor equipment. 00:00 - 00:30 0.50 EVAL P INT1 LD Platform Express/DSllogging tools 00:30 - 01 :00 0.50 EVAL P INT1 PU CMR+ logging tools 01 :00 - 04:00 3.00 EVAL P INT1 RIH to 4930. Tie in and log CMR+ from 4930' to 3850'. 04:00 - 07:00 3.00 EVAL N DFAL INT1 Tool failure, unable to complete logging run. Telemetry errors while logging CMR+, unable to troubleshoot problem. Will rerun CMR+ logs prior to running intermediate casing. POH with logging tools. 07:00 - 07:30 0.50 EVAL P INT1 LD CMR+ logging tools. RD SWS. 07:30 - 08:00 0.50 EVAL P INT1 Clean and clear rig floor. 08:00 - 08:30 0.50 DRILL P INT1 PJSM with Anadrill and all rig personnel on picking up BHA and loading nuclear sources. 08:30 - 10:30 2.00 DRILL P INT1 PU motor, adjust to 1.5 degree angle. MU bit, MWD/LWD. Orient and load source. RIH with HWDP. MU ghost reamer. Shallow test MWD/LWD, 450 gpm @ 850 psi. 10:30 - 11 :30 1.00 DRILL P INT1 RIH to csg. shoe, fill DP. 11 :30 -13:00 1.50 DRILL P INT1 SeNice top drive, blocks. Cut and slip 80' of drilling line. 13:00 - 13:30 0.50 DRILL P INT1 RIH to 4102'.98 klbs up, 90 klbs down. 13:30 - 14:00 0.50 DRILL P INT1 Stage pumps to drilling rate, 555 gpm @ 3450 psi. 14:00 - 18:00 4.00 DRILL P INT1 Shoot sUNeys from 4102' to 4410'. MAD pass from 4350' to 4876'.555 gpm @ 3450 psi. Baseline ECD 10.82 ppg, calculated ECD 10.74 ppg. 18:00 - 00:00 6.00 DRILL P INT1 Directional drill from 4930' to 5304', sliding 60' per stand to Printed: 8/18/2003 9:22:41 AM e e Page 4 of 22 BP Operations Summary Report Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES 7/13/2003 Date i From - To Hours 18:00 - 00:00 INT1 7/14/2003 Task Code NPT Phase ..i____..... ..________________u 6.00 DRILL P 00:00 - 12:30 12.50 DRILL P INT1 12:30 - 14:30 2.00 DRILL P INT1 14:30 - 14:45 0.25 DRILL P INT1 14:45 - 18:00 3.25 DRILL P INT1 18:00 - 18:30 0.50 DRILL P INT1 18:30 - 19:30 1.00 DRILL P INT1 19:30 - 20:00 0.50 DRILL P INT1 20:00 - 20:30 0.50 DRILL P INT1 20:30 - 20: 15 23.75 DRILL P INT1 20:15-21:30 1.25 DRILL P INT1 21 :30 - 22:30 1.00 DRILL P INT1 22:30 - 23:00 0.50 DRILL P INT1 23:00 - 00:00 1.00 DRILL P INn 7/15/2003 00:00 - 01 :00 1.00 DRILL P INT1 01 :00 - 01 :30 0.50 DRILL P INT1 01 :30 - 02:00 0.50 DRILL P INT1 02:00 - 00:00 22.00 DRILL P INT1 7/16/2003 00:00 - 06:30 6.50 DRILL P INT1 Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 Description of Operations __..____u_n_..___...__.__ build angle. 135 klbs up, 121 klbs down, 129 klbs rotate. 555 gpm @ 3850 psi. WOB 5-10 klbs. Backream 60' per stand, decrease pump rate on the down stroke. AST last 24 hrs. = 2.07 hrs. ART last 24 hrs. = 0.55 hrs. Directional drill from 5304' to 6104', sliding 60-70' per stand to build angle to 29 degrees. 150 klbs up, 131 klbs down, 140 klbs rotate. 555 gpm @ 3510 psi. WOB 10-15 klbs. Calculated ECD 10.51 ppg, actual ECD 10.72 ppg. Backream 60' per stand, decrease pump rate on the down stroke. ROP's decreased from -130 ftIhr to <30 ftIhr and not able to get 5 degrees per 100 build rate. Decision was made to make a bit trip. AST last 24 hrs. = 6.47 hrs. ART last 24 hrs. = 1.86 hrs. Circulate and condition hole. 555 gpm @ 3400 psi. Calculated ECD 10.51 ppg, actual ECD 10.60 ppg. Monitor well - static. Pump dry job and POH for bit. 160 klbs up, 132 klbs down. PJSM with Anadrill and all rig personnel on unloading nuclear sources and LD BHA Unload nuclear sources. Stand back BHA MU bit #5, 8-1/2" Hycalog DS70 - short gauge. Download MWD/LWD tools Clean and clear rig floor. PJSM with Anadrill and all rig personnel on loading nuclear sources and MU BHA. MU BHA #14. Load nuclear sources. Shallow test MWD/LWD. RIH to csg shoe @ 2745'. Fill DP Rig service - top drive Continue RIH to 3530' Continue RIH to 6013', 1-1/2 minutes per stand. Fill drill pipe at shoe. Wash down through tight spot at 6013' to TD @ 6104' Stage pumps up to drilling rate, 540 gpm @ 3690 psi. Shoot survey. Circulate and condition mud. Directional drill from 6104' to 7035', sliding 100% per stand to build angle, Inclination @ 7004' -70 degrees. 158 klbs up, 122 klbs down, 138 klbs rotate. 540 gpm @ 3700 psi. WOB 10-15 klbs, torque on bottom 6.5 klbs. Calculated ECD 10.58 ppg, actual ECD 10.73 ppg. Backream each stand, decrease pump rate on the down stroke. AST=11.7 hrs ART=1.02 hrs Directional drill from 7035' to 7055', sliding 100% per stand to build angle to 70 degrees. Continue drilling from 7055' t....... rotating 100% per stand. 158 klbs up, 122 klbs down, 138 klbs rotate. 540 gpm @ 3700 psi. WOB 10-15 klbs, torque on bottom 6.5 klbs. Calculated ECD 10.59 ppg, actual ECD 10.73 Printed: 8/18/2003 9:22:41 AM e . Page 5 of 22 BP Operations Summary Report Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Date ! From - To ; _...~_.. Hours : Task ; Code i NPT Phase j --------- 6.50 DRILL P INT1 1.50 DRILL P INT1 0.50 DRILL P INT1 6.50 DRILL N STUC INT1 7/16/2003 00:00 - 06:30 06:30 - 08:00 08:00 - 08:30 08:30 - 15:00 15:00 - 20:00 5.00 DRILL N STUC INT1 20:00 - 22:00 2.00 FISH N STUC INT1 22:00 - 00:00 2.00 FISH N STUC INT1 7/17/2003 00:00 - 07:30 7.50 FISH N STUC INT1 07:30 - 10:30 3.00 FISH N STUC INT1 10:30 - 12:30 2.00 FISH N STUC INT1 12:30 - 14:30 2.00 FISH N STUC INT1 14:30 -15:30 1.00 FISH N STUC INT1 15:30 - 16:30 1.00 FISH N STUC INT1 16:30 - 18:30 2.00 FISH N STUC INT1 18:30 - 20:00 20:00 - 00:00 1.50 FISH 4.00 FISH N N STUC INT1 STUC INT1 7/18/2003 00:00 - 01 :30 1.50 FISH N STUC INT1 01 :30 - 04:30 3.00 FISH N STUC INT1 04:30 - 05:00 0.50 FISH N STUC INT1 05:00 - 06:30 1.50 FISH N STUC INT1 06:30 - 07:30 1.00 FISH N STUC INT1 07:30 - 08:00 0.50 FISH N STUC INT1 08:00 - 10:00 2.00 FISH N STUC INT1 Start: 7/2/2003 Rig Release: 8/15/2003 Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 Description of Operations ... ....-----------. ppg. Backream each stand, decrease pump rate on the down stroke. ART=5.15 hrs Circulate and condition mud. ECD 10.61 ppg. POH. Tight hole at 7415', 20K over pull. Wipe spot clean and continue POH. POH to 7315', 25K over pull. Make up top drive and attempt to establish circulation, hole packing off, resrticted upward motion but full rotation while jarring down. Work pipe. Drilling jars failure, no rotation.ptt·~ì~I'("'.tIt '1261'. Working stuck pipe. Drilling jars not working. No progress. Stand back top stand of drill pipe. Install full opening safety valve and pump in sub. PJSM. Rig up Schlumberger E-line to retrieve source in LWD tool (ADN). Run in with Schlumberger E-line to retrive source in LWD tool at 7164' Run in with Schlumberger E-line to retrive RA source in LWD tool at 7164' with mechanical pulling tool. RA source set to release with 1500 Ibs pull, increase pull to 3500 Ibs. POH with pulling tool, RA source not recovered. Rig up electrical pulling tool. Change connectior unable to adapt to Schlumberger E-line. Redress mechanical pulling tool and run in with spang jars on E-line. Recover RA source and lay down tools. Change out E-line connector. Rig up full opening safety valve, swivel, side entry sub and pack off. Make up free point indicator tool and RIH to 7020'. Pump tools down to 7160' top of ADN tool. Take free point readings. Readings in non-mag drill collars indicate partially stuck. Readings in 5" HWDP above drill collars 100% free. POH free point indicator tool. Work left hand torque into string. PJSM prior to picking up string shot Run string shot, apply left hand torque to string, fire string shot Achieve successful back off at top of 5" HWDP. T~òf~åt'705Q'. Left 195' of BHA in the hole. POH with string shot and tools. Rig down E-line unit POH one stand. Break circulation and bring pumps up slowly. Hole packing off. Reciprocate 90' and rotate pipe at 120 rpm. Pull one stand. Continue working pipe and circulate, 490 gpm at 2930 psi. Full returns. Circulate three bottoms up and pump 20 bbl weighted sweep. Significant sand and large pieces of shale over shakers with weighted sweep return. Shakers clean up and mud weight return to 10.2 ppg. Reciprocate 90' and rotate pipe at 120 rpm. Working pipe and circulate, 490 gpm at 2930 psi. Full returns. POH. No over pull. Stand back 4" HWDP and lay down 5" HWDP and jars. Clear rig floor and clean up. PJSM for make up BHA. Make up fishing BHA with screw in sub. RIH to casing shoe at 2745'. Service top drive, blocks and crown. RIH. Tag up at 6973'. Printed: 8/18/2003 9:22:41 AM e e Page 6 of 22 BP Operations Summary Report legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: Date From - To V-111 V-111 DRill +COMPlETE NABORS ALASKA DRilLING I NABORS 9ES Hours I Task I Code NPT -..-------- 7/18/2003 10:00 - 13:00 3.00 FISH N STUC INT1 13:00 - 18:30 5.50 FISH N STUC INT1 18:30 - 19:00 0.50 FISH N STUC INT1 19:00 - 20:30 1.50 FISH N STUC INT1 20:30 - 23:00 2.50 FISH N STUC INT1 23:00 - 00:00 1.00 FISH N STUC INT1 7/19/2003 00:00 - 01 :00 1.00 FISH N STUC INT1 01 :00 - 01 :30 0.50 FISH N STUC INT1 01 :30 - 04:30 3.00 FISH N STUC INT1 04:30 - 05:00 0.50 FISH N STUC INT1 05:00 - 06:00 1.00 FISH N STUC INT1 06:00 - 12:00 6.00 FISH N STUC INT1 12:00 - 16:00 4.00 FISH N STUC INT1 16:00 - 17:30 1.50 FISH N STUC INT1 17:30 - 18:00 0.50 FISH N STUC INT1 18:00 - 19:30 1.50 FISH N STUC INT1 19:30 - 22:00 2.50 FISH N STUC INT1 22:00 - 23:30 1.50 FISH N STUC INT1 23:30 - 00:00 0.50 FISH N STUC INT1 7/20/2003 00:00 - 02:00 2.00 FISH N STUC INT1 02:00 - 02:30 0.50 EVAL N DFAL INT1 02:30 - 16:00 13.50 EVAL N DFAL INT1 16:00 - 19:30 3.50 EVAL N DFAL INT1 19:30 - 20:30 1.00 EVAL N DFAL INT1 20:30 - 21 :00 0.50 STKOH N STUC INT1 21 :00 - 22:30 1.50 STKOH N STUC INT1 22:30 - 23:30 1.00 STKOH N STUC INT1 23:30 - 00:00 0.50 STKOH N STUC INT1 7/21/2003 00:00 - 01 :00 1.00 STKOH N STUC INT1 01 :00 - 01 :30 0.50 STKOH N STUC INT1 Start: Rig Release: Rig Number: Phase Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 Description of Operations Circulate. Bring pumps up slowly. Attempt to wash down. Hole packing off. Reciprocate 90' and rotate pipe at 120 rpm. Working pipe and circulate, 500 gpm at 2500 psi. Full returns. Pipe torquing up. No progress. Circulate. Pumped around 20 bb113.2 ppg weighted sweep. Noted a significant increase of small splintered shale (HRZ) when sweep returned to surface. Increase mud weight to 10.5 ppg. Continue circulating at 500 gpm with 2820 psi with no improvement in cavings. Increase mud weight to 10.8 ppg. Reduction in cavings, shakers cleaned up. Attempt to wash down. Hole packing off and torque increasing. Pull back to 6911'. Circulate and raise mid weight to 11.0 ppg prior to POH. POH. No over pull. Monitor well at shoe. Continue POH to BHA. POH. Stand back HWDP and drill collars. POH. Stand back HWDP, drill collars and rest of BHA Clear rig floor Pull wear bushing prior to test BOP. Test BOP 250 psi low and 4000 psi high. Choke manifold tested while POH. Witness of test waived by AOGCC Rep Chuck Scheeve Service top drive. Pick up 8 1/2" bit and clean out BHA. RIH. Tag up on fill at 6627'. Wash down to 6944'. Pump at 500 gpm with 3140 psi. Rotate at 60 rpm. Hole packinhg off and torque increasing. POH. Work pipe, back reaming up to 6915'. Pump at 500 gpm with 3140 psi. Rotate at 80 rpm. Pump around 20 bb112.5 ppg sweep. Noted a significant increase of splintered shale and cavings when sweep returned to surface. POH to 6610'. Slight swabbing and tight hole, 25K over pull. RIH to 6720' Circulate around 20 bb112.5 ppg sweep at 500 gpm with 3140 psi at 120 rpm. Shakers cleaned up. POH to BHA. Lay down clean out BHA and fishing tools. RIH with excess drill collars from derrick. RIH with excess drill collars from derrick. POH and lay down same. Rig up Schlumberger E-line unit PJSM. Run CMR log. Tools not working. Trouble shoot Tune in tools. Problems persist Wait on additional technical support Change several components in tools. Run CMR log from 4760' to 3820' with good results. Rig down E-line unit Rig up to run 3 1/2" tubing. PJSM. Pick up 47 jts 3 1/2" L-80 9.2# NSCT cementing stinger tubing with perforated nipple plug catcher. RIH with stinger on 4" drill pipe to 9 5/8" casing shoe at 2745'. Circulate. Bring pumps up slowly to circulate bottoms up. RIH to 5000'. Circulate bottoms up. 10.5 BPM, 2200 psi. Printed: 8/18/2003 9:22:41 AM e e Page 7 of 22 BP Operations Summary Report Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Date I ! ¡ i From - To Hours· Task ¡ Code ¡ NPT' Phase : 7/21/2003 01 :30 - 02:30 02:30 - 04:00 1.00 STKOH N 1.50 STKOH N STUC INT1 STUC INT1 04:00 - 04:30 0.50 STKOH N STUC INT1 04:30 - 05:00 0.50 STKOH N STUC INT1 05:00 - 06:00 1.00 STKOH N STUC INT1 06:00 - 07:00 1.00 STKOH N STUC INT1 07:00 - 08:30 1.50 STKOH N STUC INT1 08:30 - 10:30 2.00 STKOH N STUC INT1 10:30 - 12:30 2.00 STKOH N STUC INT1 12:30 - 14:00 1.50 STKOH N STUC INT1 14:00 - 15:00 1.00 STKOH N STUC INT1 15:00 - 16:00 1.00 DRILL N STUC INT1 16:00 - 17:30 1.50 DRILL N STUC INT1 17:30 -18:30 1.00 DRILL N STUC INT1 18:30 - 19:00 0.50 DRILL N STUC INT1 19:00-21:00 2.00 DRILL N STUC INT1 21 :00 - 21 :30 0.50 DRILL N STUC INT1 21 :30 - 23:00 1.50 DRILL N STUC INT1 23:00 - 00:00 1.00 DRILL N STUC INT1 7/22/2003 00:00 - 01 :30 1.50 DRILL N STUC INT1 01 :30 - 03:00 1.50 DRILL N STUC INT1 03:00 - 04:00 1.00 DRILL N RREP INT1 04:00 - 05:30 1.50 DRILL N RREP INT1 05:30 - 09:30 4.00 DRILL N RREP INT1 09:30 - 00:00 14.50 DRILL N STUC INT1 7/23/2003 00:00 - 19:00 19.00 DRILL N STUC INT1 19:00 - 21 :00 2.00 DRILL N STUC INT1 21 :00 - 22:00 1.00 DRILL N STUC INT1 Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 Description of Operations .... ..-.--.---.--- RIH to 6900'. No hole problems. Wash down last 2 stands t..... Circulate and condition mud for cement job. 10 BPM with 3127 psi. PJSM. Rig up cementing head and lines. Test cement lines to 3000 psi. Pump 40 bbl Alpha Spacer at 11 ppg. Mix and pump 72 bbl (414 sx) class "G" cement at 17 ppg at 4 BPM. Pump 7 bbl Alpha Spacer. Displace cement with 47 bbl mud to balance plug using rig pumps at 6 BPM. POH out of cement very slowly to calculated top of cement at ;-,Ø74)'. Circulate bottoms up. Spacer to surface, dump 234 bbl contaminated mud. w-::;ffifif:\'í'ft:) &225', 10.5 BPM, 2800 psi. Circulate bottoms up. 11 BPM, 3200 psi. Drop pipe wiper dart Circulate one bottoms up. POH with 4" drill pipe to 3 1/2" tubing stinger. Rig up 3 1/2" tubing equipment POH. Lay down 3 1/2" tubing stinger and perforated nipple plug catcher. Rig down 3 1/2" tubing tools and clear rig floor. Change out top drive quill. Pick up new PDC bit and drilling BHA. Shallow test tools. RIH to 9 5/8" casing shoe. Service top drive, blocks and crown. Slip and cut drilling line 78'. Inspect drawworks and brakes. Circulate bottoms up with bit out of casing shoe. RIH at 1 minute per stand, taking weight at 5776'. Break circulation at 4600'. Circulate at 5776'. Bring pumps up slowly. Circulate and wash firm cement from top of plug to 6258' Time drill with tool face oriented 150 deg left of high side. Start side track. 530 GPM, 3600 psi. Trouble shoot problem with mud pump #2. Leak in mud end. POH to casing shoe. Replace #3 mud end~?eump #2. Time drill for~to'~61' to start side track. Drill from 6261' to 6432'. 530 GPM, 3670 psi, calculated ECD 11.58 psi, actual ECD 11.59 psi. Increase pump rate to 550 GPM and 120 RPM when back reaming on connections. AST=7.08 Drill from 6432' to 6,706'. Sliding 100% in an attempt to build angle per program. Very difficult to get weight transfer to bit Lots of wall hanging and stalling. Unable to get build needed to stay within target ART==O AST==8.4 Circulate 30 bbL weighted sweep S-S with 555 GPM @ 3,840 while rotating and reciprocating string at 90 RPM. (Dogleg would not allow faster rotation of string) Good increase of undrilled shale splinters seen with sweep. Backream out of hole from 6,706 to 6,148 with 550 GPM @ Printed: 8/18/2003 9:22:41 AM e e BP Operations Summary Report Page 8 of 22 Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Start: Rig Release: Rig Number: 7/2/2003 8/15/2003 Spud Date: 7/8/2003 End: 8/15/2003 Date From - To Hours ~ Task Code NPT: Phase Description of Operations 7/23/2003 21 :00 - 22:00 1.00 DRILL N STUC INT1 3,730 PSI and 90 RPM. 22:00 - 00:00 2.00 DRILL N STUC INT1 Bring bottoms up at 550 GPM while rotating and reciprocating string at 120 RPM. Lots of undrilled cuttings seen with bottoms up. (Shakers cleaned up at app. 1.5 times bottoms up. ) 7/24/2003 00:00 - 02:00 2.00 DRILL N STUC INT1 Observe well. Pump dry job. POH to HWDP at 916. 02:00 - 04:00 2.00 DRILL N STUC INT1 Rack back HWDP. Inspect and grade bit (0 0 and in gauge) Lay down stabalizer above float sub. (Stab is still in gauge) Adjust motor to 1.83 degrees. 04:00 - 04:30 0.50 DRILL N STUC INT1 Service topdrive while downloading MWD tool in pipeshed. 04:30 - 06:00 1.50 DRILL N STUC INT1 P/U MWD and orient to motor. Build remaining BHA and shallow test same. 06:00 - 08:30 2.50 DRILL N STUC INT1 RIH to 6608 filling pipe at 4,653. No adverse hole conditions. 08:30 - 10:30 2.00 DRILL N STUC INT1 Roll and warm mud prior to drilling. Very high viscosity. 10:30 - 00:00 13.50 DRILL N STUC INT1 Drilling 8 1/2 hole from 6,706 to 6,883. Sliding 100% in order to build hole angle and turn well back to the east ART==O AST==5.52 WOB==5-35 GPM==540 7/25/2003 00:00 - 01 :00 1.00 DRILL N STUC INT1 Drilling from 6,883 to 6,887. Having difficulty getting weight transfer to bottom. Suspect cuttings keeping string from moving downhole. 01 :00 - 02:00 1.00 DRILL N STUC INT1 Pump 25 bbls. weighted sweep S-S @ 1 1/2 pds. over MW.. Rotate and reciprocate string at 60 RPMs. Lots of cavings and cuttings seen at surface while circulating out sweep. 02:00 - 02:30 0.50 DRILL N STUC INT1 Drilling from 6,887 to 6,900. Lost 100 PSI pressure due to swabs 2 & 3 going out in number one pump. 02:30 - 03:00 0.50 DRILL N STUC INT1 Replace number 2 and 3 pistons in mud pump #1. Clean pump room of oil base mud. 03:00 - 08:00 5.00 DRILL N STUC INT1 Drill from 6,900 to 6,981 sliding 100% while building angle and turning well back east GPM==540 @ 3,890 on and 3,760 off WOB==5-25 CaL ECD==11.49 Actual ECD==11.7 UP== 154K Dwn==120K String==136K (Pumps on) 08:00 - 09:00 1.00 DRILL N STUC INT1 Circulate 25 bbL weighted sweep S-S at 540 GPM and 40 RPM. (2 ppg. over system MW) 09:00 - 10:30 1.50 DRILL N STUC INT1 Drill from 6,981 to 7,058. Begin rotating at 6,981. 10:30-11:30 1.00 DRILL N STUC INT1 Change out # 1 piston, valve and seat in # 2 mudpump. 11:30-13:00 1.50 DRILL N STUC INT1 Drill from 7,074 to 7,150. Rotating ahead with ROP's at 100 fph + 13:00 - 14:00 1.00 DRILL N STUC INT1 Circulate up sample for geologist at 7,150 with 540 GPM. 14:00 - 14:30 0.50 DRILL N STUC INT1 Drill from 7,150 to 7,190. 14:30 - 15:00 0.50 DRILL N STUC INT1 Circulate up sample for geologist at 7,190 with 540 GPM. 15:00 - 15:30 0.50 DRILL N STUC INT1 Drill from 7,190 to 7,210. 15:30 -16:30 1.00 DRILL N STUC INT1 Circulate up sample for geologist at 7,210 with 540 GPM. Confirmed intermediate TD with Kup. sample. 16:30 - 19:00 2.50 DRILL N STUC INT1 Circulate 25 bbL weighted sweep S-S. (2 ppg. over MW) Rotating and reciprocating string at 110 RPM. Good increase in cuttings seen with sweep. Pump 25 bbL weighted sweep S-S. ( 3 ppg. over MW) Some cuttings seen with sweep. Circulate until shakers clean up. Printed: 8/18/2003 9:22:41 AM Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: - e Page 9 of 22 BP Operations Summary Report V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES ------- From - To Hours Task Code! NPT Phase Date 7/25/2003 19:00 - 21 :00 2.00 DRILL N STUC INT1 21 :00 - 22:00 1.00 DRILL N 22:00 - 22:30 0.50 DRILL N 22:30 - 00:00 1.50 DRILL N 7/26/2003 00:00 - 01 :00 1.00 DRILL N 01 :00 - 09:00 09:00 - 11 :00 11 :00 - 13:00 STUC INT1 STUC INT1 STUC INT1 STUC INT1 8.00 DRILL N STUC INT1 2.00 DRILL N STUC INT1 2.00 DRILL N STUC INT1 13:00 - 15:30 2.50 DRILL N STUC INT1 15:30 - 17:00 1.50 DRILL N STUC INT1 17:00 - 17:30 0.50 DRILL N STUC INT1 17:30 - 18:00 0.50 DRILL N STUC INT1 18:00 - 18:30 0.50 BOPSURN STUC INT1 18:30 - 22:00 3.50 BOPSUR N STUC INT1 Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 Description of Operations . --------- -- Monitor well. POH with minor overpulls from 7,164 to 6,693. Hole appears to be in good shape. Continue to pull to casing shoe with no adverse hole conditions. Hole taking proper fill. Slip and snip 78 ft. of drilling line. Service topdrive and crown-o-matic. RIH from casing shoe to 5,150 and fill pipe. No adverse hole conditions. RIH from 5,150 to 7,074. Saw one spot at 6,976 that set down 30K twice. The third time there was nothing there. Wash down from 7,074 to 7,167 staging pump up to 450 GPM @ 3,200. Began turning string at 80 RPM from app. 7,140 to 7,167. Backreamed to 7,160 and prepared to make a connection when the hole packed off. Apply 5,000 right hand torque and shake pipe down to free pack off. Make several attempts to stage up pumps to clean hole, with and without string rotation. Hole packing off and requiring 5,000 to 8,000 torque with downward string movement to free up. Hole conditions deteriorating while circulation is becoming very limited. Idle pump from 0 to 15 SPM while backreaming in an attempt to roll by cutting. Hole packing off with 9 to 11,000 torque while slowly rotating upward. Stand back stand and P/U single. Work pipe and attempt to regain circulation, with very limited success.( Small amount of intermittent returns, mostly due to swabbing on upward pipe movement) Continue out while holding app. 300 PSI in drillpipe and rotating string at 25 to 40 RPM with 8 to 10,000 torque. Attempt to work back down hole and find short section to work pipe and regain circulation. Packed off and stalling string at 11,000 torque. String stalled with very limited movement up or down. Apply 10K torque and attempt to chase string down hole. Work app. 3 ft. of pipe movement and rotate string free. Keep 300 to 400 PSI in drillpipe while backreaming with 40 RPM. Work this technique while pumping 0 to 2 SPM. Began seeing minimal returns and observed bleed off from drillpipe at app. 6,900. Torque fell back from 10 to 8,000. Increased pump rate, as hole allowed, maintaining app. 350 to 400 PSI in drill pipe. Began seeing more flow back and less pack offs. Seeing 0 to 4% returns. Work out to 6,700. Stage up pumps to 490 GPM at 3,560 with full returns. Backream out of hole from 6,700 to 6,162 with 40 RPM. Lots of cavings coming over shakers. Circulate 25 bbls. weighted sweep S-S at 550 GPM @ 3,970 while rotating string 90 RPM with 2,700 torque. Lots of cavings seen at surface. Pump second sweep around with additional cuttings seen with sweep. Shakers cleaned up. POH to 5,200. Monitor well. Pump dry job. POH. to BHA. POH with BHA racking back as needed. Layout Directional tools. Clean floor of oil base mud. Flush stack with ported sub on topdrive and prepare to test BOP. Pull wear ring and RIU to test BOP. Test BOP as per policy. Witness of test waived by AOGCC Printed: 8118/2003 9:22:41 AM Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: e e Page 1 0 of 22 BP Operations Summary Report V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 I i Date ! From - To . Hours' Task Code! NPT Phase 7/26/2003 ...-.--------....-.... 7/27/2003 18:30 - 22:00 3.50 BOPSURN STUC INT1 22:00 - 22:30 0.50 BOPSURN STUC INT1 22:30 - 00:00 1.50 DRILL N STUC INT1 00:00 - 02:30 2.50 DRILL N STUC INT1 02:30 - 04:30 2.00 DRILL N STUC INT1 04:30 - 05:30 05:30 - 06:30 06:30 - 07:00 07:00 - 08:00 08:00 - 09:00 09:00 - 10:00 10:00 - 11 :00 11 :00 - 12:00 12:00 - 16:00 16:00 - 16:30 1.00 DRILL N STUC INT1 1.00 DRILL N STUC INT1 0.50 DRILL N 1.00 DRILL N STUC INT1 STUC INT1 1.00 DRILL N INT1 1.00 DRILL N STUC INT1 1.00 DRILL N 1.00 DRILL N STUC INT1 STUC INT1 4.00 DRILL N STUC INT1 0.50 DRILL N STUC INT1 Description of Operations Representative. Install and lock down wear ring. Rig down test equipment. Pick up and M/U clean out assembly with 1.5 motor and MWD. Re-run Hughes MXC-3 MT bit. Orient and shallow test. RIH from 250 to 6,150 filling pipe at casing shoe and 5,000 ft. No adverse hole conditions. 88K up and 80K down at casing shoe. CBU and wt system up to 11.6. Rotate and reciprocate string at 110 RPM while pumping 530 GPM with 3,860 SPP. Cavings and ground up shale coming over shakers. Up 144K Dwn 125K String 130K TRQ 1,800 Ream from 6,150 to to 6,500 with one small bump at 6,315. GPM==530 @ 3,890 RPM==110 TRQ==2,000 Pump 25 bbl weighted sweep around at 6,500 with 530 GPM and 3,900 PSI. ( Dollar size cavings seen at shakers) RPM==110 String wt==135K TRQ==2,000 Ream from 6,500 to 6,675. Hole tight at 6,665. Pump 25 bbl weighted sweep S-S with dollar size and larger cavings and ground up shale seen at shakers. GPM==530 RPM==110 Ream from 6,675 to 6,860. Tight with additional torque at 6,837. Pump 25 bbl weighted sweep S-S with dollar size cavings along with more, finer ground up shale, than last sweep. GPM==530 RPM==110 Ream from 6,860 to 6,955. Hole tight with increased torque. Pump 25 bbl weighted sweep S-S with dollar to lemon size cavings along with ground up fines back at shakers. Hole Packed off while pumping sweep at 6,885. GPM==530 RPM==110 Ream and work hole in small increments to avoid packing off, from 6,955 to 7,210. GPM==530 @ 3,900 RPM==120 TRQ==2 to 10,000 Pump 25 bbl weighted sweep S-S with dollar to lemon size cavings along with ground up fines back at shakers. Hole torqued up with partial packoff. Stalled string at 7,150. GPM==530 RPM==110 TRQ==3,500 to 11,000 Printed: 8/18/2003 9:22:41 AM e e Page 11 of 22 BP Operations Summary Report Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Date i From - To Hours I Task ¡Code NPT ¡ Phase .._.._.n _..·_____n.___.. 7/27/2003 16:30 - 18:00 1.50 DRILL N STUC INT1 18:00-21:00 3.00 DRILL N STUC INT1 21 :00 - 00:00 3.00 DRILL N STUC INT1 7/28/2003 00:00 - 01 :00 1.00 DRILL N STUC INT1 01 :00 - 03:00 2.00 DRILL N STUC INT1 03:00 - 05:30 2.50 DRILL N STUC INT1 05:30 - 11 :30 6.00 DRILL N STUC INT1 11:30-12:30 1.00 DRILL N STUC INT1 12:30 - 15:30 3.00 DRILL N STUC INT1 15:30 - 17:00 1.50 DRILL N STUC INT1 17:00 - 21 :00 4.00 REMCM-N STUC INT1 21 :00 - 23:00 2.00 REMCM-N STUC INT1 23:00 - 00:00 1.00 REMCM-N STUC INT1 7/29/2003 00:00 - 01 :30 1.50 REMCM-N STUC INT1 01 :30 - 02:00 0.50 REMCM-N STUC INT1 02:00 - 04:00 2.00 REMCM-N STUC INT1 04:00 - 05:00 1.00 REMCM-N STUC INT1 Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 Description of Operations Work pipe and attempt to get full circulation back and rotate string. Free up string and stage pumps back up. Hole packing off and ugly. (All sizes and shapes of cavings back with bottoms up) Circulate 2 bottoms up followed by 2, 25 bbl. weighted sweeps. Second sweep showed very minimal additional cavings back.( Worked 10ft. section of hole until after 2 times bottoms up, while rotating string at 110. Pump sweeps around while working stand with same parameters.) Back ream out of hole from 7,210 to 6,772 with packing off and tight hole from 6,950. Stalled and packed off at 6,860. Work string and rotate free with 12,000 torque. Establish full circulation. Reduce backreaming RPM's from 120 to 70. Backream to 6,100 with 500 GPM and 75 RPM. Lemon size and smaller cavings flooding over shaker screens. Rotate and reciprocate at reduced rate of 450 GPM and 60 RPM while hole unloaded cuttings. Deluge of cuttings at shakers requiring shovels to assist in getting them down the drag chain. Lots of fist size cavings along with the now "NORMAL" lemon size seen until after first bottoms up. Increase rate to 500 GPM and rotary to 100 and pump second bottoms up. Pump until shakers clean up. Pump dry job. ***Shales are running and hole is very unstable*** Observe well and POH to casing shoe. Hole in good shape from 6,100 and up. No adverse hole conditions. Evaluate options with Anchorage team. Pump dry job and POH from 2,700. Layout BHA RIH with collars in derrick and UD same. Clear and clean floor of trip mud and all excess vendors equipment Load pipe shed with cement stinger string and strap same. Pick up and M/U app. 1,500 ft. of 3 1/2 tubing for spotting suspension plugs. RID casing equipment RIH with 40 stands of DP to 5,290. Fill pipe at shoe. No adverse hole conditions. Break circulation and stage up pumps to 8 BPM at 1600 PSI. Reciprocate pipe with no additional drag or packing off. Circulate and condition mud for cement job @ 5,290. Pumping at 8 bpm and 1,600 PSI. PJSM for mixing, spotting, and laying Form-a-plug into open hole. Pressure test lines to 3,500. Work pipe while FAP Accelerator is added to 25 bbls. Form-a-plug. Pump 9 bbls. mineral oil, 25 bbls. 12 ppg. plug, followed by 1.5 bbls. mineral oil. Switch to rig pumps and displace to within 2 bbls. of balance point RID halliburton equipment and break out TIW valve. Screw into topdrive and POH with 3 stands while pumping 1 bbls. per stand.( Calculated to leave app. 1.5 bbls. plug inside string so as not to contaminate plug with mineral oil). POH 2 stands to app. 4,800. ***FORM-A-PLUG IN PLACE AT 0300 HRS*** Plug bottom at 5290 Plug top at 4,970 CBU @ 4,800 with 100 SPM at 670 PSI. Saw a small amount of Form-a-plug with bottoms up. Printed: 8/18/2003 9:22:41 AM e . Page 12 of 22 BP Operations Summary Report Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Date From - To Hours i Task . Code NPT Phase 7/29/2003 05:00 - 05:30 0.50 REMCM-N STUC INT1 05:30 - 08:00 2.50 REMCM-N STUC INT1 08:00 - 09:00 1.00 REMCM-N STUC INT1 09:00 - 10:30 1.50 REMCM-N STUC INT1 10:30 - 12:00 1.50 REMCM-N STUC INT1 12:00 - 13:30 1.50 REMCM-N STUC INT1 13:30 - 15:00 1.50 REMCM-N STUC INT1 15:00 - 16:00 1.00 REMCM-N STUC INT1 16:00 - 18:00 2.00 REMCM-N STUC INT1 18:00 - 20:30 2.50 REMCM-N STUC INT1 20:30 - 22:00 1.50 REMCM-N STUC INT1 22:00 - 23:00 1.00 REMCM-N STUC INT1 23:00 - 00:00 1.00 REMCM-N STUC INT1 7/30/2003 00:00 - 01 :00 1.00 REMCM-N STUC INT1 01 :00 - 02:00 1.00 REMCM-N STUC INT1 02:00 - 05:30 3.50 REMCM-N STUC INT1 05:30 - 08:00 2.50 STKOH N STUC INT1 08:00 - 09:30 1.50 STKOH N STUC INT1 09:30 - 10:30 1.00 STKOH N STUC INT1 10:30 - 12:00 1.50 STKOH N STUC INT1 12:00 - 12:30 0.50 STKOH N STUC INT1 12:30 - 13:00 0.50 STKOH N STUC INT1 13:00 - 13:30 0.50 STKOH N STUC INT1 13:30 - 14:00 0.50 STKOH N STUC INT1 Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 Description of Operations POH to 4,300 to wait on plug. Wait on Form-a-plug to set up. Wash down from 4,300 to 5,000. Slight pressure increase @ 4,900. Saw some indication of Form-a-Plug in returns from bottoms up. Circulate and condition mud for cement plug # 1. PJSM for spotting plug #1. Switch over to Halliburton and pump 5 bbls. spacer. Pressure test lines to 3,500 and pump remaining 25 bbls. of 12 ppg. spacer. Pump 93 bbls. (455 sks. 1.15 yield) of 15.8, "G" cement and 4 bbls. spacer. Switch to rig and displace to plug balance point Cemented from 5,000 to 3,800. "'CIP @ 11 :30 HRS. ... Pull out of cement plug very slowly to 3,518. Drop DP wiper plug and circulate 2 X bottoms up with 360 GPM @ 1100 PSI. Dumped 95 bbls. of mud due to spacer contamination. POH to 3 1/2 cementing string @ 1,556. RlU casing equipment and stand 3 1/2 back in derrick. Break plug catcher and retrieve wiper dart. Clean floor of tripping mud and layout all excess vendors equipment RIH with cement stinger and DP to 3,518. Wash down to 3,800 and stage up pumps to 360 GPM @ 1,200 PSI. CBU and dump 70 bbls. spacer contaminated mud with no signs of cement PJSM for cement plug #2. Switch over to Halliburton and pump 5 bbls. spacer. Pressure test lines to 3,500 and pump remaining 25 bbls. of 12 ppg. spacer. Pump 88 bbls. (460 sks. 1.08 yield) of 16.4 ppg "G" cement and 4 bbls. spacer. Switch to rig and displace to plug balance point Cemented from 3,800 to 2,546 "'CIP @ 23:00 HRS"·· RID Halliburton and cementing manifold. Pick up out of cement slowly while monitoring well for swabbing to 2,490. CBU dumping app. 100 bbls. of spacer contaminated mud. No signs of cement Drop wiper plug and chase to catcher. POH to 31/2 cementing string @ 1556. RlU casing equipment and layout 3 1/2 cementing string. Break plug catcher and retrieve wiper dart. RID casing equipment and clear and clean floor or trip mud. Build cement clean out assembly with 8 3/4 MXC-1 mill tooth bit Slip and snip 52' of drilling line. Service drawworks. RIH with cement clean out assembly to 2,300. Wash from 2,300 to 2,656. Tag hard cement at 2,656 by setting down 10K. Roll mud and stage up to 500 GPM @ 2,000 so as to keep mud on shakers. Drill cement from 2,656 to 2,700 with 500 GPM and 80 RPM. Drilled hard cement for app. 2 ft. before breaking through and reaming down with no signs of cement CBU seeing cement back at bottoms up. Wash down from 2,700 to 2,722 with no indication of hard Printed: 8/1812003 9:22:41 AM e . BP Operations Summary Report Page 13 of 22 Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Start: Rig Release: Rig Number: 7/2/2003 8/15/2003 Spud Date: 7/8/2003 End: 8/15/2003 Date From - To . Hours Task : Code NPT' Phase Description of Operations .........-.---- . _ m___ .no___ 7/30/2003 13:30 - 14:00 0.50 STKOH N STUC INT1 cement. Rotate down to 2,730 with no indication of hard cement 14:00 - 16:30 2.50 STKOH N STUC INT1 Roll mud while waiting on cement to firm up. 16:30 - 17:30 1.00 STKOH N STUC INT1 Drill cement from 2,730 to 2,804. Drilled cement with 5-15k on bit, 500 GPM with 60 rotary---Good cement Set down 20K with no rotation, pumps on. No sign of plug washing away. Begin circulating hole in preparation for mud swap. 17:30 - 18:00 0.50 STKOH N RREP INT1 Trouble shoot noise and smoke coming from gear end of Mudpump # 2. Bearings failed due to broken oiling pump. Pump determined to be inoperative. 18:00 - 19:00 1.00 STKOH N RREP INT1 POH to 2,500 and roll mud while discussing options. 19:00 - 00:00 5.00 STKOH N RREP INT1 Prepare to remove mud pump from skid and remove mud from pit system. 7/3112000 00:00 - 00:30 0.50 STKOH N RREP INT1 RIH from 2,430 to 2804. 00:30 - 01 :00 0.50 STKOH N RREP INT1 Swap out 12 ppg. MOBM with 9.1 MOBM @ 300 GPM 600 PSI. (Pumped 210 bbls.) Monitor well. 01 :00 - 01 :30 0.50 STKOH N RREP INT1 POH to 2,523 and observe well while RIR mudpump. 01 :30 - 22:30 21.00 STKOH N RREP INT1 Remove all fluids from pits and prepare for pit complex to be pulled away from substructure. Move pits out and swap mue pumps,Re-spot pits and assemble/modify mud pump to fit rig~ plumbing and electrical configuratien. Roll check and confirm pump is operationally ready. 22:30 - 23:00 0.50 STKOH N RREP INT1 Check pressures on annulus and DP and open up well. RIH from 2,523 to 2,804. 21"00 -23:3IX 0.50 STKOH N DPRB INT1 Rotate and reciprocate string and begin displacement to 9.7 ppg LSND water based mud. Stage pumps up from 300 GPM @ 450 and increae rate to 500 GPM with full returns. Pumped 1,540 (90 bbls.) strokes when gas bubble hit surface and blew mud up through bushin~. Shut well in and record pressures. Casing pressure=== 80 PSI DP pressure======= 0 A 9.7 wt mud would have already reached the bit and had app. 1,025 ft. of the annulus covered. The calculated bottoms up was 2881stksJ 168 bbls. Gas at surface was 1,540 stksJ 90 bbls. 23:30 - 00:00 0.50 STKOH N DPRB INT1 Monitor and record pressures. Casing pressure built from 80 to 135 with no pressure on DP. 8/1/2003 00:00 - 02:00 2.00 STKOH N DPRB INT1 Circulate out gas with "Drillers Method" at 2 bbls. per minute. Began seeing mist coming from Gas buster stack. Reduce rate to 1.5 bpm to avoid blowing MOBM out of stack, and continue 9.7 mud around while taking returns through the choke. (Shut down operation when reducing the rate from 34 spm to 25 and let pressures build for 5 minutes. Pressure went from 75 PSI to 100) Continue "Drillers Method" until 9.7 mud was back to surface. A total of 2185 stokes were circulated through the choke with the first signs of 9.7 mud at 2,000 away. Shut dowla pumps and allow well to flow with full open choke. No flow.' Clear floor and open rams. Hydrateebreaking out of mud with no flow. 02:00 - 03:00 1.00 STKOH N DPRB INT1 Monitor well for 1 hour while taking on mud from trucks. Hydrates breaking out of mud in bell nipple. Fluid level dropped 1.5 bbls. in this 1 hour period. 03:00 - 04:00 1.00 STKOH N DPRB INT1 Zero all gain/loss equipment and stage rate up from 35 to 100 Printed: 8/18/2003 9:22:41 AM e e Page 14 of 22 BP Operations Summary Report Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Date From - To Hours: Task Code NPT Phase 8/1/2003 03:00 - 04:00 1.00 STKOH N DPRB INT1 04:00 - 05:00 1.00 STKOH N DPRB INT1 05:00 - 05:30 0.50 STKOH N DPRB INT1 05:30 - 09:00 3.50 STKOH N DPRB INT1 09:00 - 10:00 1.00 STKOH N DPRB INT1 10:00 - 11 :00 1.00 STKOH N DPRB INT1 11 :00 - 13:00 2.00 STKOH N DPRB INT1 13:00 - 13:30 0.50 BOPSURN DPRB INT1 13:30 - 17:30 4.00 BOPSURN DPRB INT1 17:30 - 18:00 0.50 BOPSURN DPRB INT1 18:00 - 21 :30 3.50 STKOH N DPRB INT1 21 :30 - 22:00 0.50 STKOH N DPRB INT1 22:00 - 23:00 1.00 STKOH N DPRB INT1 23:00 - 00:00 1.00 STKOH N DPRB INT1 8/2/2003 00:00 - 00:00 24.00 STKOH N DPRB INT1 Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 Description of Operations SPM while watching hydrates break out of mud. Bring bottoms up with 100 spm at 235 PSI. hydrates no longer breaking out. Rotate string at 100 RPM and pump at 500 GPM @ 700 PSI. No hydrates. Shut down pumps and observe well. No flow. Monitor well. Wait 1 hour and check bottoms up for gas. Clean Iron ruffneck and floor area of MOBM from gas burp. CBU at 500 GPM @ 700 PSI watching for hydrates. No hydrates during circulation or bottoms up. Clean rig floor, cellar area, under rotary table etc., etc., of MOBM. Flush choke and clean pit equipment of MOBM. Position bit at 2,804 and CBU at 530 GPM @ 830 PSI. No gas. Pump dry job. Observe well. POH to BHA. Hole taking proper fill. Monitor well. POH with BHA standing back HWDP and laying out steel DC and remaining BHA. Clear and clean floor of all excess vendors equipment and ready rig for BOP test. Flush stack with ported sub and remove wear ring. Pressure test BOP as per policy 250 low and 4,000 high. Witness of test waived by AOGCC RID test equipment and install wear bushing. Build BHA with 8 3/4 Hycalog DS-70 PDC, 1.5 degree, 7 stage motor and MWD/PWD/LWD. OrienUshallow test same. Service top drive. RIH to 2,609. Fill pipe and CBU to check for hydrates. Some gas breaking out with bottoms up, but very minimal. GPM==400 PSI===940 RPM==60 Up==96K Dwn==91 K String==94K TRQ==2,500 ECD calculations: GPM RPM Calculated ECD 600 80 10.77 550 80 10.75 550 100 10.78 550 60 10.74 Kick off cement plug at 2,804 with 20 degrees to the right. Drill from 2,804 to 5,316. Pumping 25 bbls. Hi-Vis sweeps every 300 ft. or as hole dictates. Backreaming each connection at full drilling rate and 100 plus RPM (When possible). Ream down with 475 GPM at max. RPM. Maintain ECD's < 1 ppg. over calculated during all drilling and reaming operations. Average ECD has been .5 ppg. over calculated. GPM==600 @ 2,300 PSI on and 2,630 off RPM==80 WOB==5-15 TRQ.== 5,500 on and 3,500 off Printed: 8/18/2003 9:22:41 AM Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: e e Page 15 of 22 BP Operations Summary Report V-111 V-111 DRILL +COMPLETE Start: 7/2/2003 NABORS ALASKA DRILLING I Rig Release: 8/15/2003 NABORS 9ES Rig Number: From - To Hours Task ¡ Code NPT I Phase i ' Date .-.... 8/2/2003 00:00 - 00:00 8/3/2003 00:00 - 01 :30 01 :30 - 15:00 15:00 - 00:00 8/4/2003 00:00 - 19:00 19:00 - 21 :00 24.00 STKOH N DPRB INT1 1.50 STKOH N DPRB INT1 13.50 STKOH N SFAL INT1 9.00 STKOH N DPRB INT1 19.00 STKOH N DPRB INT1 2.00 STKOH N DPRB INT1 Spud Date: 7/8/2003 End: 8/15/2003 Description of Operations n. ..___ __ _n._____ ***Held Pre-Reservoir meeting with morning tour crew in the "Day Care" prior to work:** Heigthened awareness of kick tolerance and good drilling practices were the focus of discussion. Drill from 5,316 to 5,502. Backreaming each connection at full drilling rate and 100 plus RPM (When possible). Ream down with 475 GPM at max. RPM. Maintain ECD's < 1 ppg. over calculated during all drilling and reaming operations. Average ECD has been .5 ppg. over calculated. GPM==600 @ 2,300 PSI off and 2,630 on RPM==80 WOB==5-15 TRQ.== 5,500 on and 3,500 off Number 1 mudpump leaking drilling mud. Flanged sweep and high pressure discharge manifold connecting pump to pulsation dampener washed out in API groove. Both the discharge manifold and sweep will require RIR Remove sweep and discharge manifold and replace with used spares. Plumb and fit as needed. (Evaluate hole conditions--Good. Discussed ST to shoe. To much risk of needing to backream and not having both pumps. Work pipe very slowly from 5,495 to 5,420 while pumping 30 SPM at 210 PSL) Roll and pressure test mudpump #1. Pump 25 bbl. Hi-Vis sweep S-S to remove any cuttings generated while working string in open hole. Very minimal amount of cutting seen back with sweep. Drill from 5,502 to 6,062. Backreaming each connection at full drilling rate and 100 plus RPM (When possible). Ream down with 475 GPM at max. RPM. Maintain ECD's < 1 ppg. over calculated during all drilling and reaming operations. Pump 25 bbl. sweep every 500 ft. or as hole dictates. Average ECD has been .5 ppg. over calculated. GPM==600 @ 2,480 PSI off and 2,720 on RPM==80 WOB==5-15 TRQ.== 5,500 on and 3,700 off AST==4.95 ART==1.64 Drill from 6,062 to 7,560. Backreaming each connection at full drilling rate and 100 plus RPM (When possible). Ream down with 475 GPM at max. RPM. Maintain ECD's < 1 ppg. over calculated during all drilling and reaming operations. Pump 25 bbl. weighted sweeps, 2 ppg. over MW, every 200 to 500 ft. as hole dictates. Increase MW from 10.3 to 10.8 while drilling ahead from 6,840 ft. GPM==600 @ 3,500 PSI off and 3,880 on RPM==80-100 WOB==15-25 TRQ.== 8,000 on and 6,000 off ART==7.88 AST==5.21 Pump 25 bbls. weighted sweep, 2 ppg over MW S-S with 3 Printed: 8/18/2003 9:22:41 AM e e BP Operations Summary Report Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Date ! From - To ' Hours' Task Code NPT: Phase ..----.. --------... 8/4/2003 19:00 - 21 :00 2.00 STKOH N DPRB INT1 21 :00 - 22:00 1.00 STKOH N DPRB INT1 22:00 - 23:00 1.00 STKOH N DPRB INT1 23:00 - 00:00 1.00 STKOH N DPRB INT1 8/5/2003 00:00 - 02:30 2,50 STKOH P INT1 02:30 - 05:30 3.00 STKOH P INT1 05:30 - 08:00 2.50 STKOH P INT1 08:00 - 12:30 4.50 STKOH P INT1 12:30 - 14:00 1.50 STKOH P INT1 14:00 - 14:30 14:30 - 16:30 0.50 STKOH P 2.00 STKOH P INT1 INT1 16:30 - 16:45 16:45 - 20:00 0.25 STKOH P 3.25 STKOH P INT1 INT1 20:00 - 21 :30 1.50 STKOH P INT1 21 :30 - 22:00 0.50 CASE P INT1 22:00 - 22:30 0.50 CASE P INT1 22:30 - 23:30 1,00 CASE P INT1 23:30 - 00:00 0.50 CASE P INT1 8/6/2003 00:00 - 00:30 0.50 CASE P INT1 00:30 - 01 :00 0.50 CASE P INT1 01 :00 - 01 :30 0.50 CASE P INT1 01 :30 - 02:00 0.50 CASE P INT1 02:00 - 07:00 5,00 CASE P INT1 Page 16 of 22 Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 Description of Operations times bottoms up. Rotate and reciprocate string at 130 RPM while pumping 600 GPM @ 3,580, Shakers cleaned up. Calculated ECD==11.54 Actual ECD==11.91 POH 2 stands from 7,560 to 7,366 with no adverse hole conditions, While picking up out of slips at 7,366 string became differentially stuck in the Kuparuk. Pick up single and begin techniques for freeing differentially stuck pipe. Break circulation with 38 spm to comfirm ability to circulate. Trap 12,000 torque in string and jar down. Would not jar free. Trap 16,000 in string and work pipe moving torque down hole. String popped free while working string on downstroke. Stage up pumps to 600 GPM and brings bottoms up while rotating string at 130 RPM. (Precautionary only--no signs of cuttings beds) Backream out of the hole to 7,116.( kuparuk @ 7,211) Reaming with 600 GPM at 130 RPM with 5,500 to 6,500 torque. No packing off with occational increases in torque. Minimize time in slips while setting back stands. No overpulls while coming out of slips. TOH from 7116'. 170 klbs up, 117 klbs down, 5-10 klbs interminttent drag throughout trip to 9-5/8" csg shoe at 2745'. Monitor well at shoe - static. Continue TOH to LD BHA #21 LD reamer. Stand back 7 stands HWDP. LD BHA #21 PU and MU BHA #22 for clean out trip. Shallow test MWD at 802' RIH, for clean out trip to run 7" csg. Max running speed 1 minute per stand. Fill pipe at 2500' and 5000'. 160 klbs up, 110 klbs down at 7400' Started taking weight at 7400'. POH to 7330' and MU top drive. Stage up pumps to drlg rate, CBU at 600 gpm, 3620 psi and 100 rpm, 136 klbs rotating and 5 klbs torque. Hole cleaned up no problems. Wash down last 2 stands at 600 gpm, tag bottom at 7560. Circulate hi-vis sweep around at 600 gpm, 3550 psi and 128 rpm. 137 klbs rotating, 5 klbs torque. Spot a 50 bbl pill with 8 ppb Resinex, 6 ppb Boreplate, 5 ppb SafeCarb 250, 5 ppb SafeCarb 40 and 5% Lubetex across the Kuparuk. Monitor well - static POH to run 7" csg. 170 klbs up, 120 klbs down. Pulling 5-10 klbs over off bottom. POH to above the HRZ at 6500' and pump dry job. Cont POH, monitor well at 9-5/8" csg shoe - static. No hole problems on POH, hole taking correct fill. Stand HWDP back in derrick and LD BHA #22 Clean and clear rig floor. Pull wear bushing, Flush stack with ported sub, install test plug -ft·.. .L·,~"ltt\.\1\),J;" r::t"'~\ Change over to long bails on top drive Pressure test door seals to 3500 psi Makde dummy run w/ 7" landing joint RU csg equipment PJSM with Nabors Casing and rig personnel on running 7" 26# casing. PU and MU float euipment Fill and test floats. Run 7" 26# L-80 casing to csg shoe at 2745'. Start running at 1 Printed: 8/18/2003 9:22:41 AM e e Page 17 of 22 BP Operations Summary Report Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Date From - To i Hours Task Code NPT Phase ....-.----.-- 8/6/2003 02:00 - 07:00 5.00 CASE P INT1 07:00 - 07:30 0.50 CASE P INT1 07:30 - 19:30 12.00 CASE P INT1 19:30 - 20:00 0.50 CASE P INT1 20:00 - 21 :30 1.50 CASE P INT1 21 :30 - 22:00 0.50 CEMT P INT1 22:00 - 22:10 0.17 CEMT P INT1 22: 1 0 - 22:20 0.17 CEMT P INT1 22:20 - 22:40 0.33 CEMT P INT1 22:40 - 22:50 0.17 CEMT P INT1 22:50 - 22:55 0.08 CEMT P INT1 22:55 - 23:40 0.75 CEMT P INT1 23:40 - 00:00 0.33 CASE P INT1 8/7/2003 00:00-00:15 0.25 CASE P INT1 00: 15 - 02:00 1.75 CASE P INT1 02:00 - 02:30 0.50 WHSUR P PROD1 02:30 - 03:00 0.50 BOPSUR P PROD1 03:00 - 04:00 1.00 BOPSURP PROD1 04:00 - 07:30 3.50 BOPSUR P PROD1 07:30 - 08:00 0.50 BOPSUR P PROD1 08:00 - 08:30 0.50 WHSUR P PROD1 08:30 - 09:00 0.50 STWHIP P PROD1 09:00 - 12:00 3.00 STWHIP P PROD1 12:00 - 12:30 0.50 STWHIP P PROD1 12:30 - 15:30 3.00 STWHIP P PROD1 15:30 - 18:30 3.00 STWHIP P PROD1 18:30 - 22:00 3.50 STWHIP P PROD1 Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 Description of Operations ...--..---.- minute per joint after 20 joints started pushing approximately 1 bbl of mud away for every 10 joints ran. Slowed running speed to 6 minutes per joint and monitored displacement Circulate 1.5 times bottoms up at the csg shoe. Stage pumps to 6 bpm at 330 psi. 103 klbs up, 98 klbs down. Continue running 7" csg. Circulate each joint down at 3 minutes per joint and 4 bpm at 402 psi. Monitor displacement CBU every 30 joints. at 7200' started running at 3 minutes per joint without circulating. Landed at 7546'. RD fill up tool. Blow down top drive. RU cement head and lines. Break circulation at 2 bpm at 530 psi. Stage pumps up to 7 bpm at 890 psi. Circulate surface to surface to condition mud. Reciprocate while circulating. 220 klbs up, 145 klbs down. Displace 150 bbls 10.3 ppg mud, 6 bpm at 640 psi prior to cement job. PJSM with HALCO, MI, and rig personnel on cement job held while circulating. Pump 5 bbl KCI water and pressure test to 4000 psi Pump 32 bbl 11.5 ppg Alpha viscosified spacer Drop bottom plug and pump 112 bbls(265 sxs) 12.5 ppg HOWCO Premium Micro Lite lead cemem, Pump 33 bbls (160 sxs) 15.8 ppgHOWCO Premium S~ CBl. tail cement. Flush cement lines through a Tee on the rig floor and switch to rig pumps for displacement Drop bottom plug and displace with rig pumps. Displace at 7 bpm for the first 250 bbls, reduce rate to 4 bpm for the next 30 bbls and 2 bpm to bump the plugs. Reciprocated csg until the tail cement started around the shoe then landed csg. rU ~ returns throughout displacement: Bump plugs on calculated stroke&. CIP at 23:40. Pressure test casing to 3500 psi for 30 minutes Continue pressure test 7" csg to 3500 psi for 30 minutes. RD csg equipment and LD landing joint Install packoff and pressure test to 5000 psi. Flush stack Change 7" pipe rams to 3-1/2" to 6" VBR Pressure test BOPE to 250 low, 4000 high. Witness of test waived by Chuck Scheve with AOGCC Pull test plug. Install wear bushing. Blow down lines. Inject 20 bbls 10.5 ppg mud down 7" X 9-5/8" annulus at 2 bpm and 750 psi. 800 psi shut in pressure. PJSM with SWS and all rig personnel on wireline operations RU and run GRlCCL with 6.151" gauge ring and junk basket PJSM with SWS, HOWCO, and all rig personnel on running 7" EZSV. RIH with 7" EZSV on e-line. Tie in on depth and set at 7239'. POH and RD SWS. PU and MU 7" whipstock BHA Orient and shallow test MWD. RIH to 7183' with whipstock, 1.5 - 2 minutes per stand. Fill pipe at 4000'. Printed: 8/18/2003 9:22:41 AM e e Page 18 of 22 BP Operations Summary Report Start: Rig Release: Rig Number: Phase 24 Ibs metal returns while milling window Circulate 15 bbl Super Sweep followed by 25 bbl Hi-vis sweep. Ciculate surface to surface at 300 gpm, 1415 psi until clean returns. 145 klbs up, 120 klbs down, 137 klbs rotate. Perform FIT to 11.5 ppg EMW. 860 psi pump pressure with 9.0 ppg mud. Monitor well - static Pump dry job and POH. Stand DP and HWDP back in derrick. 150 klbs up, 125 klbs down. LD milling BHA. Clean and clear rig floor Jet stack with ported sub. PJSM with Anadrill and all rig personnel on picking up and making up BHA PU and MU 6-1/8" drilling BHA with 2.12 degree motor and Smith XR20 insert bit Cut and slip 91' of drilling line. Adjust brakes. Clean out drawworks. Service top drive. RIH picking up 81 jts of DP from pipe shed. Continue RIH with stands from derrick.+ Repair low drum clutch and rotary seal on high clutch. Continue RIH to 7200' Circulate and condition mud. Circulate surface to surface to warm and shear mud, couldn't keep the mud from flowing over the shakers until it had warmed up. Stage pumps to drilling rate, 300 gpm. Establish baseline ECD of 10.03 ppg and orient tool face to exit window. RIH through window to 7233'. Stage pumps to drilling rate, 300 gpm. Wash down to TD at 7247'. PROD1 Drill from 7247' to 7360', sliding 100% to build angle. 300 gpm at 1810 psi. 148 klbs up, 126 klbs down. Calculated ECD = 10.03, actual ECD = 10.28 PROD1 Circulate Hi-vis sweep around. Unable to build angle at directional plan rate with the current BHA Directional plan called for 16.5 degree dog legs, & not able to maintain 12's. Projecting the current build rate the well would land 17' low to plan resulting in a loss of 62' of vertical section. Conferred with Anch geologists and the decision made to drill ahead attempting to maintain 12 degree dog legs at a minimum. If that could not be attained, a trip to dial up the motor angle to 2.38 degrees and a new bit would be made. Legal Well Name: V-111 Common Well Name: V-111 Event Name: DRILL +COMPLETE Contractor Name: NABORS ALASKA DRILLING I Rig Name: NABORS 9ES Date I From - To . Hours I Task Code NPT __I I 8/7/2003 22:00 - 22:30 0.50 STWHIP P PROD1 22:30 - 23:00 0.50 STWHIP P PROD1 23:00 - 00:00 1.00 STWHIP P PROD1 8/8/2003 00:00 - 01 :00 1.00 STWHIP P PROD1 01 :00 - 04:00 3.00 STWHIP P PROD1 04:00 - 05:00 1.00 STWHIP P PROD1 05:00 - 05:30 0.50 DRILL P PROD1 05:30 - 05:45 0.25 STWHIP P PROD1 05:45 - 09:00 3.25 STWHIP P PROD1 09:00 - 11 :00 2.00 STWHIP P PROD1 11 :00 - 11 :30 0.50 BOPSURP PROD1 11 :30 - 12:00 0.50 DRILL P PROD1 12:00 - 14:30 2.50 DRILL P PROD1 14:30 - 16:00 1.50 DRILL P PROD1 16:00 - 18:00 2.00 DRILL P PROD1 18:00 - 19:30 1.50 DRILL P PROD1 19:30 - 21 :30 2.00 DRILL N RREP PROD1 21 :30 - 22:30 1.00 DRILL P PROD1 22:30 - 00:00 1.50 DRILL P PROD1 8/9/2003 00:00 - 00:30 0.50 DRILL P PROD1 00:30 - 04:00 3.50 DRILL P 04:00 - 05:00 1.00 DRILL P 7/2/2003 8/15/2003 Spud Date: 7/8/2003 End: 8/15/2003 Description of Operations __n_.....__._.. . Orient whipstock 30 degrees right of high side. Tag bridge plug at 7183'. Set bottom anchor with 20 klbs down. PU 10 klbs over string weight to verify anchor set Shear lug pin with 35 klbs down. Displace well to 9.0 ppg Flo-Pro mud at max rate of 345 gpm and 2195 psi. Clean mud pits, possum belly and under shakers. Mill window from 7221' to 7233'. 110 rpm, 280 gpm at 1375 psi, 5.5 klbs torque. Dress window and drill new hole from 7233' to 7247'. 110 rpm, 280 gpm at 1306 psi, 4-5 klbs torque. Circulate 15 bbl Super Sweep around at 7240' Printed: 8/18/2003 9:22:41 AM e e Page 19 of 22 BP Operations Summary Report PROD1 Directional drill from 7360' to 7392', sliding 100% attempting to build angle at 12 degrees per 100'. 300 gpm @ 1810 psi. 148 klbs up, 126 klbs down. Calculated ECD = 10.03 ppg, actual ECD = 10.28 ppg. Unable to maintain 12 degree dog legs. Plan on trip to dial up motor to 2.38 degrees and pick up HTC STX20 bit Circulate hole clean for trip. 300 gpm @ 1720 psi. Circulate out to the bottom of the window. 300 gpm @ 1720 psi. Shut down pumps to pull BHA into casing. Open circ sub. Circulate sweep surface to surface at 450 gpm. Monitor well - static. Pump dry job and blow down top drive. POH to 370' PJSM with Anadrill and all rig personnel on removing source and handling BHA. Stand back jars, LD NM flex collars. Unload source. Change bit out to HTC STX20D. Dial motor up to 2.38 degrees. Download MWD/LWD. PJSM with Anadrill and all rig personnel on loading source and handling BHA. Load source. RIH with BHA and shallow test RIH to 7200', above window. Orient tool face and exit window. Continue RIH, tag bottom at 7392'. Directional drill from 7392' to 7484', sliding 100%. Build angle to 99 degrees to land build section. 280 gpm @ 1565 psi. 150 klbs up, 125 klbs down. Calculated ECD = 10.15 ppg, actual ECD = 10.34 ppg. Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Date i From - To ! Hours Task Code NPT Phase ------ .. .-.---.-.. 8/9/2003 05:00 - 05:30 0.50 DRILL P 05:30 - 06:30 1.00 DRILL P PROD1 06:30 - 07:00 0.50 DRILL P PROD1 07:00 - 08:00 1.00 DRILL P PROD1 08:00 - 08:15 0.25 DRILL P PROD1 08:15 -10:00 1.75 DRILL P PROD1 10:00 - 10:30 0.50 DRILL P PROD1 10:30 -12:00 1.50 DRILL P PROD1 12:00 -12:30 0.50 DRILL P PROD1 12:30 - 13:00 0.50 DRILL P PROD1 13:00 - 16:00 3.00 DRILL P PROD1 16:00 - 18:30 2.50 DRILL P PROD1 18:30 - 19:30 1.00 DRILL P PROD1 19:30 - 20:30 1.00 DRILL P PROD1 20:30 - 21 :00 0.50 DRILL P PROD1 21:00-21:15 0.25 DRILL P PROD1 21:15-00:00 2.75 DRILL P PROD1 8/10/2003 00:00 - 00:30 0.50 DRILL P PROD1 00:30 - 01 :30 1.00 DRILL P PROD1 01 :30 - 06:00 4.50 DRILL N RREP PROD1 06:00 - 08:00 2.00 DRILL P PROD1 08:00 - 10:30 2.50 DRILL P PROD1 10:30 - 11 :00 0.50 DRILL P PROD1 11 :00 - 12:00 1.00 DRILL P PROD1 12:00 - 00:00 12.00 DRILL P PROD1 Start: Rig Release: Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 7/2/2003 8/15/2003 Description of Operations --..----.------.- .. - --- ---------.----- AST 4.9 hrs. Circulate hi-vis sweep surface to surface. 300 gpm @ 1675 psi. POH making MAD pass from 7434' to 7255' at 5 ftImin. 275 gpm @ 1515 psi. Continue POH to put BHA in casing. Open circ sub. CBU - 500 gpm @ 1500 psi. Monitor well - static. Pump dry job. POH to BHA. 150 klbs up, 125 klbs down. PJSM with Anadrill and all rig personnel on unloading source and handling BHA Stand back jars. LD NM flex collars. Remove source. Adjust motor to 1.5 degrees. Download MWD/LWD. MU new bit. Remove and replace drawworks chain due to broken link. PU BHA. Load source. MU NM flex collars. RIH with BHA, shallow test. 255 gpm @ 800 psi. RIH to 7200', filling pipe every 1500'. Stage up pumps to 280 gpm. Orient tool to exit window RIH through window to 7394'. Wash to bottom at 7484' Drill from 7484 to 7745. Sliding 100% until the BHA is out of the build section. 147 klbs up, 119 klbs down, 134 klbs rotate. 280 gpm @ 1740 psi. WOB 5-10 klbs. Calculated ECD = 10.25 ppg, actual ECD = 10.47 ppg. Backream each stand at 300 gpm and 40 rpm. Reduce flow rate to 270 gpm on the down stroke. AST last 24 hrs = 7.09 hrs AST total = 11.99 hrs Printed: 8/18/2003 9:22:41 AM e e BP Operations Summary Report Page 20 of 22 Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Start: Rig Release: Rig Number: 7/2/2003 8/15/2003 Spud Date: 7/8/2003 End: 8/15/2003 Date I From - To Hours Task Code NPT Phase Description of Operations 8/10/2003 12:00 - 00:00 12.00 DRILL P PROD1 8/11/2003 00:00 - 23:30 23.50 DRILL P 21 :00 Hrs. Freeze protect 7" X 9-5/8" annulus with 65 bbls dead crude. Pump at 1/2 bpm to 950 psi - leak off point. Increased rate to 2 bpm. FCP = 1150 psi. SIP = 1050 psi. PROD1 Drill from 7745' to 8930'. Started droping 14' TVD at 8200' MD in anticipation of projected fault. Drilled to 8780' MD, did not cross fault. Starting turning up to regain the 14' TVD. Regained contact with the zone and turned down to follow formation dip. 149 klbs up, 122 klbs down, 134 klbs rotate. 280 gpm @ 2100 psi. WOB 10-15 klbs. Calculated ECD = 10.30 ppg, actual ECD = 10.65 ppg. Backream each stand at 300 gpm and 60 rpm. Reduce flow rate to 270 gpm on the down stroke. 05:30 - 06:30 1.00 DRILL N AST last 24 hrs = 7.72 hrs. ART last 24 hrs = 4.42 hrs. Total time on bit= 19.23 hrs. PROD1 CBU for samples. Geologist needed to confirm formation to avoid drilling out of the top of the Kuparuk into the Kalubik PROD1 Drill from 8930' to 9286'. 151 klbs up, 117 klbs down, 136 klbs rotate. 60 rpm and 280 gpm @ 2170 psi. 5.3 klbs torque. WOB 10-15 klbs. Calculated ECD = 10.55 ppg, actual ECD = 10.89 ppg. Backream each stand at 300 gpm and 60 rpm. Reduce flow rate to 270 gpm on the down stroke. SFAL PROD1 Circulate sweep surface to surface at 300 gpm @ 2200 psi while trouble shooting MWD display problems. PROD1 Drill from 8286' to 9850'. 150 klbs up, 110 klbs down, 128 klbs rotate. 60 rpm and 280 gpm @ 2019 psi. 4-8 klbs torque. WOB 10-15 klbs. Calculated ECD = 10.55 ppg, actual ECD = 10.78 ppg. Backream each stand at 300 gpm and 60 rpm. Reduce flow rate to 270 gpm on the down stroke. 23:30 - 00:00 0.50 DRILL P 8/12/2003 00:00 - 05:30 5.50 DRILL P 06:30 - 21 :00 14.50 DRILL P 21 :00 - 22:30 1.50 DRILL P AST last 24 hrs = 6.93 hrs. ART last 24 hrs = 3.75 hrs. Total time on bit= 29.91 hrs. PROD1 CBU X 2, with Hi-vis sweep at 300 gpm and 80 rpm while reciprocating DP. Reduce rate to 270 gpm on down stroke. Continue circulating until actual ECD is within 0.3 ppg of calculated ECD. Calculated ECD = 10.50 ppg, Actual ECD = 10.74 ppg. PROD1 POH backreaming to 9365. 300 gpm and 80 rpm. Calculated ECD = 10.5 ppg, actual ECD = 10.63 ppg. PROD1 Continue POH backreaming, 300 gpm and 80 rpm, to the end of the build section at 7800'. At 7800' stop rotating and continue POH pumping out at 300 gpm to the bottom of the window at 7233'. Orient tool to exit window and POH to 7160' Service top drive, blocks and crown. Cut and slip 70' of drilling line. RIH to the top of the Kuparuk at 9815'. Reduced risk of stuck pipe by not entering Kalubik, will set the liner bottom at 9815'. Stage pumps to 300 gpm @ 1830 psi, reciprocate DP at 80 rpm. Calculated ECD = 10.55 ppg, final circulating ECD = 10.61 ppg Spot 100 bbl clean 9.0 ppg flo-pro liner running pill. 22:30 - 00:00 1.50 DRILL P 8/13/2003 00:00 - 02:30 2.50 DRILL P 02:30 - 04:00 1.50 DRILL P PROD1 04:00 - 05:00 1.00 DRILL P PROD1 05:00 - 07:30 2.50 DRILL P PROD1 07:30 - 08:00 0.50 DRILL P PROD1 Printed: 8/18/2003 9:22:41 AM e e BP Operations Summary Report Page 21 of 22 legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: V-111 V-111 DRill +COMPlETE NABORS ALASKA DRilLING I NABORS 9ES Start: Rig Release: Rig Number: 7/2/2003 8/15/2003 Spud Date: 7/8/2003 End: 8/15/2003 Date From - To ' Hours Task Code NPT Phase Description of Operations ...... ..--..---- ..._____..__._. ____ ____o_m_._ __.__...____.__...... ...__._m__n_____._.._.._.. 8/13/2003 08:00 - 08: 15 0.25 DRILL P PROD1 Monitor well - static 08:15 -10:30 2.25 DRILL P PROD1 POH to place circ sub at the TOW @ 7221. 10:30 - 12:00 1.50 DRILL P PROD1 Drop ball and open circ sub. Pump sweep around at 400 gpm. Continue POH until the bit is inside csg. Circulate 400 gpm @ 1067 psi while reciprocating DP at 80 rpm. 150 klbs up, 121 klbs down, 130 klbs rotate. 12:00 - 12:15 0.25 DRILL P PROD1 Monitor well - static 12:15 - 14:30 2.25 DRILL P PROD1 Pump dry job. Drop 2-3/8" rabbit POH. 150 klbs up, 125 klbs down. LD HWDP and continue POH to BHA 14:30 - 14:45 0.25 DRILL P PROD1 Monitor well on last stand prior to pulling BHA - static 14:45 - 15:00 0.25 DRILL P PROD1 PJSM with Anadrill and all rig personnel on unloading RA source and LD BHA 15:00 - 16:30 1.50 DRILL P PROD1 POH to BHA Unload RA source. LD BHA. 16:30 - 17:00 0.50 DRILL P PROD1 Clean and clear rig floor. 17:00 - 17:30 0.50 CASE P COMP RU to run 4-1/2" 12.6# slotted liner. 17:30 - 18:00 0.50 CASE P COMP PJSM with Baker, Nabors Casing and all rig personnel on MU and running of 4-1/2 slotted liner. 18:00 - 21 :00 3.00 CASE P COMP MU and Run 4-1/2" 12.6# slotted liner as per running orders 21 :00 - 21 :30 0.50 CASE P COMP MU liner hanger. Break circulation through liner and liner hanger. 195 gpm @ 340 psi. 67 klbs up, 58 klbs down. 21 :30 - 00:00 2.50 CASE P COMP TIH with liner on DP to TOW @ 7221' 8/14/2003 00:00 - 00:30 0.50 CASE P COMP CBU at 7221', TOW. 3 bpm @ 397 psi. 134 klbs up, 113 klbs down. 00:30 - 02:30 2.00 CASE P COMP RIH with 4-1/2" liner on DP @ 2 minutes/stand to 9815'. Set liner on depth. 02:30 - 03:30 1.00 CASE P COMP Break circulation. Drop ball and pump onto seat Pressure up to 2300 psi. Slack 10 klbs to verify set PU and rotate 20 RH turns to unlatch. Pressure up to 2700 psi to blow ball seat 03:30 - 04:45 1.25 CASE P COMP Pump 25 bbl clean 9.0 ppg KCL spacer, followed by 25 bbl Safe Clean pill. Displace well to 9.0 ppg filtered KCL water. 5.5 bpm @ 1060 psi. 04:45 - 05:00 0.25 CASE P COMP Monitor well - static 05:00 - 09:30 4.50 CASE P COMP POH, laying down DP. 09:30 - 10:00 0.50 CASE P COMP LD liner running tool. 10:00 - 13:30 3.50 CASE P COMP RIH with 23 stands of DP from derrick. POH laying down DP. 13:30 -14:00 0.50 BOPSURP COMP Pull wear bushing, make dummy run with hanger and landing joint 14:00 - 14:30 0.50 RUNCOIIJP COMP RU to run 3-1/2" 9.3# tubing. 14:30 - 15:00 0.50 RUNCOIIJP COMP PJSM with Baker, Nabors Casing and all rig personnel on MU and running tubing. 15:00 - 22:30 7.50 RUNCOIIJP COMP MU tail pipe assembly. RIH with 3-1/2" 9.3# L-80 tubing making up jewelry as per running orders. 22:30 - 23:00 0.50 RUNCOIIJP COMP Space out WLEG in liner hanger tie back receptacle. 23:00 - 00:00 1.00 RUNCOIIJP COMP CO elevators to 4-1/2". MU circulating head, MU tubing hanger and landing joint Land tbg hanger in tbg spool. 8/15/2003 00:00 - 02:00 2.00 RUNCOIIJP COMP Reverse circulate 54 bbl corrosion inhibited brine. Place brine from #3 GLM mandrel to the WLEG. 02:00 - 04:00 2.00 RUNCOIIJP COMP Drop ball and rod. Pull landing joint Set packer. Pressure test tbg to 4000 psi for 30 minutes. Bleed tbg pressure to 2500 psi. Pressure test 3-1/2" X 7" annulus to 3500 psi for 30 minutes. Bleed tbg and annular pressure to O. Pressure up annulus to blow DCR shear valve. DCR sheared at 3400 psi. 04:00 - 05:00 1.00 BOPSURP COMP Set TWC valve and pressure test from below to 2700 psi. Printed: 8/18/2003 9:22:41 AM Legal Well Name: Common Well Name: Event Name: Contractor Name: Rig Name: Date e e Page 22 of 22 BP Operations Summary Report V-111 V-111 DRILL +COMPLETE NABORS ALASKA DRILLING I NABORS 9ES Start: 7/2/2003 Rig Release: 8/15/2003 Rig Number: Spud Date: 7/8/2003 End: 8/15/2003 ....----..... From - To Hours Task Code: NPT: Phase __u n_..____________________________ ..._ ._______.. 8/15/2003 05:00 - 05:30 05:30 - 06:30 06:30 - 09:00 09:00 - 13:00 13:00 - 13:30 13:30 - 15:00 15:00 -17:00 0.50 RUNCOMP COMP 1.00 BOPSURP COMP 2.50 BOPSURP COMP 4.00 WHSUR P COMP 0.50 WHSUR P COMP 1.50 WHSUR P COMP 2.00 WHSUR P COMP Description of Operations Blow down lines to ND BOP Clean out below rotary table. Remove rams from BOP's. ND BOPS. Clean cuttings tank and mud pits NU tree and adapter flange. Pressure test to 5000 psi RU lubricator and pull TWC valve RU little Red. Pressure test lines to 1000 psi. Pump 130 bbls diesel down the 7" X 3-1/2" annulus and allow to U-tube to freeze protect well. Secure cellar and rig for move to W-Pad for summer maintenance Printed: 8/18/2003 9:22:41 AM e 1 e . \ BPX Exploration, Alaska V-lIl Well Core Description Orion Field Core #1: 4042' -4102' MD. Cut 60', recovered 53.7'. Schrader Bluff Zone Mb1. Well bore inclination was 1.3 degrees from vertical. 4042'-4049' MD: Sandstone, medium-dark grayish brown, 85-95% quartz, 5-15% chert, fine grained, well sorted, excellent porosity, with uniform dark brown oil stain. 4049' -4077' MD: Sandstone, light to medium brownish gray, 95% quartz, 5% chert, fine grained, well sorted, excellent porosity, with weak even to patchy dark brown oil stain. 4077'-4088' MD: Thin-bedded sandstone and shale. Sandstone is medium grayish brown, fine grained, well sorted, with excellent porosity and even to patchy dark brown oil stain; shale is light gray, silty, firm-hard, and laminated. 4088'-4095.7' MD: Shale, light gray, soft, laminated. Core #2: 4380' -4440' MD. Cut 60', recovered 60' . Schrader Bluff Zones Nc and OA. Well bore inclination was 1.3 degrees from vertical. 4380-4397.5' MD (lower Zone Nc): Siltstone, light/medium grayish brown, heavily burrowed, oil stained, grading downward to light gray shale in the basal foot. 4397.5-4426' (upper Zone OA): Sandstone, medium/dark brown, 95% quartz/5% chert, fine grained, well sorted, excellent porosity, with uniform medium to dark brown oil stain. 4426' -4434.5': Sandstone, with thin layers of light gray shale and siltstone. Sandstone is medium grayish brown, burrowed, 95% quartz/5% chert, fine grained, well sorted, with excellent porosity and even light yellowish brown oil stain. 4434.5' -4440': Shale, silty, light gray. Core #3: 4440-4500' MD. Cut 60' , recovered 60'. Schrader Bluff lower Zone OA and Zone OBa. Well bore inclination was 1.3 degrees from vertical. 4440' -4468' MD (lower Zone OA): Shale, light gray, silty, with thin beds of siltstone. Siltstone is burrowed and has light/medium brown oil stain. 4468'-4478' MD (upper Zone OBa): Sandstone, medium/dark brown, quartzose, very fine grained, well sorted, excellent porosity, with uniform medium/dark brown oil stain. V-Ill State Core Desc .doc 9/11/2003 e 2 e 4478' -4489' MD: Sandstone, with thin beds of burrowed, light gray shale and siltstone. Sandstone is medium grayish brown, quartzose, slightly argillaceous, very fine grained, well sorted, with fair-good porosity, and even light brown oil stain. 4489' -4495' MD: Sandstone, medium/dark brown, quartzose and very slightly argillaceous, very fine grained, well sorted, excellent porosity, with uniform medium brown oil stain. 4495' -4500' MD (near zone OBa base): Shale, light gray, very silty, burrowed. Core #4: 4500' -4560' MD, cut 60' , recovered 60' . Base of OBa Zone and OBb Zone. Well bore inclination was 1.3 degrees from vertical. 4500' -4505' MD: Shale, light gray, very silty, burrowed. 4505'-4515' MD: (top ofOBb Zone): Sandstone, medium brown, quartzose, very fine grained, well sorted, excellent porosity, even brown oil stain. 4515' -4517' MD: Siltstone, medium brownish gray, argillaceous and burrowed, oil stained. 4517' -4521' MD: Sandstone, medium brown, quartzose, very fine grained, well sorted, excellent porosity, with medium/dark brown oil stain. 4521' -4535' MD: Siltstone, light gray and medium grayish brown, very argillaceous, burrowed, oil stained. 4535' -4543' MD: Shale, light gray, slightly silty. 4543' -4560' MD: Siltstone, light gray to medium grayish brown, very argillaceous, burrowed, oil stained. Core #5: 4560' MD-4605' MD. Cut 45', recovered 45'. Base of OBb Zone and OBc Zone. Well bore inclination 1.3 degrees from vertical. 4560' -4563.5' MD: Shale, light gray, silty. 4563.5' -4572.5' MD (top of Zone OBc): Sandstone, medium/dark brown, quartzose, very fine grained, well sorted, good to excellent porosity, uniform medium/dark brown oil stain. 4572.5' -4592' MD: Siltstone, light gray and medium grayish brown, very argillaceous, with clay content increasing downward, oil stained. 4592' -4605' MD: Shale, light gray, very silty, with silt laminations oil stained. V-Ill State Core Desc .doc 9/11/2003 e 3 e Core #6: 4605'-4665' MD. Base of Schrader Bluff Zone OBc and Zone OBd. Well bore inclination 1.2 degrees from vertical. 4605-4613.5' MD: Shale, light gray, very silty, silt laminations are oil stained. 4613.5-4624' MD (top of Zone OBd): Sandstone, with thin light gray shale and siltstone beds. Sandstone is medium/dark brown, quartzose, very fine grained, well sorted, fair to excellent porosity, with medium/dark brown oil stain. 4624' -4625.5' MD; Siltstone, argillaceous, burrowed, oil stained. 4625.5' -4650.5' MD: Sandstone and siltstone, thin bedded. Sandstone is medium brown, quartzose, very fine grained, well sorted, fair-good porosity, oil stained. 4650.5-4656.8' MD: Siltstone, light gray to medium grayish brown, oil stained. 4656.8' -4662.7' MD: Sandstone, medium grayish brown, silty and argillaceous, very fine grained, well sorted, with calcite cement, fair-good porosity, oil stained. 4662.7' -4665' MD: Shale, light gray, very silty. Core #7: 4665' -4723.5' MD. Cut 58.5', recovered 58.5'. Base of OBd Zone, whole of OBe Zone, and top of OBf Zone. 4665' -4675.4' MD: Shale, light gray, silty 4675.4-4678.2' MD (top of Zone OBe): Siltstone, light gray an medium grayish brown, sandy and argillaceous. 4678.2-4697.8' MD: Sandstone, light gray to medium brown, very fine grained, well sorted, with laminations. Laminations alternate well cemented with moderately cemented layers; porosity is poor-good (overall, fair), medium brown oil stain varies with cementation in laminations. 4697.8-4717.3' MD: Siltstone and shale, light gray to medium grayish brown, burrowed. 4717.3-4723.5' MD (top ofOBfZone): Sandstone, medium grayish brown, very fine grained, well sorted, laminated, fair porosity; moderate, even oil stain. NOTE: Porosity and Permeability data are partial and preliminary, and they are not ready for distribution. They should be ready before the end of 2003. V-Ill State Core Desc .doc 9/1112003 : V-111 PB1 Su rvey Report hlu PuOP Report Date: 16-Jul-03 Survey / DLS Computation Method: Minimum Curvature / Lubinski Client: BP Exploration Alaska Vertical Section Azimuth: 33.930' Field: Prudhoe Bay Unit - WOA Vertical Section Origin: N 0.000 ft, E 0.000 ft Structure / Slot: V-Pad / Plan V-111 (N-U) TVD Reference Datum: KB Well: V-111 TVD Reference Elevation: 81.8 ft relative to MSL Borehole: V-111PB1 Sea Bed / Ground Level Elevation: 53.30 ft relative to MSL UWVAPI#: 500292316170 Magnetic Declination: 25.507' Survey Name / Date: V-111PB1/ July 16, 2003 Total Field Strength: 57518.289 nT Torti AHD / DDI/ ERD ratio: 116.721' /1880.31 ft/5.395/ 0.279 Magnetic Dip: 80.781' Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feet Declination Date: July 11,2003 e Location Lal/Long: N 70 1941.296, W 14915 51.593 Magnetic Declination Model: BGGM 2003 Location Grid N/E Y/X: N 5970134.340 ftUS, E 590709.620 ftUS North Reference: True North Grid Convergence Angle: +0.69273635' Total Corr Mag North -> True North: +25.507' Grid Scale Factor: 0.99990935 Local Coordinates Referenced To: Well Head Comments Measured Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (ltUS) 0.00 0.00 0.00 0.00 0.00 -81.80 0.00 0.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70 19 41.296 W 1491551.593 100.00 0.50 91.31 100.00 100.00 18.20 0.24 -0.01 0.44 0.44 91.31 0.50 5970134.34 590710.06 N 70 19 41.295 W 1491551.580 200.00 0.65 90.96 100.00 199.99 118.19 0.78 -0.03 1.44 1.44 91.17 0.15 5970134.33 590711.06 N 70 19 41.295 W 1491551.551 300.00 0.76 93.40 100.00 299.99 218.19 1.42 -0.08 2.67 2.67 91.68 0.11 5970134.29 590712.29 N 70 19 41.295 W1491551.515 400.00 1.06 96.98 100.00 399.97 318.17 2.18 -0.23 4.25 4.26 93.10 0.31 5970134.16 590713.87 N 70 19 41.293 W 1491551.469 500.00 1.31 101.81 100.00 499.95 418.15 3.03 -0.58 6.29 6.31 95.24 0.27 5970133.84 590715.91 N 70 19 41.290 W 1491551.410 600.00 1.73 103.02 100.00 599.92 518.12 4.00 -1.15 8.88 8.95 97.39 0.42 5970133.30 590718.51 N 70 19 41.284 W 1491551.334 700.00 1.72 100.58 100.00 699.87 618.07 5.13 -1.77 11.82 11.95 98.50 0.07 5970132.72 590721 .46 N 70 19 41.278 W 1491551.248 800.00 1.84 104.04 100.00 799.82 718.02 6.27 -2.43 14.85 15.05 99.29 0.16 5970132.09 590724.50 N 70 19 41.272 W 1491551.159 900.00 1.42 119.85 100.00 899.78 817.98 6.91 -3.44 17.49 17.82 101.12 0.61 5970131.11 590727.14 N 70 19 41.262 W 1491551.083 1000.00 0.75 196.62 100.00 999.77 917.97 6.37 -4.68 18.37 18.96 104.29 1.45 5970129.88 590728.05 N 70 19 41.250 W 1491551.057 1100.00 1.85 248.29 100.00 1099.74 1017.94 4.41 -5.91 16.69 17.70 109.49 1.50 5970128.64 590726.38 N 70 19 41.237 W 1491551.106 e 1200.00 3.15 261.17 100.00 1199.65 1117.85 1.22 -6.92 12.47 14.27 119.04 1.41 5970127.57 590722.17 N 70 19 41.227 W1491551.229 1300.00 3.89 266.10 100.00 1299.46 1217.66 -2.73 -7.58 6.37 9.90 139.93 0.80 5970126.84 590716.08 N 70 19 41.221 W 1491551.407 1400.00 4.17 263.62 100.00 1399.21 1317.41 -7.16 -8.21 -0.62 8.24 184.35 0.33 5970126.12 590709.09 N701941.215 W 1491551.611 1500.00 4.24 265.50 100.00 1498.94 1417.14 -11.81 -8.91 -7.92 11.92 221.66 0.15 5970125.34 590701.81 N 70 19 41.208 W1491551.824 1600.00 4.23 261.68 100.00 1598.67 1516.87 -16.59 -9.73 -15.26 18.10 237.48 0.28 5970124.43 590694.48 N 70 19 41.200 W 1491552.038 1700.00 4.70 264.43 100.00 1698.37 1616.57 -21.67 -10.66 -22.98 25.34 245.12 0.52 5970123.40 590686.77 N701941.191 W 149 1552.264 1800.00 5.76 267.76 100.00 1797.95 1716.15 -27.24 -11.25 -32.08 33.99 250.67 1.10 5970122.70 590677.68 N701941.185 W 1491552.529 1847.00 5.08 277.98 47.00 1844.74 1762.94 -29.55 -11.06 -36.49 38.13 253.14 2.51 5970122.84 590673.27 N701941.187 W 1491552.658 1873.77 4.85 281.20 26.77 1871.41 1789.61 -30.50 -10.67 -38.78 40.22 254.61 1.35 5970123.20 590670.98 N701941.191 W 14915 52.725 1966.13 6.24 282.06 92.36 1963.33 1881.53 -33.88 -8.87 -47.52 48.34 259.43 1.51 5970124.90 590662.22 N 70 19 41.208 W 14915 52.980 2058.26 6.50 280.72 92.13 2054.89 1973.09 -37.80 -6.85 -57.54 57.94 263.21 0.33 5970126.80 590652.17 N 70 1941.228 W 149 15 53.273 2153.25 6.37 280.92 94.99 2149.29 2067.49 -41.98 -4.85 -67.99 68.17 265.92 0.14 5970128.67 590641.70 N701941.248 W1491553.578 2245.73 5.06 284.09 92.48 2241.30 2159.50 -45.37 -2.89 -76.99 77.04 267.85 1.46 5970130.52 590632.68 N 70 1941.267 W 14915 53.841 Version DO 3.1 RT (d031 rL546) 3.1 RT-SP3.03 Plan V-111 (N-U)\V-111\V-111 PB1\V-111 PB1 Generated 9/15/2003 1 :48 PM Page 1 of 3 Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (II) (deg) (deg) (II) (II) (II) (II) (II) (II) (II) (deg) (degl100 II) (IIUS) (IIUS) 2339.83 2.86 279.64 94.10 2335.17 2253.37 -47.74 -1.48 -83.33 83.34 268.98 2.36 5970131.85 590626.32 N701941.281 W 1491554.026 2432.60 2.64 279.59 92.77 2427.84 2346.04 -49.58 -0.74 -87.72 87.72 269.52 0.24 5970132.54 590621.93 N 70 19 41.288 W 1491554.154 2525.85 1.40 286.00 93.25 2521.03 2439.23 -50.81 -0.07 -90.93 90.93 269.96 1.35 5970133.17 590618.71 N 70 19 41.295 W 14915 54.247 2618.84 0.52 320.88 92.99 2614.00 2532.20 -51.04 0.57 -92.29 92.29 270.36 1.09 5970133.80 590617.34 N 70 19 41.301 W 1491554.287 2682.69 0.42 312.45 63.85 2677.85 2596.05 -50.92 0.96 -92.64 92.65 270.59 0.19 5970134.18 590616.98 N 70 19 41.305 W 1491554.298 2703.23 0.41 310.50 20.54 2698.39 2616.59 -50.90 1.05 -92.75 92.76 270.65 0.08 5970134.27 590616.87 N 70 19 41 .306 W 1491554.301 2746.00 0.59 310.39 42.77 2741.16 2659.36 -50.86 1.30 -93.04 93.05 270.80 0.42 5970134.51 590616.58 N 70 19 41.308 W 1491554.309 2826.99 0.92 310.35 80.99 2822.14 2740.34 -50.74 1.99 -93.85 93.87 271.21 0.41 5970135.19 590615.76 N 70 19 41.315 W 1491554.333 2921.28 0.94 307.97 94.29 2916.42 2834.62 -50.60 2.95 -95.04 95.08 271.78 0.05 5970136.14 590614.56 N 70 19 41.325 W 1491554.367 3014.53 0.81 307.80 93.25 3009.66 2927.86 -50.50 3.83 -96.16 96.24 272.28 0.14 5970137.00 590613.43 N701941.333 W 1491554.400 3107.91 0.86 309.69 93.38 3103.03 3021 .23 -50.38 4.68 -97.22 97.34 272.76 0.06 5970137.84 590612.36 N 70 19 41.342 W 1491554.431 e 3199.89 0.82 298.93 91.98 3195.00 3113.20 -50.37 5.44 -98.33 98.48 273.17 0.18 5970138.59 590611.24 N 70 19 41.349 W 1491554.464 3294.17 0.76 295.23 94.28 3289.27 3207.47 -50.53 6.03 -99.49 99.67 273.47 0.08 5970139.17 590610.08 N 70 1941.355 W 1491554.497 3387.24 0.84 297.73 93.07 3382.33 3300.53 -50.69 6.61 -100.65 100.87 273.76 0.09 5970139.73 590608.91 N 70 1941.361 W 1491554.531 3481.14 0.91 299.01 93.90 3476.22 3394.42 -50.83 7.29 -101.91 102.17 274.09 0.08 5970140.40 590607.64 N 70 1941.367 W 1491554.568 3575.16 0.94 298.84 94.02 3570.23 3488.43 -50.96 8.03 -103.24 103.55 274.45 0.03 5970141.12 590606.30 N 70 19 41.375 W 1491554.607 3666.76 1.06 304.53 91.60 3661.81 3580.01 -51.02 8.87 -104.59 104.97 274.85 0.17 5970141.94 590604.94 N 70 19 41.383 W 14915 54.646 3759.37 1.12 308.10 92.61 3754.41 3672.61 -50.95 9.91 -106.01 106.47 275.34 0.10 5970142.97 590603.51 N 70 19 41.393 W 14915 54.688 3851.37 1.03 309.69 92.00 3846.39 3764.59 -50.80 11.00 -107.36 107.92 275.85 0.10 5970144.04 590602.15 N 70 19 41.404 W 1491554.727 3945.67 1.13 315.42 94.30 3940.68 3858.88 -50.53 12.20 -108.66 109.34 276.41 0.16 5970145.23 590600.83 N 70 19 41.416 W 1491554.765 3970.68 1.16 312.31 25.01 3965.68 3883.88 -50.44 12.55 -109.02 109.74 276.57 0.28 5970145.57 590600.47 N 70 19 41.419 W 1491554.776 4034.88 1.34 309.51 64.20 4029.86 3948.06 -50.27 13.46 -110.08 110.90 276.97 0.30 5970146.47 590599.39 N 70 19 41.428 W 1491554.807 4127.50 1.35 306.49 92.62 4122.46 4040.66 -50.12 14.80 -111.79 112.77 277.54 0.08 5970147.79 590597.67 N 70 19 41.441 W 1491554.857 4221.16 1.22 299.20 93.66 4216.10 4134.30 -50.15 15.94 -113.55 114.66 277.99 0.22 5970148.91 590595.90 N701941.452 W 1491554.908 4302.36 1.11 275.01 81.20 4297.28 4215.48 -50.61 16.43 -115.09 116.26 278.13 0.62 5970149.38 590594.35 N 70 19 41.457 W 1491554.953 4396.52 1.28 310.71 94.16 4391.42 4309.62 -50.92 17.20 -116.79 118.05 278.38 0.80 5970150.12 590592.64 N 70 19 41.465 W 1491555.003 4490.66 1.31 311.59 94.14 4485.54 4403.74 -50.65 18.60 -118.40 119.85 278.93 0.Q4 5970151.50 590591.02 N 70 19 41.478 W 1491555.049 4582.91 1.27 313.20 92.25 4577.76 4495.96 -50.35 20.00 -119.93 121.59 279.47 0.06 5970152.89 590589.47 N 70 19 41.492 W 1491555.094 4676.61 1.19 314.59 93.70 4671.44 4589.64 -50.00 21.39 -121.38 123.25 280.00 0.09 5970154.26 590588.00 N 70 19 41.506 W 1491555.136 4768.51 1.12 312.94 91.90 4763.32 4681.52 -49.68 22.67 -122.72 124.79 280.47 0.08 5970155.53 590586.65 N 70 19 41.519 W 1491555.176 e 4861.01 1.13 316.73 92.50 4855.80 4774.00 -49.34 23.95 -124.00 126.30 280.93 0.08 5970156.79 590585.35 N701941.531 W 1491555.213 4955.40 3.07 338.84 94.39 4950.13 4868.33 -47.69 26.99 -125.56 128.42 282.13 2.19 5970159.81 590583.76 N701941.561 W 149 1555.258 5048.19 6.44 348.97 92.79 5042.59 4960.79 -42.58 34.42 -127.45 132.01 285.11 3.73 5970167.21 590581.78 N701941.634 W 1491555.314 5141.18 9.68 355.07 92.99 5134.65 5052.85 -32.80 47.33 -129.12 137.52 290.13 3.60 5970180.10 590579.95 N 70 1941.761 W 149 1555.362 5233.84 13.55 357.84 92.66 5225.39 5143.59 -17.96 65.94 -130.20 145.94 296.86 4.22 5970198.70 590578.65 N701941.944 W 1491555.394 5326.65 18.26 357.85 92.81 5314.63 5232.83 2.59 91.35 -131.15 159.83 304.86 5.07 5970224.09 590577.38 N 70 1942.194 W 1491555.422 5420.17 22.69 356.70 93.52 5402.22 5320.42 28.81 124.02 -132.74 181.66 313.05 4.76 5970256.73 590575.40 N 70 19 42.515 W 1491555.468 5513.45 26.75 356.89 93.28 5486.93 5405.13 59.90 162.96 -134.92 211.56 320.38 4.35 5970295.64 590572.76 N 70 19 42.898 W 1491555.532 5606.63 25.89 356.44 93.18 5570.45 5488.65 92.78 204.20 -137.32 246.08 326.08 0.95 5970336.85 590569.86 N 70 19 43.304 W 1491555.602 5700.28 26.16 359.86 93.65 5654.61 5572.81 126.11 245.25 -138.64 281.73 330.52 1.63 5970377.88 590568.04 N 70 19 43.708 W 1491555.640 5793.84 26.37 4.64 93.56 5738.52 5656.72 161.32 286.59 -137.01 317.66 334.45 2.27 5970419.23 590569.17 N 70 19 44.114 W 149 15 55.593 5886.36 26.35 12.49 92.52 5821 .44 5739.64 198.36 327.13 -130.90 352.35 338.19 3.76 5970459.83 590574.78 N 70 19 44.513 W 14915 55.415 5979.56 27.65 18.37 93.20 5904.50 5822.70 238.45 367.86 -119.61 386.82 341.99 3.18 5970500.69 590585.58 N 70 19 44.913 W 1491555.085 6034.93 29.72 22.10 55.37 5953.08 5871.28 264.27 392.77 -110.40 407.99 344.30 4.94 5970525.71 590594.49 N 70 19 45.158 W 14915 54.816 Version DO 3.1 RT (d031rt_546) 3.1RT-SP3.03 Plan V-111 (N-U)\V-111\V-111PB1\V-111PB1 Generated 9/15/2003 1 :48 PM Page 2 of 3 Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (ltUS) 6072.52 30.33 22.64 37.59 5985.62 5903.82 282.70 410.17 -103.24 422.96 345.87 1.77 5970543.19 590601.44 N 70 19 45.330 W 1491554.607 6165.43 34.66 28.73 92.91 6063.99 5982.19 332.05 455.02 -81.49 462.26 349.85 5.84 5970588.30 590622.64 N 70 19 45.771 W 1491553.972 6258.12 39.96 34.96 92.69 6137.71 6055.91 388.12 502.57 -51.74 505.23 354.12 7.01 5970636.21 590651.82 N 70 19 46.238 W 1491553.103 6353.45 43.07 40.23 95.33 6209.11 6127.31 451.12 552.54 -13.15 552.70 358.64 4.90 5970686.63 590689.79 N 70 1946.730 W 1491551.977 6447.02 47.83 45.79 93.57 6274.75 6192.95 516.87 601.16 32.38 602.03 3.08 6.62 5970735.79 590734.73 N 70 19 47.208 W 1491550.648 6539.04 52.54 50.79 92.02 6333.68 6251.88 585.26 648.07 85.17 653.64 7.49 6.60 5970783.33 590786.95 N 70 19 47.669 W 1491549.106 6630.00 57.82 54.41 90.96 6385.61 6303.81 655.93 693.34 144.50 708.23 11.77 6.66 5970829.31 590845.72 N 70 19 48.114 W 1491547.374 6725.36 62.34 57.26 95.36 6433.17 6351.37 732.57 739.69 212.89 769.72 16.06 5.40 5970876.48 590913.53 N 70 19 48.570 W 1491545.378 6817.63 63.08 58.50 92.27 6475.48 6393.68 807.50 783.29 282.34 832.62 19.82 1.44 5970920.91 590982.44 N 70 19 48.999 W 1491543.350 6910.91 66.56 59.92 93.28 6515.16 6433.36 883.82 826.48 354.85 899.44 23.24 3.98 5970964.97 591054.42 N 70 19 49.424 W 1491541.233 7004.20 70.63 60.18 93.29 6549.20 6467.40 961.78 869.83 430.09 970.35 26.31 4.37 5971009.22 591129.12 N 70 19 49.850 W1491539.036 - 7096.88 71. 77 61.62 92.68 6579.07 6497.27 1039.97 912.49 506.75 1043.76 29.05 1.92 5971052.81 591205.25 N 70 19 50.270 W 1491536.798 7189.25 71.65 61.63 92.37 6608.06 6526.26 1117.63 954.17 583.92 1118.66 31.46 0.13 5971095.41 591281.90 N 70 19 50.680 W 1491534.545 7283.07 71.75 62.11 93.82 6637.52 6555.72 1196.32 996.17 662.47 1196.34 33.62 0.50 5971138.35 591359.94 N 70 19 51.093 W 1491532.251 7376.77 71.83 61.84 93.70 6666.80 6585.00 1274.87 1037.99 741.04 1275.37 35.52 0.29 5971181.12 591437.99 N 70 19 51.504 W 1491529.957 7470.34 71.77 61.96 93.57 6696.02 6614.22 1353.38 1079.86 819.45 1355.58 37.19 0.14 5971223.93 591515.88 N 70 19 51.915 W 1491527.667 7501.49 71.88 62.48 31.15 6705.74 6623.94 1379.44 1093.65 845.64 1382.45 37.71 1.62 5971238.03 591541.89 N 70 19 52.051 W 1491526.903 7532.45 71.92 62.62 30.96 6715.36 6633.56 1405.27 1107.22 871.75 1409.21 38.21 0.45 5971251.91 591567.84 N 70 19 52.184 W 1491526.140 7564.32 71.95 62.36 31.87 6725.24 6643.44 1431.89 1121.21 898.62 1436.89 38.71 0.78 5971266.23 591594.54 N 70 19 52.322 W 1491525.356 7635.00 71.95 62.36 70.68 6747.14 6665.34 1490.98 1152.39 958.16 1498.69 39.74 0.00 5971298.12 591653.69 N 70 19 52.629 W 1491523.617 Leqal Description: Northinq (V) [nUS] Eastinq (X) [nus] Surface: 4885 FSL 1591 FEL S11 T11 N R11 E UM 5970134.34 590709.62 BHL: 757 FSL 631 FEL S2 T11 N R11 E UM 5971298.12 591653.69 e Version DO 3.1 RT ( d031 rt_546 ) 3.1 RT-SP3.03 Plan V-111 (N-U)\V-111\V-111 PB1\V-111 PB1 Generated 9/15/2003 1:48 PM Page 3 of 3 V-111 PB2 Survey Report Schlum ruer Report Date: 29-Jul-03 Survey I DLS Computation Method: Minimum Curvature I Lubinski Client: BP Exploration Alaska Vertical Section Azimuth: 33.930' Field: Prudhoe Bay Unit - WOA Vertical Section Drigin: N 0.000 ft, E 0.000 ft Structure I Slot: V-Pad I Plan V-111 (N-U) TVD Reference Datum: KB Well: V-111 TVD Reference Elevation: 81.80 ft relative to MSL Borehole: V-111PB2 Sea Bed I Ground Level Elevation: 53.30 ft relative to MSL UWVAPI#: 500292316171 Magnetic Declination: 25.489' Survey Name I Date: V-111 PB2 / July 29, 2003 Total Field Strength: 57519.024 nT Tort I AHD / DDII ERD ratio: 129.439' / 1456.09 ft / 5.313 / 0.220 Magnetic Dip: 80.781' Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feet Declination Date: July 29, 2003 e Location LatILong: N 701941.296, W 14915 51.593 Magnetic Declination Model: BGGM 2003 Location Grid NIE Y/X: N 5970134.340 ftUS, E 590709.620 ftUS North Reference: True North Grid Convergence Angle: +0.69273635' Total Corr Mag North -> True North: +25.489' Grid Scale Factor: 0.99990935 Local Coordinates Referenced To: Well Head Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (ltUS) 0.00 0.00 0.00 0.00 0.00 -81.80 0.00 0.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70 19 41.296 W 1491551.593 100.00 0.50 91.31 100.00 100.00 18.20 0.24 -0.01 0.44 0.44 91.31 0.50 5970134.34 590710.06 N 70 19 41.295 W 1491551.580 200.00 0.65 90.96 100.00 199.99 118.19 0.78 -0.03 1.44 1.44 91.17 0.15 5970134.33 590711 .06 N 70 19 41 .295 W 14915 51.551 300.00 0.76 93.40 100.00 299.99 218.19 1.42 -0.08 2.67 2.67 91.68 0.11 5970134.29 590712.29 N 70 19 41.295 W 14915 51.515 400.00 1.06 96.98 100.00 399.97 318.17 2.18 -0.23 4.25 4.26 93.10 0.31 5970134.16 590713.87 N 70 19 41.293 W 14915 51.469 500.00 1.31 101.81 100.00 499.95 418.15 3.03 -0.58 6.29 6.31 95.24 0.27 5970133.84 590715.91 N 70 19 41.290 W 1491551.410 600.00 1.73 103.02 100.00 599.92 518.12 4.00 -1.15 8.88 8.95 97.39 0.42 5970133.30 590718.51 N 70 1941.284 W 1491551.334 700.00 1.72 100.58 100.00 699.87 618.07 5.13 -1.77 11.82 11.95 98.50 0.07 5970132.72 590721.46 N 70 19 41.278 W 1491551.248 800.00 1.84 104.04 100.00 799.82 718.02 6.27 -2.43 14.85 15.05 99.29 0.16 5970132.09 590724.50 N 70 19 41.272 W 14915 51.159 900.00 1.42 119.85 100.00 899.78 817.98 6.91 -3.44 17.49 17.82 101.12 0.61 5970131.11 590727.14 N 70 19 41.262 W 149 1551.083 1000.00 0.75 196.62 100.00 999.77 917.97 6.37 -4.68 18.37 18.96 104.29 1.45 5970129.88 590728.05 N 70 19 41.250 W 14915 51.057 1100.00 1.85 248.29 100.00 1099.74 1017.94 4.41 -5.91 16.69 17.70 1 09.49 1.50 5970128.64 590726.38 N 70 19 41 .237 W 14915 51.106 e 1200.00 3.15 261.17 100.00 1199.65 1117.85 1.22 -6.92 12.47 14.27 119.04 1.41 5970127.57 590722.17 N 70 19 41.227 W 1491551.229 1300.00 3.89 266.10 100.00 1299.46 1217.66 -2.73 -7.58 6.37 9.90 139.93 0.80 5970126.84 590716.08 N 70 1941.221 W 1491551.407 1400.00 4.17 263.62 100.00 1399.21 1317.41 -7.16 -8.21 -0.62 8.24 184.35 0.33 5970126.12 590709.09 N 70 1941.215 W1491551.611 1500.00 4.24 265.50 100.00 1498.94 1417.14 -11.81 -8.91 -7.92 11.92 221.66 0.15 5970125.34 590701.81 N 70 19 41 .208 W 1491551.824 1600.00 4.23 261.68 100.00 1598.67 1516.87 -16.59 -9.73 -15.26 18.10 237.48 0.28 5970124.43 590694.48 N 70 19 41.200 W 1491552.038 1700.00 4.70 264.43 100.00 1698.37 1616.57 -21.67 -10.66 -22.98 25.34 245.12 0.52 5970123.40 590686.77 N 70 19 41.191 W 1491552.264 1800.00 5.76 267.76 100.00 1797.95 1716.15 -27.24 -11.25 -32.08 33.99 250.67 1.10 5970122.70 590677.68 N 70 19 41.185 W 14915 52.529 1847.00 5.08 277.98 47.00 1844.74 1762.94 -29.55 -11.06 -36.49 38.13 253.14 2.51 5970122.84 590673.27 N701941.187 W 14915 52.658 1873.77 4.85 281.20 26.77 1871.41 1789.61 -30.50 -10.67 -38.78 40.22 254.61 1.35 5970123.20 590670.98 N701941.191 W 1491552.725 1966.13 6.24 282.06 92.36 1963.33 1881.53 -33.88 -8.87 -47.52 48.34 259.43 1.51 5970124.90 590662.22 N 70 19 41.208 W 1491552.980 2058.26 6.50 280.72 92.13 2054.89 1973.09 -37.80 -6.85 -57.54 57.94 263.21 0.33 5970126.80 590652.17 N 70 19 41.228 W 1491553.273 2153.25 6.37 280.92 94.99 2149.29 2067.49 -41.98 -4.85 -67.99 68.17 265.92 0.14 5970128.67 590641.70 N 70 19 41.248 W 149 1553.578 2245.73 5.06 284.09 92.48 2241 .30 2159.50 -45.37 -2.89 -76.99 77.04 267.85 1.46 5970130.52 590632.68 N 70 19 41.267 W 149 15 53.841 Version DO 3.1 RT (d031 rt_546) 3.1 RT-SP3.03 Plan V-111 (N-U)\V-111\V-111 PB2\V-111 PB2 Generated 9/15/2003 1 :48 PM Page 1 of 3 ,. .. Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Comments Depth Length Section Azimuth (II) (deg) (deg) (II) (II) (II) (II) (II) (II) (II) (deg) (deg/100 II) (IIUS) (IIUS) 2339.83 2.86 279.64 94.10 2335.17 2253.37 -47.74 -1.48 -83.33 83.34 268.98 2.36 5970131.85 590626.32 N 70 19 41.281 W 14915 54.026 2432.60 2.64 279.59 92.77 2427.84 2346.04 -49.58 -0.74 -87.72 87.72 269.52 0.24 5970132.54 590621.93 N 70 19 41.288 W 14915 54.154 2525.85 1.40 286.00 93.25 2521.03 2439.23 -50.81 -0.07 -90.93 90.93 269.96 1.35 5970133.17 590618.71 N 70 19 41.295 W 14915 54.247 2618.84 0.52 320.88 92.99 2614.00 2532.20 -51.04 0.57 -92.29 92.29 270.36 1.09 5970133.80 590617.34 N701941.301 W 1491554.287 2682.69 0.42 312.45 63.85 2677.85 2596.05 -50.92 0.96 -92.64 92.65 270.59 0.19 5970134.18 590616.98 N 70 19 41.305 W 14915 54.298 2703.23 0.41 310.50 20.54 2698.39 2616.59 -50.90 1.05 -92.75 92.76 270.65 0.08 5970134.27 590616.87 N 70 19 41.306 W 1491554.301 2746.00 0.59 310.39 42.77 2741.16 2659.36 -50.86 1.30 -93.04 93.05 270.80 0.42 5970134.51 590616.58 N 70 19 41.308 W 149 1554.309 2826.99 0.92 310.35 80.99 2822.14 2740.34 -50.74 1.99 -93.85 93.87 271.21 0.41 5970135.19 590615.76 N 70 19 41.315 W 14915 54.333 2921.28 0.94 307.97 94.29 2916.42 2834.62 -50.60 2.95 -95.04 95.08 271.78 0.05 5970136.14 590614.56 N 70 19 41.325 W 14915 54.367 3014.53 0.81 307.80 93.25 3009.66 2927.86 -50.50 3.83 -96.16 96.24 272.28 0.14 5970137.00 590613.43 N 70 19 41.333 W 14915 54.400 3107.91 0.86 309.69 93.38 3103.03 3021.23 -50.38 4.68 -97.22 97.34 272.76 0.06 5970137.84 590612.36 N701941.342 W1491554.431 e 3199.89 0.82 298.93 91.98 3195.00 3113.20 -50.37 5.44 -98.33 98.48 273.17 0.18 5970138.59 590611.24 N 70 1941.349 W 149 15 54.464 3294.17 0.76 295.23 94.28 3289.27 3207.47 -50.53 6.03 -99.49 99.67 273.47 0.08 5970139.17 590610.08 N 70 19 41.355 W 1491554.497 3387.24 0.84 297.73 93.07 3382.33 3300.53 -50.69 6.61 -100.65 100.87 273.76 0.09 5970139.73 590608.91 N 70 19 41.361 W 1491554.531 3481.14 0.91 299.01 93.90 3476.22 3394.42 -50.83 7.29 -101.91 102.17 274.09 0.08 5970140.40 590607.64 N 70 19 41.367 W 1491554.568 3575.16 0.94 298.84 94.02 3570.23 3488.43 -50.96 8.03 -103.24 103.55 274.45 0.03 5970141.12 590606.30 N 70 19 41.375 W 14915 54.607 3666.76 1.06 304.53 91.60 3661.81 3580.01 -51.02 8.87 -104.59 104.97 274.85 0.17 5970141.94 590604.94 N 70 19 41.383 W 14915 54.646 3759.37 1.12 308.10 92.61 3754.41 3672.61 -50.95 9.91 -106.01 106.47 275.34 0.10 5970142.97 590603.51 N 70 19 41.393 W 14915 54.688 3851.37 1.03 309.69 92.00 3846.39 3764.59 -50.80 11.00 -107.36 107.92 275.85 0.10 5970144.04 590602.15 N 70 19 41.404 W 1491554.727 3945.67 1.13 315.42 94.30 3940.68 3858.88 -50.53 12.20 -108.66 109.34 276.41 0.16 5970145.23 590600.83 N 70 19 41.416 W 14915 54.765 3970.68 1.16 312.31 25.01 3965.68 3883.88 -50.44 12.55 -109.02 109.74 276.57 0.28 5970145.57 590600.47 N 70 19 41.419 W 14915 54.776 4034.88 1.34 309.51 64.20 4029.86 3948.06 -50.27 13.46 -110.08 110.90 276.97 0.30 5970146.47 590599.39 N 70 19 41.428 W 14915 54.807 4127.50 1.35 306.49 92.62 4122.46 4040.66 -50.12 14.80 -111.79 112.77 277.54 0.08 5970147.79 590597.67 N 70 19 41.441 W 1491554.857 4221.16 1.22 299.20 93.66 4216.10 4134.30 -50.15 15.94 -113.55 114.66 277.99 0.22 5970148.91 590595.90 N 70 19 41.452 W 1491554.908 4302.36 1.11 275.01 81.20 4297.28 4215.48 -50.61 16.43 -115.09 116.26 278.13 0.62 5970149.38 590594.35 N 70 19 41.457 W 14915 54.953 4396.52 1.28 310.71 94.16 4391.42 4309.62 -50.92 17.20 -116.79 118.05 278.38 0.80 5970150.12 590592.64 N 70 19 41.465 W 1491555.003 4490.66 1.31 311.59 94.14 4485.54 4403.74 -50.65 18.60 -118.40 119.85 278.93 0.04 5970151.50 590591.02 N 70 19 41.478 W 1491555.049 4582.91 1.27 313.20 92.25 4577.76 4495.96 -50.35 20.00 -119.93 121.59 279.47 0.06 5970152.89 590589.47 N 70 19 41.492 W 1491555.094 4676.61 1.19 314.59 93.70 4671 .44 4589.64 -50.00 21.39 -121.38 123.25 280.00 0.09 5970154.26 590588.00 N 70 1941.506 W 1491555.136 4768.51 1.12 312.94 91.90 4763.32 4681.52 -49.68 22.67 -122.72 124.79 280.47 0.08 5970155.53 590586.65 N 70 1941.519 W 1491555.176 e 4861.01 1.13 316.73 92.50 4855.80 4774.00 -49.34 23.95 -124.00 126.30 280.93 0.08 5970156.79 590585.35 N 70 19 41.531 W 1491555.213 4955.40 3.07 338.84 94.39 4950.13 4868.33 -47.69 26.99 -125.56 128.42 282.13 2.19 5970159.81 590583.76 N 70 19 41.561 W 1491555.258 5048.19 6.44 348.97 92.79 5042.59 4960.79 -42.58 34.42 -127.45 132.01 285.11 3.73 5970167.21 590581.78 N 70 19 41.634 W 1491555.314 5141.18 9.68 355.07 92.99 5134.65 5052.85 -32.80 47.33 -129.12 137.52 290.13 3.60 5970180.10 590579.95 N 70 19 41.761 W 14915 55.362 5233.84 13.55 357.84 92.66 5225.39 5143.59 -17.96 65.94 -130.20 145.94 296.86 4.22 5970198.70 590578.65 N 70 19 41.944 W 14915 55.394 5326.65 18.26 357.85 92.81 5314.63 5232.83 2.59 91.35 -131.15 159.83 304.86 5.07 5970224.09 590577.38 N 70 19 42.194 W 14915 55.422 5420.17 22.69 356.70 93.52 5402.22 5320.42 28.81 124.02 -132.74 181.66 313.05 4.76 5970256.73 590575.40 N 70 19 42.515 W 1491555.468 5513.45 26.75 356.89 93.28 5486.93 5405.13 59.90 162.96 -134.92 211.56 320.38 4.35 5970295.64 590572.76 N 70 19 42.898 W 149 1555.532 5606.63 25.89 356.44 93.18 5570.45 5488.65 92.78 204.20 -137.32 246.08 326.08 0.95 5970336.85 590569.86 N 70 19 43.304 W 1491555.602 5700.28 26.16 359.86 93.65 5654.61 5572.81 126.11 245.25 -138.64 281.73 330.52 1.63 5970377.88 590568.04 N 70 1943.708 W 1491555.640 5793.84 26.37 4.64 93.56 5738.52 5656.72 161.32 286.59 -137.01 317.66 334.45 2.27 5970419.23 590569.17 N 70 19 44.114 W 1491555.593 5886.36 26.35 12.49 92.52 5821.44 5739.64 198.36 327.13 -130.90 352.35 338.19 3.76 5970459.83 590574.78 N 70 19 44.513 W 149 1555.415 5979.56 27.65 18.37 93.20 5904.50 5822.70 238.45 367.86 -119.61 386.82 341.99 3.18 5970500.69 590585.58 N 70 19 44.913 W 14915 55.085 6034.93 29.72 22.10 55.37 5953.08 5871.28 264.27 392.77 -110.40 407.99 344.30 4.94 5970525.71 590594.49 N 70 19 45.158 W 1491554.816 Version DO 3.1 RT (d031 rC546) 3.1 RT-SP3.03 Plan V-111 (N-U)\V-111\V-111 PB2\V-111 PB2 Generated 9/15/2003 1 :48 PM Page 2 of 3 Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100ft) (ltUS) (flUS) 6072.52 30.33 22.64 37.59 5985.62 5903.82 282.70 410.17 -103.24 422.96 345.87 1.77 5970543.19 590601.44 N 70 19 45.330 W 1491554.607 6165.43 34.66 28.73 92.91 6063.99 5982.19 332.05 455.02 -81.49 462.26 349.85 5.84 5970588.30 590622.64 N 70 19 45.771 W 14915 53.972 6229.42 37.49 32.22 63.99 6115.71 6033.91 369.65 487.46 -62.36 491.43 352.71 5.46 5970620.96 590641.38 N 70 19 46.090 W 14915 53.414 6261.06 35.91 31.69 31.64 6141.07 6059.27 388.54 503.50 -52.35 506.21 354.06 5.09 5970637.12 590651.19 N701946.247 W1491553.121 6291.38 35.49 31.14 30.32 6165.70 6083.90 406.22 518.60 -43.13 520.39 355.25 1.74 5970652.33 590660.23 N 70 19 46.396 W 149 15 52.852 6324.44 36.74 32.58 33.06 6192.40 6110.60 425.69 535.15 -32.84 536.15 356.49 4.57 5970669.00 590670.32 N 70 19 46.559 W 1491552.552 6355.57 37.15 34.34 31.13 6217.28 6135.48 444.40 550.75 -22.52 551.21 357.66 3.64 5970684.73 590680.44 N 70 19 46.712 W 1491552.251 6386.06 38.19 37.59 30.49 6241.42 6159.62 463.01 565.83 -11.58 565.94 358.83 7.35 5970699.93 590691.20 N 70 1946.860 W 14915 51.931 6418.43 39.76 40.43 32.37 6266.59 6184.79 483.29 581.64 1.24 581.64 0.12 7.35 5970715.90 590703.83 N701947.016 W1491551.557 6449.01 41.55 42.51 30.58 6289.79 6207.99 503.03 596.56 14.44 596.73 1.39 7.34 5970730.97 590716.84 N 70 19 47.163 W 1491551.172 6480.35 43.55 44.51 31.34 6312.87 6231.07 523.93 611.92 29.03 612.61 2.72 7.70 5970746.51 590731.25 N701947.314 W1491550.745 e 6508.83 44.87 46.25 28.48 6333.29 6251.49 543.39 625.87 43.17 627.35 3.95 6.29 5970760.62 590745.21 N 70 19 47.451 W 1491550.333 6540.50 46.31 48.33 31.67 6355.45 6273.65 565.40 641 .21 59.79 643.99 5.33 6.53 5970776.16 590761.65 N 70 19 47.602 W 1491549.847 6570.07 47.68 50.01 29.57 6375.62 6293.82 586.26 655.34 76.16 659.75 6.63 6.22 5970790.49 590777.84 N 70 19 47.741 W 1491549.370 6601 .93 49.81 51.88 31.86 6396.63 6314.83 609.16 670.42 94.76 677.09 8.04 8.01 5970805.80 590796.26 N 70 19 47.889 W 149 1548.827 6629.68 51.52 51.40 27.75 6414.22 6332.42 629.60 683.75 111.58 692.79 9.27 6.31 5970819.32 590812.92 N 70 19 48.020 W 1491548.335 6663.82 53.76 50.81 34.14 6434.93 6353.13 655.53 700.78 132.70 713.24 10.72 6.70 5970836.61 590833.83 N 70 19 48.188 W 1491547.719 6694.57 56.19 51.32 30.75 6452.58 6370.78 679.59 716.61 152.29 732.61 12.00 8.02 5970852.67 590853.22 N 70 19 48.343 W 1491547.147 6725.71 58.97 50.26 31.14 6469.27 6387.47 704.74 733.22 172.65 753.28 13.25 9.38 5970869.53 590873.38 N 70 19 48.507 W 149 1546.552 6757.53 60.88 51.34 31.82 6485.22 6403.42 731.09 750.62 193.99 775.29 14.49 6.68 5970887.19 590894.50 N 70 19 48.678 W 1491545.929 6787.65 62.98 53.02 30.12 6499.39 6417.59 756.33 766.92 214.98 796.48 15.66 8.53 5970903.73 590915.30 N 70 19 48.838 W 1491545.316 6818.62 65.54 53.85 30.97 6512.84 6431.04 782.62 783.53 237.39 818.70 16.86 8.61 5970920.61 590937.50 N 70 19 49.001 W 149 15 44.662 6853.06 69.25 54.59 34.44 6526.08 6444.28 812.43 802.12 263.18 844.19 18.17 10.95 5970939.50 590963.06 N 70 19 49.184 W1491543.909 6880.66 71.78 55.28 27.60 6535.28 6453.48 836.72 817.06 284.48 865.17 19.20 9.46 5970954.71 590984.17 N 70 19 49.331 W 1491543.287 6912.20 74.43 55.20 31.54 6544.45 6462.65 864.83 834.27 309.27 889.75 20.34 8.41 5970972.21 591008.75 N 70 19 49.500 W 1491542.564 6943.59 78.09 56.83 31.39 6551.90 6470.10 893.08 851.30 334.55 914.68 21.45 12.70 5970989.55 591033.82 N 70 19 49.668 W 1491541.825 6974.58 78.01 58.05 30.99 6558.32 6476.52 920.88 867.62 360.10 939.38 22.54 3.86 5971006.17 591059.17 N 70 19 49.828 W 1491541.079 7005.32 77.71 59.03 30.74 6564.79 6482.99 948.21 883.31 385.73 963.86 23.59 3.27 5971022.16 591084.61 N 70 19 49.983 W 1491540.331 7035.91 77.98 58.73 30.59 6571.23 6489.43 975.32 898.76 411.34 988.42 24.59 1.30 5971037.92 591110.02 N 70 19 50.135 W1491539.583 e 7067.61 78.12 57.97 31.70 6577.79 6495.99 1003.56 915.03 437.74 1014.35 25.57 2.39 5971054.51 591136.22 N 70 19 50.295 W 149 1538.813 7099.50 77.99 58.68 31.89 6584.39 6502.59 1031.97 931.42 464.29 1040.72 26.50 2.22 5971071.22 591162.57 N 70 19 50.456 W 1491538.037 7142.16 78.18 58.82 42.66 6593.20 6511.40 1069.86 953.07 499.97 1076.25 27.68 0.55 5971093.30 591197.99 N 70 19 50.669 W 1491536.996 7210.00 78.18 59.04 67.84 6607.09 6525.29 1130.04 987.34 556.85 1133.54 29.42 0.32 5971128.25 591254.44 N 70 19 51.006 W 149 15 35.335 Leaal Description: Northina (Y) [ftUSl Eastina (X) [nUS1 Surface: 4885 FSL 1591 FEL S11 T11 N R11E UM 5970134.34 590709.62 BHL: 592 FSL 1033 FEL S2 T11N R11 E UM 5971128.25 591254.44 Version DO 3.1RT (do31 rt_546) 3.1 RT-SP3.03 Plan V-111 (N-U)\V-111\V-111 PB2\V-111 PB2 Generated 9/15/2003 1 :48 PM Page 3 of 3 ~ .. " V-111 PB3 Survey Report Schlu Report Date: 4-Aug-03 Survey 1 DLS Computation Method: Minimum Curvature 1 Lubinski Client: BP Exploration Alaska Vertical Section Azimuth: 33.930' Field: Prudhoe Bay Unit - WOA Vertical Section Origin: N 0.000 ft, E 0.000 ft Structure 1 Slot: V-Pad 1 Plan V-111 (N-U) TVD Reference Datum: KB Well: V-111 TVD Reference Elevation: 81.80 ft relative to MSL Borehole: V-111PB3 Sea Bed 1 Ground Level Elevation: 53.30 ft relative to MSL UWVAPI#: 500292316172 Magnetic Declination: 25.483' Survey Name 1 Date: V-111 PB31 August 4, 2003 Total Field Strength: 57519.269 nT Tort 1 AHD 1 DDI! ERD ratio: 124.642' 11819.60 ft 15.402/ 0.268 Magnetic Dip: 80.781' Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feet Declination Date: August 04, 2003 e Location LatILong: N 70 1941.296, W 14915 51.593 Magnetic Declination Model: BGGM 2003 Location Grid WE Y IX: N 5970134.340 ftUS, E 590709.620 ftUS North Reference: True North Grid Convergence Angle: +0.69273635' Total Corr Mag North -> True North: +25.483' Grid Scale Factor: 0.99990935 Local Coordinates Referenced To: Well Head Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (II) (deg) (deg) (II) (II) (II) (II) (II) (II) (II) (deg) (deg/100 II) (IIUS) (IIUS) 0.00 0.00 0.00 0.00 0.00 -81.80 0.00 0.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N701941.296 W 1491551.593 100.00 0.50 91.31 100.00 100.00 18.20 0.24 -0.01 0.44 0.44 91.31 0.50 5970134.34 590710.06 N 70 19 41.295 W 1491551.580 200.00 0.65 90.96 100.00 199.99 118.19 0.78 -0.Q3 1.44 1.44 91.17 0.15 5970134.33 590711.06 N 70 19 41.295 W 14915 51.551 300.00 0.76 93.40 100.00 299.99 218.19 1.42 -0.08 2.67 2.67 91.68 0.11 5970134.29 590712.29 N 70 19 41.295 W 14915 51.515 400.00 1.06 96.98 100.00 399.97 318.17 2.18 -0.23 4.25 4.26 93.10 0.31 5970134.16 590713.87 N 70 19 41.293 W 1491551.469 500.00 1.31 101.81 100.00 499.95 418.15 3.03 -0.58 6.29 6.31 95.24 0.27 5970133.84 590715.91 N 70 19 41.290 W 1491551.410 600.00 1.73 103.02 100.00 599.92 518.12 4.00 -1.15 8.88 8.95 97.39 0.42 5970133.30 590718.51 N701941.284 W1491551.334 700.00 1.72 100.58 100.00 699.87 618.07 5.13 -1.77 11.82 11.95 98.50 0.Q7 5970132.72 590721 .46 N701941.278 W1491551.248 800.00 1.84 104.04 100.00 799.82 718.02 6.27 -2.43 14.85 15.05 99.29 0.16 5970132.09 590724.50 N 70 19 41.272 W 1491551.159 900.00 1.42 119.85 100.00 899.78 817.98 6.91 -3.44 17.49 17.82 101.12 0.61 5970131.11 590727.14 N 70 1941.262 W 149 1551.083 1000.00 0.75 196.62 100.00 999.77 917.97 6.37 -4.68 18.37 18.96 104.29 1.45 5970129.88 590728.05 N 70 19 41.250 W 1491551.057 1100.00 1.85 248.29 100.00 1099.74 1017.94 4.41 -5.91 16.69 17.70 1 09.49 1.50 5970128.64 590726.38 N701941.237 W 1491551.106 e 1200.00 3.15 261.17 100.00 1199.65 1117.85 1.22 -6.92 12.47 14:27 119.04 1.41 5970127.57 590722.17 N 70 19 41.227 W 1491551.229 1300.00 3.89 266.10 100.00 1299.46 1217.66 -2.73 -7.58 6.37 9.90 139.93 0.80 5970126.84 590716.08 N 70 19 41.221 W 1491551.407 1400.00 4.17 263.62 100.00 1399.21 1317.41 -7.16 -8.21 -0.62 8.24 184.35 0.33 5970126.12 590709.09 N 70 19 41 .215 W 1491551.611 1500.00 4.24 265.50 100.00 1498.94 1417.14 -11.81 -8.91 -7.92 11.92 221.66 0.15 5970125.34 590701.81 N 70 19 41.208 W 14915 51.824 1600.00 4.23 261.68 100.00 1598.67 1516.87 -16.59 -9.73 -15.26 18.10 237.48 0.28 5970124.43 590694.48 N 70 19 41.200 W 14915 52.038 1700.00 4.70 264.43 100.00 1698.37 1616.57 -21.67 -10.66 -22.98 25.34 245.12 0.52 5970123.40 590686.77 N 70 19 41.191 W 14915 52.264 1800.00 5.76 267.76 100.00 1797.95 1716.15 -27.24 -11.25 -32.08 33.99 250.67 1.10 5970122.70 590677.68 N701941.185 W 14915 52.529 1847.00 5.08 277.98 47.00 1844.74 1762.94 -29.55 -11.06 -36.49 38.13 253.14 2.51 5970122.84 590673.27 N701941.187 W 14915 52.658 1873.77 4.85 281.20 26.77 1871.41 1789.61 -30.50 -10.67 -38.78 40.22 254.61 1.35 5970123.20 590670.98 N 70 19 41.191 W 1491552.725 1966.13 6.24 282.06 92.36 1963.33 1881.53 -33.88 -8.87 -47.52 48.34 259.43 1.51 5970124.90 590662.22 N 70 19 41.208 W 14915 52.980 2058.26 6.50 280.72 92.13 2054.89 1973.09 -37.80 -6.85 -57.54 57.94 263.21 0.33 5970126.80 590652.17 N 70 19 41.228 W 14915 53.273 2153.25 6.37 280.92 94.99 2149.29 2067.49 -41.98 -4.85 -67.99 68.17 265.92 0.14 5970128.67 590641.70 N 70 19 41.248 W 14915 53.578 2245.73 5.06 284.09 92.48 2241 .30 2159.50 -45.37 -2.89 -76.99 77.04 267.85 1.46 5970130.52 590632.68 N 70 19 41.267 W 14915 53.841 Version DO 3.1 RT (d031 rt_546) 3.1 RT-SP3.03 Plan V-111 (N-U)\V-111\V-111PB3\V-111PB3 Generated 9/15/2003 1 :48 PM Page 1 of 3 ~ Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (ltUS) 2339.83 2.86 279.64 94.10 2335.17 2253.37 -47.74 -1.48 -83.33 83.34 268.98 2.36 5970131.85 590626.32 N 70 19 41.281 W 14915 54.026 2432.60 2.64 279.59 92.77 2427.84 2346.04 -49.58 -0.74 -87.72 87.72 269.52 0.24 5970132.54 590621.93 N 70 19 41.288 W 14915 54.154 2525.85 1.40 286.00 93.25 2521.03 2439.23 -50.81 -0.07 -90.93 90.93 269.96 1.35 5970133.17 590618.71 N 70 19 41.295 W 14915 54.247 2618.84 0.52 320.88 92.99 2614.00 2532.20 -51.04 0.57 -92.29 92.29 270.36 1.09 5970133.80 590617.34 N 70 19 41.301 W 1491554.287 2682.69 0.42 312.45 63.85 2677.85 2596.05 -50.92 0.96 -92.64 92.65 270.59 0.19 5970134.18 590616.98 N 70 19 41.305 W 14915 54.298 2703.23 0.41 310.50 20.54 2698.39 2616.59 -50.90 1.05 -92.75 92.76 270.65 0.08 5970134.27 590616.87 N 70 1941.306 W 149 1554.301 2746.00 0.59 310.39 42.77 2741.16 2659.36 -50.86 1.30 -93.04 93.05 270.80 0.42 5970134.51 590616.58 N 70 19 41.308 W 14915 54.309 2826.99 0.92 310.35 80.99 2822.14 2740.34 -50.74 1.99 -93.85 93.87 271.21 0.41 5970135.19 590615.76 N 70 19 41.315 W 14915 54.333 2908.24 2.32 358.81 81.25 2903.36 2821.56 -49.32 4.05 -94.38 94.47 272.46 2.27 5970137.25 590615.20 N 70 19 41.335 W 14915 54.348 3001 .66 6.17 16.03 93.42 2996.51 2914.71 -42.99 10.77 -93.04 93.66 276.60 4.30 5970143.99 590616.47 N 70 19 41.402 W 14915 54.309 3094.38 8.41 20.81 92.72 3088.48 3006.68 -31.65 21.90 -89.25 91.90 283.79 2.50 5970155.16 590620.12 N701941.511 W 14915 54.198 e 3188.D7 10.52 21.89 93.69 3180.89 3099.09 -16.61 36.24 -83.63 91.14 293.43 2.26 5970169.57 590625.57 N 70 19 41.652 W 149 1554.034 3281.54 13.08 23.15 93.47 3272.37 3190.57 2.13 53.89 -76.29 93.40 305.24 2.75 5970187.30 590632.70 N701941.826 W 149 1553.820 3376.51 12.35 19.50 94.97 3365.01 3283.21 22.52 73.34 -68.67 100.47 316.88 1.14 5970206.84 590640.07 N 70 19 42.017 W 149 1553.598 3470.17 10.15 11.31 93.66 3456.88 3375.08 39.85 90.88 -63.71 110.99 324.97 2.90 5970224.44 590644.82 N 70 1942.189 W 14915 53.453 3563.84 6.96 3.13 93.67 3549.49 3467.69 52.34 104.65 -61.78 121.52 329.44 3.64 5970238.22 590646.59 N 70 19 42.325 W 14915 53.397 3657.03 3.85 352.84 93.19 3642.26 356D.46 59.55 113.39 -61.86 129.17 331.39 3.48 5970246.96 590646.40 N 70 19 42.411 W 14915 53.399 3749.92 2.85 339.15 92.89 3734.99 3653.19 63.23 118.64 -63.07 134.36 332.00 1.37 5970252.20 590645.13 N 70 19 42.462 W 14915 53.434 3842.91 1.64 13.65 92.99 3827.91 3746.11 65.82 122.10 -63.58 137.66 332.49 1.90 5970255.65 590644.57 N 70 19 42.496 W 149 15 53.449 3936.23 1.08 46.53 93.32 3921 .21 3839.41 67.93 124.00 -62.63 138.92 333.20 1.01 5970257.56 590645.51 N 70 19 42.515 W 149 15 53.421 4028.66 0.95 48.25 92.43 4013.62 3931.82 69.52 125.11 -61.42 139.37 333.85 0.14 5970258.68 590646.70 N 70 1942.526 W 149 1553.386 4122.08 1.09 52.14 93.42 4107.03 4025.23 71.11 126.17 -60.14 139.77 334.51 0.17 5970259.76 590647.96 N 70 1942.536 W 149 15 53.349 4216.02 1.19 45.57 93.94 4200.95 4119.15 72.92 127.40 -58.74 140.29 335.25 0.18 5970261.01 590649.35 N 70 1942.549 W 14915 53.308 4309.02 1.46 55.67 93.00 4293.93 4212.13 74.96 128.74 -57.07 140.83 336.09 0.38 5970262.37 590651.00 N 70 1942.562 W 14915 53.259 4403.10 0.31 11.89 94.08 4387.99 4306.19 76.31 129.67 -56.03 141.26 336.63 1.33 5970263.31 590652.03 N 70 19 42.571 W 149 1553.229 4497.19 0.70 289.64 94.09 4482.08 4400.28 76.41 130.11 -56.52 141.86 336.52 0.77 5970263.75 590651.54 N 70 19 42.575 W 149 1553.243 4590.02 0.69 269.68 92.83 4574.90 4493.10 75.95 130.30 -57.61 142.47 336.15 0.26 5970263.92 590650.44 N 70 19 42.577 W 1491553.275 4683.04 0.91 266.98 93.02 4667.91 4586.11 75.19 130.26 -58.91 142.96 335.66 0.24 5970263.86 590649.14 N 70 19 42.577 W 149 15 53.313 4775.72 1.01 268.12 92.68 4760.58 4678.78 74.27 130.19 -60.46 143.55 335.09 0.11 5970263.78 590647.59 N 70 1942.576 W 14915 53.358 4868.44 0.83 263.66 92.72 4853.29 4771 .49 73.36 130.09 -61.95 144.09 334.54 0.21 5970263.66 590646.11 N 70 19 42.575 W 14915 53.401 e 4961.50 0.86 267.87 93.06 4946.34 4864.54 72.52 129.99 -63.31 144.59 334.03 0.07 5970263.54 590644.75 N 70 19 42.574 W 14915 53.441 5054.46 1.04 269.97 92.96 5039.29 4957.49 71.63 129.96 -64.85 145.25 333.48 0.20 5970263.50 590643.21 N 70 19 42.574 W 14915 53.486 5147.41 1.25 8.89 92.95 5132.23 5050.43 72.08 130.97 -65.54 146.45 333.41 1.88 5970264.49 590642.51 N 70 19 42.584 W 1491553.506 5240.87 5.93 41.11 93.46 5225.48 5143.68 77.80 135.61 -62.21 149.20 335.36 5.26 5970269.18 590645.78 N 70 19 42.629 W 1491553.409 5334.61 9.37 45.78 93.74 5318.37 5236.57 90.07 144.59 -53.55 154.18 339.68 3.73 5970278.25 590654.33 N 70 19 42.718 W 1491553.156 5429.11 11.62 47.64 94.50 5411.29 5329.49 106.85 156.36 -41.01 161.65 345.31 2.41 5970290.18 590666.73 N 70 19 42.833 W 149 1552.790 5521.23 14.26 47.98 92.12 5501.06 5419.26 126.87 170.21 -25.72 172.14 351.41 2.87 5970304.21 590681.85 N 70 19 42.970 W 1491552.344 5614.75 17.77 48.93 93.52 5590.94 5509.14 151.84 187.30 -6.40 187.41 358.04 3.76 5970321.54 590700.96 N 70 19 43.138 W 14915 51.780 5708.20 20.51 49.11 93.45 5679.21 5597.41 181.42 207.39 16.74 208.07 4.61 2.93 5970341.90 590723.85 N 70 19 43.335 W 149 1551.104 5800.49 25.22 47.29 92.29 5764.23 5682.43 216.17 231.33 43.42 235.37 10.63 5.16 5970366.15 590750.24 N 70 19 43.571 W 14915 50.325 5894.00 29.93 45.92 93.51 5847.09 5765.29 258.40 261.09 74.84 271.60 15.99 5.08 5970396.29 590781.29 N 70 19 43.863 W 1491549.408 5987.57 32.70 43.83 93.57 5927.03 5845.23 306.14 295.57 109.12 315.06 20.26 3.18 5970431.18 590815.14 N 70 19 44.202 W 149 1548.407 6080.85 39.02 42.77 93.28 6002.59 5920.79 360.04 335.34 146.54 365.96 23.61 6.81 5970471.40 590852.08 N 70 19 44.594 W1491547.315 6173.89 46.57 44.73 93.04 6070.81 5989.01 422.25 380.91 190.27 425.79 26.54 8.24 5970517.49 590895.26 N 70 19 45.042 W 14915 46.038 Version DO 3.1 RT (d031 rt_546) 3.1 RT-SP3.03 Plan V-111 (N-U)\V-111\V-111 PB3\V-111 PB3 Generated 9/15/2003 1 :48 PM Page 2 of 3 " ~ Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (flUS) 6268.20 50.74 43.75 94.31 6133.10 6051.30 491.90 431.63 239.64 493.70 29.04 4.49 5970568.80 590944.01 N 70 19 45.541 W 149 15 44.597 6361.71 52.47 45.22 93.51 6191.18 6109.38 563.94 483.91 291.00 564.67 31.02 2.22 5970621.69 590994.72 N 70 19 46.055 W 1491543.097 6454.94 55.19 47.39 93.23 6246.20 6164.40 637.43 535.87 345.42 637.56 32.81 3.47 5970674.30 591048.51 N 70 19 46.566 W 1491541.508 6546.56 61.20 49.10 91.62 6294.47 6212.67 712.83 587.67 403.51 712.86 34.47 6.75 5970726.79 591105.95 N 70 19 47.075 W1491539.813 6639.74 61.09 49.43 93.18 6339.43 6257.63 791.54 640.93 465.35 792.04 35.98 0.33 5970780.79 591167.14 N 70 19 47.599 W 1491538.007 6733.56 61.67 50.42 93.82 6384.37 6302.57 870.70 693.94 528.36 872.20 37.29 1.11 5970834.56 591229.51 N 70 1948.120 W 1491536.167 6824.99 62.34 49.55 91.43 6427.29 6345.49 948.28 745.85 590.19 951.12 38.35 1.11 5970887.21 591290.70 N 70 1948.631 W 1491534.362 6918.24 60.74 48.90 93.25 6471.73 6389.93 1027.36 799.39 652.27 1031.74 39.21 1.82 5970941.48 591352.12 N 70 19 49.157 W 1491532.549 7011.62 59.93 49.18 93.38 6517.94 6436.14 1105.69 852.58 713.55 1111.78 39.93 0.91 5970995.41 591412.74 N 70 19 49.680 W 149 1530.760 7104.73 60.39 49.39 93.11 6564.27 6482.47 1183.57 905.26 774.77 1191.54 40.56 0.53 5971048.82 591473.31 N 70 19 50.198 W 1491528.973 7197.61 60.88 49.95 92.88 6609.82 6528.02 1261.48 957.65 836.47 1271.53 41.14 0.74 5971101.94 591534.38 N 70 19 50.713 W1491527.171 e 7290.81 60.19 50.57 93.20 6655.66 6573.86 1339.35 1009.53 898.87 1351.71 41.68 0.94 5971154.57 591596.14 N 70 19 51.224 W 1491525.349 7383.90 60.18 49.26 93.09 6701.95 6620.15 1417.00 1061.53 960.66 1431.69 42.14 1.22 5971207.31 591657.29 N 70 19 51.735 W1491523.545 7477.28 58.74 49.98 93.38 6749.40 6667.60 1494.42 1113.64 1021.92 1511.46 42.54 1.68 5971260.15 591717.91 N 70 19 52.247 W 1491521.756 7485.24 58.67 49.97 7.96 6753.53 6671.73 1500.96 1118.01 1027.13 1518.21 42.57 0.89 5971264.58 591723.06 N 70 19 52.290 W 14915 21.604 7560.00 58.67 49.97 74.76 6792.41 6710.61 1562.33 1159.09 1076.03 1581.56 42.87 0.00 5971306.24 591771.46 N 70 19 52.694 W 1491520.176 Leqal Description: Northinq IY) rnUS] Eastinq IX) rnUS] Surface: 4885 FSL 1591 FEL S11 T11N R11 E UM 5970134.34 590709.62 BHL: 764 FSL 514 FEL S2 T11 N R11 E UM 5971306.24 591771.46 e Version DO 3.1RT (do31 rt_546) 3.1 RT-SP3.03 Plan V-111 (N-U)\V-111\V-111 PB3\V-111 PB3 Generated 9/15/2003 1 :48 PM Page 3 of 3 V-111 Survey Report Schlu ruer Report Date: 13-Aug-03 Survey I DLS Computation Method: Minimum Curvature I Lubinski Client: BP Exploration Alaska Vertical Section Azimuth: 64.540' Field: Prudhoe Bay Unit - WOA Vertical Section Origin: N 0.000 It, E 0.000 It Structure I Slot: V-Pad I Plan V-111 (N-U) TVD Reference Datum: KB Well: V-111 TVD Reference Elevation: 81.80 It relative to MSL Borehole: V-111 Sea Bed I Ground Level Elevation: 53.30 It relative to MSL UWUAPI#: 500292316100 Magnetic Declination: 25.298' Survey Name I Date: V-111 I August 13, 2003 Total Field Strength: 57542.893 nT Tort I AHD I DOlI ERD ratio: 249.504' 14139.86lt/6.181 10.617 Magnetic Dip: 80.805' Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feet Declination Date: August 18, 2003 e Location LatILong: N 70 1941.296, W 14915 51.593 Magnetic Declination Model: BGGM 2003 Location Grid NIE Y IX: N 5970134.340 ItUS, E 590709.620 ItUS North Reference: True North Grid Convergence Angle: +0.69273635' Total Corr Mag North -> True North: +25.298' Grid Scale Factor: 0.99990935 Local Coordinates Referenced To: Well Head Comments Measured Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (II) (deg) (deg) (II) (II) (II) (II) (II) (II) (II) (deg) (deg/100 II) (IIUS) (IIUS) 0.00 0.00 0.00 0.00 0.00 -81.80 0.00 0.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70 19 41.296 W 14915 51.593 100.00 0.50 91.31 100.00 100.00 18.20 0.39 -0.01 0.44 0.44 91.31 0.50 5970134.34 590710.06 N 70 19 41.295 W 14915 51.580 200.00 0.65 90.96 100.00 199.99 118.19 1.29 -0.Q3 1.44 1.44 91.17 0.15 5970134.33 590711.06 N 70 19 41.295 W 14915 51.551 300.00 0.76 93.40 100.00 299.99 218.19 2.38 -0.08 2.67 2.67 91.68 0.11 5970134.29 590712.29 N 70 19 41.295 W 14915 51.515 400.00 1.06 96.98 100.00 399.97 318.17 3.74 -0.23 4.25 4.26 93.10 0.31 5970134.16 590713.87 N 70 19 41.293 W 14915 51.469 500.00 1.31 101.81 100.00 499.95 418.15 5.43 -0.58 6.29 6.31 95.24 0.27 5970133.84 590715.91 N 70 19 41.290 W 14915 51.410 600.00 1.73 103.02 100.00 599.92 518.12 7.52 -1.15 8.88 8.95 97.39 0.42 5970133.30 590718.51 N 70 19 41.284 W 1491551.334 700.00 1.72 100.58 100.00 699.87 618.07 9.91 -1.77 11.82 11.95 98.50 0.07 5970132.72 590721.46 N 70 19 41.278 W 1491551.248 800.00 1.84 104.04 100.00 799.82 718.02 12.37 -2.43 14.85 15.05 99.29 0.16 5970132.09 590724.50 N 70 1941.272 W1491551.159 900.00 1.42 119.85 100.00 899.78 817.98 14.31 -3.44 17.49 17.82 101.12 0.61 5970131.11 590727.14 N 70 19 41.262 W 149 1551.083 1000.00 0.75 196.62 100.00 999.77 917.97 14.58 -4.68 18.37 18.96 104.29 1.45 5970129.88 590728.05 N 70 19 41.250 W 1491551.057 1100.00 1.85 248.29 100.00 1099.74 1017.94 12.53 -5.91 16.69 17.70 109.49 1.50 5970128.64 590726.38 N 70 19 41.237 W1491551.106 e 1200.00 3.15 261.17 100.00 1199.65 1117.85 8.28 -6.92 12.47 14.27 119.04 1.41 5970127.57 590722.17 N 70 1941.227 W 1491551.229 1300.00 3.89 266.10 100.00 1299.46 1217.66 2.50 -7.58 6.37 9.90 139.93 0.80 5970126.84 590716.08 N 70 19 41.221 W1491551.407 1400.00 4.17 263.62 100.00 1399.21 1317.41 -4.09 -8.21 -0.62 8.24 184.35 0.33 5970126.12 590709.09 N 70 19 41.215 W 1491551.611 1500.00 4.24 265.50 100.00 1498.94 1417.14 -10.98 -8.91 -7.92 11.92 221.66 0.15 5970125.34 590701.81 N 70 19 41.208 W 1491551.824 1600.00 4.23 261.68 100.00 1598.67 1516.87 -17.96 -9.73 -15.26 18.10 237.48 0.28 5970124.43 590694.48 N 70 19 41.200 W 1491552.038 1700.00 4.70 264.43 100.00 1698.37 1616.57 -25.34 -10.66 -22.98 25.34 245.12 0.52 5970123.40 590686.77 N701941.191 W 1491552.264 1800.00 5.76 267.76 100.00 1797.95 1716.15 -33.80 -11.25 -32.08 33.99 250.67 1.10 5970122.70 590677.68 N701941.185 W 149 1552.529 1847.00 5.08 277.98 47.00 1844.74 1762.94 -37.70 -11.06 -36.49 38.13 253.14 2.51 5970122.84 590673.27 N 70 19 41 .187 W 1491552.658 1873.77 4.85 281.20 26.77 1871.41 1789.61 -39.60 -10.67 -38.78 40.22 254.61 1.35 5970123.20 590670.98 N 70 19 41.191 W 14915 52.725 1966.13 6.24 282.06 92.36 1963.33 1881.53 -46.71 -8.87 -47.52 48.34 259.43 1.51 5970124.90 590662.22 N 70 19 41.208 W 1491552.980 2058.26 6.50 280.72 92.13 2054.89 1973.09 -54.89 -6.85 -57.54 57.94 263.21 0.33 5970126.80 590652.17 N 70 19 41 .228 W 14915 53.273 2153.25 6.37 280.92 94.99 2149.29 2067.49 -63.48 -4.85 -67.99 68.17 265.92 0.14 5970128.67 590641.70 N 70 19 41 .248 W 14915 53.578 2245.73 5.06 284.09 92.48 2241 .30 2159.50 -70.75 -2.89 -76.99 77.04 267.85 1.46 5970130.52 590632.68 N 70 19 41.267 W 14915 53.841 Version DO 3.1 RT (d031 rt_546) 3.1 RT-SP3.03 Plan V-111 (N-U)\V-111\V-111\V-111 Generated 9/15/2003 1 :48 PM Page 1 of 5 · ( Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (deg) (deg/100 ft) (ftUS) (ftUS) 2339.83 2.86 279.64 94.10 2335.17 2253.37 -75.87 -1.48 -83.33 83.34 268.98 2.36 5970131.85 590626.32 N 70 19 41.281 W 1491554.026 2432.60 2.64 279.59 92.77 2427.84 2346.04 -79.52 -0.74 -87.72 87.72 269.52 0.24 5970132.54 590621.93 N 70 19 41.288 W 1491554.154 2525.85 1.40 286.00 93.25 2521.03 2439.23 -82.13 -0.07 -90.93 90.93 269.96 1.35 5970133.17 590618.71 N 70 19 41.295 W 14915 54.247 2618.84 0.52 320.88 92.99 2614.00 2532.20 -83.08 0.57 -92.29 92.29 270.36 1.09 5970133.80 590617.34 N 70 19 41.301 W 1491554.287 2682.69 0.42 312.45 63.85 2677.85 2596.05 -83.24 0.96 -92.64 92.65 270.59 0.19 5970134.18 590616.98 N 70 19 41.305 W 1491554.298 2703.23 0.41 310.50 20.54 2698.39 2616.59 -83.29 1.05 -92.75 92.76 270.65 0.08 5970134.27 590616.87 N 70 19 41.306 W 14915 54.301 2746.00 0.59 310.39 42.77 2741.16 2659.36 -83.45 1.30 -93.04 93.05 270.80 0.42 5970134.51 590616.58 N 70 19 41.308 W 1491554.309 2826.99 0.92 310.35 80.99 2822.14 2740.34 -83.88 1.99 -93.85 93.87 271.21 0.41 5970135.19 590615.76 N701941.315 W 14915 54.333 2908.24 2.32 358.81 81.25 2903.36 2821.56 -83.47 4.05 -94.38 94.47 272.46 2.27 5970137.25 590615.20 N 70 19 41.335 W 1491554.348 3001.66 6.17 16.03 93.42 2996.51 2914.71 -79.37 10.77 -93.04 93.66 276.60 4.30 5970143.99 590616.47 N 70 19 41.402 W 1491554.309 3094.38 8.41 20.81 92.72 3088.48 3006.68 -71.17 21.90 -89.25 91.90 283.79 2.50 5970155.16 590620.12 N 70 19 41.511 W 14915 54.198 e 3188.07 10.52 21.89 93.69 3180.89 3099.09 -59.92 36.24 -83.63 91.14 293.43 2.26 5970169.57 590625.57 N 70 19 41.652 W 149 15 54.034 3281.54 13.08 23.15 93.47 3272.37 3190.57 -45.71 53.89 -76.29 93.40 305.24 2.75 5970187.30 590632.70 N 70 19 41.826 W 14915 53.820 3376.51 12.35 19.50 94.97 3365.01 3283.21 -30.47 73.34 -68.67 100.47 316.88 1.14 5970206.84 590640.07 N 70 19 42.017 W 14915 53.598 3470.17 10.15 11.31 93.66 3456.88 3375.08 -18.45 90.88 -63.71 110.99 324.97 2.90 5970224.44 590644.82 N 70 19 42.189 W 1491553.453 3563.84 6.96 3.13 93.67 3549.49 3467.69 -10.79 104.65 -61.78 121.52 329.44 3.64 5970238.22 590646.59 N 70 19 42.325 W 14915 53.397 3657.03 3.85 352.84 93.19 3642.26 3560.46 -7.11 113.39 -61.86 129.17 331.39 3.48 5970246.96 590646.40 N 70 19 42.411 W 1491553.399 3749.92 2.85 339.15 92.89 3734.99 3653.19 -5.94 118.64 -63.07 134.36 332.00 1.37 5970252.20 590645.13 N 70 19 42.462 W 1491553.434 3842.91 1.64 13.65 92.99 3827.91 3746.11 -4.92 122.10 -63.58 137.66 332.49 1.90 5970255.65 590644.57 N 70 19 42.496 W 1491553.449 3936.23 1.08 46.53 93.32 3921.21 3839.41 -3.24 124.00 -62.63 138.92 333.20 1.01 5970257.56 590645.51 N 70 19 42.515 W 1491553.421 4028.66 0.95 48.25 92.43 4013.62 3931.82 -1.68 125.11 -61.42 139.37 333.85 0.14 5970258.68 590646.70 N 70 19 42.526 W 1491553.386 4122.08 1.09 52.14 93.42 4107.03 4025.23 -0.06 126.17 -60.14 139.77 334.51 0.17 5970259.76 590647.96 N 70 19 42.536 W 1491553.349 4216.02 1.19 45.57 93.94 4200.95 4119.15 1.73 1 27.40 -58.74 140.29 335.25 0.18 5970261.01 590649.35 N 70 19 42.549 W 1491553.308 4309.02 1.46 55.67 93.00 4293.93 4212.13 3.81 128.74 -57.07 140.83 336.09 0.38 5970262.37 590651.00 N 70 19 42.562 W 1491553.259 4403.10 0.31 11.89 94.08 4387.99 4306.19 5.15 129.67 -56.03 141.26 336.63 1.33 5970263.31 590652.03 N 70 19 42.571 W 149 1553.229 4497.19 0.70 289.64 94.09 4482.08 4400.28 4.90 130.11 -56.52 141.86 336.52 0.77 5970263.75 590651.54 N 70 19 42.575 W 14915 53.243 4590.02 0.69 269.68 92.83 4574.90 4493.10 4.00 130.30 -57.61 142.47 336.15 0.26 5970263.92 590650.44 N 70 19 42.577 W 14915 53.275 4683.04 0.91 266.98 93.02 4667.91 4586.11 2.81 130.26 -58.91 142.96 335.66 0.24 5970263.86 590649.14 N 70 19 42.577 W 1491553.313 4775.72 1.01 268.12 92.68 4760.58 4678.78 1.38 130.19 -60.46 143.55 335.09 0.11 5970263.78 590647.59 N 70 19 42.576 W 149 15 53.358 4868.44 0.83 263.66 92.72 4853.29 4771.49 -0.01 130.09 -61.95 144.09 334.54 0.21 5970263.66 590646.11 N 70 19 42.575 W 149 15 53.401 e 4961.50 0.86 267.87 93.06 4946.34 4864.54 -1.28 129.99 -63.31 144.59 334.03 0.07 5970263.54 590644.75 N 70 19 42.574 W 1491553.441 5054.46 1.04 269.97 92.96 5039.29 4957.49 -2.69 129.96 -64.85 145.25 333.48 0.20 5970263.50 590643.21 N 70 19 42.574 W 1491553.486 5147.41 1.25 8.89 92.95 5132.22 5050.42 -2.88 130.97 -65.54 146.45 333.41 1.88 5970264.49 590642.51 N 70 19 42.584 W 149 1553.506 5240.87 5.93 41.11 93.46 5225.48 5143.68 2.13 135.61 -62.21 149.20 335.36 5.26 5970269.18 590645.78 N 70 19 42.629 W 1491553.409 5334.61 9.37 45.78 93.74 5318.37 5236.57 13.80 144.59 -53.55 154.18 339.68 3.73 5970278.25 590654.33 N 70 1942.718 W 1491553.156 5429.11 11.62 47.64 94.50 5411.29 5329.49 30.20 156.36 -41.00 161.65 345.31 2.41 5970290.18 590666.73 N 70 19 42.833 W 1491552.790 5521.23 14.26 47.98 92.12 5501.06 5419.26 49.95 170.21 -25.72 172.14 351.41 2.87 5970304.21 590681.85 N 70 19 42.970 W 149 1552.344 5614.75 17.77 48.93 93.52 5590.94 5509.14 74.74 187.30 -6.40 187.41 358.04 3.76 5970321 .54 590700.96 N 70 19 43.138 W 149 1551.780 5708.20 20.51 49.11 93.45 5679.21 5597.41 104.26 207.39 16.74 208.07 4.61 2.93 5970341.90 590723.85 N 70 19 43.335 W 1491551.104 5800.49 25.22 47.29 92.29 5764.23 5682.43 138.65 231.33 43.42 235.37 10.63 5.16 5970366.15 590750.24 N 70 19 43.571 W 14915 50.325 5894.00 29.93 45.92 93.51 5847.09 5765.29 179.80 261.09 74.84 271.60 15.99 5.08 5970396.29 590781.29 N 70 19 43.863 W 149 1549.408 5987.57 32.70 43.83 93.57 5927.03 5845.23 225.58 295.57 109.12 315.06 20.26 3.18 5970431.18 590815.14 N 70 19 44.202 W 1491548.407 6080.85 39.02 42.77 93.28 6002.59 5920.79 276.47 335.34 146.54 365.96 23.61 6.81 5970471.40 590852.08 N 70 19 44.594 W 1491547.315 6173.89 46.57 44.73 93.04 6070.81 5989.01 335.54 380.91 190.27 425.79 26.54 8.24 5970517.49 590895.26 N 70 19 45.042 W 1491546.038 Version DO 3.1RT (d031 rt_546) 3.1RT-SP3.03 Plan V-111 (N-U)\V-111\V-111\V-111 Generated 9/15/2003 1 :48 PM Page 2 of 5 Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Comments Depth Length Section Azimuth (It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (deg/100 It) (ltUS) (ltUS) 6268.20 50.74 43.75 94.31 6133.10 6051.30 401.92 431.63 239.64 493.70 29.04 4.49 5970568.80 590944.01 N 70 19 45.541 W 1491544.597 6361.71 52.47 45.22 93.51 6191.18 6109.38 470.76 483.91 291.00 564.67 31.02 2.22 5970621.69 590994.72 N 70 1946.055 W 1491543.097 6454.94 55.19 47.39 93.23 6246.20 6164.40 542.24 535.87 345.42 637.56 32.81 3.47 5970674.30 591048.51 N 70 19 46.566 W 1491541.508 6546.56 61.20 49.10 91.62 6294.47 6212.67 616.95 587.67 403.51 712.86 34.47 6.75 5970726.79 591105.95 N 70 19 47.075 W 1491539.813 6639.74 61.09 49.44 93.18 6339.43 6257.63 695.68 640.92 465.35 792.04 35.98 0.34 5970780.78 591167.14 N 70 19 47.599 W 14915 38.007 6733.56 61.67 50.42 93.82 6384.37 6302.57 775.37 693.93 528.37 872.19 37.29 1.11 5970834.55 591229.52 N 70 1948.120 W 1491536.167 6824.99 62.34 49.55 91.43 6427.29 6345.49 853.51 745.84 590.20 951.12 38.36 1.11 5970887.19 591290.71 N 70 19 48.631 W 1491534.362 6918.24 60.74 48.90 93.25 6471.73 6389.93 932.58 799.38 652.28 1031.74 39.21 1.82 5970941.47 591352.13 N 70 1949.157 W 1491532.549 7011.62 59.93 49.18 93.38 6517.94 6436.14 1010.76 852.57 713.56 1111.77 39.93 0.91 5970995.39 591412.75 N 70 1949.680 W 149 1530.760 7104.73 60.39 49.39 93.11 6564.27 6482.47 1088.68 905.25 774.77 1191.54 40.56 0.53 5971048.81 591473.32 N 70 19 50.198 W 1491528.972 7197.61 60.88 49.95 92.88 6609.82 6528.02 1166.92 957.64 836.48 1271 .52 41.14 0.74 5971101 .93 591534.39 N 70 19 50.713 W 1491527.171 e 7221.00 60.62 50.19 23.39 6621.25 6539.45 1186.68 970.74 852.13 1291.69 41.28 1.43 5971115.22 591549.88 N 70 19 50.842 W 1491526.714 7233.00 62.42 50.95 12.00 6626.97 6545.17 1196.91 977.44 860.28 1302.10 41.35 16.00 5971122.01 591557.94 N 70 19 50.908 W 1491526.476 7247.42 62.47 51.16 14.42 6633.64 6551.84 1209.35 985.47 870.22 1314.70 41.45 1.34 5971130.17 591567.78 N 70 19 50.987 W 149 1526.185 7278.54 66.28 51.71 31.12 6647.10 6565.30 1236.67 1002.96 892.16 1342.34 41.65 12.35 5971147.92 591589.51 N 70 19 51.159 W 1491525.545 7309.93 71.04 52.00 31.39 6658.52 6576.72 1265.19 1021.01 915.15 1371.12 41.87 15.19 5971166.25 591612.27 N 70 19 51.337 W 1491524.874 7341.83 75.80 53.04 31.90 6667.62 6585.82 1295.08 1039.61 939.40 1401.16 42.10 15.25 5971185.13 591636.30 N 70 19 51.519 W 1491524.165 7372.01 78.50 54.04 30.18 6674.33 6592.53 1323.96 1057.09 963.07 1430.01 42.34 9.51 5971202.90 591659.75 N 70 19 51.691 W 1491523.474 7402.26 83.64 52.33 30.25 6679.02 6597.22 1353.25 1074.99 986.98 1459.36 42.56 17.89 5971221.09 591683.44 N 70 19 51.867 W 1491522.776 7434.52 90.31 52.69 32.26 6680.73 6598.93 1384.74 1094.59 1012.53 1491.08 42.77 20.71 5971240.99 591708.75 N 70 19 52.060 W 1491522.030 7464.96 97.43 53.52 30.44 6678.67 6596.87 1414.49 1112.81 1036.80 1520.95 42.97 23.55 5971259.50 591732.79 N 70 19 52.239 W 1491521.321 7496.73 99.61 50.50 31.77 6673.96 6592.16 1445.15 1132.14 1061.56 1551.98 43.16 11.64 5971279.13 591757.32 N 70 19 52.429 W 1491520.598 7526.97 99.34 50.26 30.24 6668.99 6587.19 1474.07 1151.16 1084.53 1581.58 43.29 1.19 5971298.42 591780.06 N 70 19 52.616 W 1491519.927 7557.94 99.50 51.46 30.97 6663.92 6582.12 1503.76 1170.45 1108.23 1611.87 43.44 3.86 5971317.99 591803.52 N 70 19 52.806 W 1491519.235 7589.56 100.48 51.71 31.62 6658.43 6576.63 1534.11 1189.80 1132.63 1642.70 43.59 3.20 5971337.63 591827.68 N 70 19 52.996 W 14915 18.523 7620.53 100.27 53.51 30.97 6652.85 6571.05 1563.91 1208.30 1156.83 1672.79 43.75 5.76 5971356.42 591851.65 N 70 19 53.178 W 1491517.816 7651.52 98.15 54.92 30.99 6647.89 6566.09 1594.00 1226.18 1181.65 1702.88 43.94 8.18 5971374.60 591876.25 N 70 19 53.354 W 1491517.092 7682.86 95.70 57.15 31.34 6644.12 6562.32 1624.77 1243.56 1207.45 1733.31 44.16 10.54 5971392.29 591901.83 N 70 19 53.525 W 1491516.338 7714.61 94.46 59.43 31.75 6641.30 6559.50 1656.20 1260.18 1234.35 1763.99 44.41 8.15 5971409.23 591928.53 N 70 19 53.688 W 1491515.553 e 7745.79 92.30 59.91 31.18 6639.47 6557.67 1687.21 1275.90 1261.21 1794.04 44.67 7.10 5971425.27 591955.20 N 70 19 53.843 W 1491514.768 7775.31 89.21 60.78 29.52 6639.08 6557.28 1716.65 1290.50 1286.86 1822.47 44.92 10.87 5971440.18 591980.67 N 70 19 53.986 W 1491514.019 7807.24 87.63 60.53 31.93 6639.96 6558.16 1748.49 1306.14 1314.68 1853.21 45.19 5.01 5971456.16 592008.29 N 70 19 54.140 W 1491513.207 7838.32 86.88 60.78 31.08 6641 .45 6559.65 1779.47 1321.35 1341.74 1883.15 45.44 2.54 5971471.70 592035.17 N 70 19 54.290 W 1491512.417 7866.60 87.80 62.31 28.28 6642.76 6560.96 1807.68 1334.81 1366.58 1910.31 45.67 6.31 5971485.45 592059.84 N 70 19 54.422 W 1491511.691 7900.06 87.01 62.28 33.46 6644.27 6562.47 1841.08 1350.35 1396.17 1942.36 45.96 2.36 5971501.35 592089.24 N 70 19 54.575 W 1491510.827 7932.43 88.28 61.68 32.37 6645.60 6563.80 1873.38 1365.55 1424.72 1973.46 46.21 4.34 5971516.88 592117.60 N 70 19 54.724 W 149159.994 7961.26 87.84 62.47 28.83 6646.58 6564.78 1902.17 1379.04 1450.18 2001.19 46.44 3.14 5971530.68 592142.89 N 70 19 54.857 W 149159.250 7992.67 87.67 64.36 31.41 6647.81 6566.01 1933.55 1393.09 1478.25 2031.23 46.70 6.04 5971545.07 592170.78 N 70 19 54.995 W 149158.431 8024.69 87.70 65.44 32.02 6649.10 6567.30 1965.54 1406.66 1507.22 2061.65 46.98 3.37 5971558.99 592199.58 N 70 19 55.128 W 149157.585 8055.44 87.98 65.73 30.75 6650.26 6568.46 1996.27 1419.36 1535.20 2090.79 47.25 1.31 5971572.02 592227.41 N 70 19 55.253 W 149156.768 8086.65 88.15 65.42 31.21 6651.32 6569.52 2027.45 1432.26 1563.60 2120.43 47.51 1.13 5971585.26 592255.65 N 70 19 55.380 W 149155.938 8118.45 88.18 65.54 31.80 6652.33 6570.53 2059.23 1445.45 1592.52 2150.68 47.77 0.39 5971598.80 592284.40 N 70 19 55.510 W 14915 5.094 8148.71 88.15 65.09 30.26 6653.30 6571.50 2089.47 1458.08 1620.00 2179.54 48.01 1.49 5971611.76 592311.72 N 70 19 55.634 W 149154.291 Version DO 3.1 RT (d031rt_546) 3.1RT-SP3.03 Plan V-111 (N-U)\V-111\V-111\V-111 Generated 9/15/2003 1 :48 PM Page 3 of 5 " Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (II) (deg) (deg) (II) (II) (II) (II) (II) (II) (II) (deg) (deg/100 II) (IIUS) (IIUS) 8180.77 88.25 65.85 32.06 6654.31 6572.51 2121.51 1471.38 1649.15 2210.13 48.26 2.39 5971625.42 592340.71 N 70 19 55.765 W 14915 3.440 8211.55 87.25 65.43 30.78 6655.52 6573.72 2152.26 1484.07 1677.17 2239.50 48.50 3.52 5971638.44 592368.57 N 70 19 55.889 W 149152.622 8242.33 84.78 65.89 30.78 6657.66 6575.86 2182.96 1496.72 1705.14 2268.85 48.72 8.16 5971651.43 592396.39 N 70 19 56.014 W 149151.805 8273.76 84.47 66.49 31.43 6660.60 6578.80 2214.24 1509.36 1733.77 2298.72 48.96 2.14 5971664.40 592424.86 N 70 19 56.138 W 14915 0.969 8305.28 84.57 66.59 31.52 6663.61 6581.81 2245.60 1521.85 1762.55 2328.65 49.19 0.45 5971677.24 592453.48 N 70 19 56.261 W 149150.128 8336.17 84.71 66.80 30.89 6666.50 6584.70 2276.33 1534.01 1790.80 23.58.00 49.42 0.81 5971689.75 592481.58 N 70 19 56.380 W 1491459.304 8375.10 84.92 66.59 38.93 6670.02 6588.22 2315.07 1549.35 1826.41 2395.05 49.69 0.76 5971705.52 592516.99 N 70 19 56.531 W 14914 58.264 8398.60 86.57 66.58 23.50 6671.76 6589.96 2338.49 1558.67 1847.91 2417.48 49.85 7.02 5971715.09 592538.38 N 70 19 56.623 W 14914 57.636 8429.70 87.46 66.52 31.10 6673.38 6591.58 2369.53 1571.02 1876.40 2447.24 50.06 2.87 5971727.79 592566.72 N 70 19 56.744 W 1491456.804 8461.13 87.67 66.06 31.43 6674.71 6592.91 2400.92 1583.65 1905.15 2477.41 50.27 1.61 5971740.76 592595.31 N 70 19 56.868 W 1491455.964 8492.00 87.56 67.10 30.87 6676.00 6594.20 2431.74 1595.91 1933.46 2507.03 50.46 3.38 5971753.36 592623.46 N 70 19 56.989 W 149 1455.138 e 8522.54 87.53 66.07 30.54 6677.31 6595.51 2462.23 1608.04 1961.45 2536.35 50.65 3.37 5971765.82 592651.31 N 70 19 57.108 W 14914 54.320 8553.94 87.77 66.96 31.40 6678.59 6596.79 2493.59 1620.54 1990.23 2566.54 50.85 2.93 5971778.67 592679.93 N 70 19 57.231 W 14914 53.480 8585.02 87.94 67.67 31.08 6679.76 6597.96 2524.61 1632.52 2018.88 2596.34 51.04 2.35 5971790.99 592708.43 N 70 19 57.349 W 14914 52.643 8615.88 88.18 66.96 30.86 6680.80 6599.00 2555.4 1 1644.41 2047.34 2625.96 51.23 2.43 5971803.23 592736.74 N 70 19 57.465 W 14914 51.812 8646.97 88.28 67.28 31.09 6681.76 6599.96 2586.46 1656.49 2075.97 2655.87 51.41 1.08 5971815.65 592765.22 N 70 19 57.584 W 14914 50.976 8678.05 88.39 67.60 31.08 6682.67 6600.87 2617.49 1668.41 2104.66 2685.74 51.60 1.09 5971827.92 592793.76 N 70 19 57.701 W 14914 50.138 8708.78 88.42 66.55 30.73 6683.52 6601.72 2648.17 1680.38 2132.95 2715.35 51.77 3.42 5971840.22 592821.90 N 70 19 57.819 W 1491449.312 8739.74 88.56 66.12 30.96 6684.34 6602.54 2679.11 1692.80 2161.30 2745.32 51.93 1.46 5971852.99 592850.10 N 70 19 57.941 W 1491448.484 8770.59 88.52 66.21 30.85 6685.12 6603.32 2709.93 1705.26 2189.51 2775.22 52.09 0.32 5971865.79 592878.15 N 70 19 58.063 W 1491447.660 8802.10 90.99 67.36 31.51 6685.26 6603.46 2741.42 1717.68 2218.46 2805.71 52.25 8.65 5971878.56 592906.95 N 70 19 58.186 W 1491446.815 8833.55 91.58 67.04 31.45 6684.55 6602.75 2772.83 1729.87 2247.45 2836.10 52.41 2.13 5971891.09 592935.78 N 70 19 58.305 W 1491445.968 8864.27 88.59 66.19 30.72 6684.51 6602.71 2803.52 1742.06 2275.64 2865.89 52.57 10.12 5971903.62 592963.82 N 70 19 58.425 W 149 1445.145 8894.59 86.26 66.60 30.32 6685.87 6604.07 2833.79 1754.18 2303.39 2895.31 52.71 7.80 5971916.08 592991.43 N 70 19 58.544 W 149 1444.334 8926.00 85.81 66.53 31.41 6688.04 6606.24 2865.11 1766.65 2332.14 2925.74 52.86 1.45 5971928.89 593020.02 N 70 19 58.667 W 14914 43.495 8956.82 86.22 66.74 30.82 6690.18 6608.38 2895.83 1778.84 2360.37 2955.61 53.00 1.49 5971941 .42 593048.09 N 70 19 58.787 W 1491442.671 8987.43 86.29 67.28 30.61 6692.18 6610.38 2926.35 1790.77 2388.49 2985.25 53.14 1.78 5971953.69 593076.06 N 70 19 58.904 W 1491441.849 9018.03 86.77 67.09 30.60 6694.03 6612.23 2956.86 1802.61 2416.64 3014.89 53.28 1.69 5971965.87 593104.07 N 70 19 59.020 W 1491441.027 9050.54 87.08 66.35 32.51 6695.78 6613.98 2989.30 1815.44 2446.46 3046.47 53.42 2.46 5971979.06 593133.73 N 70 19 59.146 W 1491440.156 e 9078.85 87.60 66.30 28.31 6697.09 6615.29 3017.57 1826.80 2472.36 3074.05 53.54 1.85 5971990.73 593159.49 N 70 19 59.258 W 1491439.400 9109.74 88.39 64.44 30.89 6698.17 6616.37 3048.43 1839.66 2500.42 3104.27 53.66 6.54 5972003.93 593187.39 N 70 19 59.384 W 1491438.580 9141.03 88.35 64.62 31.29 6699.06 6617.26 3079.71 1853.11 2528.66 3134.99 53.76 0.59 5972017.72 593215.46 N 70 19 59.517 W 1491437.756 9172.56 88.28 65.57 31.53 6699.99 6618.19 3111.22 1866.39 2557.24 3165.90 53.88 3.02 5972031.33 593243.88 N 70 19 59.647 W 1491436.921 9204.36 88.52 65.95 31.80 6700.88 6619.08 3143.00 1879.44 2586.23 3197.01 53.99 1.41 5972044.73 593272.70 N 70 19 59.775 W 14914 36.074 9234.34 88.59 64.90 29.98 6701 .63 6619.83 3172.97 1891.90 2613.48 3226.39 54.10 3.51 5972057.52 593299.80 N 70 19 59.898 W 1491435.278 9264.95 88.56 66.57 30.61 6702.39 6620.59 3203.56 1904.48 2641.38 3256.37 54.21 5.45 5972070.43 593327.54 N 7020 0.021 W 1491434.464 9295.68 88.56 65.41 30.73 6703.17 6621.37 3234.27 1916.98 2669.44 3286.45 54.32 3.77 5972083.27 593355.45 N 70 20 0.144 W 1491433.644 9326.71 88.46 67.12 31.03 6703.97 6622.17 3265.28 1929.46 2697.84 3316.80 54.43 5.52 5972096.10 593383.68 N 70 20 0.267 W1491432.815 9358.47 88.46 66.74 31.76 6704.83 6623.03 3297.00 1941.90 2727.05 3347.80 54.55 1.20 5972108.89 593412.74 N 70 20 0.389 W 1491431.962 9387.92 88.39 67.70 29.45 6705.64 6623.84 3326.40 1953.30 2754.19 3376.53 54.66 3.27 5972120.61 593439.74 N 70200.501 W 1491431.169 9419.86 88.21 66.27 31.94 6706.58 6624.78 3358.30 1965.78 2783.57 3407.72 54.77 4.51 5972133.45 593468.97 N 7020 0.624 W 1491430.311 9451.23 88.32 67.04 31.37 6707.53 6625.73 3389.63 1978.21 2812.36 3438.4 1 54.88 2.48 5972146.22 593497.60 N 70 20 0.746 W 1491429.470 9483.61 88.73 69.58 32.38 6708.37 6626.57 3421.93 1990.17 2842.44 3469.90 55.00 7.94 5972158.54 593527.53 N 70200.863 W 149 1428.592 Version DO 3.1 RT (d031 rC546) 3.1RT-SP3.03 Plan V-111 (N-U)\V-111\V-111\V-111 Generated 9/15/2003 1 :48 PM Page 4 of 5 Comments Measured I Inclination I Azimuth I Course I TVD I Sub-Sea TVD I Vertical I NS EW Closure I Closure I DLS I Northing Easting Latitude Longitude Depth Length Section Azimuth (It) (deg) (deg) (It) (It) (It) (It) (It) (It) (It) (deg) (degNOO It) (ltUS) (ltUS) 9514.34 89.52 72.14 30.73 6708.84 6627.04 3452.47 2000.24 2871.46 3499.47 55.14 8.72 5972168.97 593556.42 N 70 20 0.962 W 1491427.744 9545.77 91.51 73.73 31.43 6708.55 6626.75 3483.56 2009.47 2901.50 3529.40 55.30 8.10 5972178.55 593586.35 N 70 20 1.053 W 1491426.867 9577.14 92.50 71.18 31.37 6707.46 6625.66 3514.61 2018.92 2931.39 3559.37 55.44 8.72 5972188.36 593616.12 N70201.146 W 1491425.994 9608.33 92.57 72.20 31.19 6706.08 6624.28 3545.52 2028.70 2960.98 3589.29 55.58 3.27 5972198.50 593645.58 N 70 20 1.242 W 1491425.130 9639.63 92.68 72.44 31.30 6704.64 6622.84 3576.50 2038.20 2990.77 3619.25 55.73 0.84 5972208.36 593675.25 N 70 20 1.335 W 149 1424.260 9670.30 91.88 71.10 30.67 6703.42 6621.62 3606.90 2047.79 3019.87 3648.71 55.86 5.09 5972218.29 593704.24 N 70 20 1.429 W 1491423.410 9701.94 91.95 71.22 31.64 6702,37 6620.57 3638.31 2058.00 3049.80 3679.22 55.99 0.44 5972228.87 593734.04 N 7020 1.530 W 1491422.536 9732.74 93.05 70.59 30.80 6701.02 6619.22 3668.90 2068.06 3078.88 3708.96 56.11 4.11 5972239.28 593762.99 N 70 20 1.629 W 14914 21.687 9763.82 92.60 70.41 31.08 6699.49 6617.69 3699.77 2078.43 3108.14 3739.04 56.23 1.56 5972250.00 593792.12 N 7020 1.730 W 1491420.832 9799.41 93.84 70.11 35.59 6697.49 6615.69 3735.13 2090.43 3141.58 3773.52 56.36 3.58 5972262.40 593825.41 N 70 20 1.848 W 1491419.855 9850.00 93.84 70.11 50.59 6694.10 6612.30 3785.36 2107.60 3189.05 3822.57 56.54 0.00 5972280.14 593872.66 N 70 20 2.017 W 1491418.469 .escriPtion: Northinq (y) rnUS] Eastinq (X) rnUS] Surface: 4885 FSL 1591 FEL S11 T11N R11 E UM 5970134.34 590709.62 BHL: 1712 F8L 3680 FEL 81 T11 N R11E UM 5972280.14 593872.66 e Version DO 3.1 RT (d031 rt_546) 3.1RT-8P3.03 Plan V-111 (N-U)\V-111\V-111\V-111 Generated 9/15/2003 1 :48 PM Page 5 of 5 ~"..r'-- SCRLUMBERGER Survey report Client...................: BP Exploration (Alaska) Inc. Field....................: Borealis Well. . . . . . . . . . . . . . . . . . . . .: V-111 PB1 API number............. ..: 50-029-23161-70 Engineer. . . . . . . . . . . . . . . . .: St. Amour As: . . . . . . . . . . . . . . . . . . . . .: Nabors 9ES .ATE:...................: Alaska ----- Survey calculation methods------------- Method for positions.....: Minimum curvature Method for DLS...........: Mason & Taylor ----- Depth reference ----------------------- Permanent datum..........: Mean Sea Level Depth reference..........: Driller's Pipe Tally GL above permanent.......: 53.30 ft KB above permanent.......: N/A DF above permanent.......: 81.80 ft ----- Vertical section origin---------------- Latitude (+N/S-) .........: 0.00 ft Departure (+E/W-) ..... ...: 0.00 ft ~--- Platform reference point--------------- Latitude (+N/S-) .........: -999.25 ft Departure (+E/W-) ........: -999.25 ft Azimuth from rotary table to target: 33.93 degrees 16-Jul-2003 12:04:18 Spud date......... . . . . . . . : Last survey date.... .....: Total accepted surveys...: MD of first survey.......: MD of last survey... .....: Page 1 of 4 02-Jul-03 16-Jul-03 88 0.00 ft 7635.00 ft . ----- Geomagnetic data ---------------------- Magnetic model...........: BGGM version 2002 Magnetic date............: 02-Jul-2003 Magnetic field strength..: 1150.36 RCNT Magnetic dec (+E/W-) .....: 25.52 degrees Magnetic dip.............: 80.78 degrees ----- MWD survey Reference Reference G..............: Reference R..............: Reference Dip............: Tolerance of G...........: Tolerance of R...........: Tolerance of Dip.........: Criteria --------- 1002.68 mGal 1150.36 RCNT 80.78 degrees (+/-) 2.50 mGal (+/-) 6.00 RCNT (+/-) 0.45 degrees . ----- Corrections --------------------------- Magnetic dec (+E/W-) .....: 25.50 degrees Grid convergence (+E/W-).: 0.00 degrees Total az corr (+E/W-) ....: 25.50 degrees (Total az corr = magnetic dec - grid conv) Survey Correction Type ...: 1= Sag Corrected Inclination M-IFR= Schlumberger Magnetic Correction + Infield Reference S= Shell Magnetic Correction F= Failed Axis Correction R= Magnetic Resonance Tool Correction D= Dmag Magnetic Correction ŠCHLUMBERGER Survey Report 16-Jul-2003 12:04:18 Page 2 of 4 -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr (ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TIP None 2 100.00 0.50 91. 31 100.00 100.00 0.24 -0.01 0.44 0.44 91. 31 0.50 GYR None 3 200.00 0.65 90.96 100.00 199.99 0.78 -0.03 1. 44 1. 44 91.17 0.15 GYR None 4 300.00 0.76 93.40 100.00 299.99 1. 42 -0.08 2.67 2.67 91.68 0.11 GYR None 5 400.00 1. 06 96.98 100.00 399.97 2.18 -0.23 4.25 4.26 93.10 0.31 GYR None .~ 500.00 1. 31 101.81 100.00 499.95 3.03 -0.58 6.29 6.31 95.24 0.27 GYR None . 600.00 1. 73 103.02 100.00 599.92 4.00 -1.15 8.88 8.95 97.39 0.42 GYR None 8 700.00 1. 72 100.58 100.00 699.87 5.13 -1.77 11. 82 11.95 98.50 0.07 GYR None 9 800.00 1. 84 104.04 100.00 799.82 6.27 -2.43 14.85 15.05 99.29 0.16 GYR None 10 900.00 1. 42 119.85 100.00 899.78 6.91 -3.44 17.49 17.82 101.12 0.61 GYR None 11 1000.00 0.75 196.62 100.00 999.77 6.37 -4.68 18.37 18.96 104.29 1. 45 GYR None 12 1100.00 1. 85 248.29 100.00 1099.74 4.41 -5.91 16.69 17.70 109.49 1. 50 GYR None 13 1200.00 3.15 261.17 100.00 1199.65 1. 22 -6.92 12.47 14.27 119.04 1. 41 GYR None 14 1300.00 3.89 266.10 100.00 1299.46 -2.73 -7.58 6.37 9.90 139.93 0.80 GYR None 15 1400.00 4.17 263.62 100.00 1399.21 -7.16 -8.21 -0.62 8.24 184.35 0.33 GYR None 16 1500.00 4.24 265.50 100.00 1498.94 -11.81 -8.91 -7.92 11. 92 221. 66 0.15 GYR None 17 1600.00 4.23 261. 68 100.00 1598.67 -16.59 -9.73 -15.26 18.10 237.48 0.28 GYR None 18 1700.00 4.70 264.43 100.00 1698.36 -21. 67 -10.66 -22.98 25.34 245.12 0.52 GYR None 19 1800.00 5.76 267.76 100.00 1797.95 -27.24 -11.25 -32.08 33.99 250.67 1.10 GYR None 20 1847.00 5.08 277.98 47.00 1844.74 -29.55 -11.06 -36.49 38.13 253.14 2.51 GYR None .21 1873.77 4.85 281.20 26.77 1871. 41 -30.50 -10.67 -38.78 40.22 254.61 1. 35 MWDM M-IFR . 22 1966.13 6.24 282.06 92.36 1963.33 -33.88 -8.87 -47.52 48.34 259.43 1. 51 MWDM M-IFR 23 2058.26 6.50 280.72 92.13 2054.89 -37.80 -6.85 -57.54 57.94 263.21 0.33 MWDM M-IFR 24 2153.25 6.37 280.92 94.99 2149.29 -41. 98 -4.85 -67.99 68.17 265.92 0.14 MWDM M-IFR 25 2245.73 5.06 284.09 92.48 2241.30 -45.37 -2.89 -76.99 77.04 267.85 1. 46 MWDM M-IFR 26 2339.83 2.86 279.64 94.10 2335.17 -47.74 -'1.48 -83.33 83.34 268.98 2.36 MWD M . M-IFR 27 2432.60 2.64 279.59 92.77 2427.84 -49.58 -0.74 -87.72 87.72 269.52 0.24 MWDM M-IFR 28 2525.85 1. 40 286.00 93.25 2521.03 -50.81 -0.07 -90.93 90.93 269.96 1. 35 MWDM M-IFR 29 2618.84 0.52 320.88 92.99 2614.00 -51. 04 0.57 -92.29 92.29 270.36 1. 09 MWDM M-IFR 30 2682.69 0.42 312.45 63.85 2677.85 -50.92 0.96 -92.64 92.65 270.59 0.19 MWD M M-IFR ŠCHLUMBERGER Survey Report 16-Jul-2003 12:04:18 Page 3 of 4 -------- ------ ------- ------ -------- -------- ---------------- --------------- ----- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ----- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/w- displ Azim (degl tool Corr (ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 31 2703.23 0.41 310.50 20.54 2698.39 -50.90 1. 05 -92.75 92.76 270.65 0.08 MWDM M-IFR 32 2826.99 0.92 310.35 123.76 2822.14 -50.74 1. 98 -93.85 93.87 271.21 0.41 MWDM M-IFR - 33 2921.28 0.94 307.97 94.29 2916.42 -50.60 2.95 -95.03 95.08 271.78 0.05 MWDM M-IFR - 34 3014.53 0.81 307.80 93.25 3009.66 -50.50 3.83 -96 .16 96.23 272.28 0.14 MWDM M-IFR 35 3107.91 0.86 309.69 93.38 3103.03 -50.39 4.68 -97.22 97.33 272.75 0.06 MWDM M-IFR -~ 3199.89 0.82 298.93 91.98 3195.00 -50.37 5.44 -98.33 98.48 273.16 0.18 MWD M M-IFR . 3294.17 0.76 295.23 94.28 3289.27 -50.53 6.03 -99.48 99.67 273.47 0.08 MWDM M-IFR 38 3387.24 0.84 297.73 93.07 3382.33 -50.69 6.61 -100.64 100.86 273.76 0.09 MWDM M-IFR 39 3481.14 0.91 299.01 93.90 3476.22 -50.83 7.29 -101.91 102.17 274.09 0.08 MWDM M-IFR 40 3575.16 0.94 298.84 94.02 3570.23 -50.96 8.03 -103.23 103.55 274.45 0.03 MWDM M-IFR 41 3666.76 1. 06 304.53 91.60 3661. 81 -51. 02 8.87 -104.59 104.97 274.85 0.17 MWDM M-IFR - 42 3759.37 1.12 308.10 92.61 3754.41 -50.95 9.91 -106.01 106.47 275.34 0.10 MWDM M-IFR 43 3851.37 1. 03 309.69 92.00 3846.39 -50.80 11. 00 -107.35 107.91 275.85 0.10 MWDM M-IFR 44 3945.67 1.13 315.42 94.30 3940.67 -50.53 12.20 -108.66 109.34 276.41 0.16 MWDM M-IFR 45 3970.68 1.16 312.31 25.01 3965.68 -50.44 12.55 -109.02 109.74 276.56 0.28 MWDM M-IFR 46 4034.88 1. 34 309.51 64.20 4029.86 -50.27 13.46 -110.08 110.90 276.97 0.30 MWDM M-IFR 47 4127.50 1.35 306.49 92.62 4122.46 -50.12 14.80 -111. 79 112.77 277.54 0.08 MWDM M-IFR 48 4221.16 1.22 299.20 93.66 4216.10 -50.15 15.94 -113.55 114.66 277.99 0.22 MWDM M-IFR 49 4302.36 1.11 275.01 81. 20 4297.28 -50.61 16.43 -115.09 116.25 278.13 0.62 MWDM M-IFR 50 4396.52 1. 28 310.71 94.16 4391.42 -50.92 17.20 -116.79 118.05 278.38 0.80 MWDM M-IFR .51 4490.66 1. 31 311.59 94.14 4485.54 -50.65 18.60 -118.39 119.84 278.93 0.04 MWDM M-IFR . 52 4582.91 1. 27 313.20 92.25 4577.76 -50.35 20.00 -119.93 121. 58 279.47 0.06 MWDM M-IFR 53 4676.61 1.19 314.59 93.70 4671.44 -50.00 21. 39 -121. 38 123.25 279.99 0.09 MWDM M-IFR - 54 4768.51 1.12 312.94 91. 90 4763.32 -49.69 22.67 -122.71 124.79 280.47 0.08 MWDM M-IFR 55 4861.01 1.13 316.73 92.50 4855.80 -49.34 23.95 -124.00 126.29 280.93 0.08 MWDM M-IFR 56 4955.40 3.07 338.84 94.39 -4950.13 -47.69 26.99 -125.55 128.42- 282.13 2.19 MWDM M-IFR 57 5048.19 6.44 348.97 92.79 5042.59 -42.58 34.41 -127.44 132.01 285.11 3.73 MWD M M-IFR 58 5141.18 9.68 355.07 92.99 5134.65 -32.80 47.33 -129.11 137.51 290.13 3.60 MWDM M-IFR 59 5233.84 13.55 357.84 92.66 5225.39 -17.96 65.94 -130.19 145.94 296.86 4.22 MWDM M-IFR 60 5326.65 18.26 357.85 92.81 5314 . 63 2.59 91.35 -131.15 159.83 304.86 5.07 MWDM M-IFR - SCHLUMBERGER Survey Report 16-Jul-2003 12:04:18 Page 4 of 4 -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr (n) (deg) (deg) (n) (n) (n) (n) (n) (n) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 61 5420.17 22.69 356.70 93.52 5402.22 28.81 124.02 -132.74 181. 66 313.05 4.76 MWDM M-IFR 62 5513.45 26.75 356.89 93.28 5486.93 59.90 162.95 -134.91 211.56 320.38 4.35 MWDM M-IFR - 63 5606.63 25.89 356.44 93.18 5570.45 92.78 204.20 -137.31 246.07 326.08 0.95 MWD M M-IFR - 64 5700.28 26.16 359.86 93.65 5654.61 126.11 245.25 -138.63 281.72 330.52 1. 63 MWD M M-IFR 65 5793.84 26.37 4.64 93.56 5738.52 161.32 286.59 -137.00 317.65 334.45 2.27 MWD M M-IFR .66 5886.36 26.35 12.49 92.52 5821. 44 198.36 327.13 -130.90 352.35 338.19 3.76 MWDM M-IFR . 67 5979.56 27.65 18.37 93.20 5904.50 238.45 367.86 -119.61 386.81 341.99 3.18 MWDM M-IFR 68 6034.93 29.72 22.10 55.37 5953.07 264.27 392.77 -110.39 407.99 344.30 4.94 MWDM M-IFR 69 6072.52 30.33 22.64 37.59 5985.62 282.70 410.16 -103.23 422.96 345.87 1. 77 MWD M M-IFR 70 6165.43 34.66 28.73 92.91 6063.99 332.05 455.02 -81.49 462.25 349.85 5.84 MWD M M-IFR 71 6258.12 39.96 34.96 92.69 6137.71 388.12 502.57 -51.73 505.23 354.12 7.01 MWDM M-IFR 72 6353.45 43.07 40.23 95.33 6209.10 451.12 552.54 -13 .15 552.70 358.64 4.90 MWDM M-IFR 73 6447.02 47.83 45.79 93.57 6274.75 516.87 601.16 32.39 602.03 3.08 6.62 MWD M M-IFR - 74 6539.04 52.54 50.79 92.02 6333.68 585.26 648.07 85.18 653.64 7.49 6.60 MWDM M-IFR 75 6630.00 57.82 54.41 90.96 6385.61 655.93 693.33 144.51 708.23 11.77 6.66 MWDM M-IFR 76 6725.36 62.34 57.26 95.36 6433.17 732.57 739.69 212.89 769.72 16.06 5.40 MWDM M-IFR 77 6817.63 63.08 58.50 92.27 6475.48 807.50 783.29 282.34 832.62 19.82 1. 44 MWDM M-IFR 78 6910.91 66.56 59.92 93.28 6515.16 883.82 826.48 354.85 899.44 23.24 3.98 MWDM M-IFR 79 7004.20 70.63 60.18 93.29 6549.20 961.78 869.83 430.09 970.35 26.31 4.37 MWDM M-IFR 80 7096.88 71.77 61.62 92.68 6579.07 1039.97 912.49 506.75 1043.76 29.05 1. 92 MWDM M-IFR .81 7189.25 71. 65 61.63 92.37 6608.06 1117.63 954.17 583.92 1118.66 31. 47 0.13 MWD M M-IFR . 82 7283.07 71.75 62.11 93.82 6637.52 1196.32 996.17 662.47 1196.34 33.62 0.50 MWD M M-IFR 83 7376.77 71.83 61.84 93.70 6666.80 1274.87 1037.99 741. 04 1275.37 35.52 0.29 MWDM M-IFR - 84 7470.34 71.77 61. 96 93.57 6696.02 1353.38 1079.86 819.45 1355.58 37.19 0.14 MWDM M-IFR - 85 7501. 49 71. 88 62.48 31.15 6705.74 1379.44 1093.65 845.64 1382.45 37.71 1. 62 MWDM M-IFR 86 7532.45 71.92 62.62 30.96 6715.36 1405.27 1107.21 871. 75 1409.21 38.21 0.45 MWD M" M-IFR - 87 7564.32 71.95 62.36 31. 87 6725.24 1431. 89 1121.21 898.63 1436.89 38.71 0.78 MWD M M-IFR 88 7635.00 71.95 62.36 70.68 6747.14 1490.98 1152.39 958.16 1498.69 39.74 0.00 Projected to TD [(c)2003 IDEAL ID8_0C_07] .~ SCHLUMBERGER Survey report Client......... ....... ...: BP Exploration (Alaska) Inc. Field. . . . . . . . . . . . . . . . . . . .: Borealis Well. . . . . . . . . . . . . . . . . . . . .: V-ll1 PB2 API number.......... .....: 50-029-23161-71 Engineer........ ....... ..: M. Aburto ~~~~;::::::: ::::::::::::~ ~~~~~: 9ES ----- Survey calculation methods------------- Method for positions.....: Minimum curvature Method for DLS...... .....: Mason & Taylor ----- Depth reference ----------------------- Permanent datum....... ...: Mean Sea Level Depth reference...... ....: Driller's Pipe Tally GL above permanent.... ...: 53.30 ft KB above permanent... ....: N/A - Top Drive DF above permanent.......: 81.80 ft ----- Vertical section origin---------------- Latitude (+N/S-). .... ....: 0.00 ft Departure (+E/W-).. ......: 0.00 ft .-~- Platform reference point--------------- tltude (+N/S-).........: N 70 19 41.296 Departure (+E/W-)... ... ..: W 149 15 51.593 Azimuth from rotary table to target: 33.93 degrees [(c)2003 IDEAL ID8 OC 07] 29-Jul-2003 07:17:09 Spud date. . . . . . . . . . . . . . . . : Last survey date...... ...: Total accepted surveys...: MD of first survey. ......: MD of last survey... .....: Page 1 of 5 02-Jul-03 29-Jul-03 101 0.00 ft 7210.00 ft . ----- Geomagnetic data ---------------------- Magnetic model... ........: BGGM version 2002 Magnetic date... .........: 20-Jul-2003 Magnetic field strength..: 1150.38 HCNT Magnetic dec (+E/W-) .....: 25.50 degrees Magnetic dip...... .......: 80.78 degrees ----- MWD survey Reference Reference G..... .........: Reference H... ... ........: Reference Dip............: Tolerance of G.. .........: Tolerance of H.. .........: Tolerance of Dip.........: Criteria --------- 1002.68 mGal 1150.38 HCNT 80.78 degrees (+/-) 2.50 mGal ( + / - ) 6. 00 HCNT (+/-) 0.45 degrees . ----- Corrections --------------------------- Magnetic dec (+E/W-) .....: 25.50 degrees Grid convergence (+E/W-).: 0.00 degrees Total az corr (+E/W-)....: 25.50 degrees (Total az corr = magnetic dec - grid conv) Survey Correction Type ...: I=Sag Corrected Inclination M=Schlumberger Magnetic Correction S=Shell Magnetic Correction F=Failed Axis Correction R=Magnetic Resonance Tool Correction D=Dmag Magnetic Correction SCHLUMBERGER Survey Report 29-Jul-2003 07:17:09 -------- ------ ------- ------ -------- -------- ---------------- -------- ------ ------- ------ -------- -------- ---------------- Seq Measured # depth (n) .~ 8 9 10 .21 22 23 24 25 Incl angle (deg) Azimuth angle (deg) Course length (n) TVD depth (n) Vertical section (n) Displ +N/S- (n) Displ +E/W- (n) -------- ------ ------- ------ -------- -------- ---------------- -------- ------ ------- ------ -------- -------- ---------------- 1 2 3 4 5 0.00 100.00 200.00 300.00 400.00 0.00 0.50 0.65 0.76 1. 06 1. 31 1. 73 1. 72 1. 84 1. 42 0.75 1. 85 3.15 3.89 4.17 4.24 4.23 4.70 5.76 5.08 4.85 6.24 6.50 6.37 5.06 2.86 2.64 1. 40 0.52 0.42 0.00 91. 31 90.96 93.40 96.98 101.81 103.02 100.58 104.04 119.85 196.62 248.29 261. 17 266.10 263.62 265.50 261.68 264.43 267.76 277.98 281.20 282.06 280.72 280.92 284.09 279.64 279.59 286.00 320.88 312.45 [(c)2003 IDEAL 108 OC 07] 500.00 600.00 700.00 800.00 900.00 11 12 13 14 15 1000.00 1100.00 1200.00 1300.00 1400.00 16 17 18 19 20 1500.00 1600.00 1700.00 1800.00 1847.00 1873.77 1966.13 2058.26 2153.25 2245.73 26 27 28 29 30 2339.83 2432.60 2525.85 2618.84 2682.69 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 47.00 26.77 92.36 92.13 94.99 92.48 94.10 92.77 93.25 92.99 63.85 0.00 100.00 199.99 299.99 399.97 499.95 599.92 699.87 799.82 899.78 999.77 1099.74 1199.65 1299.46 1399.21 1498.94 1598.67 1698.36 1797.95 1844.74 1871.41 1963.33 2054.89 2149.29 2241. 30 2335.17 2427.84 2521.03 2614.00 2677.85 0.00 0.24 0.78 1. 42 2.18 3.03 4.00 5.13 6.27 6.91 6.37 4.41 1. 22 -2.73 -7.16 -11.81 -16.59 -21. 67 -27.24 -29.55 -30.50 -33.88 -37.80 -41.98 -45.37 -47.74 -49.58 -50.81 -51.04 -50.92 0.00 -0.01 -0.03 -0.08 -0.23 -0.58 -1.15 -1.77 -2.43 -3.44 -4.68 -5.91 -6.92 -7.58 -8.21 -8.91 -9.73 -10.66 -11.25 -11. 06 -10.67 -8.87 -6.85 -4.85 -2.89 -1.48 -0.74 -0.07 0.57 0.96 0.00 0.44 1. 44 2.67 4.25 6.29 8.88 11.82 14.85 17.49 18.37 16.69 12.47 6.37 -0.62 -7.92 -15.26 -22.98 -32.08 -36.49 -38.78 -47.52 -57.54 -67.99 -76.99 -83.33 -87.72 -90.93 -92.29 -92.64 Page 2 of 5 --------------- --------------- Total displ (n) At Azim (deg) --------------- --------------- 0.00 0.44 1. 44 2.67 4.26 6.31 8.95 11. 95 15.05 17.82 18.96 17.70 14.27 9.90 8.24 11. 92 18.10 25.34 33.99 38.13 40.22 48.34 57.94 68.17 77.04 83.34 87.72 90.93 92.29 92.65 0.00 91. 31 91. 17 91. 68 93.10 95.24 97.39 98.50 99.29 101.12 104.29 109.49 119.04 139.93 184.35 221.66 237.48 245.12 250.67 253.14 254.61 259.43 263.21 265.92 267.85 268.98 269.52 269.96 270.36 270.59 DLS (deg/ 100f) 0.00 0.50 0.15 0.11 0.31 0.27 0.42 0.07 0.16 0.61 1. 45 1. 50 1. 41 0.80 0.33 0.15 0.28 0.52 1.10 2.51 1. 35 1. 51 0.33 0.14 1. 46 2.36 0.24 1. 35 1. 09 0.19 ------ ------ Srvy Tool tool Corr type (deg) ------ ------ TIP GYR GYR GYR GYR GYR GYR GYR GYR GYR . GYR GYR GYR GYR GYR GYR GYR GYR GYR GYR MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA . MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA . SCHLUMBERGER Survey Report 29-Jul-2003 07:17:09 Page 3 of 5 -------- ------ ------- ------ -------- -------- ---------------- --------------- -------- ------ ------- ------ -------- -------- ---------------- --------------- Seq Measured # depth (n) .36 37 38 39 40 .51 52 53 54 55 Incl angle (deg) Azimuth angle (deg) Course length (n) TVD depth (n) Vertical section (n) Displ +N/S- (n) Displ +E/W- (n) Total displ (n) At Azim (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- -------- ------ ------- ------ -------- -------- ---------------- --------------- 3L 32 33 34 35 2703.23 2826.99 2921.28 3014.53 3107.91 0.41 0.92 0.94 0.81 0.86 0.82 0.76 0.84 0.91 0.94 1. 06 1.12 1. 03 1.13 1. 16 1. 34 1. 35 1. 22 1.11 1. 28 1. 31 1. 27 1.19 1.12 1.13 3.07 6.44 9.68 13.55 18.26 310.50 310.35 307.97 307.80 309.69 298.93 295.23 297.73 299.01 298.84 304.53 308.10 309.69 315.42 312.31 309.51 306.49 299.20 275.01 310.71 311.59 313.20 314.59 312.94 316.73 338.84 348.97 355.07 357.84 357.85 [(c)2003 IDEAL ID8 OC 07] 3199.89 3294.17 3387.24 3481.14 3575.16 41 42 43 44 45 3666.76 3759.37 3851.37 3945.67 3970.68 46 47 48 49 50 4034.88 4127.50 4221.16 4302.36 4396.52 4490.66 4582.91 4676.61 4768.51 4861. 01 56 57 58 59 60 4955.40 5048.19 5141.18 5233.84 5326.65 20.54 123.76 94.29 93.25 93.38 91.98 94.28 93.07 93.90 94.02 91. 60 92.61 92.00 94.30 25.01 64.20 92.62 93.66 81.20 94.16 94.14 92.25 93.70 91. 90 92.50 94.39 92.79 92.99 92.66 92.81 2698.39 2822.14 2916.42 3009.66 3103.03 3195.00 3289.27 3382.33 3476.22 3570.23 3661.81 3754.41 3846.39 3940.67 3965.68 4029.86 4122.46 4216.10 4297.28 4391. 42 4485.54 4577.76 4671.44 4763.32 4855.80 4950.13 5042.59 5134.65 5225.39 5314.63 -50.90 -50.74 -50.60 -50.50 -50.39 -50.37 -50.53 -50.69 -50.83 -50.96 -51. 02 -50.95 -50.80 -50.53 -50.44 -50.27 -50.12 -50.15 -50.61 -50.92 -50.65 -50.35 -50.00 -49.69 -49.34 -47.69 -42.58 -32.80 -17.96 2.59 1. 05 1. 98 2.95 3.83 4.68 5.44 6.03 6.61 7.29 8.03 8.87 9.91 11.00 12.20 12.55 13.46 14.80 15.94 16.43 17.20 18.60 20.00 21. 39 22.67 23.95 26.99 34.41 47.33 65.94 91. 35 -92.75 -93.85 -95.03 -96.16 -97.22 -98.33 -99.48 -100.64 -101. 91 -103.23 -104.59 -106.01 -107.35 -108.66 -109.02 -110.08 -111.79 -113.55 -115.09 -116.79 -118.39 -119.93 -121.38 -122.71 -124.00 -125.55 -127.44 -129.11 -130.19 -131.15 92.76 93.87 95.08 96.23 97.33 98.48 99.67 100.86 102.17 103.55 104.97 106.47 107.91 109.34 109.74 110.90 112.77 114.66 116.25 118.05 119.84 121. 58 123.25 124.79 126.29 128.42 132.01 137.51 145.94 159.83 270.65 271.21 271. 78 272.28 272.75 273.16 273.47 273.76 274.09 274.45 274.85 275.34 275.85 276.41 276.56 276.97 277.54 277.99 278.13 278.38 278.93 279.47 279.99 280.47 280.93 282.13 285.11 290.13 296.86 304.86 DLS (deg/ 100f) 0.08 0.41 0.05 0.14 0.06 0.18 0.08 0.09 0.08 0.03 0.17 0.10 0.10 0.16 0.28 0.30 0.08 0.22 0.62 0.80 0.04 0.06 0.09 0.08 0.08 2.19 3.73 3.60 4.22 5.07 ------ ------ Srvy Tool tool Corr type (deg) ------ ------ MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA . MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA . MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA MWD IFR MSA SCHLUMBERGER Survey Report 29-Jul-2003 07:17:09 Page 4 of 5 -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr (ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 61 5420.17 22.69 356.70 93.52 5402.22 28.81 124.02 -132.74 181.66 313.05 4.76 MWD IFR MSA - 62 5513.45 26.75 356.89 93.28 5486.93 59.90 162.95 -134.91 211.56 320.38 4.35 MWD IFR MSA - 63 5606.63 25.89 356.44 93.18 5570.45 92.78 204.20 -137.31 246.07 326.08 0.95 MWD IFR MSA - 64 5700.28 26.16 359.86 93.65 5654.61 126.11 245.25 -138.63 281. 72 330.52 1. 63 MWD IFR MSA - - 65 5793.84 26.37 4.64 93.56 5738.52 161.32 286.59 -137.00 317.65 334.45 2.27 MWD IFR MSA - .66 5886.36 26.35 12.49 92.52 5821. 44 198.36 327.13 -130.90 352.35 338.19 3.76 MWD IFR MSA . - - 67 5979.56 27.65 18.37 93.20 5904.50 238.45 367.86 -119.61 386.81 341. 99 3.18 MWD IFR MSA - - 68 6034.93 29.72 22.10 55.37 5953.07 264.27 392.77 -110.39 407.99 344.30 4.94 MWD IFR MSA - 69 6072.52 30.33 22.64 37.59 5985.62 282.70 410.16 -103.23 422.96 345.87 1. 77 MWD IFR MSA - 70 6165.43 34.66 28.73 92.91 6063.99 332.05 455.02 -81. 49 462.25 349.85 5.84 MWD IFR MSA 71 6229.42 37.49 32.22 63.99 6115.71 369.65 487.46 -62.35 491.43 352. 71 5.46 MWD IFR MSA - - 72 6261.06 35.91 31. 69 31. 64 6141. 07 388.54 503.50 -52.35 506.21 354.06 5.09 MWD IFR MSA - 73 6291.38 35.49 31.14 30.32 6165.70 406.22 518.60 -43.12 520.39 355.25 1. 74 MWD IFR MSA - - 74 6324.44 36.74 32.58 33.06 6192.40 425.69 535.14 -32.84 536.15 356.49 4.57 MWD IFR MSA - 75 6355.57 37.15 34.34 31. 13 6217.28 444.40 550.75 -22.52 551.21 357.66 3.64 MWD IFR MSA 76 6386.06 38.19 37.59 30.49 6241.42 463.01 565.82 -11.57 565.94 358.83 7.35 MWD IFR MSA - - 77 6418.43 39.76 40.43 32.37 6266.59 483.29 581.63 1. 24 581.64 0.12 7.35 MWD IFR MSA - - 78 6449.01 41.55 42.51 30.58 6289.78 503.03 596.56 14.44 596.73 1. 39 7.34 MWD IFR MSA - - 79 6480.35 43.55 44.51 31. 34 6312.87 523.93 611. 92 29.03 612.61 2.72 7.70 MWD IFR MSA - - 80 6508.83 44.87 46.25 28.48 6333.29 543.39 625.86 43.17 627.35 3.95 6.29 MWD IFR MSA - - .81 6540.50 46.31 48.33 31. 67 6355.45 565.40 641.20 59.80 643.99 5.33 6.53 MWD IFR MSA . - - 82 6570.07 47.68 50.01 29.57 6375.62 586.26 655.34 76.16 659.75 6.63 6.22 MWD IFR MSA - 83 6601.93 49.81 51. 88 31.86 6396.63 609.16 670.42 94.76 677.09 8.05 8.01 MWD IFR MSA - - 84 6629.68 51.52 51.40 27.75 6414.22 629.60 683.74 111.59 692.79 9.27 6.31 MWD IFR MSA - - 85 6663.82 53.76 50.81 34.14 6434.93 655.53 700.78 132.70 713.24 10.72 6.70 MWD IFR MSA - 86 6694.57 56.19 51.32 30.75 6452.58 679.59 716.60 152.29 732.61 12.00 8.02 MWD IFR MSA - - 87 6725.71 58.97 50.26 31.14 6469.27 704.74 733.22 172.65 753.28 13.25 9.38 MWD IFR MSA - - 88 6757.53 60.88 51. 34 31. 82 6485.22 731.09 750.62 193.99 775.29 14.49 6.68 MWD IFR MSA - - 89 6787.65 62.98 53.02 30.12 6499.39 756.33 766.91 214.99 796.48 15.66 8.53 MWD IFR MSA - 90 6818.62 65.54 53.85 30.97 6512.84 782.62 783.53 237.39 818.70 16.86 8.61 MWD IFR MSA - [(c)2003 IDEAL ID8 OC 07] SCHLUMBERGER Survey Report 29-Jul-2003 07:17:09 Page 5 of 5 -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr (ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 91 6853.06 69.25 54.59 34.44 6526.08 812.43 802.11 263.18 844.19 18.17 10.95 MWD IFR MSA - - 92 6880.66 71.78 55.28 27.60 6535.28 836.72 817.06 284.48 865.17 19.20 9.46 MWD IFR MSA - - 93 6912.20 74.43 55.20 31. 54 6544.45 864.83 834.26 309.27 889.74 20.34 8.41 MWD IFR MSA - - 94 6943.59 78.09 56.83 31. 39 6551. 90 893.08 851. 30 334.55 914.68 21. 45 12.70 MWD IFR MSA - - 95 6974.58 78.01 58.05 30.99 6558.32 920.88 867.62 360.10 939.38 22.54 3.86 MWD IFR MSA .96 7005.32 77.71 59.03 30.74 6564.78 948.21 883.30 385.74 963.86 23.59 3.27 MWD IFR MSA . - - 97 7035.91 77.98 58.73 30.59 6571. 23 975.32 898.76 411. 34 988.42 24.59 1. 30 MWD IFR MSA - - 98 7067.61 78.12 57.97 31.70 6577.79 1003.56 915.03 437.74 1014.35 25.57 2.39 MWD IFR MSA - - 99 7099.50 77.99 58.68 31.89 6584.39 1031.97 931.41 464.29 1040.72 26.50 2.22 MWD IFR MSA - - 100 7142.16 78 .18 58.82 42.66 6593.20 1069.86 953.07 499.98 1076.25 27.68 0.55 MWD IFR MSA 101 7210.00 78 .18 59.04 67.84 6607.09 1130.04 987.34 556.85 1133.54 29.42 0.32 Projected to TO [(c)2003 IDEAL 108 OC_07] . . SCHLUMBERGER Survey report Client.. ......... ... .....: BP Exploration (Alaska) Inc. Field. . . .. . . ., . . . . . . . . . . .: Borealis Well. . . . . . . . . . . . . . . . . . . . .: V111 - PB3 API number........ .......: 50-029-23161-72 Engineer.. ...............: Mark St. Amour Rig. . . . . . . . . . . . . . . . . . . . . .: Nabors 9ES STATE: . . . . . . . . . . . . . . . . . . .: Alaska ----- Survey calculation methods------------- Method for positions. ....: Minimum curvature Method for DLS.. ...... ...: Mason & Taylor ----- Depth reference ----------------------- Permanent datum... .......: Mean Sea Level Depth reference... .... ...: Drill Floor GL above permanent.. .....: 53.30 ft KB above permanent.... ...: N/A - Top Drive OF above permanent.. . . . . . : 81.80 ft ----- Vertical section origin---------------- Latitude (+N/S-). ... .....: 0.00 ft Departure (+E/W-)... .....: 0.00 ft ----- Platform reference point--------------- Latitude (+N/S-).. ..... ..: N 70 19 41.296 Departure (+E/W-)... .., ..: W 149 15 51.593 Azimuth from rotary table to target: 33.93 degrees [(c)2003 IDEAL 108 OC 07] 4-Aug-2003 23:30:32 Spud date.. . . . . . . . . . . . . . . : Last survey date... ......: Total accepted surveys...: MD of first survey.......: MD of last survey........: Page 1 of 4 02-Jul-03 04-Aug-03 83 0.00 ft 7485.24 ft . ----- Geomagnetic data ---------------------- Magnetic model...........: BGGM version 2002 Magnetic date........ ....: 02-Aug-2003 Magnetic field strength..: 1150.38 HCNT Magnetic dec (+E/W-).....: 25.49 degrees Magnetic dip.............: 80.78 degrees ----- MWD survey Reference Reference G..... .... .....: Reference H.......... ....: Reference Dip....... .....: Tolerance of G.... .......: Tolerance of H....... ....: Tolerance of Dip..... ....: Criteria --------- 1002.68 mGal 1150.38 HCNT 80.78 degrees (+/-) 2.50 mGal (+/-) 6.00 HCNT (+/-) 0.45 degrees . ----- Corrections --------------------------- Magnetic dec (+E/W-). ....: 25.50 degrees Grid convergence (+E/W-).: 0.00 degrees Total az corr (+E/W-) ....: 25.50 degrees (Total az corr = magnetic dec - grid conv) Survey Correction Type...: I=Sag Corrected Inclination M=Schlumberger Magnetic Correction S=Shell Magnetic Correction F=Fai1ed Axis Correction R=Magnetic Resonance Tool Correction D=Dmag Magnetic Correction SCHLUMBERGER Survey Report 4-Aug-2003 23:30:32 Page 2 of 4 -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Carr (ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TIP None 2 100.00 0.50 91.31 100.00 100.00 0.24 -0.01 0.44 0.44 91.31 0.50 GYR None 3 200.00 0.65 90.96 100.00 199.99 0.78 -0.03 1. 44 1. 44 91. 17 0.15 GYR None 4 300.00 0.76 93.40 100.00 299.99 1. 42 -0.08 2.67 2.67 91. 68 0.11 GYR None 5 400.00 1. 06 96.98 100.00 399.97 2.18 -0.23 4.25 4.26 93.10 0.31 GYR None 6 500.00 1. 31 101.81 100.00 499.95 3.03 -0.58 6.29 6.31 95.24 0.27 GYR None 7 600.00 1. 73 103.02 100.00 599.92 4.00 -1.15 8.88 8.95 97.39 0.42 GYR None . 8 700.00 1. 72 100.58 100.00 699.87 5.13 -1.77 11. 82 11. 95 98.50 0.07 GYR None 9 800.00 1. 84 104.04 100.00 799.82 6.27 -2.43 14.85 15.05 99.29 0.16 GYR None 10 900.00 1. 42 119.85 100.00 899.78 6.91 -3.44 17.49 17.82 101.12 0.61 GYR None 11 1000.00 0.75 196.62 100.00 999.77 6.37 -4.68 18.37 18.96 104.29 1. 45 GYR None 12 1100.00 1. 85 248.29 100.00 1099.74 4.41 -5.91 16.69 17.70 109.49 1. 50 GYR None 13 1200.00 3.15 261.17 100.00 1199.65 1. 22 -6.92 12.47 14.27 119.04 1. 41 GYR None 14 1300.00 3.89 266.10 100.00 1299.46 -2.73 -7.58 6.37 9.90 139.93 0.80 GYR None 15 1400.00 4.17 263.62 100.00 1399.21 -7.16 -8.21 -0.62 8.24 184.35 0.33 GYR None 16 1500.00 4.24 265.50 100.00 1498.94 -11. 81 -8.91 -7.92 11. 92 221. 66 0.15 GYR None 17 1600.00 4.23 261. 68 100.00 1598.67 -16.59 -9.73 -15.26 18.10 237.48 0.28 GYR None 18 1700.00 4.70 264.43 100.00 1698.36 -21. 67 -10.66 -22.98 25.34 245.12 0.52 GYR None 19 1800.00 5.76 267.76 100.00 1797.95 -27.24 -11.25 -32.08 33.99 250.67 1.10 GYR None 20 1847.00 5.08 277 . 98 47.00 1844.74 -29.55 -11.06 -36.49 38.13 253.14 2.51 GYR None 21 1873.77 4.85 281.20 26.77 1871.41 -30.50 -10.67 -38.78 40.22 254.61 1. 35 MWD IFR MSA . - - 22 1966.13 6.24 282.06 92.36 1963.33 -33.88 -8.87 -47.52 48.34 259.43 1. 51 MWD IFR MSA - 23 2058.26 6.50 280.72 92.13 2054.89 -37.80 -6.85 -57.54 57.94 263.21 0.33 MWD IFR MSA - - 24 2153.25 6.37 280.92 94.99 2149.29 -41.98 -4.85 -67.99 68.17 265.92 0.14 MWD IFR MSA - - 25 2245.73 5.06 284.09 92.48 2241. 30 -45.37 -2.89 -76.99 77.04 267.85 1. 46 MWD IFR MSA 26 2339.83 2.86 279.64 94.10 2335.17 -47.74 -1.48 -83.33 83.34 268.98 2.36 MWD IFR MSA - 27 2432.60 2.64 279.59 92.77 2427.84 -49.58 -0.74 -87.72 87.72 269.52 0.24 MWD IFR MSA - - 28 2525.85 1. 40 286.00 93.25 2521.03 -50.81 -0.07 -90.93 90.93 269.96 1. 35 MWD IFR MSA - - 29 2618.84 0.52 320.88 92.99 2614.00 -51.04 0.57 -92.29 92.29 270.36 1. 09 MWD IFR MSA - - 30 2682.69 0.42 312.45 63.85 2677.85 -50.92 0.96 -92.64 92.65 270.59 0.19 MWD IFR MSA - [(c)2003 IDEAL ID8 OC 07] SCHL?MBERGER Survey Report 4-Aug-2003 23:30:32 Page 3 of 4 -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/W- displ Azim (degl tool Corr (n) (deg) (deg) (n) (n) (n) (n) (n) (n) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 31 2703.23 0.41 310.50 20.54 2698.39 -50.90 1. 05 -92.75 92.76 270.65 0.08 MWD IFR MSA - 32 2826.99 0.92 310.35 123.76 2822.14 -50.74 1. 98 -93.85 93.87 271.21 0.41 MWD IFR MSA - - 33 2908.24 2.32 358.81 81.25 2903.36 -49.32 4.05 -94.38 94.47 272.46 2.27 MWD IFR MSA - - 34 3001. 66 6.17 16.03 93.42 2996.51 -42.99 10.77 -93.03 93.65 276.60 4.30 MWD IFR MSA - 35 3094.38 8.41 20.81 92.72 3088.48 -31. 65 21. 90 -89.25 91.89 283.79 2.50 MWD IFR MSA 36 3188.07 10.52 21.89 93.69 3180.89 -16.61 36.24 -83.62 91.14 293.43 2.26 MWD IFR MSA . - - 37 3281.54 13.08 23.15 93.47 3272.37 2.13 53.89 -76.28 93.40 305.24 2.75 MWD IFR MSA - 38 3376.51 12.35 19.50 94.97 3365.01 22.52 73.34 -68.67 100.47 316.89 1.14 MWD IFR MSA - 39 3470.17 10.15 11. 31 93.66 3456.88 39.85 90.88 -63.70 llO.98 324.97 2.90 MWD IFR MSA - 40 3563.84 6.96 3.13 93.67 3549.49 52.34 104.64 -61.78 121. 52 329.44 3.64 MWD IFR MSA 41 3657.03 3.85 352.84 93.19 3642.26 59.55 113.39 -61. 86 129.16 331.39 3.48 MWD IFR MSA - - 42 3749.92 2.85 339.15 92.89 3734.99 63.23 118.64 -63.07 134.36 332.01 1. 37 MWD IFR MSA - 43 3842.91 1. 64 13.65 92.99 3827.91 65.82 122.09 -63.58 137.65 332.49 1. 90 MWD IFR MSA - 44 3936.23 1. 08 46.53 93.32 3921.21 67.93 124.00 -62.62 138.91 333.20 1. 01 MWD IFR MSA - 45 4028.66 0.95 48.25 92.43 4013.62 69.52 125.11 -61. 42 139.37 333.85 0.14 MWD IFR MSA - 46 4122.08 1. 09 52.14 93.42 4107.03 71.11 126.17 -60.14 139.77 334.51 0.17 MWD IFR MSA - 47 4216.02 1.19 45.57 93.94 4200.95 72.92 127.40 -58.74 140.29 335.25 0.18 MWD IFR MSA - - 48 4309.02 1. 46 55.67 93.00 4293.92 74.96 128.74 -57.07 140.82 336.09 0.38 MWD IFR MSA - 49 4403.10 0.31 11.89 94.08 4387.99 76.31 129.67 -56.03 141.25 336.63 1. 33 MWD IFR MSA - - 50 4497.19 0.70 289.64 94.09 4482.08 76.41 130.11 -56.52 141.85 336.52 0.77 MWD IFR MSA 51 4590.02 0.69 269.68 92.83 4574.90 75.95 130.30 -57.61 142.46 336.15 0.26 MWD IFR MSA . - - 52 4683.04 0.91 266.98 93.02 4667.91 75.19 130.25 -58.91 142.96 335.67 0.24 MWD IFR MSA - 53 4775.72 1. 01 268.12 92.68 4760.58 74.27 130.19 -60.46 143.54 335.09 0.11 MWD IFR MSA - - 54 4868.44 0.83 263.66 92.72 4853.29 73.36 130.09 -61.94 144.08 334.54 0.21 MWD IFR MSA - 55 4961. 50 0.86 267.87 93.06 4946.34 72.51 129.99 -63.31 144.59 334.03 0.07 MWD IFR MSA 56 5054.46 1. 04 269.97 92.96 5039.29 71. 63 129.96 -64.85 145.24 333.48 0.20 MWD IFR MSA - 57 5147.41 1. 25 8.89 92.95 5132.22 72.08 130.96 -65.54 146.45 333.42 1. 88 MWD IFR MSA - 58 5240.87 5.93 41.11 93.46 5225.48 77.80 135.61 -62.20 149.20 335.36 5.26 MWD IFR MSA - - 59 5334.61 9.37 45.78 93.74 5318.37 90.07 144.58 -53.55 154.18 339.68 3.73 MWD IFR MSA - 60 5429.ll 11. 62 47.64 94.50 5411.29 106.85 156.36 -41. 00 161. 65 345.31 2.41 MWD IFR MSA [(c)2003 IDEAL ID8 OC 07] SCH~~MBERGER Survey Report 4-Aug-2003 23:30:32 Page 4 of 4 -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr (ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 61 5521.23 14.26 47.98 92.12 5501.06 126.87 170.21 -25.71 172.14 351.41 2.87 MWD IFR MSA - 62 5614.75 17.77 48.93 93.52 5590.94 151.84 187.30 -6.39 187.41 358.05 3.76 MWD IFR MSA - 63 5708.20 20.51 49.11 93.45 5679.21 181.42 207.39 16.74 208.07 4.61 2.93 MWD IFR MSA - - 64 5800.49 25.22 47.29 92.29 5764.23 216.17 231. 33 43.42 235.37 10.63 5.16 MWD IFR MSA - - 65 5894.00 29.93 45.92 93.51 5847.09 258.40 261.08 74.84 271.60 15.99 5.08 MWD IFR MSA - 66 5987.57 32.70 43.83 93.57 5927.02 306.14 295.56 109.12 315.06 20.26 3.18 MWD IFR MSA . - 67 6080.85 39.02 42.77 93.28 6002.59 360.04 335.34 146.55 365.96 23.61 6.81 MWD IFR MSA - 68 6173.89 46.57 44.73 93.04 6070.81 422.25 380.91 190.28 425.79 26.54 8.24 MWD IFR MSA - 69 6268.20 50.74 43.75 94.31 6133.10 491. 90 431. 63 239.65 493.70 29.04 4.49 MWD IFR MSA - - 70 6361.71 52.47 45.22 93.51 6191.18 563.94 483.91 291.01 564.67 31. 02 2.22 MWD IFR MSA - 71 6454.94 55.19 47.39 93.23 6246.20 637.43 535.87 345.43 637.56 32.81 3.47 MWD IFR MSA - - 72 6546.56 61. 20 49.10 91. 62 6294.47 712.83 587.67 403.51 712.86 34.47 6.75 MWD IFR MSA - 73 6639.74 61. 09 49.44 93.18 6339.43 791.54 640.92 465.35 792.04 35.98 0.33 MWD IFR MSA - 74 6733.56 61. 67 50.42 93.82 6384.37 870.70 693.94 528.37 872.20 37.29 1.11 MWD IFR MSA - - 75 6824.99 62.34 49.55 91.43 6427.29 948.28 745.85 590.20 951. 12 38.35 1.11 MWD IFR MSA - - 76 6918.24 60.74 48.90 93.25 6471.73 1027.36 799.39 652.28 1031.74 39.21 1. 82 MWD IFR MSA - - 77 7011.62 59.93 49.18 93.38 6517.94 1105.69 852.58 713.55 1111. 78 39.93 0.91 MWD IFR MSA - 78 7104.73 60.39 49.39 93.11 6564.27 1183.57 905.26 774.77 1191.54 40.56 0.53 MWD IFR MSA - - 79 7197.61 60.88 49.95 92.88 6609.82 1261.48 957.65 836.48 1271.53 41. 14 0.74 MWD IFR MSA - - 80 7290.81 60.19 50.57 93.20 6655.66 1339.35 1009.52 898.87 1351. 71 41. 68 0.94 MWD IFR MSA - 81 7383.90 60.18 49.26 93.09 6701. 95 1417.00 1061.53 960.66 1431. 69 42.14 1. 22 MWD IFR MSA . - - 82 7477.28 58.74 49.98 93.38 6749.40 1494.42 1113.64 1021.93 1511. 46 42.54 1. 68 MWD IFR MSA - - 83 7485.24 58.67 49.97 7.96 6753.53 1500.96 1118.01 1027.13 1518.21 42.57 0.89 MWD IFR MSA - 84 7560.00 58.67 49.97 74.76 6792.41 1562.33 1159.08 1076.03 1581. 56 42.87 0.00 Projected to TD [(c)2003 IDEAL ID8_0C_07] SCHLUMBERGER Survey report Client.. .... .............: BP Exploration (Alaska) Inc. Field. . . . . . . . . . . . . . . . . . . .: Borealis Well.....................: V-111 API number......... ......: 50-029-23161-00 Engineer........ ... ......: Mark St. Amour Rig. . . . . . . . . . . . . . . . . . . . . .: Nabors 9ES STATE:... ..... ...........: Alaska ----- Survey calculation methods------------- Method for positions... ..: Minimum curvature Method for DLS...........: Mason & Taylor ----- Depth reference ----------------------- Permanent datum.. ..... ...: Mean Sea Level Depth reference. .........: Drill Floor GL above permanent.......: 53.30 ft KB above permanent. ......: N/A - Top Drive OF above permanent.......: 81.80 ft ----- Vertical section origin---------------- Latitude (+N/S-). ........: 0.00 ft Departure (+E/W-)........: 0.00 ft ----- Platform reference point--------------- Latitude (+N/S-).........: -999.25 ft Departure (+E/W-).. ......: -999.25 ft Azimuth from rotary table to target: 64.54 degrees 13-Aug-2003 11:33:59 Spud date. . . . . . . . . . . . . . . . : Last survey date.........: Total accepted surveys...: MD of first survey.......: MD of last survey........: Page 1 of 7 02-Jul-03 13-Aug-03 165 0.00 ft 9850.00 ft . ----- Geomagnetic data ---------------------- Magnetic model.... .......: BGGM version 2002 Magnetic date. ..... ......: 02-Aug-2003 Magnetic field strength..: 1150.38 HCNT Magnetic dec (+E/W-).....: 25.49 degrees Magnetic dip..... ........: 80.78 degrees ----- MWD survey Reference Reference G.... ..........: Reference H.... ..........: Reference Dip. ...... .....: Tolerance of G.. ... ......: Tolerance of H. ..........: Tolerance of Dip.........: Criteria --------- 1002.68 mGal 1150.38 HCNT 80.78 degrees (+/-) 2.50 mGal (+/-) 6.00 HCNT (+/-) 0.45 degrees ----- Corrections --------------------------- Magnetic dec (+E/W-).....: 25.50 degrees Grid convergence (+E/W-).: 0.00 degrees Total az corr (+E/W-)....: 25.50 degrees (Total az corr = magnetic dec - grid conv) Survey Correction Type ...: I=Sag Corrected Inclination IFR_MSA=Schlumberger G-Mag & Infield Reference S=Shell Magnetic Correction F=Failed Axis Correction R=Magnetic Resonance Tool Correction D=Dmag Magnetic Correction . SCHLUMBERGER Survey Report 13-Aug-2003 11:33:59 Page 2 of 7 -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr (ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TIP None 2 100.00 0.50 91. 31 100.00 100.00 0.39 -0.01 0.44 0.44 91. 31 0.50 GYR None 3 200.00 0.65 90.96 100.00 199.99 1. 29 -0.03 1. 44 1. 44 91. 17 0.15 GYR None 4 300.00 0.76 93.40 100.00 299.99 2.38 -0.08 2.67 2.67 91.68 0.11 GYR None 5 400.00 1. 06 96.98 100.00 399.97 3.74 -0.23 4.25 4.26 93.10 0.31 GYR None 6 500.00 1. 31 101.81 100.00 499.95 5.43 -0.58 6.29 6.31 95.24 0.27 GYR None 7 600.00 1. 73 103.02 100.00 599.92 7.52 -1.15 8.88 8.95 97.39 0.42 GYR None . 8 700.00 1.72 100.58 100.00 699.87 9.91 -1.77 11. 82 11. 95 98.50 0.07 GYR None 9 800.00 1. 84 104.04 100.00 799.82 12.37 -2.43 14.85 15.05 99.29 0.16 GYR None 10 900.00 1. 42 119.85 100.00 899.78 14.31 -3.44 17.49 17.82 101.12 0.61 GYR None 11 1000.00 0.75 196.62 100.00 999.77 14.58 -4.68 18.37 18.96 104.29 1. 45 GYR None 12 1100.00 1. 85 248.29 100.00 1099.74 12.53 -5.91 16.69 17.70 109.49 1. 50 GYR None 13 1200.00 3.15 261. 17 100.00 1199.65 8.28 -6.92 12.47 14.27 119.04 1. 41 GYR None 14 1300.00 3.89 266.10 100.00 1299.46 2.50 -7.58 6.37 9.90 139.93 0.80 GYR None 15 1400.00 4.17 263.62 100.00 1399.21 -4.09 -8.21 -0.62 8.24 184.35 0.33 GYR None 16 1500.00 4.24 265.50 100.00 1498.94 -10.98 -8.91 -7.92 11. 92 221.66 0.15 GYR None 17 1600.00 4.23 261.68 100.00 1598.67 -17.96 -9.73 -15.26 18.10 237.48 0.28 GYR None 18 1700.00 4.70 264.43 100.00 1698.36 -25.34 -10.66 -22.98 25.34 245.12 0.52 GYR None 19 1800.00 5.76 267.76 100.00 1797.95 -33.80 -11.25 -32.08 33.99 250.67 1.10 GYR None 20 1847.00 5.08 277.98 47.00 1844.74 -37.70 -11.06 -36.49 38.13 253.14 2.51 GYR None 21 1873.77 4.85 281.20 26.77 1871.41 -39.60 -10.67 -38.78 40.22 254.61 1. 35 MWD IFR MSA . - 22 1966.13 6.24 282.06 92.36 1963.33 -46.71 -8.87 -47.52 48.34 259.43 1. 51 MWD IFR MSA - 23 2058.26 6.50 280.72 92.13 2054.89 -54.89 -6.85 -57.54 57.94 263.21 0.33 MWD IFR MSA 24 2153.25 6.37 280.92 94.99 2149.29 -63.48 -4.85 -67.99 68.17 265.92 0.14 MWD IFR MSA 25 2245.73 5.06 284.09 92.48 2241. 30 -70.75 -2.89 -76.99 77.04 267.85 1. 46 MWD IFR MSA - 26 2339.83 2.86 27 9.64 94.10 2335.17 -75.87 -1.48 -83.33 83.34 268.98 2.36 MWD IFR MSA 27 2432.60 2.64 279.59 92.77 2427.84 -79.52 -0.74 -87.72 87.72 269.52 0.24 MWD IFR MSA 28 2525.85 1. 40 286.00 93.25 2521.03 -82.13 -0.07 -90.93 90.93 269.96 1. 35 MWD IFR MSA 29 2618.84 0.52 320.88 92.99 2614.00 -83.08 0.57 -92.29 92.29 270.36 1. 09 MWD IFR MSA 30 2682.69 0.42 312.45 63.85 2677.85 -83.24 0.96 -92.64 92.65 270.59 0.19 MWD IFR MSA SCHLUMBERGER Survey Report 13-Aug-2003 11:33:59 Page 3 of 7 -------- ------ ------- ------ -------- -------- ---------------- --------------- -------- ------ ------- ------ -------- -------- ---------------- --------------- Seq Measured # depth (ft) Incl angle (deg) Azimuth angle (deg) Course length (ft) TVD depth (ft) Vertical section (ft) Displ +N/S- (ft) Displ +E/W- (ft) Total displ (ft) At Azim (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- -------- ------ ------- ------ -------- -------- ---------------- --------------- 31 32 33 34 35 46 47 48 49 50 51 52 53 54 55 2703.23 2826.99 2908.24 3001.66 3094.38 36 37 38 39 40 3188.07 3281.54 3376.51 3470.17 3563.84 41 42 43 44 45 3657.03 3749.92 3842.91 3936.23 4028.66 4122.08 4216.02 4309.02 4403.10 4497.19 4590.02 4683.04 4775.72 4868.44 4961. 50 56 57 58 59 60 5054.46 5147.41 5240.87 5334.61 5429.11 0.41 0.92 2.32 6.17 8.41 10.52 13.08 12.35 10.15 6.96 3.85 2.85 1. 64 1. 08 0.95 1. 09 1. 19 1. 46 0.31 0.70 0.69 0.91 1. 01 0.83 0.86 1. 04 1. 25 5.93 9.37 11.62 310.50 310.35 358.81 16.03 20.81 21.89 23.15 19.50 11. 31 3.13 352.84 339.15 13.65 46.53 48.25 52.14 45.57 55.67 11.89 289.64 269.68 266.98 268.12 263.66 267.87 269.97 8.89 41.11 45.78 47.64 20.54 123.76 81.25 93.42 92.72 93.69 93.47 94.97 93.66 93.67 93.19 92.89 92.99 93.32 92.43 93.42 93.94 93.00 94.08 94.09 92.83 93.02 92.68 92.72 93.06 92.96 92.95 93.46 93.74 94.50 2698.39 2822.14 2903.36 2996.51 3088.48 3180.89 3272.37 3365.01 3456.88 3549.49 3642.26 3734.99 3827.91 3921.21 4013.62 4107.03 4200.95 4293.92 4387.99 4482.08 4574.90 4667.91 4760.58 4853.29 4946.34 5039.29 5132.22 5225.48 5318.37 5411.29 -83.29 -83.88 -83.47 -79.37 -71.17 -59.92 -45.71 -30.47 -18.45 -10.79 -7.11 -5.94 -4.92 -3.24 -1. 67 -0.06 1. 73 3.82 5.16 4.90 4.00 2.81 1. 38 -0.00 -1.28 -2.69 -2.87 2.13 13.81 30.20 1. 05 1. 98 4.05 10.77 21. 90 36.24 53.89 73.34 90.88 104.64 113.39 118.64 122.09 124.00 125.11 126.17 127.40 128.74 129.67 130.11 130.30 130.25 130.19 130.09 129.99 129.96 130.96 135.61 144.58 156.36 -92.75 -93.85 -94.38 -93.03 -89.25 -83.62 -76.28 -68.67 -63.70 -61.78 -61.86 -63.07 -63.58 -62.62 -61.42 -60.14 -58.74 -57.07 -56.03 -56.52 -57.61 -58.91 -60.46 -61. 94 -63.31 -64.85 -65.54 -62.20 -53.55 -41. 00 92.76 93.87 94.47 93.65 91.89 91. 14 93.40 100.47 110.98 121.52 129.16 134.36 137.65 138.91 139.37 139.77 140.29 140.82 141.25 141.85 142.46 142.96 143.54 144.08 144.59 145.24 146.45 149.20 154.18 161. 65 270.65 271.21 272.46 276.60 283.79 293.43 305.24 316.89 324.97 329.44 331.39 332.01 332.49 333.20 333.85 334.51 335.25 336.09 336.63 336.52 336.15 335.67 335.09 334.54 334.03 333.48 333.42 335.36 339.68 345.31 DLS (deg/ 100f) 0.08 MWD 0.41 MWD 2.27 MWD 4.30 MWD 2.50 MWD 2.26 MWD 2.75 MWD 1.14 MWD 2.90 MWD 3.64 MWD 3.48 MWD 1. 37 MWD 1.90 MWD 1.01 MWD 0.14 MWD 0.17 MWD 0.18 MWD 0.38 MWD 1. 33 MWD 0.77 MWD 0.26 MWD 0.24 MWD 0.11 MWD 0.21 MWD 0.07 MWD 0.20 MWD 1.88 MWD 5.26 MWD 3.73 MWD 2.41 MWD ------ ------ Srvy Tool tool Corr type (deg) ------ ------ IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA . IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA . IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA SCHLUMBERGER Survey Report 13-Aug-2003 11:33:59 Page 4 of 7 -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr (ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 61 5521.23 14.26 47.98 92.12 5501.06 49.95 170.21 -25.71 172.14 351.41 2.87 MWD IFR MSA 62 5614.75 17.77 48.93 93.52 5590.94 74.75 187.30 -6.39 187.41 358.05 3.76 MWD IFR MSA 63 5708.20 20.51 49.11 93.45 5679.21 104.27 207.39 16.74 208.07 4.61 2.93 MWD IFR MSA 64 5800.49 25.22 47.29 92.29 5764.23 138.65 231.33 43.42 235.37 10.63 5.16 MWD IFR MSA - 65 5894.00 29.93 45.92 93.51 5847.09 179.81 261.08 74.84 271.60 15.99 5.08 MWD IFR MSA 66 5987.57 32.70 43.83 93.57 5927.02 225.58 295.56 109.12 315.06 20.26 3.18 MWD IFR MSA 67 6080.85 39.02 42.77 93.28 6002.59 276.47 335.34 146.55 365.96 23.61 6.81 MWD IFR MSA . 68 6173.89 46.57 44.73 93.04 6070.81 335.54 380.91 190.28 425.79 26.54 8.24 MWD IFR MSA - 69 6268.20 50.74 43.75 94.31 6133.10 401.92 431.63 239.65 493.70 29.04 4.49 MWD IFR MSA - 70 6361. 71 52.47 45.22 93.51 6191.18 470.77 483.91 291.01 564.67 31. 02 2.22 MWD IFR MSA 71 6454.94 55.19 47.39 93.23 6246.20 542.24 535.87 345.43 637.56 32.81 3.47 MWD IFR MSA 72 6546.56 61. 20 49.10 91. 62 6294.47 616.95 587.67 403.51 712.86 34.47 6.75 MWD IFR MSA 73 6639.74 61.09 49.44 93.18 6339.43 695.68 640.92 465.35 792.04 35.98 0.33 MWD IFR MSA 74 6733.56 61.67 50.42 93.82 6384.37 775.37 693.94 528.37 872.20 37.29 1.11 MWD IFR MSA 75 6824.99 62.34 49.55 91. 43 6427.29 853.51 745.85 590.20 951.12 38.35 1.11 MWD IFR MSA - 76 6918.24 60.74 48.90 93.25 6471.73 932.57 799.39 652.28 1031.74 39.21 1. 82 MWD IFR MSA 77 7011.62 59.93 49.18 93.38 6517.94 1010.76 852.58 713.55 1111.78 39.93 0.91 MWD IFR MSA - 78 7104.73 60.39 49.39 93.11 6564.27 1088.68 905.26 774.77 1191.54 40.56 0.53 MWD IFR MSA 79 7197.61 60.88 49.95 92.88 6609.82 1166.92 957.65 836.48 1271. 53 41. 14 0.74 MWD TOW 80 7221.00 60.62 50.19 23.39 6621.25 1186.68 970.75 852.13 1291.69 41.28 1. 43 MWD BOW 81 7233.00 62.42 50.95 12.00 6626.97 1196.91 977.44 860.27 1302.10 41. 35 16.00 MWD Inc. only . 82 7247.42 62.47 51.16 14.42 6633.64 1209.34 985.48 870.22 1314.70 41.45 1. 34 MWD Inc. only 83 7278.54 66.28 51.71 31.12 6647.10 1236.67 1002.97 892.15 1342.34 41. 65 12.35 MWD Inc. only 84 7309.93 71.04 52.00 31. 39 6658.52 1265.18 1021.02 915.14 1371.12 41.87 15.19 MWD Inc. only 85 7341.83 75.80 53.04 31.90 6667.62 1295.08 1039.62 939.40 1401.17 42.10 15.25 MWD Inc. only 86 7372.01 78.50 54.04 30.18 6674.33 1323.96 1057.10 963.06 1430.01 42.33 9.51 MWD IFR MSA 87 7402.26 83.64 52.33 30.25 6679.02 1353.25 1075.00 986.97 1459.36 42.56 17.89 MWD IFR MSA - 88 7434.52 90.31 52.69 32.26 6680.72 1384.74 1094.60 1012.52 1491.09 42.77 20.71 MWD IFR MSA 89 7464.96 97.43 53.52 30.44 6678.67 1414.48 1112.82 1036.79 1520.96 42.97 23.55 MWD IFR MSA 90 7496.73 99.61 50.50 31.77 6673.96 1445.15 1132.15 1061.55 1551.99 43.16 11. 64 MWD IFR MSA SCHLUMBERGER Survey Report 13-Aug-2003 11:33:59 Page 5 of 7 -------- ------ ------- ------ -------- -------- ---------------- --------------- -------- ------ ------- ------ -------- -------- ---------------- --------------- Seq Measured # depth (ft) Incl angle (deg) Azimuth angle (deg) Course length (ft) TVD depth (ft) Vertical section (ft) Displ +N/S- (ft) Displ +E/W- (ft) Total displ (ft) At Azim (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- -------- ------ ------- ------ -------- -------- ---------------- --------------- 91 92 93 94 95 7526.97 7557.94 7589.56 7620.53 7651.52 96 97 98 99 100 7682.86 7714.61 7745.79 7775.31 7807.24 101 102 103 104 105 7838.32 7866.60 7900.06 7932.43 7961.26 106 107 108 109 110 7992.67 8024.69 8055.44 8086.65 8118.45 111 112 113 114 115 8148.71 8180.77 8211. 55 8242.33 8273.76 116 117 118 119 120 8305.28 8336.17 8375.10 8398.60 8429.70 99.34 99.50 100.48 100.27 98.15 95.70 94.46 92.30 89.21 87.63 86.88 87.80 87.01 88.28 87.84 87.67 87.70 87.98 88.15 88.18 88.15 88.25 87.25 84.78 84.47 84.57 84.71 84.92 86.57 87.46 50.26 51.46 51.71 53.51 54.92 57.15 59.43 59.91 60.78 60.53 60.78 62.31 62.28 61. 68 62.47 64.36 65.44 65.73 65.42 65.54 65.09 65.85 65.43 65.89 66.49 66.59 66.80 66.59 66.58 66.52 30.24 30.97 31. 62 30.97 30.99 31. 34 31.75 31.18 29.52 31. 93 31. 08 28.28 33.46 32.37 28.83 31.41 32.02 30.75 31. 21 31. 80 30.26 32.06 30.78 30.78 31.43 31. 52 30.89 38.93 23.50 31. 10 6668.99 6663.92 6658.43 6652.85 6647.89 6644.11 6641.30 6639.46 6639.08 6639.96 6641.44 6642.76 6644.27 6645.60 6646.58 6647.81 6649.10 6650.26 6651.31 6652.33 6653.30 6654.31 6655.52 6657.66 6660.60 6663.61 6666.50 6670.01 6671. 76 6673.38 1474.07 1503.76 1534.10 1563.91 1594.00 1624.77 1656.20 1687.21 1716.65 1748.49 1779.46 1807.67 1841.07 1873.38 1902.17 1933.55 1965.54 1996.26 2027.45 2059.23 2089.47 2121.51 2152.26 2182.96 2214.24 2245.59 2276.33 2315.07 2338.49 2369.53 1151.17 1170.46 1189.81 1208.30 1226.19 1243.57 1260.19 1275.91 1290.51 1306.15 1321.36 1334.82 1350.36 1365.56 1379.05 1393.10 1406.67 1419.37 1432.27 1445.46 1458.09 1471.39 1484.08 1496.73 1509.36 1521.86 1534.02 1549.36 1558.67 1571.03 1084.53 1108.22 1132.62 1156.83 1181.64 1207.44 1234.34 1261.21 1286.85 1314.68 1341. 74 1366.57 1396.17 1424.72 1450.17 1478.24 1507.21 1535.19 1563.59 1592.51 1619.99 1649.14 1677.16 1705.14 1733.76 1762.55 1790.79 1826.40 1847.90 1876.40 1581.58 1611.87 1642.70 1672.80 1702.88 1733.31 1763.99 1794.04 1822.47 1853.21 1883.15 1910.31 1942.36 1973.46 2001.20 2031.23 2061.65 2090.80 2120.43 2150.68 2179.54 2210.13 2239.50 2268.85 2298.72 2328.65 2358.00 2395.05 2417.48 2447.25 43.29 43.44 43.59 43.75 43.94 44.16 44.41 44.67 44.92 45.19 45.44 45.67 45.96 46.21 46.44 46.70 46.98 47.24 47.51 47.77 48.01 48.26 48.50 48.72 48.96 49.19 49.42 49.69 49.85 50.06 DLS (deg/ 100f) 1.19 MWD 3.86 MWD 3.20 MWD 5.76 MWD 8.18 MWD 10.54 MWD 8.15 MWD 7.10 MWD 10.87 MWD 5.01 MWD 2.54 MWD 6.31 MWD 2.36 MWD 4.34 MWD 3.14 MWD 6.04 MWD 3.37 MWD 1.31 MWD 1.13 MWD 0.39 MWD 1.49 MWD 2.39 MWD 3.52 MWD 8.16 MWD 2.14 MWD o . 45 MWD 0.81 MWD 0.76 MWD 7.02 MWD 2.87 MWD ------ ------ Srvy Tool tool Corr type (deg) ------ ------ IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA . IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA . IFR MSA IFR MSA IFR MSA IFR MSA IFR MSA SCHLUMBERGER Survey Report 13-Aug-2003 11:33:59 Page 6 of 7 -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr (ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) (ft) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 121 8461.13 87.67 66.06 31. 43 6674.71 2400.92 1583.66 1905.15 2477.41 50.26 1. 61 MWD IFR MSA - 122 8492.00 87.56 67.10 30.87 6676.00 2431.74 1595.92 1933.45 2507.03 50.46 3.38 MWD IFR MSA - 123 8522.54 87.53 66.07 30.54 6677.31 2462.23 1608.04 1961.45 2536.35 50.65 3.37 MWD IFR MSA - 124 8553.94 87.77 66.96 31. 40 6678.59 2493.59 1620.55 1990.22 2566.55 50.85 2.93 MWD IFR MSA 125 8585.02 87.94 67.67 31. 08 6679.76 2524.61 1632.52 2018.88 2596.34 51. 04 2.35 MWD IFR MSA 126 8615.88 88.18 66.96 30.86 6680.80 2555.41 1644.42 2047.33 2625.97 51. 23 2.43 MWD IFR MSA 127 8646.97 88.28 67.28 31. 09 6681. 76 2586.46 1656.50 2075.96 2655.87 51.41 1. 08 MWD IFR MSA . - 128 8678.05 88.39 67.60 31. 08 6682.67 2617.48 1668.42 2104.65 2685.74 51. 60 1. 09 MWD IFR MSA - 129 8708.78 88.42 66.55 30.73 6683.52 2648.17 1680.39 2132.95 2715.36 51.77 3.42 MWD IFR MSA - 130 8739.74 88.56 66.12 30.96 6684.34 2679.11 1692.81 2161. 29 2745.32 51. 93 1. 46 MWD IFR MSA 131 8770.59 88.52 66.21 30.85 6685.12 2709.93 1705.27 2189.50 2775.22 52.09 0.32 MWD IFR MSA - 132 8802.10 90.99 67.36 31. 51 6685.26 2741.42 1717.69 2218.46 2805.71 52.25 8.65 MWD IFR MSA 133 8833.55 91. 58 67.04 31.45 6684.55 2772.82 1729.87 2247.44 2836.10 52.41 2.13 MWD IFR MSA - 134 8864.27 88.59 66.19 30.72 6684.51 2803.52 1742.07 2275.64 2865.89 52.56 10.12 MWD IFR MSA - 135 8894.59 86.26 66.60 30.32 6685.87 2833.79 1754.19 2303.39 2895.31 52.71 7.80 MWD IFR MSA - 136 8926.00 85.81 66.53 31.41 6688.04 2865.11 1766.66 2332.14 2925.74 52.86 1. 45 MWD IFR MSA - 137 8956.82 86.22 66.74 30.82 6690.18 2895.83 1778.85 2360.36 2955.61 53.00 1. 49 MWD IFR MSA - 138 8987.43 86.29 67.28 30.61 6692.18 2926.35 1790.78 2388.48 2985.25 53.14 1. 78 MWD IFR MSA - 139 9018.03 86.77 67.09 30.60 6694.03 2956.86 1802.62 2416.64 3014.89 53.28 1. 69 MWD IFR MSA - 140 9050.54 87.08 66.35 32.51 6695.78 2989.30 1815.45 2446.46 3046.48 53.42 2.46 MWD IFR MSA 141 9078.85 87.60 66.30 28.31 6697.09 3017.56 1826.81 2472.35 3074.05 53.54 1. 85 MWD IFR MSA . 142 9109.74 88.39 64.44 30.89 6698.17 3048.43 1839.67 2500.42 3104.27 53.66 6.54 MWD IFR MSA - 143 9141.03 88.35 64.62 31.29 6699.06 3079.71 1853.12 2528.65 3134.99 53.76 0.59 MWD IFR MSA - 144 9172.56 88.28 65.57 31. 53 6699.99 3111.22 1866.40 2557.24 3165.90 53.88 3.02 MWD IFR MSA - 145 9204.36 88.52 65.95 31. 80 6700.88 3143.00 1879.45 2586.22 3197.01 53.99 1. 41 MWD IFR MSA - 146 9234.34 88.59 64.90 29.98 6701.63 3172.97 1891. 91 2613.48 3226.39 54.10 3.51 MWD IFR MSA - 147 9264.95 88.56 66.57 30.61 6702.40 3203.56 1904.49 2641. 38 3256.37 54.21 5.45 MWD IFR MSA - 148 9295.68 88.56 65.41 30.73 6703.17 3234.27 1916.98 2669.44 3286.45 54.32 3.77 MWD IFR MSA - 149 9326.71 88.46 67.12 31. 03 6703.98 3265.28 1929.47 2697.83 3316.80 54.43 5.52 MWD IFR MSA 150 9358.47 88.46 66.74 31.76 6704.83 3297.00 1941.91 2727.04 3347.80 54.55 1. 20 MWD IFR MSA - .: SCHLUMBERGER Survey Report 13-Aug-2003 11:33:59 Page 7 of 7 -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ Seq Measured Incl Azimuth Course TVD Vertical Displ Displ Total At DLS Srvy Tool # depth angle angle length depth section +N/S- +E/W- displ Azim (deg/ tool Corr (n) (deg) (deg) (n) (n) (n) (n) (n) (n) (deg) 100f) type (deg) -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ -------- ------ ------- ------ -------- -------- ---------------- --------------- ------ 151 9387.92 88.39 67.70 29.45 6705.64 3326.40 1953.31 2754.18 3376.53 54.66 3.27 MWD IFR MSA 152 9419.86 88.21 66.27 31. 94 6706.59 3358.30 1965.79 2783.57 3407.72 54.77 4.51 MWD IFR MSA 153 9451.23 88.32 67.04 31. 37 6707.54 3389.63 1978.22 2812.36 3438.41 54.88 2.48 MWD IFR MSA 154 9483.61 88.73 69.58 32.38 6708.37 3421.93 1990.18 2842.43 3469.90 55.00 7.94 MWD IFR MSA 155 9514.34 89.52 72 .14 30.73 6708.84 3452.47 2000.25 2871.46 3499.47 55.14 8.72 MWD IFR MSA 156 9545.77 91. 51 73.73 31. 43 6708.56 3483.55 2009.47 2901.50 3529.40 55.29 8.10 MWD IFR MSA 157 9577.14 92.50 71.18 31. 37 6707.46 3514.60 2018.92 2931.39 3559.37 55.44 8.72 MWD IFR MSA . 158 9608.33 92.57 72.20 31.19 6706.08 3545.52 2028.71 2960.97 3589.29 55.58 3.27 MWD IFR MSA 159 9639.63 92.68 72.44 31. 30 6704.65 3576.50 2038.21 2990.76 3619.25 55.73 0.84 MWD IFR MSA 160 9670.30 91.88 71.10 30.67 6703.43 3606.90 2047.80 3019.87 3648.71 55.86 5.09 MWD IFR MSA 161 9701.94 91. 95 71. 22 31. 64 6702.37 3638.31 2058.01 3049.79 3679.22 55.99 0.44 MWD IFR MSA 162 9732.74 93.05 70.59 30.80 6701. 02 3668.89 2068.07 3078.87 3708.96 56.11 4.11 MWD IFR MSA 163 9763.82 92.60 70.41 31. 08 6699.49 3699.77 2078.44 3108.13 3739.04 56.23 1. 56 MWD IFR MSA 164 9799.41 93.84 70.11 35.59 6697.49 3735.12 2090.44 3141. 58 3773.52 56.36 3.58 MWD IFR MSA 165 9850.00 93.84 70.11 50.59 6694.11 3785.36 2107.61 3189.04 3822.57 56.54 0.00 Projected to TD [(c)2003 IDEAL ID8_0C_07] . · STATEOFALASKA . ALASKA OIL AND GAS CONSERVATION COMMISSION APPLICATION FOR SUNDRY APPROVAL 20 MC 25.280 ì/JCífr 7/ ; ¡ IUX):$ iJrj' 7/3/13 'f7/~1l0 1. Type of Request: o Abandon o Alter Casing 1m ChanQe Approved ProQram 2. Operator Name: BP Exploration (Alaska) Inc. 3. Address: P.O. Box 196612, Anchorage, Alaska 7. KB Elevation (ft): o Suspend o Repair Well o Pull TubinQ o Operation Shutdown 0 Perforate o Plug Perforations 0 Stimulate o Perforate New Pool 0 Re-Enter Suspended Well 4. Current Well Class: IS! Development 0 Exploratory o Stratigraphic 0 Service 99519-6612 Plan RKB = 83.8' 8. Property Designation: ADL 028240 o Variance o Time Extension o Annular Disposal 5. Permit To Drill Number 203-103 ,/ 6. API Number: / 50-029-23161-00-00 o Other 9. Well Name and Number: .,/ PBU V-111 10. Field I Pool(s): Prudhoe Bay Field I Borealis Pool Total Depth MD (ft): Total Depth TVD (ft): 7210 6607 Junk (measured): N/A Plugs (measured): 2550 12. Attachments: IS! Description Summary of Proposal 0 BOP Sketch o Detailed Operations Program 14. Estimated Date for Commencing Operations: July 28, 2003 16. Verbal Approval: Date: 7/28/200;3 Commission Representative: Winton Aubert -/ 22. I hereby certify that the f egoing is true and correct to the best of my knowledge. Printed Name Lowell rane Title Senior Drilling Engineer ~k Structural Conductor Surface Intermediate Production Liner 110' 2717' 20" 9-5/8" Perforation Depth MD (ft): I Perforation Depth TVD (ft): I N/A N/A Packers and SSSV Type: None Signature Phone 564-4089 COllllllisaion Use Only Date7-$~-é..::1 Prepared By Name/Number: Terrie Hubble, 564-4628 108' 108' 2746' ~ 2752' ¡t./:>A- 1530 5750 520 3090 Tubing Size: N/A Tubing Grade: N/A Packers and SSSV MD (ft): N/A Tubing MD (ft): N/A 13. Well Class after proposed work: o Exploratory IS! Development 0 Service 15. Well Status after proposed work: IS! Oil 0 Gas o WAG DGINJ o Plugged DWINJ o Abandoned o WDSPL Contact Neil Magee, 564-5119 I Sundry Number:3Ð ~4'" o Plug Integrity o Mechanical Integrity Test Conditions of approval: Notify Commission so that a representative may witness o Location Clearance o BOP Test Other: Subsequeolfonn ;~'~ 10- i./ O}; ""'{¡U-.. ,/M.Ll{ ~~# "'- . Approved SIC ----.,>t-.-fviJ ~ COMMISSIONER ~~~~g~~~'ON Fo,m 10-403 Rev;sed2l2eb3 ~L IUì 0 4100tJ _ A RBOMS'f R1GIN L l~j,()-) ·~c:t-, e' ¡'f ¡~ Date v/ '-.? - ubm" I Dupl;cate e e To: Winton Aubert - AOGCC Date: July 29, 2003 From: Neil Magee - BPXA GPB Drilling & Wells Subject: Reference: V-111 Application for Sundry Approval - Plug Back well for Sidetrack Operations API # 50-029-23161 Dear Mr. Aubert, As you are aware, Borealis Well V-111 (Permit #203-103) encountered drilling difficulty which will require abandonment of the intermediate hole. Plans are underway to re-drill this section of the hole once sidetrack plans are finalized. The new drilling plan will pene e Kuparuk target interval some 300' further to the East however the BHL will be essentially ang (preliminary plan is to be within 200' of original proposal). Below is an outline of the propose r C and sidetrack operations. Also enclosed is a schematic of the proposed plug-back. ../ If you have any questions or require any additional information, please contact me at 564-5119. Scope PluQ Back Operations: 1. RIH to 5200' with 1500' 3-1/2" cement stinger on 4" DP cementing assembly. (Cement stinger to have bull-nosed perforated joint on bottom to catch Baker Drill Pipe Wiper Plug.) Circulate and condition mud and wellbore until the hole is clean and mud is properly conditioned (reciprocate to help clean hole and break mud gels). 2. Spot a balanced 12.0 ppg Form-A-Plug pill from 5,290' to -4,970' to act as a base for cement plug /' #1. Plug volume should be based upon gauge hole plus 10% through this section. Pill thickening time should be based upon a BHST of 100 deg F. Pump a 12.0 ppg viscosified spacer ahead and behind the Form-A-Plug pill (to be confirmed). Rotate pipe while spotting the pill. Pump at 300 gpm (higher if achievable) while displacing pill and slow pump rates to -6 bpm as Form-A-Plug is spotted around the pipe. Pull DP up to -4800' and circulate minimum volume required to get any remaining Form-A-Plug out of DP (30 to 50 bbls). POH to shoe and wait on Form-A-Plug to set for 5 hrs from the time the plug was spotted. 3. RIH to -4,800' and start to wash down looking for top of plug. Verify presence of plug with weight or pump pressure increase or surface samples. Exercise caution to not plug the drill string. Wash to a maximum depth of 5100' MD, PU -50' and circulate bottoms up looking for signs of Form-A- Plug. 4. Condition mud as required for spotting the abandonment plug. Circulate one hole volume at a minimum, and be sure mud weight is uniform throughout well before spotting plug. 5. Position DP immediately above the Form-A-Plug plug and spot a balanced 15.8 ppg 'G' cement plug from 5,000' to 3794' (200' above Schrader Ma sand). Plug volume should be based upon gauge hole plus 10% excess. (BHST=100 deg F). Pull DP -300' above top cement plug (at rate as per RP) and drop Baker Drill Pipe Wiper to clean cementing string. 6. POH with stinger and wac for 8 hours. V-111 Application for Sundry e e 7. RIH to 3,300' looking for top of plug. Circulate down to TOC. Do not allow DP stinger to approach TOC without circulation. NOTE: Request AOGCC approval not to place weight on plug with ,./ cementing assembly as long as no losses are seen while spotting the plug or circulating 0 tI- . afterwards. ¡..Jú/í 8. Spot a balanced 16.4 ppg 'G' cement P&A plug from 3,794' to -2,550' (approximately 200' inside 9-5/8" casing.) Plug volume should be based upon gauge hole. (BHST=58 F Static) Pull DP above top cement plug (at rate as per RP) and circulate hole clean the long way immediately above the planned top of plug. Displace Baker Drill Pipe Wiper Plug. 9. Displace well over to 9.0 ppg LSND mud. Sidetrack Operations 1. NU and test BOP's. PU 8-3/4" drilling assembly and RIH to TOC inside 9-5/8" shoe. Clean out remaining cement and rat hole 150' below shoe. (Previous LOT at shoe- 12.8 ppg EMW) Planned /' kick-off point is at -2900' MD. Perform a lowside kick-off and drill the 8-3/4" hole section as per revised directional plan to TD @ -7,533' MD (6,718' TVD) with 10.2 ppg WBM. POOH. 2. Run and cement the 7", 26# production casing as required to cover all significant hydrocarbon /' intervals (plans are to cover the Schrader Bluff and Kuparuk formations). Once cement has had adequate time to set, freeze protect the 7" x 9-5/8" annulus as required. 3. Run and cement the 7" production casing. Test casing to 3500 for 30 minutes on plug bump with 9.0 ppg Flo-Pro. 4. Freeze protect the 7" x 9-5/8" annulus as required. Record formation breakdown pressure on the Morning Report. 5. RU e-line. RIH with GR-CCUjunk basket to float collar. Make up and run 7" EZSV and set on depth such that Baker window top is at top Kuparuk C. 6. Make up and RIH with 7" whipstock assembly. Set whipstock such that top of window is at top Kuparuk C. Mill window. 7. Perform FIT test to 11.5 PP9 EMW. POOH and lay down milling assembly. 8. MU 6-1/8" directional assembly and drill ahead as per directional plan to proposed TD at 9,536' MD/6706'TVD. Short trip and condition hole for running 4-1/2" slotted liner. 9. Run 4-1/2" slotted liner. The liner will extend approximately 100' above the 7" whipstock. Release from liner and displace well above liner top to clean filtered 9.0 ppg KCL brine. POOH and LDDP. 10. Run the 3-1/2", 9.2#, IB-T, L-80 completion assembly. Set packer and test the tubing to 3500 psi and annulus to 3500 psi for 30 minutes. 11. Shear DCK valve and install TWC. / /' / 12. Nipple down the BOPE. Nipple up and test the tree to 5000 psi. Remove TWC. 13. RU hot oil truck and freeze protect well by pumping diesel to DCK GLM. Allow to equalize. 14. Rig down and move off. V-111 Application for Sundry TREE: NIA WELLHEAD: 13518" ·5M FMCSH 9-5/8",40.0 #/11, L-80, BTC I 2745' I TD of 8-1/2" hole 17,210' I Date 07/28/03 e e V-111 Proposed Plug-Back 9.0 PPG ppg WBM . 64 ppg Gem",,, Kh;,:i(·utf P:ug 12 {\ PPH I o~!TI·A-rIIJO G-e!"'~.¡.m: B~H;e 1~.O p:;g 0,1 B""o j Mud ""- - GL Elevation = 44.1' Nabor" ge" KB = 28.5' KBE = 76.4' Top of 16.4 ppg Kick-Off Plug at I 2,550' I (0% Excess) 1f bl.ot~ ~ 'fit 0 r; It. (J. V ð f-):31 c It- J \;J~'" /' T:>p of 15.8 ppg P&A Plug at I 3,794' I (10% Excess) Top Schrader Ma @ -3,994' MO lS bbk ~ t.! ~T (.t.... ( I ,J \' µ? If,. tJ \J'k Base Schrader Obf @ -4,756' MD Top of Form-A-Plug pill at 4,970' ...-/ Bottom of Form-A-Plug pill at 5,290' Top HRZ @ -6,549' MD Top Kuparuk Reservoir at 7,203' I Rev By Comments NM Proposed Plug Back for Sidetrack Operations Borealis WELL: V-111 API NO: 50-029-23161 BP Alaska Drilling & Wells V-111 PB3 {P5} Proposal Schlumberger Report Date: July 30, 2003 Survey / DLS Computation Method: Minimum Curvature / Lubinski Client: BP Exploration Alaska Vertical Section Azimuth: 33.930° Field: Prudhoe Bay Unit - WOA d Vertical Section Origin: N 0.000 ft, E 0.000 ft Structure / Slot: V-Pad/PlanV-111 (N-U) rty stu Y TVD Reference Datum: KB Well: V-111 -bll TVD Reference Elevation: 81.8 ft relative to MSL Borehole: V-111PB3 Feasl Sea Bed / Ground Level Elevation: 54.000 ft relative to MSL UWUAPI#: 50029 Magnetic Declination: 25.48r Survey Name / Date: V-111PB3 (P5)/July30, 2003 Total Field Strength: 57519.106 nT Tort / AHD / DD! / ERD ratio: 112.780° /1584.62 ft/5.289 / 0.237 Magnetic Dip: 80.781° e Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feet Declination Date: July 31,2003 Location Lat/Long: N 70.32813766, W 149.26433139 Magnetic Declination Model: BGGM 2002 Location Grid NJE YIX: N 5970134.340 ftUS, E 590709.620 ftUS North Reference: True North Grid Convergence Angle: -tû.69273635° Total Corr Mag North .) True North: +25.48r Grid Scale Factor: 0.99990935 Local Coordinates Referenced To: Well Head Comments Measured Inclination Azimuth TVD Sub-Sea TVD Vertical NS EW DLS Tool Face Northing Easting Latitude Longitude Depth Section (ft ) (deg) (deg) (ft) (ft ) (ft) (ft) (ft) (deg/100 ft) (deg) (flUS) (flUS) Tie-In Survey 2826.99 0.92 310.35 2822.14 2740.34 -50.74 1.99 -93.85 0.00 -51.50M 5970135.19 590615.76 N 70.32814309 W 149.26509245 KOP Crv 3/100 2900.00 0.94 308.50 2895.14 2813.34 -50.62 2.74 -94.76 0.05 7.92M 5970135.93 590614.84 N 70.32814514 W 149.26509985 3000.00 3.38 7.92 2995.07 2913.27 -47.91 6.17 -95.00 3.02 15.23M 5970139.36 590614.57 N 70.32815451 W 149.26510173 3100.00 6.34 15.23 3094.70 3012.90 -40.02 14.43 -93.14 3.02 8.19G 5970147.64 590616.32 N 70.32817707 W 149.26508666 3200.00 9.34 17.88 3193.76 3111.96 -26.98 27.49 -89.19 3.02 5.57G 5970160.74 590620.11 N 70.32821275 W 149.26505468 / 3300.00 12.35 19.24 3291.96 3210.16 -8.83 45.31 -83.18 3.02 4.22G 5970178.64 590625.91 N 70.32826145 W 149.26500589 Drp 1/100 3388.00 15.00 20.00 3377.46 3295.66 11.33 64.90 -76.18 3.02 180.00G 5970198.31 590632.67 N 70.32831496 W 149.26494914 3400.00 14.88 20.00 3389.05 3307.25 14.33 67.81 -75.12 1.03 180.00G 5970201.23 590633.69 N 70.32832291 W 149.26494056 3500.00 13.85 20.00 3485.92 3404.12 38.41 91.12 -66.64 1.03 180.00G 5970224.64 590641.89 N 70.32838659 W 149.26487176 3600.00 12.82 20.00 3583.23 3501.43 60.79 112.79 -58.75 1.03 180.00G 5970246.40 590649.52 N 70.32844580 W 149.2648_ 3700.00 11.79 20.00 3680.93 3599.13 81.48 132.82 -51 .46 1.03 180.00G 5970266.52 590656.57 N 70.32850052 W 149.26474867 3800.00 10.77 20.00 3778.99 3697.19 100.47 151.21 -44.77 1.03 180.00G 5970284.98 590663.03 N 70.32855074 W 149.26469442 3900.00 9.74 20.00 3877.39 3795.59 117.75 167.93 -38.68 1.03 180.00G 5970301.78 590668.92 N 70.32859644 W 149.26464505 4000.00 8.71 20.00 3976.10 3894.30 133.31 183.00 -33.20 1.03 180.00G 5970316.91 590674.22 N 70.32863760 W 149.26460058 4100.00 7.68 20.00 4075.08 3993.28 147.15 196.40 -28.32 1.03 180.00G 5970330.36 590678.93 N 70.32867420 W 149.26456103 4200.00 6.66 20.00 4174.29 4092.49 159.27 208.13 -24.05 1.03 180.00G 5970342.14 590683.06 N 70.32870625 W 149.26452641 4300.00 5.63 20.00 4273.72 4191.92 169.65 218.19 -20.39 1.03 180.00G 5970352.24 590686.60 N 70.32873373 W 149.26449673 4400.00 4.60 20.00 4373.32 4291.52 178.31 226.57 -17.34 1.03 20.00M 5970360.66 590689.55 N 70.32875662 W 149.26447199 4500.00 3.58 20.00 4473.06 4391.26 185.23 233.27 -14.90 1.03 20.00M 5970367.39 590691.90 N 70.32877492 W 149.26445221 4600.00 2.55 20.00 4572.92 4491.12 190.41 238.29 -13.07 1.03 20.00M 5970372.43 590693.67 N 70.32878864 W 149.26443740 Version DO 3.1RT (d031rL399) 3.1RT Service Pack 2.03 Plan V-111 (N-U)\V-111\V-111PB3\V-111PB3 (P5) Generated 7/30/2003 6:21 PM Page 1 of 2 Comments Measured Inclination Azimuth TVD Sub-Sea TVD Vertical NS EW DLS Tool Face Northing Easting Latitude Longitude Depth Section (ft ) (deg) (deg) (ft) (ft ) (ft) (ft) (ft) ( deg/100 ft ) (deg) (flUS) (ftUS) 4700.00 1.52 20.00 4672.85 4591.05 193.86 241.62 -11.86 1.03 20.00M 5970375.78 590694.84 N 70.32879775 W 149.26442756 4800.00 0.49 20.00 4772.84 4691.04 195.56 243.27 -11.26 1.03 20.00M 5970377.44 590695.42 N 70.32880226 W 149.26442268 End Drp 4848.00 0.00 20.00 4820.84 4739.04 195.76 243.47 -11.19 1.03 46.08M 5970377.63 590695.49 N 70.32880279 W 149.26442211 Crv 4.5/100 5308.00 0.00 46.08 5280.84 5199.04 195.76 243.47 -11.19 0.00 46.08M 5970377.63 590695.49 N 70.32880279 W 149.26442211 5400.00 4.14 46.08 5372.76 5290.96 199.01 245.77 -8.79 4.50 46.08M 5970379.96 590697.86 N 70.32880908 W 149.26440270 5500.00 8.64 46.08 5472.11 5390.31 209.89 253.49 -0.78 /4.50 O.OOG 5970387.78 590705.78 N 70.32883017 W 149.26433771 5600.00 13.14 46.08 5570.28 5488.48 228.35 266.59 12.83 4.50 O.OOG 5970401.04 590719.22 N 70.32886596 W 149.26422738 5700.00 17.64 46.08 5666.67 5584.87 254.29 284.99 31.94 4.50 O.OOG 5970419.67 590738.11 N 70.32891624 W 149.26407239 5800.00 22.14 46.08 5760.68 5678.88 287.54 308.59 56.44 4.50 O.OOG 5970443.56 590762.32 N 70.32898069 W 149.26387370 5900.00 26.64 46.08 5851.73 5769.93 327.90 337.22 86.18 4.50 O.OOG 5970472.55 590791.71 N 70.32905892 W 149.26361 6000.00 31.14 46.08 5939.27 5857.47 375.12 370.73 120.97 4.50 O.OOG 5970506.47 590826.09 N 70.32915045 W 149.2633 6100.00 35.64 46.08 6022.74 5940.94 428.91 408.89 160.60 4.50 O.OOG 5970545.10 590865.25 N 70.32925470 W 149.26302899 6200.00 40.14 46.08 6101.64 6019.84 488.93 451.48 204.83 4.50 O.OOG 5970588.22 590908.96 N 70.32937105 W 149.26267031 6300.00 44.64 46.08 6175.48 6093.68 554.82 498.23 253.38 4.50 O.OOG 5970635.55 590956.93 N 70.32949876 W 149.26227658 6400.00 49.14 46.08 6243.80 6162.00 626.17 548.85 305.95 4.50 O.OOG 5970686.80 591008.88 N 70.32963706 W 149.26185021 6500.00 53.64 46.08 6306.19 6224.39 702.54 603.04 362.22 4.50 O.OOG 5970741.66 591064.49 N 70.32978509 W 149.26139383 6537.93 55.35 46.08 6328.22 6246.42 732.73 624.46 384.46 4.50 O.OOG 5970763.34 591086.47 N 70.32984360 W 149.26121345 Crv 4.5/100 6538.11 55.35 46.08 6328.31 6246.51 732.87 624.56 384.57 0.00 27.75G 5970763.44 591086.57 N 70.32984387 W 149.26121262 6600.00 57.82 47.61 6362.40 6280.60 783.21 659.88 422.26 4.50 26.91 G 5970799.22 591123.83 N 70.32994037 W 149.26090692 6700.00 61.86 49.92 6412.64 6330.84 866.76 716.83 487.29 4.50 25.75G 5970856.94 591188.16 N 70.33009592 W 149.26037955 End Crv 6703.57 62.00 50.00 6414.32 6332.52 869.78 718.85 489.70 4.50 O.OOG 5970858.99 591190.54 N 70.33010145 W 149.26035999 Target 7113.57 62.00 50.00 6606.80 6525.00 1217.65 951.55 767.01 0.00 O.OOG 5971095.00 591465.00 N 70.33073709 W 149.25811080 TO / 7" Csg pt 7273.32 62.00 50.00 6681.80 6600.00 1353.19 1042.21 875.06 0.00 O.OOG 5971186.96 591571.94 N 70.33098476 W 149.25723438 Leqal Description: Northinq IY) rftUSl Eastinq IX) rftUSl Surface : 4885FSL1591 FELS11 T11NR11EUM 5970134.34 590709.62 Tie-In: 4887 FSL 1684 FEL S11 T11 N R11E UM 5970135.19 590615.76 Target: 556 FSL 823 FEL S2 T11N R11E UM 5971095.00 591465.00 e BHL: 647 FSL 715 FEL S2 T11N R11E UM 5971186.96 591571.94 Version DO 3.1RT (d031rC399) 3.1RT Service Pack 2.03 Plan V-111 (N-U)\V-111\V-111 PB3\V-111 PB3 (P5) Generated 7/30/2003 6:21 PM Page 2 of 2 e e Schlumberger WEll FiElD STRUCTURE V-Pad V-111 PB3 (P5) Prudhoe Bay Unit - WOA Magnetic Paramate!s Model: BGGM2002 Surface Location Lå: N701941.296 Lon: W1491551.593 NAD27 AIa$ka state Planes. Zone 04. us Feel. Northing: 5970134.34 ftUS Goo Conv: +0.69273635' Easting: 590109.62 !tUS Scale Fact: 0.9990093471 Mìsœllaneous SId: PlanV-111(N-tJ Plan: V-111PB3(P5) Dip: 80.781' Mag Dee: +25.487' Date: Ju1y31,2003 FS: 57519.1 nT TVD Ref: K8 (81.80 It abo'Ie MSl) SlvyDate: J~y30.2003 o 1000 2000 . . . , , . , , . ......H............. : Tie-In Survey : V : -,,", ~'". ! r 'I _&". _Cry 4.5/100 u..... .... 'HU"'~.. ..a... C¡' 4.51100 ¡ : End Cry : . Target ¡ TD/7"CsgPj +'__1__':,,1, o o 1000 1000 2000 2000 3000 3000 4? o o o ~ II Q) ãj o en c > I- 4000 4000 5000 5000 6000 6000 7000 7000 o 1000 2000 Vertical Section (ft) Azim = 33.93°, Scale = 1:1000 Origin = 0 N/-S, 0 E/-W WEll V-111 PB3 (P5) Magnetic:Parameters Model: BGGM 2002 Dip: 80.781· Mag Dee: +25.48r -200 1200 1000 ^ ^ ^ Z g o o <:'! 800 II Q) -æ <) en en v v v 600 400 200 o TÍt:t-hl !UIYVY -200 e FIELD Date: JUy31,2003 FS: 57519.1nT Sur1aoeLcx:ation Lat: N701941.296 Lon: W1491551.593 o 200 e Schlumberger Prudhoe Bay Unit - WOA STRUCTURE V-Pad NAD27 Alaska State Planes, Zone 04, us Feet Northing: 5970134.34ftUS GridConv: +0.69273635' Easting: 590709.62 ftUS Scale Fact 0.9999093411 Miscellaneous Slot PlanV-111 (N-U) Plan: V-111PB3(p5) TVDRef: KB{81.80ftaboYeMSL) &vy Date: July 30, 2003 400 600 800 1000 1200 1000 800 --r-- o 600 400 200 o 200 400 600 <<< W Scale = 1 :200(ft) E >>> 1000 800 V-111 (P19) Proposal Schlumberuer Report Date: Client: Field: Structure I Slot: Well: Borehole: UWVAPI#: Survey Name I Date: Torti AHDI DDII ERD ratio: Grid Coordinate System: Location Lat/Long: Location Grid N/E Y/x: Grid Convergence Angle: Grid Scale Factor: July 30, 2003 BP Exploration Alaska Prudhoe Bay Unit - WOA d ~:~~1/PlanV-111 (N-U) II IIllIty stu Y V-111 FeaSlbl I 50029 V-111 (P19) I July 30, 2003 170.067· 14052.07 ft 16.000 I 0.604 NAD27 Alaska State Planes, Zone 04, US Feet N 70.32813766, W 149.26433139 N 5970134.340 ftUS, E 590709.620 ftUS +0.69273635· 0.99990935 Survey I DLS Computation Method: Minimum Curvature I Lubinski Vertical Section Azimuth: 33.930· Vertical Section Origin: N 0.000 ft, E 0.000 It TVD Reference Datum: KB TVD Reference Elevation: 81.8 It relative to MSL Sea Bed I Ground Level Elevation: 54.000 It relative to MSL Magnetic Declination: 25.487· Total Field Strength: 57519.106 nT Magnetic Dip: 80.781· Declination Date: July 31, 2003 Magnetic Declination Model: BGGM 2002 North Reference: True North Total Corr Mag North·> True North: +25.487" Local Coordinates Referenced To: Well Head e Comments Measured Inclination Azimuth TVD Sub-Sea TVD Vertical NS EW DLS Tool Face Northing Eastlng Latitude Longitude Depth Section (ft) (deg) (deg) (ft) (ft) (ft) (ft) (ft) ( deg/100 ft ) (deg) (ftUS) (ftUS) Top Whipstock 7113.00 62.00 50.00 6606.53 6524.73 1217.16 951.22 766.63 0.00 30.00G 5971094.67 591464.62 N 70.33073621 W 149.25811392 Base Whipstock 7126.00 63.81 51.16 6612.45 6530.65 1228.25 958.57 775.57 16.00 O.OOG 5971102.13 591473.47 N 70.33075628 W 149.25804141 KOP Crv 12/100 7138.00 63.81 51.16 6617.75 6535.95 1238.53 965.32 783.95 0.00 O.OOG 5971108.98 591481.77 N 70.33077473 W 149.25797338 7200.00 71.25 51.16 6641.44 6559.64 1293.22 1001.23 828.55 12.00 O.OOG 5971145.42 591525.92 N 70.33087281 W 149.25761170 7300.00 83.25 51.16 6663.47 6581.67 1386.20 1062.29 904.37 12.00 O.OOG 5971207.38 591601.00 N 70.33103959 W 149.25699665 7400.00 95.25 51.16 6664.78 6582.98 1481.53 1124.88 982.11 12.00 O.OOG 5971270.91 591677.97 N 70.33121057 W 149.25636609 End Crv 7438.00 99.81 51.16 6659.81 6578.01 1517.51 1148.50 1011.45 12.00 O.OOG 5971294.88 591707.02 N 70.33127509 W 149.25612815 Crv 6/100 7568.00 99.81 51.16 6637.67 6555.87 1639.86 1228.84 1111.22 0.00 130.12G 5971376.41 591805.80 N 70.33149453 W 149.25531883 7600.00 98.57 52.64 6632.56 6550.76 1669.91 1248.33 1136.08 6.00 130.36G 5971396.20 591830.42 N 70.33154776 W 149.2551_ 7700.00 94.66 57.23 6621.04 6539.24 1762.59 1305.36 1217.36 6.00 130.88G 5971454.20 591911.00 N 70.33170353 W 149.2544 7800.00 90.72 61.76 6616.35 6534.55 1852.66 1356.04 1303.39 6.00 131.10G 5971505.91 591996.40 N 70.33184193 W 149.25376012 90· Pt 7818.30 90.00 62.59 6616.23 6534.43 1868.78 1364.58 1319.57 6.00 131.10G 5971514.65 592012.47 N 70.33186526 W 149.25362885 End Crv 7888.11 87.25 65.75 6617.91 6536.11 1929.06 1394.99 1382.37 6.00 O.OOG 5971545.81 592074.90 N 70.33194830 W 149.25311943 TO 9737.88 87.25 65.75 6706.80 6625.00 3499.06 2153.94 3066.93 0.00 O.OOG 5972325.00 593750.00 N 70.33402032 W 149.23945408 Leqal Description: Northinq (y) rftUSl Eastinq (X) rftUSl Surface: 4885 FSL 1591 FEL S11 T11 N R11E UM 5970134.34 590709.62 Tie-In: 556 FSL 823 FEL S2 T11N R11E UM 5971094.67 591464.62 TO I BHL : 1758 FSL 3802 FEL S1 T11 N R11 E UM 5972325.00 593750.00 Version DO 3.1RT (d031rC399) 3.1RT Service Pack 2.03 Plan V-111 (N-U)\V-111\V-111\V-111 (P19) Generated 7/30/2003 6:30 PM Page 1 of 1 iE" 0 6600 0 <:'1 II OJ ~ C/) 0 ¡:: 6900 Schlumbøpgøp WELL FIELD Prudhoe Bay Unit - WOA STRUCTURE V-Pad V-111 (P19) Magnetic Parameters Model: BGGM 2002 Stafacelocation Lat Nl01941.296 Lon: W1491551.593 NAD27 Alaska State Planes, Zone04, US Feet Northing: 5970134.34ftUS GridConv: +0.69273635" Easting: 590709.62 ftUS Scale Fact: 0.9990093471 Miscellaneous Slot: PlanV.111 (N..u) Plan: V-111 (P19) Dip: 80.781' MagDec: +25.487' Date: Ju1y31,2003 FS: 57519.1nT TVD Ref: KB (81.80 ft above MSl) SrvyDate: July30,2003 1200 e 1500 1800 2100 2400 2700 3000 3300 3600 6300 · . . . . . . . , ,.................................;:........."...........".........",,;......................."............;:................"..,.."......""..¥...........H............".",.....,...................,,,.................:;.,,..............................,...~..,....,........"'"......,,........~...........................".......~......... · , . . . . . . . · . . . . . . . . · . . . , . . . . , . . . , . . . . · . . . . . . . . · . . . . . . . . · . . . . . . . . · . . . . . . . . · . . . . . . . . · . . . . . . " , , . . . . . , . , V-111PB3(P5) ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ~~¡ TOta~h~~~~~Ck ¡ ¡ ¡ ¡ ¡ ! ¡ ¡ ~V...-.1....1.1..PB1. :KO.. PCrv12/100: : 90' PIE dC: : : : : : ¡ ¡ ¡ I ,n rv ¡ ¡ ¡ ¡ ¡ : · . . . . . . . . · . . . . . . . . · . . . . . " . . . . . . . . . . . .. .~~....... '" . .......... : : . ''''''''' "............ _ \ \'·111 (pH)) · ~l \ Target: ...... - : . : '·"'··ì: \ CrvG/100 /",111 KT2 "',r'cIg ¡ EndCrv / 1 V-~1PB3 (P5) 1 TD I e 6900 6300 6600 7200 ; : : : : : : ~ : · . . . . . . . . · . . . . . . . . , " . . . . . . . ~ ~ ~ ~ ~ ~ ~ ~ ~ · . . . . . . , . : ; : : : : : : : · . . . . . . . . · , . " . . . . . " , . , . . , . , 7200 1200 1500 1800 2100 2400 2700 Vertical Section (ff) Azim = 33.93°, Scale = 1:300 Origin = 0 N/-S, 0 EI-W 3000 3300 3600 Schlumberger I WE! V-111 (P19) FIELD Prudhoe Bay Unit _ WOA I STRUCTURE V-Pad I I Ma\1KlÜC Parameters Surface Location NAD27 Alaska Stale Planes, Zone 04, US Feet I Miscellaneous I Model; BGGM2002 Dip: 80.781' Date: JuIy31.2003 Lat: N701941.296 Northing: 5970134.34ftUS GÆiConv: +0.69273635' SloI.: PJanV-111(N-U) TVDRet: KB(81.8QftaboveMSl) Mag Dec" +25.487' FS: 57519.1 nT Lon: W1491551.593 Easting: 590709.62nUS Scale Fact: 0.9999093471 PI$!: V-111 (P19) SNY Date: July 30, 2003 o 500 1000 1500 2000 2500 3000 3500 :IV . ~ 2000_'1"'_" 2000 ~ 1500 ...... .....j........ .......¡.... >..........................¡..... . 1500 z ¡ ¡ »¡ ¡ j V-11' :rv 6/100. .... j.. ¡ I I :*fV r' ............../¡/ I .;..; ~ TD > . ....,,, ~ EndCrv j II : 1 90'1'1 1 ~ 1000 ....... ..:.j.......T:. ..................j.....................................¡...... 1000 en '..V· .. ',' .. ........1 : : /':' . ~ . . en >V'J/..... ; KC 00 ¡ ¡ V ."... V TÍ>P~ ¡ ¡ V : : : . . . :ase ~hilJ ~ j 1 ¡ ¡ ¡ 500 ._. l ... 500 1 t o ...... r 0 o 500 1000 1500 2000 2500 3000 3500 <<< W Scale = 1 :500(ft) E >>> e e e BPX AK Anticollision Report e .-., .., ""....,."..--,.......-.,".--...,--,.---.,.-..",.,., -.,.--.". _ ".,_on'.'......_. .". ,_.._ COm\)all,': Ficld: J~crcrencc SUe: I~efcrence Well: ; I~crcrcnce Wellpath: BP Amoco Prudhoe Bay PB V Pad V-111 V-111 .Date: 7/30/2003 Time: 18:41:14 Pa~c: ("o-ordinate('" E) I~eferenee: Vertical (T\'D) 1~I~ferellee: Well: V-111, True North V-111 81.8 NO GLOBAL SCAN: Using user defined selection & scan criteria Interpolation Method: MD + Stations Interval: 50.00 ft Depth Range: 2900.00 to 9968.54 ft Maximum Radius: 3000.00 ft Reference: Error Model: Scan Method: Error Surface: nb: Sybase . . ....-. - ---. Principal Plan & PLANNED PROGRAM ISCWSA Ellipse Trav Cylinder North Ellipse + Casing Survey Program for Definitive Wellpath Date: 7/30/2003 Validated: No Planned From To Survey ft ft 200.00 1847.00 1873.77 2826.99 2826.99 7113.00 7113.00 9737.88 Version: 20 Toolcode Tool Name Survey #1 (200.00-1847.00) (1) Survey #2 (1873.77-7564.32) (1) Planned: Plan #5 V1 (3) Planned: Plan #19 V1 GYD-GC-SS MWD+IFR+MS MWD+IFR+MS MWD+IFR+MS Gyrodata gyro single shots MWD + IFR + Multi Station MWD + IFR + Multi Station MWD + IFR + Multi Station Casing Points \11) n'D \)iallll~lcr lIole Size ~alllc ft ft in in - -.--- 2745.00 2740.16 9.625 12.250 95/8" 7113.00 6606.53 7.000 8.750 7" 7937.39 6620.28 4.500 6.125 4 1/2" Summary < ---- OtTset Wcllpath > Reference Offsel Ctr-Ctr ~o-Go .\lIowablc Site Well WclllJalh \II) \m I)istance ,\rca I)c\'iation Warn~ ft ft ft ft ft n_ ,. _,_n _. ........_n. . PB V Pad V-03 V-03 V7 2954.06 2950.00 111.79 32.22 79.56 Pass: Major Risk PB V Pad V-100 V-100 V7 2900.00 2900.00 237.03 32.86 204.17 Pass: Major Risk PB V Pad V-101 V-101 V7 2902.53 3250.00 1293.24 37.98 1255.26 Pass: Major Risk PB V Pad V-102 V-102 V5 2915.68 3500.00 1634.36 39.10 1595.26 Pass: Major Risk PB V Pad V-103 V-103 V6 3438.52 3950.00 2231.83 46.04 2185.79 Pass: Major Risk PB V Pad V-104 V-104 V13 2931.74 3250.00 1177.46 38.30 1139.16 Pass: Major Risk PB V Pad V-105 V-105 V13 2916.13 3200.00 846.76 36.60 810.15 Pass: Major Risk PB V Pad V-106 V-106 V10 2997.76 3550.00 1597.83 41.22 1556.61 Pass: Major Risk PB V Pad V-107 V-107 V5 2904.89 2950.00 412.68 36.08 376.60 Pass: Major Risk PB V Pad V-108 V-108 V7 2900.00 3650.00 2025.66 41.05 1984.61 Pass: Major Risk PB V Pad V-109 V-109 V2 2924.46 3050.00 369.69 36.29 333.40 Pass: Major Risk PB V Pad V-109 V-109PB1 V5 2924.46 3050.00 369.69 36.29 333.40 Pass: Major Risk PB V Pad V-109 V-109PB2 V2 2924.46 3050.00 369.69 36.29 333.40 Pass: Major Risk PB V Pad V-111 V-111PB1 V7 2900.00 2900.00 0.00 33.11 -33.11 FAIL: Major Risk PB V Pad V-111 V-111PB2 V1 2900.00 2900.00 0.00 33.11 -33.11 FAIL: Major Risk PB V Pad V-111 V-111PB3 V4 Plan: Plan 7100.00 7100.00 0.00 60.98 -60.98 FAIL: Major Risk PB V Pad V-113 V-113V6 2900.00 3300.00 1377.80 39.48 1338.33 Pass: Major Risk PB V Pad V-117 V-117 V9 2900.00 4200.00 2763.96 40.32 2723.65 Pass: Major Risk PB V Pad V-117 V-117PB1 V6 2900.00 4200.00 2763.96 40.32 2723.65 Pass: Major Risk PB V Pad V-117 V-117PB2V6 2900.00 4200.00 2763.96 40.32 2723.65 Pass: Major Risk PB V Pad V-201 V-201 V8 4638.13 4950.00 1062.82 46.77 1016.05 Pass: Major Risk PB V Pad V-202 V-202 V9 2935.03 3050.00 589.67 36.59 553.08 Pass: Major Risk Re: V-Ill Plug Back (Verbal Approval) . . Subject: Re: V-Ill Plug Back (Verbal Approval) Date: Mon, 28 Jul2003 14:02:19 -0800 From: Winton Aubert <Winton _ Aubert@admin.state.akus> Organization: AOGCC To: "Magee, D Neil" <MageeDN@BP.com> CC: Sarah H Palin <sarah-palin@admin.state.akus>, Daniel Seamount <dan_seamount@admin.state.akus>, Randolph A Ruedrich <randy Juedrich@admin.state.akus> Neil, This confirms AOGCC's verbal approval to commence plugging operations in PBU well V-111 (PTD 203-103). Please submit appropriate documentation as required, including a request for operations shutdown on Form 10-403 if drilling operations are to be suspended. All other permit stipulations apply. Winton Aubert AOGCC 793-1231 "Magee, D Neil" wrote: > Winton, > > Attached is a draft plug back schematic for V-Ill. > «V-Ill Plug Back.ZIP» > The plug back proposes placing a 1300' cement plug from 200' below the > Schrader to 200' above. Afterwards a 1200' kick -off plug will be placed > from this point to 200' inside the 9-5/8" casing. The current well bore > exposes 7' of the Kuparuk C formation. No OWC is present. We do not propose > attempting to run a cement stinger into the lower portion of the hole due to > the wellbore instability problems we've encountered. > We have tried numerous times these past few days to stabilize the wellbore > through wiper trips and additional mud weight with no success. The well > tries to pack-off the drilling assembly when we attempt to trip below 6500' > and has already resulted in loosing a $950MM MWD assembly due to stuck pipe. > We have decided to suspend the well and re-drill with a different well > profile landing some 300' to the East. BP and Partners are currently > deciding whether to re-drill the well immediately following plug back > operations, or in about two months time. > A formal request to plug back the well (Sundry) will be forthcoming however > due wellsite activities, we request a verbal approval for this plug back > application. > > Please contact me to answer any questions you may have. > > Regards, > Neil Magee > Alaska Drilling & Wells > 907 564-5119 Office > 907 564-4040 Fax > 907 240-8038 Cell > > ------------------------------------------------------------------------ > Name: V-Ill Plug Back.ZIP > V-Ill Plug Back.ZIP Type: Zip Compressed Data (application/x-zip-compressed) > Encoding: base64 . . FRANK H. MURKOWSKI, GOVERNOR AI,ASIiA. ORAND GAS CONSERVATION COMMISSION Lowell Crane Engineer Drilling Engineer BP Exploration (Alaska), Inc. PO Box 196612 Anchorage, AK 99519 333 W. 7'" AVENUE, SUITE 100 ANCHORAGE, ALASKA 99501-3539 PHONE (907) 279-1433 FAX (907) 276-7542 Re: Prudhoe Bay Unit V-Ill BP Exploration (Alaska), Inc. Permit No: 203-103 Surface Location: 4886' NSL, 1591' WEL, Sec. 1 1, TllN, RIlE, UM Bottomhole Location: 1758' NSL, 1478' EWL, Sec. 01, TllN, RIlE, UM Dear Mr. Crane: Enclosed is the approved application for permit to drill the above referenced development well. This permit to drill does not exempt you from obtaining additional permits or approvals required by law from other governmental agencies, and does not authorize conducting drilling operations until all other required permits and approvals have been issued. In addition, the Commission reserves the right to withdraw the permit in the event it was erroneously issued. Operations must be conducted in accordance with AS 31.05 and Title 20, Chapter 25 of the Alaska Administrative Code unless the Commission specifically authorizes a variance. Failure to comply with an applicable provision of AS 31.05, Title 20, Chapter 25 of the Alaska Administrative Code, or a Commission order, or the terms and conditions of this permit may result in the revocation or suspension of the permit. Please provide at least twenty-four (24) hours notice for a representative of the Commission to witness any required test. Contact the Commission's North Slope petroleum field inspector at 659-3607 (pager). s~~,~~:lY. ' ,('.).) I) , ~...1s~ Chair BY ORDER OF THE COMMISSION DATED thislL day of June, 2003 cc: Department ofFish & Game, Habitat Section w/o encl. Department of Environmental Conservation w/o encl. Exploration, Production and Refineries Section ~ 1A16A ¡,ll/lz.o01 . STATE OF ALASKA a ALASKJ. L AND GAS CONSERVATION COM.SION PERMIT TO DRILL 20 AAC 25.005 1 a. Type of work II Drill 0 Redrill 11 b. Type of well 0 Exploratory 0 Stratigraphic Test II Development Oil ORe-Entry 0 Deepen 0 Service 0 Development Gas 0 Single Zone 0 Multiple Zone 2. Name of Operator 5. Datum Elevation (OF or KB) 10. Field and Pool BP Exploration (Alaska) Inc. Plan RKB = 83.8' Prudhoe Bay Field I Borealis 3. Address 6. Property Designation Pool (Undefined) P.O. Box 196612, Anchorage, Alaska 99519-6612 ADL 028240 4. Location of well at surface x = 590710, Y = 5970134 7. Unit or Property Name 4886' NSL, 1591' WEL, SEC. 11, T11 N, R11 E, UM Prudhoe Bay Unit At top of productive interval x = 591245, Y = 5971095 8. Well Number . 559' NSL, 1043' WEL, SEC. 02, T11 N, R11 E, UM V-111 /' At total depth x = 593750, Y = 5972325 9. Approximate spud dqte 1758' NSL, 1478' EWL, SEC. 01, T11 N, R11 E, UM 06/22/03/ Amount $200,000.00 12. Distance to nearest property line 113. Distance to nearest well / 14. Number of acres in property 15. Proposed depth (MD and TVD) ADL 028238, 3521' MD V-103 is 30' away at 450' MD 2560 .........9927' MD I 6706' TVD 16. To be completed for deviated wells 17. Anticipated pressure {S? 20 MC 25.035 (e) (2)} Kick Off Depth 5000' MD Maximum Hole Angle 880 Maximum surface 2740 psig, At total depth (TVD) 6600' I 3400 psig 18. Casing ~rogram SpecTcations Setting Depth Size II Top Bottom Casina Weiaht Grade CouDlina Lenath MD TVD MD TVD 20" 91.5# H-40 Weld 80' Surface Surface 110' 110' 9-5/8" 40# L-80 BTC 2756' Surface Surface 2756' 2751' 7" 26# L-80 BTC-M 7391' Surface Surface 7391' 6681' 4-1/2" 12.6# L-80 IBT-M 2899' 7028' 6557' 9927' 6706' 11. Type Bond (See 20 AAC 25.025) Number 2S 100302630-277 Hole 42" 12-1/4" 8-1/2" 6-118" Quantity of Cement (include staae data) 260 sx Arctic Set (Approx.) 510 sx PF 'L', 264 sx Class 'G' /' 147 sx Class 'G', 215 sx Class 'G' /' Uncemented Slotted Liner 19. To be completed for Red rill , Re-entry, and Deepen Operations. Present well condition summary Total depth: measured feet Plugs (measured) true vertical feet Effective depth: measured feet Junk (measured) true vertical feet Casing Structural Conductor Surface Intermediate Production Liner Length Size Cemented MD TVD RECEIVED JUN 1 0 2003 Perforation depth: measured Alaska Oil & Gas Cons, Cormnissiat1 Anchorage true vertical 20. Attachments iii Filing Fee 0 Property Plat 0 BOP Sketch 0 Diverter Sketch II Drilling Program II Drilling Fluid Program 0 Time vs Depth Plot 0 Refraction Analysis 0 Seabed Report 1120 AAC 25.050 Requirements Contact Engineer NameINumber: Neil agee, 564-5119 Prepared By NameINumber: Terrie Hubble, 564-4628 21. I hereby certify that the for. oing is true n correct to the best of my knowledge \ Signed Lowell Cr ~-<..i!/! Title Senior Drilling Engineer Date b .- 9 - 03 ,.; . ·t:(,.,,~~~,_;.bnty ";':-, Permit Number I API Number I ApP'f.val Date 1 See cover letter ZQ .~ - I d. 5 50-027'- <'3/ G,) (p f I~(,),~ for other requirements Conditions of Approval: Samples Required 0 Yes .)gNo Mud Log Required 0 Yes 'if No Hydrogen Sulfide Measures 0 Yes )8r No Directional Survey Required ':išfYes 0 No Required Working Pressure for BOPE 0 2K 0 3K 0 4K 0 5K 0 10K 0 15K 0 3.5K psi for CTU Other: T.e..c;t- -g ~E .tþ L/Ooo f'~:. ~~:;: Rev ::~ j:JU OHrGrNAt=~i~'" Date (àJbÚ~T~,":ate e e WeIlName: IV-111 Drill and Complete Plan Summary I Type of Well (service I producer I injector): I Producer Surface Location: As-Built (Slot N-U) Target Location: Top Kuparuk Bottom Hole Location: x = 590,709.62' Y = 5,970,134.34' 4885'FSL, 1590'FEL,Sec. 11, T11N,R11E X = 591,245.00' Y = 5,971,095.00' 559'FSL,1042'FEL,Sec.2,T11N,R11E X = 593,750.00' Y = 5,972,325.00' /' 1758'FSL,3801'FEL,Sec. 1,T11N, R11E I AFE Number: I BRD5M4099 I I Rig: I Nabors 9ES I Estimated Start Date: 16/22/2003 I / I Operating days to complete: 130.5 I MD: 19927' I I TVD: 16706' I I RT/GL: 128.5' I I RKB: 183.8' I Well Design (conventional, slim hole, etc.): 13 String Horizontal producer / I Objective: I Kuparuk CasingITubing Program: Hole Csgl WtlFt Grade con/, Length Top Btm Size Tbg O.D. J MDrrVD MDrrVD bkb 42" Insulated 20" 91.5# H-40 WLD 80' GL 11 0/11 0 12 W' 9 5/8" 40# L-80 BTC 2756' GL 2756/2751 ' 8 %" 7" 26# L-80 BTC-m 7391' GL 7391 '/6681' 6-1/8" 4-1/2" slotted 12.6# L-80 IBT-M 2899' 7028'/6557' 9927'/6706' Tubing 3 %" 9.2# L-80 IBT 7028' GL 7028'/6557' V-111 Drilling Program- AOGCC Page 1 e Mud Program: 12 1A" Surface Hole (0-2756'): Densitv (ppg) 8.5-9.2 9.0 - 9.5 9.5 max Viscosity (seconds) 250-300 200-200 150-200 Initial Base PF to top SV SV to TD 8-1/2" Intermediate Hole: (2756'- 7391 '): Interval Density Tau 0 YP (ppg) / Upper 10.3 4-7 25-30 Interval 6-1/8" Production Hole (7128' - 9927'): Interval Density Tau 0 YP (ppg) Upper 9.0 4-7 30 Interval e Fresh Water Surface Hole Mud Yield Point API FL PH (lb/100ff) (mls/30min) 45 - 70 NC 35 - 45 < 8 25 - 35 < 8 9.0-9.5 9.0-9.5 9.0- 9.5 PV MOBM Core Fluid pH API Filtrate <5 1 0-15 PV Flo-Pro pH API Filtrate 9.0-9.5 <5 10 Hydraulics: Surface Hole: 12-1/4" Interval Pump Drill AV Pump PSI ECD Motor Jet Nozzles TFA GPM Pipe (fpm) ppg-emw ("/32) (in2) 0-1700' 600 4" 17.5# 90 1800 10.0 N/A 18,18,18,16 .942 1700'-2756' 680 4" 17.5# 110 3200 10.2 N/A 18,18,18,16 .942 Intermediate Hole: 8-1/2" Rotary Drilling Interval Pump Drill Pipe AV Pump PSI ECD Motor Jet Nozzles TFA GPM (fpm) ppg-emw ("/32) (in2) 2756' - 7391' 600 4" 17.5# 240 4200 11.2 N/A 3x14,3x15 .969 Production Hole: 6 1/8" Interval Pump Drill Pipe AV Pump PSI ECD Motor Jet Nozzles TFA GPM (fpm) ppg-emw ("/32) (in2) 7391' - 9927' 300 4" 17.5# 200 3500 12.2 N/A 3x14 .451 V-111 Drilling Program- AOGCC Page 2 e Di rectional: Ver. I Anadrill V-111 PB1 (P4) Slot NU KOP: 5000' Maximum Hole Angle: Close Approach Wells: Logging Program: Suñace Intermediate Hole Production Hole V-111 Drilling Program- AOGCC e 88 deg at 7358' MD All wells pass 1/200 minor risk criteria. V-103 - 30' @ 450' V-03 - 42' @ 1000' IFR-MS corrected surveys will be used for survey validation. Drilling: Open Hole: Cased Hole: Drilling: Open Hole: Cased Hole: Drilling: Open Hole: Cased Hole: MWD / GR None None MWD/GR/RES/PWD PEX/GR/RES, NEU/DN/Dipole DT/CMR USIT cement evaluation (contingency) MWD/PWD/GR/RES/NEU/AZM DENS/AIM None None Page 3 Formation Markers: Formation Tops SV5 SV4 Base Permafrost SV3 SV2 SV1 UG4A UG3 UG1 Ma Mb1-Top upper core interval Mb2- base upper core interval Na Lower Nc- Top lower core interval Oa Obd Top OBf- base lower core interval Obf Base CM2 (Colville) THRZ BHRZ (Kalubik) K-1 TKUP Kuparuk C LCU (Kuparuk B) Kuparuk A e TVDss 1555 1685 1700 2075 2250 2560 2875 3225 3600 3890 3940 4000 4260 4280 4295 4510 4620 4670 5020 6310 6440 6480 6515 6515 6600 NIP e Estimated pore pressure, PPG Hydrocarbon bearing, 8.8 ppg EMW Hydrocarbon bearing, 8.8 ppg EMW Water Bearing Hydrocarbon bearing, 8.7 ppg EMW Hydrocarbon bearing, 8.6 ppg EMW Hydrocarbon bearing, 8.6 ppg EMW Hydrocarbon bearing, 8.6 ppg EMW Hydrocarbon bearing, 8.4 ppg EMW Hydrocarbon bearing, 8.4 ppg EMW Hydrocarbon Bearing, 2684 psi, 7.9 ppg EMW Hydrocarbon Bearing, 2684 psi 7.9 ppg EMW Not Hydrocarbon Bearing, 3400 psi, 9.8 ppg EMW \0') Td Criteria: Geosteer downdip in the C4/C3 high per layer to a max TVD of 6635' TVDss or until end target point is reached. V-111 Drilling Program- AOGCC Page 4 e e Integrity Testing: Test Point Depth Surface Casing Shoe 20' min from surface shoe 20' min from 7" shoe Intermediate Casing Shoe FIT / EMW 12.0 ppg EMW Target 11.5 ppg EMW Target based on 9.0 ppg MW and a / worst case 11.2 ppg drilling ECD. / Test Type LOT Cement Calculations: The following surface cement calculations are based upon a single stage job using a port collar as a contingency if cement is not circulated to surface. Casing Size 19-5/8" Surface I Basis: Lead: Based on conductor set at 110', 1676' of annulus in the permafrost @ 250% excess and 314' of open hole from top of tail slurry to base permafrost @ 30% excess. Lead TOC: To surface Tail: Based on 656' MD(>500'TVD) open hole volume + 30% excess + 80' shoe track volume. Tail TOC: At -2100' MD ,:::'~7 I Total Cement Volume: Lead 377 bbl I 2114 ff'! I~..sks of Halliburton Permafrost L at 10.7 ppg and 4.1q.cf/sk. Tail 54 bbl I 302 ff'! )"2641sks of Halliburton 'G' at 15.8 ppg and 1.15 d/sk.V" Casing Size 17" Intermediate Longstring I Basis: Tail: Based on TOC 500' above top of Kuparuk formation + 30% excess + 80' shoe Cement Placement: From shoe to 6465' MD Lead: Based on TOC 500' above top of Schrader Ma +30% excess volume Cement Placement: From 6465' to 3394' MD (500' aboye-Ma sand) Total Cement Volume: Tail 30 bbls 1168 ff'! 1(14z1sks of Halliburton Premium "G" Super CBL at 15E'Ppg and 1.16 dIsk (Provisional Volume) fi· Lead 90 bbls I 505 ff'! ¡, 1 / sks of Halliburton Premium "G" with Microlite 12. pg and 2.36 dIsk V-111 Drilling Program- AOGCC Page 5 e e Well Control: / Surface hole will be drilled with a diverter. The intermediate/production hole, well control equipment consisting of 5000 psi working pressure pipe rams(2), blind/shear rams, and annular preventer will be installed and is capable of handling maximum potential surface pressures. Based upon the planned casing test of 3500 psi for casing integrity considerations, the BOP equipment will be tested to 4000 psi. Diverter, BOPE and drilling fluid system schematics on file with the AOGCC. Production Interval- · Maximum anticipated BHP: 3400 psi @ 6600' TVDss - Kuparuk B Sand ~PSi @ surface ~d on BHP and a full column of gas from TD @ 0.10 psi/ft) · Maximum surface pressure: · Planned BOP test pressure: ~pSi (The casing and tubing will be tested to 3500 psi) · Planned completion fluid: %~g filtered brine / 6.8 ppg diesel Disposal: · No annular disposal in this well. · Cuttings Handling: Cuttings generated from drilling operations will be hauled to grind and inject at DS-04. · Fluid Handling: Haul all drilling and completion fluids and other Class II wastes to DS- 04 for disposal. Haul all Class I wastes to Pad 3 for disposal. V-111 Drilling Program- AOGCC Page 6 e e DRILL AND COMPLETE PROCEDURE SUMMARY Pre-Rig Work: The 20" insulated conductor was installed in May 2003. (Slot N-U) 1. Weld an FMC landing ring for the FMC Ultra slimhole wellhead on the conductor. 2. If necessary, level the pad and prepare location for rig move. Rig Operations: 1. MIRU Nabors 9ES. /..' 2. Nipple up diverter spool and riser. PU 4" DP as required and stand back in derrick. 3. MU 12 %" drilling assembly with MWD/LWD (page 5) and directionally drill surface hole to / approximately 100' TVD below the SV1 Sands. An intermediate wiper/bit trip to surface for a bit will be performed prior to exiting the Permafrost. / 4. Run and cement the 9-5/8",40# surface casing back to surface. ~ 5. ND riser spool and NU casing / tubing head. NU BOPE and test to 0 ... si. 6. MU 8-1/2" drilling assembly yvith MWD/LWD (page 5) and RIH to . collar. Test the 9-5/8" casing to 3500 psi for 30 minutes. ./ 7. Drill out shoe track and 20' new formation below the 9-5/8" shoe and perform Leak Off Test. 8. Clean surface pits in preparation for displacement to MOBM coring fluid. Displace well to 10.3 ppg / OBM coring fluid. 9. Drill ahead to coring point (10' into Schrader Mb1 sand) at approximately 4020'. POOH and PU BHI core barrel. / 10. Core upper Schrader interval (60') as directed by Asset Coring Supervisor. 11. POOH for rotary BHA. Drill approximately 270' to next coring point at the Schrader OA sand. 12. Core lower Schrader interval (340') as directed by Asset Coring Supervisor. 13. POOH and lay down all coring equipment. Pick up rotary BHA and RIH. ./ 14. Drill 150' rat hole and perform open hole logging program detailed on Page 5. Rig down" Schlumberger. 15. Pick up directional BHA, RIH and drill ahea}t0 intermediate TD at top Kuparuk B. 16. Run and cement the 7" production casing. 17. Freeze protect the 7" x 9-5/8" annulus as required. Record formation breakdown pressure on the Morning Report. 18. RU e-line. RIH with GR/junk basket to float collar. Make up and run 7" EZSV and set on depth such/ that Baker window top is at top Kuparuk C. 19. Make up and RIH with 7" whipstock assembly. Set whipstock such that ~om of window is at top Kuparuk C. Displace well to 9.0 ppg Flo-Pro mud system. Mill window. 20. Perform FIT test to 11.5 ppg EMW. POOH and lay down milling assembly. / 21. MU 6-1/8" drilling assembly with MWD/LWD (page 5) and RIH 22. Drill ahead as per directional plan to proposed TD at 9,927' MD/6706'TVD. (Or as shortened for geologic considerations) Short trip as required and condition hole for running 4-1/2" slotted liner. / 23. Run 4-1/2" slotted liner. The liner will extend approximately 100' above the 7" whipstock. Release from liner and displace well above liner top to clean filtered 9.0 ppg KCL brine. POOH and LDDP. 24. Run the 3-1/2", 9.2#, IB-T, L-80 completi9f"(assembly. Set packer and test the tubing to 3500 psi and annulus to 3500 psi for 30 minutes. -/ 25. Shear DCK valve and install TWC. 26. Nipple down the BOPE. Nipple up and test the tree to 5000 psi. Remove TWC. 27. RU hot oil truck and freeze protect well by pumping diesel to DCK GLM. Allow to equalize. 28. Rig down and move off. V-111 Drilling Program- AOGCC Page 7 e e V-111 Drilling Programme Job 1: MIRU Hazards and Contingencies / ~ V-Pad is not designated as an H2S site. None of the current producers on V-Pad have indicated the presence of H2S. As a precaution however Standard Operating Procedures for H2S precautions should be followed at all times. ~ The cellar area surrounding V-111 (Slot N-U) should be checked to insure level prior to move in. > Check the landing ring height on V-111. The BOP nipple up may need review for space out. Reference RPs .:. "Drilling! Work over Close Proximity Surface and Subsurface Wells Procedure" -~, -;ç!!!!!!!!);.=-~ Job 2: Drilling Surface Hole r There is one close approach issue in the surface hole. V-100 approaches with a center to center distance of 54' at 2600'. > Hydrates have been observed in wells drilled on V-Pad. These were encountered near the base of permafrost to TD in the SV1 sand. Hydrates will be treated at surface with appropriate mud products and adjustment of drilling parameters. Refer to MI mud recommendation. / Reference RPs .:. "Prudhoe Bay Directional Guidelines" .:. "Well Control Operations Station Bill" .:. Follow Schlumberger logging practices and recommendations Job 3: Install surface Casina Hazards and Contingencies > It is critical that cement is circulated to surface for well integrity. 250% excess cement through the permafrost zone (and 30% excess below the permafrost) is planned. A 9-5/8" port collar will be available as a contingency is surface hole drilling is problematic. If used, the port collar will be positioned at +/- 1000' to allow remedial cementing. > "Annular Pumping Away" criteria for future permitting approval for annular injection. 1. Pipe reciprocation during cement displacement 2. Cement - Top of tail >500' TVD above shoe using 30% excess. 3. Casing Shoe Set approximately 100'TVD below SV-1 sand. Reference RPs .:. "Casing and Liner Running Procedure" V-111 Drilling Program- AOGCC Page 8 e e .:. "Surface Casing and Cementing Guidelines" .:. "Surface Casing Port Collar Procedure" - Job 4: DrillinQ/Corinq Intermediate Hole Hazards and Contingencies > V-111 will cross two faults in the intermediate hole section. A fault is anticipated in the Ugnu at 3755'TVD, 3760' MD (+/-150'). The estimated throw of the fault is 100', The well will be - 0 degrees when crossing the fault. Lost circulation is considered low to medium risk. The second fault occurs in the HRZ at 6480' TVD, 7035' MD (+C 150'). The estimated throw of the fault is 75'. Lost circulation is considered low to medium risk. Consult the Lost Circulation Decision Tree regarding LCM treatments and procedures. > KICK TOLERANCE: In the case scenario of 9.8 ppg pore pressure at the top Kuparuk B target depth, gauge hole, a fractur -grãi ent of 12.0 ppg at the surface casing shoe, 10.3 ppg mud in the hole the kick tolerance i b, An accurate LOT will be required as well as heightened awareness for kick det . . Contact Drilling Manager if LOT is less than 12.0 ppg. > V-Pad development wells have "kick tolerances" in the 30-50 bbl range. A heightened awareness of kick detection, pre-job planning and trip tank calibration will be essential while drilling/tripping the intermediate/production intervals ~ There are no "close approach" issues with the intermediate hole interval of V-111. ~ Oil Base mud will be utilized in the intermediate hole section. The base fluid L VT -200 is considered non-hazardous by Osha Communication Standard 29CFR191 O. Prolonged expose requires goggles, impervious gloves, rubber boots and neoprene coated coveralls. Ensure slip resistant matting and vacuum system are in place and functional. Reference RPs .:. Standard Operating Procedure for Leak-off and Formation Integrity Tests .:. Prudhoe Bay Directional Guidelines .:. Lubricants for Torque and Drag Management. .:. "Shale Drilling- Kingak & HrZ" <~,"i'i'IDi$ffl;'~¡¡W~, ,J!'¡m.>i1."ffi,,!J_ Job 6: Case & Cement Intermediate Hole Hazards and Contingencies > The interval is planned to be cemented in with a tail and lead slurry. The lead will cover from 500' above the Kuparuk to 500' above the Schrader Ma sand and the tail from the shoe to 500' above the Kuparuk. c > It is critical that the 7" casing be placed near bottom for upcoming drilling operations. /' > Considerable losses during running and cementing the 7" longstring has been experienced on offset wells. A casing running program will be jointly issued by the ODE and Drilling Supervisor detailing circulating points and running speed. In addition a LCM pill composed of "G Seal" will be placed across the Schrader and Ugnu to help arrest mud dehydration. V-111 Drilling Program- AOGCC Page 9 e e Þ- Ensure a minimum hydrostatic equivalent of 10.3 ppg on the HRZ during pumping of cement pre flushes/chemical washes. Losses of hole integrity and packing off has resulted from a reduction in hydrostatic pressure while pumping spacers and flushes. ~ Ensure the lower production cement has reached at least a 70BC thickening value prior to freeze protecting. After freeze protecting the 7" x 9-5/8" casing outer annulus with 63 bbls of dead crude (2200' MD, 2189'TVD), the hydrostatic pressure will be 7.7 ppg vs 8.5 ppg EMW of the formation pressure immediately below the shoe. Ensure a double-barrier at the surface on the annulus exists until the cement has set up for at least 12 hours. Trapped annulus pressure may be present after pumping the dead crude as the hydrostatic pressure of the mud and crude could be 110 psi underbalance to the open hole. (A second LOT will be required prior to displacing freeze protect. This to satisfy AOGCC for future annular pumping permits.) Reference RPs .:. "Intermediate Casing and Cementing Guidelines" .:. "Freeze Protecting an Outer Annulus" Job 7: Set Whipstock and Drill 6-1/8" Horizontal Production Hole Hazards and Contingencies Þ- A whipstock will be set in the 7" intermediate casing to facilitate kicking off the horizontal production hole. Once milling is complete, make sure all BOP equipment is operable. Wash out BOP stack to remove any metal cuttings which may have accumulated. Þ- One fault crossing is possible in the midpoint (9020') of the horizontal section. The estimated throw of the fault is approximately 20'. If the fault is crossed and losses are encountered, consult the Lost Circulation Matrix regarding LCM treatments and procedures. Þ- There are no "close approach" issues with the production hole interval of V-109. , Heightened kick awareness is required while drì!ling this horizontal production hole. To date we have not drìlled the Kuparuk formation in Borealis with less than a 9.7 ppg mud system due to HRZ stability concerns. Þ- Under no circumstances add any LCM (including Walnut sweeps, and fiberous materials) other than Calcium Carbonate for losses < 50BPH without prior discussions with the Drilling Engineer/Asset Production Engineer. Significant mud losses >50 BPH may include the use of cellulose to arrest losses. See attached LCM Decision Chart. Þ- There are no restrictions concerning adding lubricants to the mud while drilling the production hole. Þ- Expect a certain amount of geo-steering , but significant changes to the planned directional profile should be discussed with the Drilling Manager/Operations Drilling Engineer. Þ- Maintain timely communication with Geology, Directional, and Engineering personnel. Allow the directional driller adequate notification to plan and execute required well path changes. Rather than dictate well path azimuth and/or inclination, provide depth and azimuth ranges, which will result in desired well bore placement. Providing the directional driller with X,Y, and Z coordinates V-111 Drilling Program- AOGCC Page 10 e !e will enable him to project ahead from current well position. Utilize "Geological Request for Target Change" Form to document course changes. Reference RPs .:. "Standard Operating Procedure for Leak-off and Formation Integrity Tests" .:. "Prudhoe Bay Directional Guidelines" .:. "Lubricants for Torque and Drag Management" ~. ~.~='Q"M;r_ Job 9: Install 4%" Production Liner Hazards and Contingencies þ> Differential sticking could be a problem. The Flo-Pro will be approximately 370 psi over balance to the Kuparuk formation. Minimize the time the pipe is left stationary while running the liner. þ> In the event additional weight is required to get the liner to TD, have 6 stands of weight pipe in the derrick. þ> A liner inner string should not be required to help convey the liner to bottom. An inner string contingency however is included should open hole conditions be poor. þ> Keep in mind that the Kuparuk interval will be open. Avoid introducing lighted than 9.0 ppg completion brines during swap over prior to perforating. Reference RPs .:. "Running and Cementing a Liner Conventionally" _<~......-.r="'~__ Job 12: Run Completion Hazards and Contingencies þ> Keep in mind that the Kuparuk interval will be open during the running of the completion. Watch hole fill closely, verify no light fluids are introduced down hole and verify proper safety valves are on the rig floor while running this completion. þ> Shear valves have been failing at lower than the 2500 psi differential pressure. When testing annulus maintain no more than a 1500 psi differential. Avoid cycling pressure (pumping up and bleeding off) prior to activating shear valve as this is thought to cause shearing at lower pressures. Reference RPs .:. Completion Design and Running .:. Freeze Protection of Inner Annulus V-111 Drilling Program- AOGCC Page 11 e e Job 13: ND/NUlRelease RiCl Hazards and Contingencies >- No hazards specific to this well have been identified for this phase of the well construction. Reference RPs .:. Freeze Protection of Inner Annulus V-111 Drilling Program- AOGCC Page 12 TREE = 4-1/16" erN WELLHEAD = FMC ·AmV_''''''W~,'''·'~,~·,W,·,·.·.·~'mc'w, ACTUATOR = NIA KB:S::EV:::: 82.3' ^'~~_"__'___'_,____w___._~__._._._..?_.w._._.m=m~~~==m==...........................w.w.y,·__.__ BF. ELBI = .~"~~~mm"--" _A___._._""'m"=~m"~~ KOP = 300' "W'_·Aw_____._~,,~=,,~ Max Angle = DaiumMï5~ DatumlVD= ?'SS e I 9-5/8" CSG, 40#, L-80, ID= 8.835" 1--1 2756' Minimum ID = 2.813" at 2200' I 3-1/2" TBG, 9.2#, L-80, IBT ID=2.992" 1- I Baker HMC Liner H 7028' I 7" CSG, 26#, L-80, 0.0383 bpf, 1D=6.27Efi 7391' ÆRFORA TlON SUMMARY REF LOG: ANGLE AT TOP ÆRF: Note: Refer to Production DB for historical perf data SIZE SPF INTERVAL Opn/Sqz DATE DATE RBI BY COMMENTS 06105/03 nm HORIZ COMPLETION (P11) ~ / I DA TE RBI BY V-111 l3 NOTES: 2200' H3-1/2" HES X Nippple. ID= 2.813" ~ GAS LIFT MANDRELS ST MD lVD DBI TYÆ VLV LATCH PORT 1 6200' 2 5700' 3 5100' 4 4200' 5 3300' 6 2600' DATE l :;g: I :&-----i I H3-1/2" X Nipple ID= 2.813" I ~I Baker 7" x 4-1/2" S-3 Packer H 3-1/2" X Nipple ID= 2.813" ~ H 3-1/2" X Nipple ID =2.813" .. . AI ~ ~~ """"",, ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... I ffiID H 9M~"I'). I 4-1/2" Slotted Liner, 12.7 #, L-80 /' H 9927' COMMENTS PRUDHOE BAY UNIT WELL: V-111 ÆRMIT No: API No: BP Exploration (Alaska) e e V-111 Well Summary of Drillina Hazards POST THIS NOTICE IN THE DOGHOUSE Surface Hole Section: · Gas hydrates may be encountered near the base of the Permafrost at 1770' MD and near the TD hole section as well. · Gravel beds below the Permafrost will tend to slough in when aerated (hydrate cut) mud is being circulated out. Ensure adequate mud viscosity is maintained to avoid stuck pipe situations. Intermediate Hole Section: · A majority of the V-Pad development wells will have "kick tolerances" in the 25-45 bbl. A heightened awareness of kick detection, pre-job planning and trip tank calibration will be essential while drilling/tripping the intermediate/production intervals. · V-111 will cross two faults in the intermediate hole section. The first at -3760' MD(+/-150') with an estimated throw of 100' and the second at at -7035' MD (+/- 150'). The estimated throw of the second fault is approximately 75'. Loss circulation is considered to be a medium risk. Consult the Lost Circulation Decision Tree regarding LCM treatments and procedures. · Coring will utilize Oil Base Mud. The base fluid LVT-200 is considered "non-hazardous by OSHA. Proper PPE including goggles, barrier cream and neoprene coated coveralls should be in place prior to utilizing this mud system. Production Hole Section: · The production section will be drilled with a recommended mud weight of 9.0 ppg to cover the Kuparuk 7.9 pore pressure. · Hole packing-off, and lost returns have been encountered in previous wells on this pad. Pipe sticking tendency is possible as the mud weight is 375 psi over the formation pressure. Back reaming at connections and good hole cleaning practices will contribute to favorable hole conditions. HYDROGEN SULFIDE - H2S / · This drill-site not designated as an H2S drill site. Recent wells test do not indicate the presence of H2S. As a precaution, Standard Operating Procedures for H2S precautions should be followed at all times. CONSULT THE V-PAD DATA SHEET AND THE WELL PLAN FOR ADDITIONAL INFORMATION Version 1.0 Rigsite Hazards and Contingencies ! KBE G1 SV6 Nudge 111 00 SV5 SV4 Base Perm End Bid Drp 11100 SV3 Report Date: Client: Field: Structure J Slot: Well: Borehole: UWIJAPI#: Survey Name J Date: Tort J AHD J DDI J ERD ratio: Grid Coordinate System: Location Lat/Long: Location Grid NlE Y )(: Grid Convergence Angle: Grid Scale Factor: V-111PB1 Proposed Well Profile - Geodetic Report June 5, 2003 BP Exploration Alaska Prudhoe Bay Unit - WOA (Drill Pads) V-Pad J Plan V-111 (N-U) V-111 V-111PB1 50029 V-111PB1 (P4) I June 5, 2003 96.058° 11560.49 ft 15.220 I 0.234 NAD27 Alaska State Planes, Zone 04, US Feel N 70.32813766, W 149.2643313£ N 5970134.340 ftUS, E 590709.620 ftUS -+0.69273635° 0.99990935 Survey J DLS Computation Method: Vertical Section Azimuth: Vertical Section Origin: TVD Reference Datum: TVD Reference Elevation: Sea Bed J Ground Level Elevation: Magnetic Declination: Total Field Strength: Magnetic Dip: Declination Date: Magnetic Declination Model: North Reference: Total Corr Mag North .) True North: Local Coordinates Referenced To: Schlulbepgep Minimum Curvature I Lubinski 33.930° N 0.000 ft, E 0.000 ft KB 81.8 ft relative to MSL 54.000 ft relative to MSL 25.512° 57517.355 nT 80.780° July 07, 2003 BGGM 2002 True North +25.512° Well Head - ro"e Grid Coordinates Geographic Coordinates MD Incl Azim TVD TVDss I VSec I NJ·S I EJ·W DLS Northing I Easting Latitude I Longitude (ft) (0) (0) (ft) (ft) (ft) (ft) (ft) (oJ100ft) (ftUS) (ftUS) 0.00 0.00 270.00 0.00 -81.80 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70.32813766 W 149.26433139 326.80 0.00 270.00 326.80 245.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70.32813766 W 149.26433139 976.80 0.00 270.00 976.80 895.00 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70.32813766 W 149.26433139 1200.00 0.00 270.00 1200.00 1118.20 0.00 0.00 0.00 0.00 5970134.34 590709.62 N 70.32813766 W 149.26433139 1300.00 1.00 270.00 1299.99 1218.19 -0.49 -0.00 -0.87 1.00 5970134.33 590708.75 N 70.32813766 W 149.26433845 1400.00 2.00 270.00 1399.96 1318.16 -1.95 -0.00 -3.49 A.oo 5970134.30 590706.13 N 70.32813766 W 149.26435969 1500.00 3.00 270.00 1499.86 1418.06 -4.38 -0.00 -7.85 1.00 5970134.25 590701.77 N 70.32813766 W 149.26439505 1600.00 4.00 270.00 1599.68 1517.88 -7.79 -0.00 -13.96 1.00 5970134.17 590695.66 N 70.32813766 W 149.264441 1637.22 4.37 270.00 1636.80 1555.00 -9.31 -0.00 -16.67 1.00 5970134.14 590692.95 N 70.32813766 W 149.26446 1700.00 5.00 270.00 1699.37 1617.57 -12.17 -0.00 -21.80 1.00 5970134.08 590687.82 N 70.32813766 W 149.26450 1767.73 5.68 270.00 1766.80 1685.00 -15.69 -0.00 -28.10 1.00 5970134.00 590681.52 N 70.32813766 W 149.26455926 1782.80 5.83 270.00 1781.80 1700.00 -16.53 -0.00 -29.62 1.00 5970133.98 590680.00 N 70.32813766 W 149.26457159 1800.00 6.00 270.00 1798.90 1717.10 -17.52 -0.00 -31 .39 1.00 5970133.96 590678.24 N 70.32813766 W 149.26458594 1900.00 7.00 270.00 1898.26 1816.46 -23.84 -0.00 -42.71 1.00 5970133.82 590666.92 N 70.32813766 W 149.26467773 2000.00 7.00 270.00 1997.51 1915.71 -30.64 -0.00 -54.89 0.00 5970133.68 590654.74 N 70.32813766 W 149.26477650 2100.00 6.00 270.00 2096.87 2015.07 -36.96 -0.00 -66.21 1.00 5970133.54 590643.42 N 70.32813766 W 149.26486830 2160.23 5.40 270.00 2156.80 2075.00 -40.30 -0.00 -72.20 1.00 5970133.47 590637.43 N 70.32813766 W 149.26491687 2200.00 5.00 270.00 2196.41 2114.61 -42.31 -0.00 -75.80 1.00 5970133.42 590633.83 N 70.32813766 W 149.26494607 Station ID V-111PB1 (P4) report xis Page 1 of 3 6/5/2003-11 :32 AM Grid Coordinates Geographic Coordinates Station ID MD Incl Azim TVD TVDss I VSec N/·S E/·W DLS Northing Easting Latitude I Longitude (ft) (0) (0) (ft) (ft) (ft) (ft) (ft) (0/100ft) (ftUS) (ftUS) 2300.00 4.00 270.00 2296.10 2214.30 -46.69 -0.00 -83.64 1.00 5970133.33 590625.99 N 70.32813766 W 149.26500964 SV2 2335.78 3.64 270.00 2331.80 2250.00 -48.02 -0.00 -86.03 1.00 5970133.30 590623.60 N 70.32813766 W 149.26502902 2400.00 3.00 270.00 2395.91 2314.11 -50.10 -0.00 -89.75 1.00 5970133.26 590619.88 N 70.32813766 W 149.26505919 2500.00 2.00 270.00 2495.82 2414.02 -52.53 -0.00 -94.11 1.00 5970133.20 590615.53 N 70.32813766 W 149.26509454 2600.00 1.00 270.00 2595.78 2513.98 -53.99 -0.00 -96.73 1.00 5970133.17 590612.91 N 70.32813766 W 149.26511579 SV1 2646.02 0.54 270.00 2641.80 2560.00 -54.34 -0.00 -97.35 1.00 5970133.16 590612.29 N 70.32813766 W 149.26512082 End Drp 2700.00 0.00 270.00 2695.77 2613.97 -54.48 -0.00 -97.60 1.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 9-5/8" Csg PI 2756.03 0.00 354.00 2751.80 2670.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 UG4A 2961.03 0.00 354.00 2956.80 2875.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512_ UG3 3311.03 0.00 354.00 3306.80 3225.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512 UG1 3686.03 0.00 354.00 3681.80 3600.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 Ma 3976.03 0.00 354.00 3971.80 3890.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 Mb1 4026.03 0.00 354.00 4021.80 3940.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 Mb2 4086.03 0.00 354.00 4081.80 4000.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 Na 4211.03 0.00 354.00 4206.80 4125.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 Lower Nc 4366.03 0.00 354.00 4361.80 4280.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 OA 4381.03 0.00 354.00 4376.80 4295.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 OBd 4596.03 0.00 354.00 4591.80 4510.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 Top OBf 4706.03 0.00 354.00 4701.80 4620.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 Obf Base 4756.03 0.00 354.00 4751.80 4670.00 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 KOP Bid 2/100 4900.00 0.00 354.00 4895.77 4813.97 -54.48 -0.00 -97.60 0.00 5970133.16 590612.04 N 70.32813766 W 149.26512285 Crv 4/100 5000.00 2.00 354.00 4995.75 4913.95 -53.14 1.74 -97.78 2.00 5970134.90 590611.84 N 70.32814241 W 149.26512431 5100.00 6.00 353.84 5095.49 5013.69 -47.80 8.67 -98.53 4.00 5970141.82 590611.00 N 70.32816134 W 149.26513039 CM2 5106.35 6.25 353.83 5101.80 5020.00 -47.28 9.34 -98.60 4.00 5970142.49 590610.92 N 70.32816317 W 149.26513096 5200.00 10.00 353.80 5194.50 5112.70 -37.16 22.50 -100.03 4.00 5970155.63 590609.33 N 70.32819913 W 149.26514_ 5300.00 14.00 353.79 5292.29 5210.49 -21.27 43.17 -102.27 4.00 5970176.27 590606.85 N 70.32825559 W 149.26516 5400.00 18.00 353.78 5388.40 5306.60 -0.20 70.56 -105.26 /.00 5970203.62 590603.52 N 70.32833042 W 149.26518497 5500.00 22.00 353.78 5482.35 5400.55 25.93 104.56 -108.96 4.00 5970237.57 590599.41 N 70.32842331 W 149.26521498 End Crv 5501.96 22.08 353.78 5484.16 5402.36 26.49 105.29 -109.04 4.00 5970238.29 590599.33 N 70.32842530 W 149.26521563 Crv 4/100 5528.57 22.08 353.78 5508.83 5427.03 34.14 115.23 -110.13 0.00 5970248.22 590598.12 N 70.32845246 W 149.26522447 5600.00 23.29 0.49 5574.74 5492.94 56.19 142.70 -111.46 4.00 5970275.67 590596.45 N 70.32852750 W 149.26523526 5700.00 25.41 8.73 5665.87 5584.07 92.11 183.69 -108.04 4.00 5970316.69 590599.38 N 70.32863948 W 149.26520753 5800.00 27.92 15.69 5755.25 5673.45 133.77 227.45 -98.44 4.00 5970360.56 590608.45 N 70.32875903 W 149.26512968 CM1 5876.07 30.03 20.22 5821.80 5740.00 169.18 262.46 -87.05 4.00 5970395.70 590619.41 N 70.32885468 W 149.26503732 5900.00 30.72 21.52 5842.45 5760.65 180.97 273.77 -82.74 4.00 5970407.06 590623.58 N 70.32888557 W 149.26500237 V-111P81 (P4) report.xls Page 2 of 3 6/5/2003-11 :32 AM Grid Coordinates Geographic Coordinates Station ID MD Incl Azim TVD TVDss I VSec N/-S E/·W DLS Northing I Easting Latitude I Longitude (ft) (0) (0) (ft) (ft) (ft) (ft) (ft) (o/100ft) (ftUS) (ftUS) 6000.00 33.74 26.44 5927.04 5845.24 233.47 322.42 -60.99 4.00 5970455.97 590644.74 N 70.32901848 W 149.26482599 6100.00 36.93 30.62 6008.62 5926.82 291.02 373.16 -33.31 4.00 5970507.04 590671.80 N 70.32915710 W 149.26460152 6200.00 40.25 34.21 6086.79 6004.99 353.34 425.75 0.17 4.00 5970560.02 590704.64 N 70.32930077 W 149.26433001 6300.00 43.66 37.34 6161.15 6079.35 420.13 479.93 39.28 4.00 5970614.67 590743.09 N 70.32944879 W 149.26401284 6400.00 47.15 40.09 6231.36 6149.56 491.06 535.44 83.84 4.00 5970670.70 590786.97 N 70.32960043 W 149.26365147 6500.00 50.69 42.55 6297.07 6215.27 565.78 592.00 133.63 4.00 5970727.86 590836.07 N 70.32975495 W 149.26324768 6600.00 54.28 44.77 6357.96 6276.16 643.94 649.35 188.40 4.00 5970785.86 590890.14 N 70.32991162 W 149.26280350 Top HRZ 6659.54 56.44 45.99 6391.80 6310.00 691.94 683.75 223.27 4.00 5970820.68 590924.59 N 70.33000560 W 149.26252070 6700.00 57.91 46.79 6413.73 6331.93 725.14 707.19 247.89 4.00 5970844.41 590948.92 N 70.33006963 W 149.26232_ 6800.00 61.57 48.66 6464.11 6382.31 809.00 765.26 311.81 4.00 5970903.24 591012.13 N 70.33022827 W 149.26180 6900.00 65.26 50.41 6508.86 6427.06 895.10 823.26 379.85 4.00 5970962.06 591079.45 N 70.33038671 W 149.26125079 Base HRZ 6931.61 66.42 50.94 6521.80 6440.00 922.72 841.54 402.16 4.00 5970980.60 591101.54 N 70.33043665 W 149.26106985 7000.00 68.96 52.05 6547.76 6465.96 983.03 880.92 451.67 4.00 5971020.57 591150.57 N 70.33054422 W 149.26066830 End Crv 7028.07 70.00 52.50 6557.60 6475.80 1007.98 897.01 472.46 4.00 5971036.91 591171.16 N 70.33058817 W 149.26049968 K1 7040.35 70.00 52.50 6561.80 6480.00 1018.92 904.03 481.62 0.00 5971044.04 591180.23 N 70.33060735 W 149.26042539 Target 7128.07 70.00 52.50 6591.80 6510.00 1097.06 954.21 547.01 0.00 5971095.00 591245.00 N 70.33074442 W 149.25989504 TopKup/C 7142.69 70.00 52.50 6596.80 6515.00 1110.08 962.57 557.91 0.00 5971103.50 591255.80 N 70.33076726 W 149.25980664 TD I 7" Csg Pt 7391.21 70.00 52.50 6681.80 6600.00 1331.46 1104.74 743.18 0.00 5971247.88 591439.32 N 70.33115561 W 149.25830395 LeQal Description: NorthinQ IY) rftUSl Eastin!:! IX) rftUSl Surface: 4885 FSL 1591 FEL 511 T11N R11 E UM 5970134.34 590709.62 Target: 559 FSL 1043 FEL S2 T11N R11E UM 5971095.00 591245.00 BHL: 710 FSL 846 FEL S2 T11N R11E UM 5971247.88 591439.33 e V-111PB1 (P4) report. xis Page 3 of 3 6/5/2003-11 :32 AM e VERTXCAL SECTXON VXEW Client: Well: Field: A BP Exploration Alaska V-lllPBl (P4) Prudhoe Bay Unit - WOA Schlumberger Structure: V-Pad Section At: 33.93 deg Date: June 05, 2003 1000 _.. ..... ~;v\';,;I: M!J"·rr·/;::.,.¿fj ..... ...... ....,- ..... .... ..... ...... ...... ..... ..............,m............................... ..................................... ..... -..... ..... ..,.. ..... .... ....m.......................................... Nudge 1/100 I 1200 MD 1230 TVD 0.00' 270.00, az o departure o .v" É.~d_~d ~ ~_E:;:f;,~~:a~____ :--D",'I100 . ., 000.. 000.. 000.. 2000 MDl99nVD.... 7.00° 270.00· az -'3"1 departürä: j ~.~ !~~D~f,Ò~~:·:D , ____________ ·54 de'frture ...!>-518' c..¡ Pt. 2000~-..- -. +-' Q) -. ~~ 8~ o Q) ~ .8 3000 ...;;;._.::::....::c.... C CO ..-¢:: .........0 ..c~ +-' ..- g-~ om ro ~ 4000 -00 = = u.¡....: 1:: Q) Q)Cï: > ã; ~iIi .... f- ,,;1'''' . ..':::ü.s.D\. 0.00° 354.00° az -54 depart~re -c;cr-:.:.s, Mv~5[¡7T'lD - - - - - - Hold ngle 0.000 - - -- - i ·~-i KOP BId 2}1-þo= 4900 MO 4 '96 TVO ··,'H~;JZTVr.r ..... ..... ..... ..... ...../~~o~ -3õl ;~~1"l?&i<;'¡;:m 000 ~.=.: '''':c¡:ÿ" '. ........ ~ 5000 MOl 4996 TVD [ ~ 2.00· 354.00G az : -53 depaf1:ure 5000 -- (7~1Î.')1Q¡r-r.~D~1C;TI\/u .-- . . , ..._. ~_w, . . ~ End cni j ______ ~~02 M ' ______ 2. 6000 ~ ~ ~ -- 6'" 7000-· Hold Angle -1000 o I 1000 ::: .... '::::.. .::::::.....~::'.:......:::::.....:::.......:::::~.¡....::.. I I .....¡ I .....,.. --~~~ ..... ,..... ..... ..... .~.~~~_w~_.. I ... ~..~...._..._.._.. .-......-.-J-- I····· i 0001 ! 0001 ~ -- ~ - - - ~ - ~~---- -----_.._~ 2000 3000 Vertical Section Departure at 33.93 deg from (0.0, 0.0). (1 in = 1000 feet) 1200- -- . '" ' PLAN VIEW Client: BP Exploration Alaska Well: Field: Structure: Scale: Date: V-lllPBl (P4) Prudhoe Bay Unit - WOA V-Pad 1 in = 200 ft 05-Jun-2003 SChluDlbørgør o , ¡ ¡ 200 , True North Mag Dee ( E 25.51° .... ........;...·.....·....··......·.....f· 1000 ------.--.- ^ ^ 800 -------+ ^ I ~ 0:: o Z 600~ ~ 400 __~m ::J o C/) V V V 200 o Cry 41100 5000 MD 4996 TVO 2.00Q 354.00Q az 2N 98W KOP Bid 2/100 ¡ 4900 MD 4896 TVþ O.OOQ 354.00· az ~ OS 98W · . · . · . · . · . · . · . · . / ~~: m ~i~ft~~:O _~_~J__mm 9_5/8" Csg Pt: ¡ 2756 MD 2752 D! End Bid f a.DOG 354.00· az' 1900 MD 1~98 TVO OS 98 W I 7.00· 270.~O· az EndDrp 'Drp1l100 OS 43W f 2700 MD 2696 TVD 12000 MD 1998 TVO ~ 0.00· 270.00· az 7.00" 270.00· az ¡ OS 98W iDS SSW . ¡ o I 200 «< WEST 400 , 800 600 ---- ._--~ ~~ ~~ ð-Ö ~ 1200 TD/T"Csgpt ........~...H_···;~~dö~~Š2~~TY.·~~· ....- 1 000 1105 N 743 E _~i~!~~~.,: End Cry . 954 N 547 E 7028 MD 65~ TVD 70.00· 52.50· iu: 897 N 472 E ¡ ............... _ - 800 -~-r-- 600 -400 200 o I 400 I 600 EAST »> 800 V-111 Schlumberuer Proposed Well Profile - Geodetic Report Report Date: June 5, 2003 Client: BP Exploration Alaska Field: Prudhoe Bay Unit - WOA (Drill Pads) Structure I Slot: V-Pad I Plan V-111 (N-U) ro."'8 Well: V-111 i.' Borehole: V-111 UWI/API#: 50029 Survey Name I Date: V-111 (P12) I June 5, 2003 Tort I AHD I DDII ERD ratio: 118.5W 14106.16 ft 15.8581 0.61, Grid Coordinate System: NAD27 Alaska State Planes, Zone 04, US Feel Location Lat/Long: N 70.32813766, W 149.2643313£ Location Grid N/E YIX: N 5970134.340 ftUS, E 590709.620 ftUS Grid Convergence Angle: -+<J.69273635° Grid Scale Factor: 0.99990935 Survey I DLS Computation Method: Minimum Curvature I Lubinski Vertical Section Azimuth: 64.540° Vertical Section Origin: N 0.000 ft, E 0.000 ft TVD Reference Datum: KB TVD Reference Elevation: 81.8 ft relative to MSL Sea Bed I Ground Level Elevation: 54.000 ft relative to MSL Magnetic Declination: 25.501 ° Total Field Strength: 57517.804 nT Magnetic Dip: 80.781° Declination Date: July 18, 2003 Magnetic Declination Model: BGGM 2002 North Reference: True North Total Corr Mag North .> True North: +25.501 ° Local Coordinates Referenced To: Well Head - Grid Coordinates Geographic Coordinates Station ID MD Incl Azim TVD TVDss I VSec N/·S E/·W DLS Northing Easting Latitude I Longitude (ft) (0) (0) (ft) (ft) (ft) (ft) (ft) (0/100ft) (ftUS) (ftUS) Top Whipstock 7128.07 70.00 52.50 6591.80 6510.00 904.09 954.21 547.01 0.00 5971095.00 591245.00 N 70.33074442 W 149.25989504 Base Whipstock 7140.07 71.92 52.50 6595.72 6513.92 915.18 961.12 556.01 16.00 5971102.02 591253.92 N 70.33076330 W 149.25982205 KOP Crv 10/100 7153.07 71.92 52.50 6599.75 6517.95 927.27 968.64 565.82 0.00 5971109.66 591263.64 N 70.33078384 W 149.25974248 7160.00 72.46 52.95 6601.87 6520.07 933.73 972.64 571.07 10.00 5971113.72 591268.84 N 70.33079477 W 149.25969990 7180.00 74.04 54.23 6607.63 6525.83 952.53 984.00 586.48 10.00 5971125.27 591284.11 N 70.33082580 W 149.25957491 7200.00 75.63 55.50 6612.86 6531.06 971.56 995.11 602.27 ~o.oo 5971136.57 591299.76 N 70.33085615 W 149.25944685 7220.00 77.22 56.75 6617.56 6535.76 990.79 1005.95 618.41 10.00 5971147.60 591315.77 N 70.33088576 W 149.25931594 7240.00 78.81 57.98 6621.71 6539.91 1010.20 1016.50 634.88 10.00 5971158.35 591332.11 N 70.33091458 W 149.25918236 7260.00 80.42 59.19 6625.32 6543.52 1029.76 1026.75 651.67 10.00 5971168.80 591348.77 N 70.33094258 W 149.25904' 7280.00 82.02 60.40 6628.37 6546.57 1049.46 1036.69 668.75 10.00 5971178.94 591365.73 N 70.33096973 W 149.258907 7300.00 83.63 61.60 6630.87 6549.07 1069.26 1046.31 686.10 10.00 5971188.77 591382.96 N 70.33099600 W 149.25876693 7320.00 85.25 62.78 6632.81 6551.01 1089.15 1055.60 703.71 10.00 5971198.27 591400.45 N 70.33102138 W 149.25862410 7340.00 86.86 63.97 6634.18 6552.38 1109.10 1064.54 721.55 10.00 5971207.43 591418.18 N 70.33104580 W 149.25847940 End Crv 7359.03 88.40 65.09 6634.97 6553.17 1128.11 1072.72 738.71 10.00 5971215.81 591435.24 N 70.33106814 W 149.25834023 TD I 4-1/2" Lnr 9927.07 88.40 65.09 6706.80 6625.00 3695.02 2153.94 3066.93 0.00 5972325.00 593750.00 N 70.33402032 W 149.23945406 Legal Description: Northinq (Y) rftUSl Eastinq (X) rftUSl Surface: 4885 F5L 1591 FEL S11 T11N R11E UM 5970134.34 590709.62 Tie-In: 559 F5L 1043 FEL S2 T11N R11E UM 5971095.01 591245.01 TD 14-1/2" Lnr I BHL : 1758 FSL 3802 FEL 51 T11N R11E UM 5972325.00 593750.00 V-111 (P12) report.xls Page 1 of 1 6/5/2003-11 :57 AM VERTICAL Client: Well: Field: Structure: Section At: Date: SECTION VIEW BP Exploration Alaska V-lll (P12) Prudhoe Bay Unit - WOA V-Pad 64.54 deg June 05, 2003 5000 5500 ....... - ....... Q)....J ~(/) 0::2: o Q) I.() > II 0 c:.g .....¢:: -0 ..c:CO - . 0.. ..... Q)CX> o en 6500 ro~ o.¡..; :e Q) Q)O::: > > Q)~ 2w I- '0 V-111PB1 7000 7500 o 500 1000 Vertical Section Departure at 64.54 deg from (0.0, 0.0). (1 in = 500 feet) 1500 End CN 7359 MD 6635 TVO 88.400 65.09" az 1128 departure 2000 2500 3000 Schlumberger m.. GM2 :3-11)(- ~/[} 510:: ,VD e ,- eM'! 5876 MD SB2? T\iD ..... Top HRZ 6BSG MD 5302 TVD 8m;,; HRZ 6832 MO 5522 h'D V..1 '1Ü4\) r,..1{) GSß2 TV ) T>p hUp! {:; 7143 M!) l':~d7 TVO e TD 14-1/T' Lnr 9927 MD 6707 TVO 88.40° 65.0go az 3695 departure 3500 2000 - ^ ^ ^ I I- 1500- 0::: o Z ~~__·___~_w__.·~_m____ 1000 - I I- :) ~ 500 ~._.__.._- v v v 0-"-1 PLAN VIEW Client: BP Exploration Alaska Well: V-lll (P12) Field: Prudhoe Bay Unit - WOA Structure: V-Pad Scale: 1 in = 500 ft Date: 05-Jun-2003 o 1 True North Mag Dee ( E 25.50° ¡ Base Whipstock 7140 tv1D 6596 TVO 71.92Q 1 52.SO° az Top Whipstock 961 N 1556 E 7128 MD 6592 TVO ! ~~;~. ::75~' az ~ : , , !,¡J'/ o 500 , ì 1000 ,,-, ~~~._-- --- -- --- -.--.-- ...-.-. \ KOP CN 101100 7153 MD 6600 TVO 71.92ð 52.50· az 969 N 566 E 500 1000 «< WEST 1500 , 2000 ¡ f"..'\§?Jo i ó'J' ¡>i\~~\~ '>(\0\6 ¡ 6635 TVD 88.40· 65.09° az 1073N 739E 1500 2000 EAST »> Schlumberger 2500 I 2500 3000 I rO:/.c.1/T Lnr 99~7 MO 6707 TVO 88~O· 65.09" az 21~ N 3067 E 3000 -..- 2000 e .------ 1500 - 1000 e 500 -0 e e Anticollision Report Company: Field: . Reference Site: Reference Well: Reference Well path: BP Amoco. Prudhoe Bay PB V Pad Plan V-111 (N-U) Plan V-111 Date: 6/6/2003 Time: 09:29:02 Page: 'Co-ordinate(NE) Reference: Vertical (TVD) Reference: Well: plan V-111 (N-U), True North V-111 plan 81.8 NO GLOBAL SCAN: Using user defined selection & scan criteria Interpolation Method: MD + Stations Interval: 50.00 ft Depth Range: 28.50 to 9927.07 ft Maximum Radius: 3000.00 ft Reference: Error Model: Scan Method: Error Surface: Db: Sybase Principal Plan & PLANNED PROGRAM ISCWSA Ellipse Trav Cylinder North Ellipse + Casing --~- --.'--..' ......_-_....._~..~- _________M"____ -. Survey Program for Definitive Wellpath Date: 4/24/2003 Validated: No Planned From To Survey ft ft 28.50 1800.00 1800.00 7128.07 7128.07 9927.07 Version: 11 Toolcode Tool Name Planned: Plan #4 V1 (1) Planned: Plan #4 V1 (1) Planned: Plan #12 V2 GYD-GC-SS MWD+IFR+MS MWD+IFR+MS Gyrodata gyro single shots MWD + IFR + Multi Station MWD + IFR + Multi Station Casing Points '-'--"------'-'---'-- MD TVD Diameter Hole Size Name ft ft in in 2756.03 2751.80 9.625 12.250 95/8" 7128.07 6591.80 7.000 8.750 7" 9927.07 6706.80 4.500 6.125 4 1/2" Summary ."R _...__..._. ..___.P"___'__ < Offset Wellpath - > Reference Offset Ctr-Ctr No-Go Allowable Site Well Wellpath MD MD I}istance Area I>eviation Warning ft ft ft ft ft .;"'. __n________.___. ._. . ....._______.__.___.__n PB V Pad V-03 V-03 V7 999.70 1000.00 42.05 16.36 25.70 Pass: Major Risk PB V Pad V-100 V-100 V7 1297.11 1300.00 190.70 19.40 171.42 Pass: Major Risk PB V Pad V-101 V-101 V7 699.07 700.00 294.41 11.76 282.68 Pass: Major Risk PB V Pad V-102 V-102 V5 847.27 850.00 180.71 16.17 164.57 Pass: Major Risk PB V Pad V-103 V-103 V6 449.18 450.00 30.23 7.88 22.37 Pass: Major Risk PB V Pad V-104 V-104 V13 499.48 500.00 237.33 8.36 228.98 Pass: Major Risk PB V Pad V-105 V-105 V13 1746.76 1750.00 54.98 25.11 29.99 Pass: Major Risk PB V Pad V-106 V-106 V10 648.79 650.00 58.60 10.39 48.24 Pass: Major Risk PB V Pad V-107 V-107 V5 2068.30 2050.00 198.63 30.35 168.56 Pass: Major Risk PB V Pad V-108 V-108 V7 249.48 250.00 327.42 4.41 323.01 Pass: Major Risk PB V Pad V-109 V-109 V2 2369.86 2400.00 175.73 34.05 141.69 Pass: Major Risk PB V Pad V-109 V-109PB1 V5 2369.86 2400.00 175.73 34.05 141.69 Pass: Major Risk PB V Pad V-109 V-109PB2 V2 2369.86 2400.00 175.73 34.05 141.69 Pass: Major Risk PB V Pad V-113 V-113 V6 599.75 600.00 361.85 9.63 352.24 Pass: Major Risk PB V Pad V-201 V-201 V8 448.25 450.00 192.16 7.50 184.67 Pass: Major Risk PB V Pad V-202 V-202 V9 Plan: Plan #7 1961.94 1950.00 218.02 29.96 188.09 Pass: Major Risk Field: Prudhoe Bay Site: PB V Pad Well: Plan V-Ill (N-U) Wellpath: Plan V-HI V-107 (V-107) e -294 ·······200 ·····100 V-201 (V-20l) V-I04 (V-I04) , " -0 90 100 e '-200 -294 180 194 L Travelling Cylinder Azimuth (TFO+AZI) [deg] vs Centre to Centre Separation [100ft/in] " ~ c o 'fl ~ '" o 11 ð o , \ 1" I )/ vji - ~ .. It""" . .,. .. \ .~.. I"'~" .,......... .'.'. , ~ite: B VPª<l -ol \: P , ...... .......... ,..... AT, II, P Ian v~ii (r~-{ ') \ . / : I! 1" Ian V-U ..... \ / :; , " .. . : 1 \/ ; - : / 1 ..... ............. 'v -............ ...... ... ..... ~ . ~ " ..... ........ : I .......... J , .;¡. / V , ; - / . :. I . . - / ..................... I ....... : ; , -- -- . ............. I ........ 1 ;/ , ~ ~ / , ; , . V ---- //..... '-'''- /~-~ Ii - --- >/ ./// .---.- - ¡ i . . ....... ., , .' , . 1 1 - //// , , 30- ¡ : . - = .-11 0/ 1 '" 1····1·· ,/ , .... -...". ,............. '" / ......... , ~.. , ,~-- 1 20- , ; ; .. - I ... . . - I . : - , ............... ............... ........ " i' ............ ....... , 10- . 1 . i ·ii : : . : , : ,., ;.............. I ........... ........... 1 , 1 ...... ......... ... - . - . ... 1· . :. I 0 , , , , , , , , , , , , , , , , , I , I , , , I , , , I , , 0 2.0 510 .0 1000 I; 50 1500 1750 2000 2250 e ;; ð Measured Depth [250ft/in] .. Polygon ] 2 3 4 3 Þ § ~ § p Site: PB V Pad a Drilling Target Conf.: 95'" Description: Map Northing: 5971095.00 ft Map Easting: 59]245.00 ft Latitude: 700]9'50.680N +N/-S ft I3 ]8.35 1067.]4 -]49.40 IOU] Target: V -111 KTl _ell: Plan V-]]] (N-U) ~sed on: Planned Program Vertical Depth: 6510.00 ft below Mean Sea Leve] Loca] +N/-S: 954.20 ft Loca] +E/-W: 547.0] ft Longitude: ]49°]5'35.622W Northing ft 5972445.07 5972]95.07 5970945.00 597]] 95.00 +E/-W ft 2641.33 2738.32 -51.8 ] -98.80 Easting ft 593869.96 593969.97 59]]95.00 59] ]44.99 200 2800 24-00 2000 1500 1200 800 4-00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LD 0 J CD N LD 0 J N N N ('í) ('í) J J o o o J o o CD o o N DATE I I 055065 CHECK NO. p055065 4/4/2003 DATE VENDOR DISCOUNT NET INVOICE / CREDIT MEMO DESCRIPTION GROSS 4/4/2003 INV# CK0401030 PERMIT TO DRILL FEE y/\\\ RECE.\\JE.O JU\'\ 1 0 'LGG3 . \,ß\'\\ííÍ\SSIOt\ . & Gas Cons. Mas\C.a \}I\ I\flc\'\Of3ge THE ATTACHED CHECK IS IN PAYMENT FOR ITEMS DESCRIBED ABOVE. TOTAL .. PO BOX 196612 ANCHORAGE, AK99519-6612 PAY: S· . P··· r. ~ ..,... "'II>. ,.,IIt, "'''1> ..·..1· "'1" .,. ..~ ."..;, J f .! ~~I.': It.~,. .1" .": . .... .,'. ~ ::1.id. .~".I" 111I" ",.... ......,..... DATE' AMOUNT J '. I **''''''**$1 oo.o~**~..*i_,.~ NOT VAL~:~~~(f~n~~~:.::;:I?:.:;:':{:~'~::::::~;::«; ~ ,"~ ... , ..... , L~ ::.,.........~"..... _n..' ..' '( é'-<f~\ {¡!:~i\:;;:~:i;:¿~::;0\_' TO THE ORDER OF: . . . ." ". ... ALASKA QIL & GAS CONSERVATION COMMISSION 333 W 7TH AVENUE SUITE 100 ANCHORAGE, AK 99501-3539 April 4, 2003 III D 5 5 D b Sill I: D L. ¡. 2 D ~ B 11 5 I: D ¡. 2 ? 8 11 bill H e e Rev: 07/10/02 C\jody\templates e . TRANSMIT AL LETTER CHECK LIST CIRCLE APPROPRIATE LETTERlPARAGRAPHS TO BE INCLUDED IN TRANSMITTAL LETTER WELL NAME PTD# CHECK WHAT APPLIES ADD-ONS (OPTIONS) MULTI LATERAL (If API number last two (2) digits are between 60-69) PILOT (PH) "CLUE" The permit is for a new wellbore segment of existing well ~ Permit No, API No. Production should continue to be reported as a function' of the original API number stated above. HOLE In accordance with 20 AAC 25.005(t), all records, data and logs acquired for the pilot hole must be clearly differentiated in both name (name on permit plus PH) and API number (SO 70/80) from records, data and logs acquired for well (name on permit). SPACING EXCEPTION DRY DITCH SAMPLE The permit is approved subject to full compliance with 20 AAC 25.055. Approval to peñorate and produce is contingent upon issuance of a conservation order approving a spacing exception. (Company Name) assumes the liability of any protest to the spacing . exception that may occur. All dry ditch sample sets submitted to the Commission must be in no greater than 30' sample intervals from below the permafrost or from where samples are first caught and 10' sample intervals through target zones. WEI:-iLfERM,rr CHECKLíST Company BP EXPLORATION (ALASKA) INC Well Name: PRUDHOE BAY U BORE V-111 Program DEV Well bore seg 0 PTD#: 2031030 Field & Pool PRUDHOE BAY, BOREALIS OIL - 640130 Initial ClassfType DEV I 1-01L GeoArea Unit 11650 On/Off Shore ~ Annular Disposal 0 Administration 1 P~rmitfee attacheø_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 _Leas~_numberappropriate_ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3 _U_nlque wellnam~_aod lJl!mb_er _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 WelUQcat~d In_a_d_efil'!eøpool_ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 5 WeJUQcat~d proper _dlstance_ from driJling ul'!itb_oUl'!d_ary_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6 WeJUQcat~d proper _dlstance_ from Qtber welJs_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 7 _S_uffjciel'!tacreage_aYailable in_drillilJg unjt_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 8 Jrd~viated, js weJlbQre platil'!cJuded _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 9 _Operator ol'!ly affected party _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 10 _Operator bas_approprlate_bond InJor~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 11 P~(I1]it c.ao be Issued wjtbQut conservaJiol'! order _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ Y~s _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Appr Date 12 P~rmitcan be IssuedwitbQut ad_mil'!istratÌlle_approvaJ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ RPC 6/10/2003 13 Can permit be approved before 15-daywait Yes 14 WeJUQcated wlthil'! area and_strata _authorIzed byJnjectioo Ord~r # (puUOil in_comm~nts>-<FQr_NA - - - - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - e 15 AJlweIJs-'ftithinJl4Juile_area_ofreYiewid~lJtified(ForservjCj we[lOI'!M_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 16 Pre-produ~ediojector; øurat.io_n_ofpre-proøuctiool~ss_than3mol'!tbs_(For_serviceweltQnJy)_ _ _NA _ _ _ _ _ _ _ _ _. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 17 _AÇMPFjl'!ding_ofCon$i$teocy_has beeRissued_forJhis proiect _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 18 _C90du_ctor strillgprov[ded _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ 19 _S_urfaCj _casill9-PJotects alLknowll USDWs _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 20 _CMTvoladeQl!ateJo circ_utateo_n_COl'!d_uctor_& SUJtcsg _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 21 _CMT v9l adeQuateJo tie-in Jong string to_surf csg_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ No_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 22 _CMTwilJ coyer_all kl'!ownpro_ductiye bQri¡¡:ons_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ NA _ _ _ _ _ Slotte_d< _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 23 _C_asing designs adeQua_te for C,.T, B.&_permafrost _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 24 AøequateJankageßJ re_serve pit _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ . NabofS_9_ES< _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 25 JtaJe-ørilL has_a_ to,.403 fQr abandOllment be~n apPJoved _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 26 Aøequate-'^le!lboresepªration_propose~L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 27 Jtdivertenequired, doe!> jtmeet reguJatiol'!s_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 28 _DJiUilJg fluid_program sc.hematic_&e(tuipJistadequate _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y~s _ _ _ _ _ _ _ Max MW_tO<3_ppg._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 29 _B_OPEs, dO Jhey meetreguJatiol'! . . . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y~s _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ 30 BOPE-PIes!> raJing appropriate;_test to_(pu_t psig in_commel'!ts)_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y~s _ _ _ _ _ . _ Test t040QO_psi. _MS~ 2740 psi. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 31CMke_manifold compJies w/API R~-53 (May B4L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 32 Work will occur withoutoperatjonshutdown_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 33 Js presence_of H2S gas_probable _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ No_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 34 MecbanicaLcol'!djUoo of wells wlthil'! 80R yerified (For_s_ervjçe w~1J ollly) _ _ _ _ _ _ _ _ _ . _NA _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Engineering Appr Date WGA 6/11/2003 Geology Appr RPC Date 6/10/2003 Geologic Commissioner: OIÇ e 35 P~(I1]it can be ISSl!ed w/o hydrogen s_ulfide meas~re!> _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y~s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 36 _D_atapJeseoted on pote_ntial oveJpressureZOl'!e!> _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 37 _S~ism[c_analysjs_ of !>haJlow gas zones_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ . _ 38 _S~abed _col'!ditiolJ survey -iif off-sh_ore) _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 39 _ Conta_ct l'!amelphOlleJor_weekly progress_reports [e¡cploratory _oolYI- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ NA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Date: Engineering Commissioner: Date Public ~ Commissioner ~ Date ¡:;;; ~~ ~ oò/ J I f q .3 e e Well History File APPENDIX Information of detailed nature that is not particularly germane to the Well Permitting Process but is part of the history file. To improve the readability of the Well History file and to simplify finding information, information of this nature is accumulated at the end of the file under APPENDIX. No special effort has been made to chronologically organize this category of information. e e Date: 07-14-2006 Transmittal Number:92796 BPXA WELL DATA TRANSMITTAL Enclosed are the materials listed below. ex 2) If you have any questions, please contact me in the PDC at 564-4091 SW Name Date Contractor Log Run Top Depth Bottom Depth Log Type PETROGRAPHIC ANALYSIS 03-01-2006 ARP,LLC REPORT PETROGRAPHIC ANALYSIS 03-01-2006 ARP,LLC CD-RON!1t I '-'l ~ t) , V-111PB1 V-111PB1 LJ dJJ Please Sign and Return one copy of this transmittal. Thank You, Andy Farmer Petrotechnical Data Center Attn: Don Inee Susan Nisbet Scott Cooley Glenn Fredrick Linda Starr Howard Okland ~ " J}.U- D'" ~ , "Q, c/" \.. _ ¡J \~J"'\ '( . """t<\$'~';;I' ~)V;l"~ t;~ ~~..J \J (~± Petrotechnical Data Center LR2-1 900 E, Benson Blvd, PO Box 196612 Anchorage, AK 99519-6612 ;<O'3-(l)~ F,' { <L .a 0') · , O:!Þ PETROGRAPHIC ANALYSIS OF THE M AND 0 SANDS, 4000-4725', BP V-IIIPBl, ORION FIELD, NORTH SLOPE, AK ; . "~;., i' , é ,'~!<~. ~) ~~. ,'I , ,; I ' , '" ~.'.'. James J. Hickey Applied Reservoir Petrology, LLC March, 2006 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · SUMMARY Conventional cores from the BP V-Ill PB 1 in Orion Field were recovered from multiple reservoir horizons ofthe Schrader Bluff Formation, ranging from the Mb1 through the OBf Sands. A wide range of routine and special core analyses was carried out on a total of nearly 600 plugs from the cored interval. This petrographic study is part of the effort to describe the reservoir at many scales, and to enable results from the core to be extrapolated to other wells and locations in the field. The goals of the petrographic study are to: (1) describe and document the textural, mineralogical, and pore system characteristics of the reservoir sands; and (2) to establish the pore-scale controls on measured petrophysical properties (such as electrical properties and relative permeability) as a guide to the appropriate extrapolation of the petrophysical analyses of plugs from this core to other areas. The petrographic study consisted of: · the description and photomicrography ofthin sections from 139 core plugs; . quantification of sandstone composition and texture via point counts for 43 samples; . X-ray di:ffi-action estimates of modal mineralogy (especially clay mineralogy) for 47 samples; · textural measurements of39 samples by laser particle size analysis; and · scanning electron microscope investigations of pore-level minerals for 9 samples. The XRD, LPSA, and SEM studies were carried out by Core Lab (Houston), and the results are integrated here with new thin-section data. A considerable effort was made to select samples for thin sections and new XRD analyses that came from plugs used for special core analyses, and where possible to apply more than one petrographic technique to the same sample, forming a consistent basis for correlations between selected petrographic parameters and the petrophysical measurements. Schrader Bluff sandstones in the V-Ill PB 1 are largely very fine-grained, well sorted, compacted but only lightly cemented, and composed primarily of quartz and various metasedimentary and volcanic lithic fragments. More proximal facies are up to fme- grained, with little or no clay matrix. More distal facies are silty, with moderate to common biogenic clay as burrow walls, burrow fill, and dispersed matrix. LPSA grain- size data correlate with point-count data, but are consistently too fine by about 25 microns. Many ofthe lithic fragments comprising the sand grain framework are argillaceous, resulting in a relatively high content of structural clay in most of the sandstones. Common secondary detrital phases include chert, alkali and plagioclase feldspars, micas, dolomite, and stable heavy minerals. Sand provenance exhibits at least two cycles of evolving composition (OBe to OBc, and OBb to Mbl), with more volcanic- rich sands at the base of each cycle replaced by sands dominated by metasedimentary detritus towards the top. Widespread (though typically minor volumetrically) authigenic phases include calcite (as scattered concretions), siderite (as micritized matrix), kaolinite eas pore-filling aggregates of booklets), pyrite (pore-lining microcrystals), heulandite (a pore-lining tabular zeolite cement) and smectite (as a thin grain-coating clay). There are important stratigraphic (and, to a lesser extent, facies) controls on sand composition and diagenesis. The most important of these is the increase in unstable volcanic material in the older zones (at a maximum in the OBe Sand), which is associated with anomalous gamma ray response and significant amounts of authigenic smectite grain coats and 2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · heulandite cement. Otherwise, well-cemented sandstones are rare and largely confmed to scattered calcite concretionary horizons. For most sands, reservoir quality is a function of sand grain size and matrix content, i.e., depositional facies. The youngest zone, the Mb 1, is the most proximal depositionally (distributary channel sands), and is distinct texturally and compositionally rrom the older sands ofthe 0 Series. The 0 Sands are a series of stacked shoreface parasequences, in which reservoir quality tracks the proximal- distal trends in depositional facies (modified locally by the volcanic-related diagenesis). Mechanical compaction, including slight to moderate deformation of ductile grains, is the dominant diagenetic process in most of these sandstones. Because ofthe high lithic content, most of the sandstones are relatively ductile-rich (Mb 1 and OA sands less so). There are no significant depth trends in the degree of deformation or overall extent of compaction: the depth range is limited, and other factors, such as ductile content and the presence of early cements, are also important. Most ofthe authigenic phases in these sands predate any significant compaction; when sufficient amounts (10-15%?) of mechanically competent cements such as calcite or heulandite are present, compaction is inhibited. Calcite concretions are associated with carbonate shells and volcanic glass. Kaolinite content increases in more proximal facies, whereas pyrite increases in more distal facies. Heulandite and grain-coating smectite are restricted to the volcanic-rich sands at the base ofthe interval, particularly the OBe Sand; traces of smectite coats can be found up into the OA Sand. XRD results indicate that kaolinite is the dominant clay in the Mbl and upper OA Sand, but well-crystallized (bentonitic) smectite is the primary clay in all deeper sands. There is a narrow (10') transition zone within the OA between the kaolinitic and smectitic sands. Most of the smectite detected by XRD is present as altered tuffaceous volcanic rragments, and reworked tuffaceous matrix in shalier facies. For most measures of reservoir quality or petrophysical properties, depositional facies are a reliable basis for statistical transforms and reservoir-scale modeling (although some adjustments must be made for anomalies in the volcanic-enriched intervals around the OBe). Most facies have a strong unimodal permeability distribution, with modal and median values decreasing progressively in more distal facies. Petrofacies, based on probabilistic discriminant analysis of wire line logs tied to core descriptions and routine plug data, do a good job of separating petrophysically- important differences in rock properties, and generally align closely with depositional facies. Most of the measured petrophysical parameters (electrical properties, capillary pressure, relative permeability) exhibit moderate to good correlation with petrographic textural criteria (mean grain size, clay content). Exotic phases, such as grain-coating smectite or heulandite, are important influences locally. Point-count data on the distribution of pore types (macropores, mesopores, micro pores ) agree very well with parameters such as permeability and end- point fluid saturations. With the petrographic calibration rrom this core, it is possible to transform a facies model into a forward 3-dimensional model of fluid saturations and permeabilities. Because these sandstones contain a mixture of structural and dispersed clay, significant microporosity, and non-clay radiogenic phases, no single wire line log is adequate to evaluate the reservoir properly. OR does not distinguish different types of clay distribution, and the neutron log is insensitive to clay content in the sandstones. A multi-log statistical approac~ calibrated by core and petrography (e.g., OAMLS) is the preferred method of formation evaluation. 3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · TABLE OF CONTENTS SUMMARY ...................... ............................................................................................. 2 TABLE OF C.ONTENTS ..............................................................................................4 LIST OF FIGURES.. ................................. ........... ..... .... ....... ............ .............. ...... ............5 LIST OF TABLES.... ...... ............. ............. .... ....... ........ ...... ....... ..... ............. .....................9 INTR 0 Due TI ON........... ...... ............. ............................ .............. ........ ....... ................ 11 PE TR OG RAPHY ....... .............................. ............... ...................... ........... ............. ...... 13 SAMPLE SELECTION .. .... ...... ................ ...... ....... ....... ..................... ......... ............... ...... 13 MErnODS ..... ...... ..... ......... .................... ...................................... .... ....... .................... 18 TEXTURE ..... .... ..... ..... ..... ........ ......... ... ........... ....... ..... ........... ........................ .............22 Point count vs. LPSA.... .... ........... ................... ... .......... ................. .............. ...... ..... 26 Clay content....................... ................ ......... ..... ......... ............ ...................... .......... 27 DETRITAL.................................................................................................................. 35 X-ray Dtfj'raction results. ...... ............ ....... .............. ........ ........... ........ ......... ............ 41 DIAGENETIC............................................................................................................... 45 Compaction .................. ........................... .............................................................. 45 Authigenic phases......... ........................ ................................. ................................ 50 RESERVOIR QUALITY ...................... ................................ ......................... ...... ............ 62 INTERPRETATIONS...... ......... ........ .............. ............. ... ...... ........ .......... ......... ................ 66 Stratigraphic ........................ .................. ................................................. .............. 66 Depositional facies.................................... .. .......................................................... 68 Petrofacies ......................... ........... ....................... .......... ......................... .............. 73 PETROPHYSICAL APPLICATIONS ......................................................................79 ROUTINE CORE ANALySES................... ........... ....... ........ ............. .......................... ...... 81 Porosity............... .............. ............ ............................................................ ............ 81 Permeability.......... ................. ....... ......................... ............. ....................... ........... 84 Grain Density............................................ ............................................................ 92 ELEC1RICAL PROPERTIES ......... .... ... ... .......... ... ...... ......... ........ .............. ........ ..... .......... 95 MERCURY INJECTION CAPILLARY PRESSURE..................................... ......................... 106 AIRfOIL CAPILLARY PRESSURE ......... '" ........... ....... .......... .... .......... ....... ......... ..... ...... 120 RELATIVE PERMEABILITY .... ........ ... ........... ......... ........ ... ......... ............. ............ ......... 125 WIRELINE LOG RESPONSE ............ .......... .............. ............ ...................... ........... ........ 136 GAMLS .................................................................................................................. 141 APPENDICES .............. ..... ............. ........................ .......... ........... .......... .................... 146 FILES ON CD. .... .... ...... ..... ........... ........ ........ ..... ...... ........ .......... ............. ........ ... ........ 146 PHOTOMICROGRAPHS.... .......................... ....... ....... .......... ......... ......... .... ....... ............ 147 4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · List of Figures Figure 1. Location map, Schrader Bluff/West Sak cored wells, western PBU and KRU 11 Figure 2. Coring program and summary of results, V -lllPB 1...................................... 12 Figure 3. Schematic petrographic log ofthin section observations, Mb1 and OA Sands, V-Ill PB 1 ............................................................................................................. 19 Figure 4. Schematic petrographic log of thin section observations, OBa through OBc Sands, V-Ill PB 1 .... ....... .......... ........ .... ... ....... .... ...... ............. ..... ........ ...... .............20 Figure 5. Schematic petrographic log of thin section observations, OBd through OBf Sands..................................................................................................................... 21 Figure 6. Crossplot of mean grain size by LPSA vs. point-count methods for the same samples.... ................. ..... .................................... ....... ............ .................. .............. 26 Figure 7. Grain size distribution by size class, via point-count and LPSA methods....... 27 Figure 8. Comparison of point count vs. LPSA measurements of clay-sized material... 28 Figure 9. Comparison of point-count clay-sized vs. XRD clay mineral estimates for common samples....... .................. ...................... ....................... .............. .......... ..... 30 Figure 10. Crossplot of point-count clay-bearing categories vs. XRD clay mineral content. ........... .................. ................ ........ ....................... ..................................... 30 Figure 11. Crossplot of point-count smectite vs. XRD smectite estimates ..................... 31 Figure 12. X-ray diffractograms of two smectite-bearing samples: 4420.25' (OA) and 4681.15' (OBe). ..... ........ .............................. ........................... ...... ........................ 33 Figure 13. SEM photomicrograph of clay-free quartz grain surface, 4420.25' (OA) ..... 34 Figure 14. High-magnification SEM view of authigenic grain-coating smectite, 4681.15' (OBe) ......... .... ................................................. ................. ................ ..................... 34 Figure 15. Monocrystalline quartz - Feldspar - Totallithics ternary plot, averaged by stratigraphic zone........ ............ ...... ................ ................ .............. .......................... 36 Figure 16. Total quartz - Feldspars - Lithics ternary diagram, averaged by stratigraphic zone....................................................................................................................... 37 Figure 17. Total quartz - Feldspars - Lithics ternary diagram, by individual samples... 37 Figure 18. Quartz - Chert - Lithics ternary plot, averaged by stratigraphic zone........... 38 Figure 19. Volcanic - Metamorphic - Sedimentary rock fragments ternary diagram, averaged by zone ......... .... ....... ......... .... ........... ......... .......... ............. ............. .......... 38 Figure 20. Volcanic rock fragments - Metamorphic rock fragments - Plagioclase ternary plot, by zone.... ................... ............ .............................................. ......... ......... .......39 Figure 21. Monocrystalline quartz - Potassium feldspar - Plagioclase feldspar ternary plot, by zone ...... ....................... .......... ....... .......... ........... ..... ....... ........................... 39 Figure 22. Selected photomicrographs of detrital grain types, V-111PBl .....................40 Figure 23. Depth plot of smectite abundance (wt%) from XRD analyses ...................... 43 Figure 24. Smectite - Kaolinite - Chlorite clay mineral ternary plot, averaged by depositional facies.. ...... .... ....... ............ ............. ........................ .... .........................44 Figure 25. Rigid grains - Ductile grains - Matrix ternary plot, averaged by stratigraphic zone....................................................................................................................... 45 Figure 26. Undeformed - Slightly deformed - Extensively deformed ductile grains ternary, by zone................. ............. .... ................... ...... ..................... ....... ..............46 Figure 27. Undeformed - Slightly deformed - Extensively deformed mica flakes ternary, by zone ......... ....... .......... ............ ...... ... ......... ..... ......... ........ ........... ......... ...... .... ......46 5 · · · · · · · · · · · · · · · · · · · · · · · · · · .' · · · · · · · · · · · · · · · · · Figure 28. Ductile grain content vs. intergranular volume, for low- and high-cement samples................................................................................................................. 48 Figure 29. Pore-filling cement vs. intergranular volume, for low- and high-cement samples ............. .... ................. ....................... ... ...... ....... ......... ...... ........... ..... ...... ...49 Figure 30. SEM photomicrograph of bladed heulandite crystals, 4681.15' (OBe Sand) 52 Figure 31. Selected photomicrographs of authigenic phases, V-Ill PB 1: calcite, kaolinite ..............................................................................................................................53 Figure 32. More photomicrographs of authigenic phases, V-Ill PB I: pyrite, siderite, smectite, heulandite . ..... ..... ...................... ....... ...................... .................... ........ ..... 54 Figure 33. Scanning electron photomicrographs of 4051.35' and 4471.25' - Core Labs photos....... ....... ............................................................... .................. ..................... 55 Figure 34. Scanning electron photomicrographs of 4566.80' and 4721.70' - Core Labs photos.................................................................................................................... 56 Figure 35. Illite - Smectite - Chlorite clay mineral ternary plot, averaged by stratigraphic zone............ ........... ..... .............. ................................ ........ ............. ....... .......... ....... 57 Figure 36. Illite - Smectite - Kaolinite clay mineral ternary plot, averaged by stratigraphic zone......... .......... ........... ....... ........ ..... ....... .......... ............................... 57 Figure 37. Smectite - Kaolinite - CWorite clay mineral ternary plot, averaged by stratigraphic zone............................. ...................................... ........ ....................... 58 Figure 38. Smectite - Carbonate - Pyrite ternary diagram, averaged by stratigraphic zone ..............................................................................................................................58 Figure 39. Petrographic stratigraphy log, OA through OBb Sands, V-IIIPBI.............. 59 Figure 40. Petrographic stratigraphy log, OBc through OBd Sands, V-I11PBl ............ 60 Figure 41. Petrographic stratigraphy log, OBd through OBfSands, V-llIPBl............. 61 Figure 42. Pores - Cement - Matrix ternary diagram for all point-count samples, by zone ..............................................................................................................................62 Figure 43. Macropores - Mesopores - Micropores ternary plot, averaged by stratigraphic zone....................................................................................................................... 63 Figure 44. Photomicrographs illustrating a range of reservoir quality........................... 65 Figure 45. Porosity vs. horizontal permeability crossplot for all data points, coded by depositional facies......... .... ........... ...... ..... .... ...... ....... ......... .................................... 71 Figure 46. Porosity vs. vertical permeability crossplot for all data points, coded by depositional facies.... ........ ......... ...... ........................ ....................... ....................... 72 Figure 47. Diagram illustrating the five major lithofacies defined for the V-I11PBl 0 Sand interval.. ......... ................................................. ........... .................................. 73 Figure 48. Petrofacies identification rrom core lithofacies, wireline log response, and poroperm data.................. ................... ........ .... ........... .............. ................. ..... ....... 74 Figure 49. Thin-section porosity vs. helium (core plug) porosity.................................. 82 Figure 50. Thin-section macropores vs. helium (core plug) porosity............................. 82 Figure 51. Core plug porosity vs. estimated microporosity ........................................... 83 Figure 52. Frequency distribution of horizontal plug permeabilities by stratigraphic zone ..............................................................................................................................84 Figure 53. Frequency distribution of horizontal plug permeabilities by depositional facies .............................................................................................................................. 85 Figure 54. Median porosity vs. median permeability, averaged by depositional facies.. 87 Figure 55. Thin-section porosity vs. core plug horizontal permeability......................... 89 6 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Figure 56. Thin-section macropores vs. core plug horizontal permeability.................... 89 Figure 57. Core plug porosity and thin-section macropores vs. horizontal permeability 90 Figure 58. Macropores - Mesopores - Micropores ternary plot, grouped by horizontal permeability .......................................................................................................... 91 Figure 59. Frequency distribution of grain density measurements, by stratigraphic zone ..............................................................................................................................92 Figure 60. Frequency distribution of grain density measurements, by depositional facies ..............................................................................................................................93 Figure 61. Core plug porosity vs. grain density, coded by depositional facies ...............94 Figure 62. Point-count mean grain size vs. formation factor ......................................... 96 Figure 63. Point-count %Clay-sized particles vs. formation factor................................ 96 Figure 64. Formation factor vs. horizontal plug permeability........................................ 97 Figure 65. XRD estimates of total smectite content vs. CEC......................................... 98 Figure 66. Qv vs. CEC, samples grouped by stratigraphic zone .................................... 99 Figure 67. Point-count smectite content vs. Qv........................................................... 100 Figure 68. Sum of matrix and ~mectite content vs. Qv................................................ 101 Figure 69. Smectite content ftom XRD vs. Qv ........................................................... 102 Figure 70. Photomicrograph of 4420.25' (OA): FF* = 10.65; Qv = 0.160................... 105 Figure 71. Photomicrograph of 4681.15' (OBe): FF* = 34.88, Qv = 1.549.................105 Figure 72. Mercury/air capillary pressure vs. wetting-phase saturation, averaged by depositional facies..... .......... ........ .., ........................................ .......... ..... .............. 106 Figure 73. MICP data, averaged by facies, converted to height above ftee water level 107 Figure 74. Calculated relative pore volume as a function of pore throat radius, averaged by facies.............................................................................................................. 107 Figure 75. Calculated relative pore volume as a function of pore throat radius, for lower shoreface sands.. ....................... ................. .................... ...... ....... .............. ........... 108 Figure 76. Point-count mean grain size vs. Sw (402) ftom MICP data........................ 109 Figure 77. Point-count mean grain size vs. median pore throat size (R50) .................. 110 Figure 78. Point-count %clay-sized material vs. median pore throat radius (R50)....... 111 Figure 79. Macropores - Mesopores - Micropores ternary plot, grouped by Sw (402) range................................................................................................................... 113 Figure 80. Macropores vs. median pore throat radii .................................................... 114 Figure 81. Macropores vs. calculated water saturation @402' above ftee water level. 114 Figure 82. Total thin-section porosity vs. median pore throat radii.............................. 115 Figure 83. Calculated microporosity vs. median pore throat radii ............................... 116 Figure 84. Photomicrograph of 4472.1' (OBa): median pore throat = 2.2 microns, Sw ( 402') = 29%....................................................................................................... 119 Figure 85. Photomicrograph of 4643.3' (OBd): median pore throat = 0.7 microns, Sw (402') = 40%.... ......... ..... .................... ........... ....... ..... ..... ........ ....... ...................... 119 Figure 86. Air/oil Sw (50 psi) vs. horizontal permeability.......................................... 120 Figure 87. Air/oil Sw (50) and Hg/air Sw (402) vs. horizontal plug permeability........ 121 Figure 88. Point-count mean grain size vs. air/oil Sw (50 psi) .................................... 121 Figure 89. Microporosity vs. air/oil Sw (50 psi).......................................................... 122 Figure 90. Point-count macroporosity vs. air/oil Sw (50 psi) ...................................... 122 Figure 91. Photomicrograph of 4471.1' (OBa): 404 md, Sw (50 psi) = 25% ...............124 Figure 92. Photomicrograph of 4682.0' (OBe): 10 md, Sw (50 psi) = 43%................. 124 7 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Figure 93. Point-count mean grain size vs. irreducible water saturation (rrom relative perm tests)........................................................................................................... 126 Figure 94. Total clay minerals (XRD) vs. irreducible water saturation (rrom relative perm tests)........................................................................................................... 126 Figure 95. Macropores - Mesopores - Micropores ternary plot, grouped by measured Swi...................................................................................................................... 127 Figure 96. Point-count mean grain size vs. fmal oil saturation (rrom relative perm tests) ............................................................................................................................ 128 Figure 97. Swi vs. Sofby stratigraphic zone, rrom relative permeability tests............. 128 Figure 98. Point-count mean grain size vs. brine permeability at final oil saturation... 129 Figure 99. Absolute horizontal plug permeability vs. irreducible water saturation (rrom reI. perm tests) ..... .................... ..... ............. .... ............ ......... ..................... ...... ...... 130 Figure 100. Absolute horizontal plug permeability vs. brine permeability at Sof(rromrel. perm tests)........................................................................................................... 130 Figure 101. Point-count mean grain size vs. end-point oil permeability (rrom reI. perm tests)... .......... '" . .. ..... .. ... .. . .,. ..... ....... ...... ... ....... .. ......... .. .. .. .., . . .. . . .. ... ........ . '" ...... . . .. 131 Figure 102. Horizontal plug permeability vs. end-point oil permeability (rrom reI. perm tests)..... ... ........ ..... ....... ......... .... ....... ......... ............ ..... .................. ......... ..... .......... 131 Figure 103. Macropores - Mesopores - Micropores ternary plot, grouped by measured Ko @ Swi........ ........................ ..... ......... ............... ............ ........... ...... .................. 133 Figure 104. Photomicrograph of4408.5' (OA): Swi = 21%, Kw @ Sof= 253 md......135 Figure 105. Photomicrograph of 4640.15' (OBd): 8wi = 38%, Kw @ 80f= 8.5 md. .. 135 Figure 106. XRD clay minerals vs. gamma ray response, by stratigraphic zone .......... 136 Figure 107. XRD clay minerals vs. gamma ray response, by petrofacies..................... 137 Figure 108. Point-count estimate of clay matrix content vs. gamma ray response, by stratigraphic zone ...... ..... .......................... ........ ................................. .................. 138 Figure 109. Point-count estimate of clay matrix and ductile grains vs. gamma ray response.............................................................................................................. 138 Figure 110. XRD estimate oftotal clay minerals vs. neutron porosity......................... 139 Figure 111. Clay matrix content, rrom point counts, vs. neutron porosity................... 140 Figure 112. Cumulative mode probability plots for four GAMLS clustering runs, V- 111PB 1 ...... ..... ............ .............. ............ .......... .......... ........... ................ .......... ..... 142 Figure 113. Comparison of informal permeability predictions for several GAMLS clustering runs. ............................... ...... ............ ...... ................ ........... ............ ...... 143 Figure 114. Measured core plug permeability vs. GAMLS predicted permeability..... 143 Figure 115. Composite wire1ine-core-GAMLS-petrographic log (see text for explanations) ........... ....... .................... .., .... ...... ... ......... .................. ...................... 144 Figure 116. Composite wireline-facies-core-GAML8-petrographic log (see text for explanations) ....................................................................................................... 145 8 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · List of Tables Table 1. Petrographic sample distribution by stratigraphic zone.................................... 13 Table 2. Petrographic sample distribution by depositional facies .................................. 13 Table 3. Multi-page listing of petrographic samples and associated special core analyses ......... ........ ............ ............... ................... ............................................................... 17 Table 4. Summary of point-count grain size measurements (see text for discussion)..... 24 Table 5. Summary ofLPSA grain size measurements................................................... 25 Table 6. Summary of clay mineral-related point-count and XRD data for common samples............. ................................ ..... .............. ................ ........ ... ...................... 29 Table 7. Average detrital composition by zone (%ftamework), V-lIIPB1 ................... 36 Table 8. XRD mineralogy, averaged by stratigraphic zone, for major phases................ 41 Table 9. XRD mineralogy, averaged by depositional facies, for major phases............... 41 Table 10. XRD clay mineralogy, averaged by stratigraphic zone .................................. 42 Table 11. Zonal averages (wt%) of smectite and kaolinite content................................ 42 Table 12. XRD clay mineralogy, averaged by depositional facies................................. 43 Table 13. Zonal averages of compaction parameters, V-IIIPB1 point-count data ........ 47 Table 14. Point-count abundances of authigenic phases, averaged by zone ...................51 Table 15. Point-count abundances of authigenic phases, averaged by depositional facies .............................................................................................................................. 52 Table 16. Zonal averages of selected point-count parameters........................................ 67 Table 17. Zonal averages of permeability and Sw (402) for lower shoreface sands only67 Table 18. Facies averages of selected point-count textural measures, V-IIIPBI.......... 69 Table 19. Facies averages of selected point-count detrital and diagenetic categories, V- I11PB 1 ........ ................... ... .... .......... ........... ................... ................. .......... ............ 69 Table 20. Facies averages of selected XRD mineral estimates, V -111PB 1....................69 Table 21. Average petrophysical properties by depositional facies, V-I11PBl .............70 Table 22. Facies-specific poroperm regression parameters and variance, horizontal permeability. ............. ................ .......... '" .............. ........ .......... ........... ............... ..... 71 Table 23. Variances of core plug porosity and permeability, averaged by zone and by facies..................................................................................................................... 72 Table 24. Number of core plugs common to depositional facies and petrofacies ........... 75 Table 25. Average petrophysical and petrographic properties by petrofacies ................ 76 Table 26. Variability within Petrofacies 4b by depositional facies ................................ 76 Table 27. Variability within Petrofacies 3 by depositional facies .................................. 77 Table 28. Average porosity and permeability by zone for the three reservoir petrofacies ..............................................................................................................................77 Table 29. Average irreducible water saturation and Qv by zone for the three reservoir petrofacies............................................................................................................. 78 Table 30. Average XRD clays and point-count matrix by zone for the three reservoir petrofacies....... ........... ...... .............. ...... ........................... ............ ..... ........... .......... 78 Table 31. Summary of petrographic analyses on SCAL samples................................... 79 Table 32. Stratigraphic and facies distribution of routine and special core analyses ...... 80 Table 33. Core plug porosity values (%BV) averaged by depositional facies ................ 81 Table 34. Arithmetic mean, median, and geometric mean of all plug permeability values by zone... ......... ....... ..................... ......... .............. ........ .................... ...... ......... ........ 85 9 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Table 35. Arithmetic mean, median, and geometric mean of all horizontal permeability values by facies.......................................................................................·......·..·..· 86 Table 36. Arithmetic mean, median, and geometric mean of vertical permeability values by facies ... ....... ............ .... ....... ................. ....... ............ ................ ....... ........... ......... 88 Table 37. Average grain density by depositional facies................................................. 93 Table 38. Selected petrographic properties of plugs with electrical properties measurements, Mbl through OBb Sands ............................................................. 103 Table 39. Selected petrographic properties of plugs with electrical properties measurements, OBc through OBf Sands .............................................................. 104 Table 40. Predicted capillary properties for typical values of grain size, matrix, and heulandite............................................................................................................ 112 Table 41. MICP and petrographic data for individual samples, Mb1 through OBc Sands ........ .......... .... .... ............................... ......... ...................... ............. .......... ............. 117 Table 42. MICP and petrographic data for individual samples, OBd through OBfSands ...................... ................ '" ................ ..................... ............... ............ ........... ........ 118 Table 43. Air/oil capillary pressure and petrographic data for individual samples ....... 123 Table 44. Estimated end-point brine permeabilities as a function of mean grain size.. 129 Table 45. Predicted irreducible saturation and end-point permeabilities based on average facies properties..... ................ .... ........ ....... ....... .... ........... .,. .,. ............ .................. 132 Table 46. OiVbrine relative permeability and petrographic data for individual plug samples............................................................................................................... 134 Table 47. List of photomicrographs, by depth, file name, magnification (field of view), and subject ............................... ........ ......... ........................................... ............... 153 10 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · UCTION A 398' interval of conventional core through the M and 0 Sands eSchrader Formation) was recovered from the 11 I well esee Figure I for location in Orion Field) as part of a major effort to characterize the reservoir and understand its rock/fluid interactions, contributing to an optimized reservoir model and improved development planning. discrete intervals of core were cut: from about 4042' to 4095' in the Mbl Sand, and a much longer, essentially continuous cored interval, 4380' to 4725', from the OA through OBfSands (Figure 2). wide range of analyses has been performed on the core material, ranging from routine core plug poroperm measurements to electrical properties, capillary pressure (mercury and air/oil), and relative permeability. This report is a summary of a petrographic study of the core, aimed at characterizing the reservoir terms of texture, composition, and system, and to provide context for evaluating wireline log responses and various core analyses. the extent possible, the sample material used for the petrographic studies section, diffraction, scanning microscope, laser particle size analysis) has been ends of the actual core plugs used for core particularly special core analyses (SCAL) such as electrical properties permeability. Another sample selection was to complete coverage of the stratigraphic zones and depositional facies present in cored of samples are listed 1 eby Areas of Current Schrader Bluff or West Sak Development 1. Location map, Schrader Bluff/West Sak cored wells, western PBU and KRU 11 I · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · --- 11 1 Orion Pro{Jram ~: Schrader Bluff 0 sands Ugnu Mb1 ~and Focus: Poro-perm, saturations, electrical propertieß, capillary pressure, relatIve permeabIlIty, mineralogy, grain size, geocher'n, and reservoir facies for log and reservoir model calibration Issues: Maximize r~covery in poorly to unconsolidated sands. Minimize invasion í:md damage for high quality rock properties and fluid saturation measurements, CuriflY MtllIIULJ::s, Luw water content mineral oil based mud to minimize invasion and core jamming and to maximize recovery, Baker Hydrolift coring assembly, Recovery: Cored 403 total feet and recovered 398 feet using seven 60 foot core barrels (CIne intentional 45 foot core) Cored 403 feet in 7 cores Minor Sande Rec, 398 feet 2. Coring program and summary of results, V-IIIPBl Core Condition: EX!::ellent Virtually no coring induced damage or mud filtrate invasion, "Native state" condition, shales. samples concerns clay mineralogy of results, plus accompanymg smectite-related 12 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · PETROGRAPHY Sample Selection Nearly all petrographic samples were obtained 1Ì'om core plugs used for one or more routine or special core analyses. As discussed above, an effort was made to ensure that the petrographic sample suite covered fully the stratigraphic range ofthe cored interval and of the various depositional facies inferred to be represented in the core. In so far as possible, we tried to include samples 1Ì'om the full range of porosity and permeability, and to obtain samples 1Ì'om as many different SCAL plugs as possible. In several cases, the same plug was the subject of multiple petrographic studies (thin section, XRD, and/or LPSA), in an attempt to cross-calibrate the different approaches. Below are summaries of the stratigraphic (Table 1) and facies (Table 2) distribution ofthe samples. Following that is a multi-page listing (Table 3) of individual samples, the type(s) of petrographic analyses performed, and the SCAL test for which that plug was utilized esamples with no SCAL method noted are 1Ì'om routine core plugs). SAND Cored #Thin sections #Point counts #XRD #LPSA Mbl 53' 13 4 6 4 OA 87' 22 7 8 6 OBa 38' 14 6 7 6 OBb 58' 13 4 6 4 OBc 49' 13 4 5 4 OBd 65' 37 9 9 9 OBe 38' 12 5 3 3 OBf 8' 7 4 3 3 Table 1. Petrographic sample distribution by stratigraphic zone Number of petrographic samples (thin sections, point-counted thin sections, X-ray diffraction analyses, laser particle size analyses) broken down by stratigraphic zone (Sand interval), for entire cored interval. Cored = approximate number of feet cored and recovered for that facies Depositional Facies Cored #Thin sections #Point counts #XRD #LPSA Distributary Channel 35' 10 4 4 4 Bay, bay fill, splay 18' 3 0 2 0 Middle shoreface 31 ' 22 8 7 7 Proximal lower SF 46' 39 13 14 16 Lower shoreface 89' 45 17 12 12 Distal lower SF 47' 4 1 2 0 Lower offshore/shelf 125' 8 0 6 0 Table 2. Petrographic sample distribution by depositional facies Number of petrographic samples (thin sections, point-counted thin sections, X-ray diffraction analyses, laser particle size analyses) broken down by inferred depositional facies, for entire cored interval. SF = shoreface. Cored = approximate number of feet cored and recovered for that facies 13 · · · · · · en en .... l- e::: (ij E I- :::I 0 '0 8 0 ~ < 0 D. ... Õ Q) .¡::; Q) · z DEPTH e::: Q) 0::: w en 1:5 0 11. 1::: < :;::; I/) .... 11. I/) e::: X en Q) ~ "CD « en :::I ~ ...J · 0 'õ ill c::: c::: (j) 11. · 4042.95 X X X · 4047.00 X · 4049.00 X X X 4049.20 X X · 4051.35 X X · 4052.0 X X · 4058. 0 X X · ...... 4065.00 X X X .a ~ 4066.5 X X X X · 4068. 00 X X · 4076.0 X X · 4077.00 X X X 4079.00 X X · 4079.15 X X · 4083.00 X X X · 4085.0 X · 4398.10 X X 4399.0 X X · 4406.25 X X · 4407.10 X X X X · 4407.65 X X 4408.25 X · 4408.50 X X X X X · 4408.70 X X · 4408.95 X X · 4409.10 X 4409.25 X X X X X · < 4409.40 X X X · 0 4409.55 X X · 4409.65 X 4413.00 X X · 4413.30 X X · 4415.00 X X X · 4416.00 X X · 4418.65 X 4419.00 X X · 4420.25 X X X x X · 4422.00 X X · 4423.1 X X · 4423.10 X X X · · 14 · · · · · · · · CI) CI) - I- ~ ãi E I- :3 Q 'C 0 0 ~ « 0 Il. .... Õ · z ( ) ( ) 0 CI) ";:: Q ( ) DEPTH ~ 0:: w Õ a.. 1:: « :;:¡ U) - Il. · CI) :3 U) ~ >< CI) ....I ( ) :E ã5 « 0 ~ "õ ûj 0:: 0:: - D- · CI) 4428.00 X X X · « 4430.00 X X 0 · 4464.0 X · 4470.70 X X · 4471.10 X X X X 4471.25 X X · 4472.10 X X X X X · 4472.25 X X · 4472.8 X · 4472.95 X X X X X 4473.1 X X · co 4473.55 X III · 0 4474.10 X X · 4475,00 X X X 4477.00 X · 4480.0 X · 4480.00 X X X X · 4489.00 X X · 4489.40 X X X X 4494.00 X X X X · 4505.0 X X · 4507.0 X X · 4509.00 X X 4510.00 X X · 4511.00 X X X · 4511.15 X X X X · 4515.00 X X X X - .c 4517.00 X X X · III 0 4518.00 X X · 4518.80 X X X · 4520.0 X X · 4542.00 X X X 4552.0 X · 4558.0 X · 4559.0 X · · · · · · 15 · · · · · · · · en CJ) ..... l- e:: ãi E I- ~ Q 'C 0 C ~ ~ 0 a. ... Õ · z ( ) ( ) 0 'c 0 ( ) DEPTH c: 0:: W Õ a. 1:: « :¡::¡ en ..... Q.. ~ · en ~ en e:: X en ..J Q) ëD < 0 ~ 'õ üi 0:: 0:: ..... a. · en 4564.0 X X · 4564.00 X X · 4566.1 X X · 4566.50 X X X · 4566.80 X X 4567.00 X X X X · 4570.00 X X X · 0 m 4570.75 X X X x X 0 · 4578.0 X · 4579.00 X X X X 4588.0 X · 4595,00 X X · 4597.0 X · 4609.0 X 4610.0 X · 4614.0 X X · 4616.00 X X x X · 4616.15 X X X · 4618.00 X 4623.00 X X · 4624.00 X X X · 4626.20 X X · 4627.20 X X 4627.40 X X X · 4627.70 X X · 4628.05 X · 4628.20 X "tJ m 4628.35 X X X X X · 0 4628.50 X · 4628.65 X · 4628.75 X X · 4630.80 X X X X X 4633.00 X X X · 4634.0 X X · 4635.70 X X X · 4637.8 X · 4639.55 X 4639.70 X X X X X · 4640.15 X X · 4640.45 X · · 16 · · · · · · · · CI) CI) - l- e: (ij E J: I- :¡ Q 'C 0 a ~ ~ <> a. .... Õ l- ( ) .¡;: ( ) · z a. e: ( ) <> 0::: ill Õ 0 a. « fI) 0- 1::: ill :;::; fI) - >< CI) ~ < CI) :¡ e: -J ( ) ã) · Q 0 e 'õ ¡¡¡ e:::: e:::: - a.. CI) · 4641.1 X X · 4643.30 X X X X X · 4643.75 X X · 4643.90 X X X 4646.0 X · 4646.00 X X X X · 'C co 4654.0 X 0 · 4654.00 X · 4657.00 X X X 4661.80 X X X · 4661.95 X X · 4671.0 X · 4674.0 X 4679.0 X X · 4681.00 X X · 4681.15 X X X x X · 4682.00 X X X X · 4685.00 X X 4689,0 X X · ( ) co 4692.60 X X X X 0 · 4692.75 X · 4694.0 X X X 4696.00 X X X · 4702.0 X · 4708.8 X · 4710.8 X · 4718.8 X X 4719.8 X X X · 4720.8 X X · - 4721 AO X X X X co · 0 4721.70 X X · 4721.8 X X X 4722.8 X X X X · 4723.8 X X · Table 3. Multi-page listing of petrographic samples and associated special core analyses · Summary of all petrographic samples (thin sections, X-ray diffraction), listing the type of thin section · (routine vs. impregnated at overburden stress), if selected for point count; and if separate trims of the same sample were used for X-ray diffiaction (XRD), scanning electron microscope (SEM) analyses, · or laser particle size analysis (LPSA); and associated special core analyses on the corresponding plug · (electrical properties, mercury injection capillary pressure (MICP), relative permeability, air/oil Pc. · · 17 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Methods All thin sections, both those prepared with routine impregnation and those impregnated at overburden stress conditions, have been examined and described qualitatively. Grain size estimates and relative abundances of selected petrographic parameters for all samples are illustrated in Figure 3 (Mbl and OA), Figure 4 (OBa to OBc), and Figure 5 (OBd to OBf). Several digital photomicrographs, at varying magnifications, were obtained for each sample. These photographs (captured at a resolution of 1024 x 768) are present as JPEG files on the accompanying CD. The description of the thin sections also served as a screening tool for selecting candidates for point counts (solely ITom the stress- impregnated thin sections), based on a mix of stratigraphic and petrophysical criteria. The thin sections selected for point counting were stained (potassium and dual carbonate) and sent to Dr. Mike Wilson, a petrographer with extensive North Slope experience. His point count approach consisted of identifying 300 points, spaced over the area of the thin section, followed by measurements of the long axes of200 detrital grains (ignoring mica flakes and similar anomalous shapes). The categories used to classify the 300 points counted are based on experience of the range of grain types, diagenetic phases and types of occurrence, and pore types, as well as a focus on parameters critical to reservoir quality issues. Since mechanical compaction is a major control on reservoir quality in these relatively lightly cemented sandstones, the types and degrees of defonnation of ductile grains has been tracked very carefully. For each sample, appropriate grains were classified into one ofthree categories of defonnation intensity (undeformed, slightly deformed, extensively deformed) for each of the following ductile grain types: organic :fragments, shale/mudstone :fragments, unidentified ductile grains, clay peloids, phyllite :&agments, muscovite, biotite, chlorite, metasiltstone/metashale :fragments, and mica/chlorite schist :&agments. Among more rigid grains, :&acturing and leaching are more important processes than mechanical defonnation: :&actured and leached grains were tallied separately for quartz, chert, plagioclase, and alkali feldspar. Visible pores were classified as intergranular or transparticulate (intragranular), and by size (2-20 microns vs. >20 microns). The full list of point-count categories is included in the original Wilson data files (BPV- IIIPointCountData6-04.xls and BPV -lllPointCountData( extrasamples)9-04.xls), and summarized in the point-count database worksheet in VI 1 I_Petrog.xls (on the accompanying CD). Grain size measurements are captured using projection of the thin section image onto a digitizing tablet, calibrated to the magnification used. The 200 grains measured for each sample are reported (in phi units) in the original data files (BPV-ll I GrainSizeData6-04.xls and BPV-IIIGrainSizeData(extrasamples)9-04.xls); grain size distributions, by size class, are summarized in the point-count data worksheet ofVlll_Petrog.xls. 18 Grain Size ë ( ) :ê ( ) $ ( ) - E E .t: '6 !:!2 > ( ) :~ t) c 0 ã3 c: E Ü ro (5 ..... w (5 ( ) J:::, ï:: ( ) ::;¡ E '3 0 C .0 ro en => 0.. >. ü:: ill '6 '- ~ en ( ) - ( ) ro ..... c ( ) ro I ( ) 0 Depth Ü ü5 > ü:: :;;¡: Matrix Pyrite ü 0 4042.95 4047.00 4049,00 4052,0 ü 4058.0 0 4065,00 ,,- .0 4066,5 :;;¡: 4068,00 4076,0 4077,00 4079,00 4083,00 4085.0 4398.10 4399,0 4407,10 4407,65 4408,25 4408,50 4408. 95 4409,10 4409,25 IJ.. 4409.40 en :2 4409,65 4413,00 4415,00 4416,00 4419,00 4420,25 4422,00 4423,1 4423,10 4428,00 4430,00 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3. Schematic petrographic log of thin section observations, Mb 1 and OA Sands, V-IllPBl Schematic depth log of selected petrographic parameters, listed by sample (note: no vertical scale). Samples are identified by stratigraphic zone (Unit) and depositional facies (Dep The grain size range (clay through medium sand) is indicated for each sample, as are the relative amounts of matrix (brown = clay, blue = micritic siderite), pyrite, carbonate cement, kaolinite, smectite, heulandite, detrital dolomite, and shells (CF = calcareous AF = arenaceous foraminifer), More filled squares (left to right) and/or darker colors for Pyrite, and Carb Cement greater relative abundance, Depositional facies include distributary channel (DC), bay fill middle shoreface (MSF), and lower shoreface (LSF). Additional facies on other figures include proximal lower shoreface (PLSF), distal lower shoreface (DLSF), and lower offshore to shelf (LOS). 19 · · · · · · · · · > c :g UJ ::J g- o · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Depth 4471.10 4472,10 4472,8 4472,95 4473,1 4473,55 4474,10 4475,00 4480.0 4480,00 4489,00 4489.40 4494,00 4505,0 4507,0 4509,00 4510,00 4511,00 4511.15 4515,00 4517.00 4518,00 4518.80 4520,0 4542,00 4552,0 4559,0 4564,0 4564,00 4566,1 4566,50 4567. 00 4570,00 4570,75 4578.0 4579,00 4588,0 4595.00 4597,0 4610,0 ë (j) (j) (j) $ :t= E $ - 'õ E !!2 (j) ï:: 1:5 c 0 ã) ü (5 (j) ro (5 E :¡ 0 ..c .c ro (j) '- :::.:::: (j) (j) (j) ro I Ü 0 Grain Size >- ~ ü (j) c ¡¡: ? AF AF Figure 4. Schematic petrographic log of thin section observations, OBa through OBc Sands, V -Ill PB 1 Matrix ? 20 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · > <:: <:: W ::J âr o Depth 4614,0 4616.00 4616.15 4618,00 4623.00 4624,00 4626.20 4627.20 4627.40 4627.70 4628,05 4628.20 4628.35 4628.50 4628,65 4628.75 4630.80 4633.00 4634. ° 4635 70 4637.8 4639.55 4639.70 4640,15 4640,45 4641.1 4643.30 4643.75 4643.90 4646,0 464600 4654,0 4654.00 4657.00 4661,80 4661,95 4674.0 4679,0 468100 4681.15 4682,00 4685,00 4689.0 4692,60 4692.75 46940 469600 4702.0 4710,8 4718.8 47198 4720.8 4721,40 4721,8 4722,8 4723,8 Grain Size <:: 2 2 Q) 2 ,g¡ 'Ë E '6 !!2 Q) :~ õ <: 0 (i) Ü '0 Q) -'!1 Õ ,,<: .0 co E ::¡ 0 (f) ro ::.::: (f) Q) (¡) Ü I 0 J co Õ Q) <: ü: E ::¡ '6 Q) :;¡¡; Matrix CF 5. Schematic petrographic log of thin section observations, OBd through OBfSands 21 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Texture This study utilized three direct methods of describing the texture (grain size distribution, matrix content) of sandstones: · qualitative visual estimates from all thin sections (see Figure 3 through Figure 5), · measurements ofthe apparent long axes of200 grains for all point count samples, and · laser particle size analysis of selected samples. In addition, some evidence (albeit potentially misleading) about the clay content of a sample can be gleaned from X-ray diffraction analysis. XRD reports the estimated total abundance of clay minerals (which is not equivalent to the amount of clay-sized material, which may consist of many non-clay minerals as well), and can make no distinction as to the distribution of the clays (e.g., dispersed as matrix or present within argillaceous lithic fragments as structural clay). Clay content is an important parameter for formation evaluation, as matrix clay has a major impact on permeability, and much ofthe clay of any type will be a primary control on microporosity and water saturation. For a limited number of samples, the texture was measured by more than one of the more quantitative methods (point-count, LPSA, XRD), and so some preliminary cross-calibration is possible. It is desirable to identify the simplest and quickest reliable method of measuring sand texture (especially clay content), for use in wells without conventional core. In terms of sample preparation and analysis time, LPSA is far superior to either point counts or XRD, so it will be worthwhile to understand and calibrate the grain size data obtained by LPSA. The majority ofV-lllPBl sandstones (particularly those from the 0 Sands) are very fme-grained and very well sorted. Samples from more distal facies may be sandy siltstones; many of the sandstones in the most proximal facies (e.g., Mbl) are lower fme- grained. Clay matrix is almost exclusively biogenic, present as (1) discrete burrow walls or burrow fill, and (2) as dispersed intergranular matrix with no clearly identifiable discrete burrow structures. In rare instances, usually associated with hiatal surfaces or other stratigraphic contacts, the clay matrix has been replaced by microcrystalline siderite; such replacement is most common in the OA Sand, and quite limited in the older sands. As a rule, because the intensity of burrowing and incorporation of clay into burrow structures generally increases in an offshore direction in a shoreface depositional setting, there is a good correlation between decreasing sand grain size and increasing clay content (thereby dealing a double blow to the average size and connectivity of the pore system). 22 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Point count grain size data are summarized in Table 4, below. For each sample, identified by stratigraphic zone and depositional environment, the table lists: · mean grain size (MGS, in microns), · overall sorting (SORT, in phi units), · rramework mean grain size (Fw _MGS, in microns, incorporating only rramework grains 30 microns in diameter or larger), · rramework sorting (Fw_SORT, in phi units, taking into account only grains 30 microns across or larger), and · the rrequency percent distributions within grain size classes (clay, silt, very fine sand, fine sand, and medium sand). Table 5 is a similar summary listing ofLPSA data. Samples that have been measured both by point counting and by LPSA are highlighted in 23 · · · · · · CMD SAND DepEnv MGS SORT Fw_MGS Fw_SORT %CLA Y %SILT %VFINE %FINE %MED · 4049.00 Mb1 DC 0.146 0.364 0.146 0.363 0.0 0.0 25.5 no 2.5 · 4065.00 Mb1 DC 0.113 0.314 0.113 0.313 0.0 0.5 69.5 30,0 0.0 4066.5 Mb1 DC 0,123 0.388 0.123 0.387 0.0 0.0 57.0 41.5 1.5 · 4077.00 Mb1 DC 0.086 1.221 0.096 0.520 2.0 5.0 78,0 12.0 3,0 · 4407.10 OA MSF 0.099 0.747 0.104 0.351 0.5 3.0 75.0 21,5 0,0 · 4408.5 OA MSF 0.099 0.727 0.102 0.334 0,5 2.5 78.0 19.0 0,0 · 4409.25 OA MSF 0.092 0.796 0.097 0.364 1.0 4.0 80.5 14.5 0,0 4409.40 OA MSF 0.108 0.666 0.112 0.321 0.5 0.0 73.5 26.0 0,0 · 4415.00 OA MSF 0.102 0.323 0.102 0.323 0.0 1.0 80.0 19,0 0.0 · 4420.25 OA MSF 0.088 1.084 0.097 0.357 2.0 3.5 81.0 13.5 0.0 '. 4423.10 OA MSF 0,086 1.507 0.102 0.367 3.0 2.0 80.0 14.5 0.5 4471 ü OBs PLSF 0.096 0.356 0.096 0.355 0.0 2.0 84.5 13,5 0.0 · 4472 OBs PLSF 0,090 0.638 0.092 0,366 0,5 6.5 80.5 12,5 0.0 · 4412.95 OBs PLSF 0,086 0.759 0.090 0.365 1.0 5.0 83,5 10.5 0,0 · 4480,00 OBs LSF 0.063 1.692 0.079 0.394 4,0 17.0 75.5 3,5 0,0 · 4489.40 OBs MSF 0,080 1.256 0.091 0.314 2.5 4.0 85.5 8,0 0,0 4494.00 OBs LSF 0.054 2.136 0.084 0.375 9.0 11.5 73.0 6.5 0,0 · 4511.00 OBb PLSF 0.083 1.337 0.097 0.326 3.0 2.0 82.5 12.5 0.0 · 4511.15 OBb PLSF 0,058 2.114 0,090 0.330 9,0 4.5 78.5 8.0 0,0 · 4515.00 OBb PLSF 0.067 1.774 0.086 0.307 4.5 4.0 87.0 4.5 0.0 · 4517.00 OBb PLSF 0.059 2.058 0.085 0.342 6.5 9,0 78.5 6.0 0.0 4567,00 OBc PLSF 0.083 0.395 0.083 0.394 0.0 14.5 79.0 6.0 0.5 · 4570.00 OBc PLSF 0.090 1.305 0.102 0.492 2.5 4,5 69,0 22,5 1.5 · 4570,75 OBc PLSF 0.098 1,699 0.122 0.477 3.5 0.5 54.0 38.5 3.5 · 4579,00 OBc DLSF 0.028 2.765 0.063 0.425 15,5 45.0 37.5 1.5 0,5 4616,00 OBd LSF 0.078 1.171 0.088 0,322 2.0 5.5 87.0 5.5 0.0 · 4628.35 OBd PLSF 0.101 1.240 0.114 0.352 2.0 1.0 65.0 31.5 0,5 · 4630.8 OBd PLSF 0.092 0.892 0.098 0.374 1.0 3.5 78.5 17.0 0.0 · 4633.00 OBd PLSF 0.090 0.612 0.092 0.363 0.5 6.5 81.0 12.0 0.0 · 4635.70 OBd LSF 0,070 1.827 0.093 0.324 5.0 2.5 81.0 11,5 0.0 4639 7 OBd LSF 0.Q75 1.122 0.083 0.324 1.5 11.5 82.5 4.5 0,0 · 4643.3 OBd LSF 0.080 0.686 0.083 0.327 0.5 10,0 86.5 3.0 0.0 · 4646,00 OBd LSF 0.081 1,010 0.089 0.352 1.5 7.0 84.0 7.5 0.0 · 4657,00 OBd LSF 0.048 2.388 0.084 0.329 10.5 7.0 79,5 3.0 0.0 4681.15 OBe LSF 0.106 0.690 0.111 0.361 1.0 0.5 66.5 32.0 0,0 · 468200 OBe LSF 0.077 1.700 0.097 0.364 4.0 4.5 76.0 15.5 0.0 · 4692.60 OBe LSF 0.080 1.551 0.098 0.423 4.0 3.0 77.5 15.0 0,5 · 4694.0 OBe LSF 0.088 1.514 0.106 0.487 3.5 2.0 68.0 26.0 0,5 · 4696.00 OBe LSF 0.100 1.704 0.124 0,503 3.5 0.5 51.5 41.5 3,0 4719,8 OBt LSF 0,089 1.485 0.108 0.359 3.5 0.5 65.5 30.5 0.0 · 4721.40 OBt LSF 0.079 1.698 0.099 0.337 4.0 1.5 79.0 15.5 0.0 · 4721.8 OBt LSF 0.073 2.029 0.105 0.347 6.5 0.5 72.0 21,0 0.0 · 4722,8 OBt LSF 0,071 1,936 0.099 0.345 6.0 1.5 78.5 14.0 0.0 · Table 4. Summary of point-count grain size measurements (see text for discussion) · · 24 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · VS. samples were grain size measurements count (long axis measurements of200 grains LPSA. Typically, grain size measurements sections tend to underestimate particle sizes unavoidable geometric effects of a two-dimensional view. The particles may also to that obtained SIevmg or methods, because microscope because clays are tightly to counted a disaggregated state. A LPSA measurements indicates mean is strongly correlated, LPSA are this range of due to clay-sized 100 MGS 80 UJ C) :t 60 « UJ Q.. ..J 40 = 0,7511*MGS(PtCt) - 3,4852 = 0.4351 20 20 40 60 ptet MGS 80 100 6. Crossplot of mean size by LPSA vs. methods for the same samples Crossplot of mean grain size as determined methods MGS, microns) against the mean grain size calculated from the laser particle size analysis results (LPSA MGS, The linear regression line for the two variables is together with the of the regression line and the regression coefficient. 7, below, compares count versions as is remarkably consistent measurements, exhibiting a very well are less consistent, appear to less sorted, a more skewed observations most samples are very sorted, supporting data. comparison suggests LPSA data accurately record relative mean grain size to a lesser size but also not be calibrated over this range, absolute grain size values be used (e.g., to calculate considerable 26 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ., 4408.5PC ··4408.5LP 90 4409PC 4409LP ~4423PC ~4423LP 80 ---+~- 4471 PC "4471LP ~~-··~4472,1PC 4472.9PC 70 4472.1LP 4472.9LP 4480PC 4480LP ~... ···4567PC 4567LP 60 4628PC 4628LP 4630PC 4630LP 50 4639PC 4639LP ..~.~~ 4643PC 4643LP 40 ¡ 4646PC ~4646LP 4682PC . ·4682LP 30 - 20 o CLAY SILT VFINE FINE MED CRS VCRS+ 7. Grain size distribution by size class, via and LPSA methods Frequency histograms of the measured size distributions (frequency % by size class) for individual samples. Distributions based on count data are indicated by solid lines; distributions from LPSA measurements are shown by dashed lines. With one exception, the data are consistent are content 1 1 samples: 41 analyses; 41 . . are a content: logs respond values clay-sized sandstones); it is (argillaceous clay response of logs to are not approximation is good most among dispersed clay (matrix), clay interbeds), logs do so directly, nor clay-size values counts or (potassium-bearing) clays, and occurs small amounts many V - metasedimentary flakes). Muscovite biotite mica response, even on clay flakes are · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · content of rock fragments is liable to vary widely, depending on nature and It be to sandstones is to that clay results, below). neutron water-saturated clay crystal current dataset methods of clay degree assume clay adjacent shale log responds to micro porosity ) and as presents a rare some cases on As discussed are samples laser size analysis. There are 19 analysis were performed, on other. 8 compares the 14 common samples. as observed LPSA. spaees disaggregate can 10 8 >- « 6 ..J () ~ ., « 4 U) Il. ..J 2 0 0 ~~,._.~._~- -~-, 8 2 4 6 Pì Ct o/oCLA Y 10 8. Comparison of point count VS. LPSA measurements of clay-sized material Crossplot of the % clay-sized material as determined by point-count methods (PtCt %CLA Y) VS. that determined by laser particle size analysis (LPSA %CLA V). The overall correlation is poor, with LPSA values tending to be higher than the corresponding estimates. count and XRD sandstone. it is possible to some coarser clays), clay (e.g., clay 28 · · - · · .. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · argillaceous lithic fragments, glauconite). Using the two techniques together can provide much more useful information than can be garnered from either approach alone. Table 6 is a summary of clay-related data for samples with point-count and XRD results. Point Count X-ray Diffraction Depth SÄND Matrix Lithics Smectite Mica XRD Clay XRD Smec 4049.00 Mb1 0.0 11.0 0.0 0.0 3 0 4066.50 Mb1 0.0 12.0 0.0 0.0 9 0 4408.50 OA 1.3 19.7 0.0 0.3 10 0 4420.25 OA 1.7 22.3 0.0 1.0 19 9 4471.10 OBa 0.3 27.0 0.0 0.7 14 7 4472.10 OBa 0.7 30.0 0.0 1.3 12 5 4489.40 OBa 3.0 24.0 0.0 1.0 17 7 4494.00 OBa 8.3 25.0 1.0 1.3 20 10 4511.15 OBb 9.0 25.7 0.0 3.0 17 9 4515.00 OBb 4.3 33.0 0.0 0.3 19 9 4567.00 OBc 0.0 20.7 0.0 0.3 17 9 4570.75 OBc 2.3 16.3 0.3 1.3 14 8 4579.00 OBc 15.7 19.7 0.0 3.0 23 10 4616.00 OBd 3.0 25.7 0.0 1.7 22 12 4681.15 OBe 2.0 21.0 4.0 0.0 13 9 4692.60 OBe 5.7 24.3 2.0 0.0 15 10 4721.40 OBf 4.0 24.0 0.0 1.3 15 9 4721.80 OBf 5.7 23.0 1.0 0.3 12 7 4722.80 OBf 8.3 24.7 1.3 1.0 17 11 Table 6. Summary of clay mineral-related point-count and XRD data for common samples This table is a summary listing of clay mineral-related parameters trom point counts and XRD analyses, for those samples subject to both techniques (or for samples within 0.2' of each other). Note in particular the contrast in smectite content, which is uniformly low and near zero, except in the OBe and OBfSands, according to the point-count data, but which is consistently around 10%, except for the Mbl and uppermost OA, according to the XRD results. 29 Ii · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · I 25 20 5~ o o 5 10 15 20 9. vs. XRD mineral estimates for common 20 ----~ c !ex: )( 5- -,._-~ ~,~-"~ o o 10 20 30 Mtx Llthics Smec 40 50 L- 10. Crossplot ofthe matrix + Lithic determined linear regression vs. XRD mineral content. + Lithics + Smec + Mica = Clay + Smectite + against the total clay mineral content as diffraction (XRD Clay, A modest positive correlation is with a XRD "" 0,44 '* Point-cmUl.t + r = 0.54. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · œ - ;¡ 6 u œ E UJ 4 2 0 0 2 Smectite 3 1 5 n. smectite vs. XRD smectite estimates Crossplot of the estimated smectite content based on counts, Smectite VS. the estimate from Smectite wt %, for all for which both analyses are available. No correlation is the XRD appears to up a level of 8-10% smectite that is not counts. 3 I I · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · The identification of smectite ftom the X-ray difftaction patterns is indisputable (Figure 12); in fact, the smectite patterns are unusually sharp and well-crystallized, typical of bentonites and related altered volcanic ash deposits. As a check, careful SEM studies of a number of samples with high XRD smectite values but no point-count smectite, and samples with both XRD and point-count smectite, were undertaken (Figure 13). No authigenic smectite could be identified in samples that had no point-count smectite. In samples with point-count smectite (generally zeolite-rich), a small amount of probable smectitic clay coats and alteration rinds could be recognized (consistent with point-count values ofa few percent at most). The best explanation for the apparent disagreement between XRD and point-count smectite data is that a significant proportion of the argillaceous lithic grains present in these sandstones (up through the middle ofthe OA) are in fact quite smectite-rich. XRD recognizes this smectite, but in point counts the grains are counted as various lithic ftagment types, and cannot be identified as to their clay mineral content. Crossplots ofXRD smectite against various combinations of point- count smectite and different lithic ftagment types (including volcanic: Figure 10) are a slight improvement over point-count smectite alone (Figure 11), but still do not exhibit a strong correlation. Given the apparent bentonitic nature of the smectite, it is likely that the smectite-rich ftagments would appear to be rather non-de script shale and argillite grains, and have not been recognized as volcanic in origin (understandable given the very fme grain size of most samples). Grains classified as volcanic rock ftagments, in this size range, tend to be at least partially crystallized, with a devitrified ground mass or plagioclase laths and phenocrysts. An altered ash (bentonite) would be very difficult to recognize. Volcanic glass has been recognized in several samples, so it is not unreasonable to believe that altered ash ftagments are present as well. 32 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ... I'" "'!'" I'" I'" f'" ¡, ,. .,. I"'!'" I'" ,., I'" ... i'" I'" I'" '" ¡,., '" i [!J30482GgOD,ra",j 03048213 4420,26 glycol <2T(O)=0,266> f!J30482G,:¡26.raw 03048213 460Lj5 øJvcol <27(1))=0.235> 10 15 TWð- Theta (deg) 20 205 30 of two 4420.25' of reflection green to the trom 4420.25', the red reflections of~mectite at about 6,9, and 2-theta are vs. reflection the to 468 U 5'. The basal and consistent between the two C:,\ÚFFS\NANCY,\B442025S.ÚF 4429~25 £1;. Log: 407B0 Mag=B09 FOV=132.7S3153 20.9KV 10-2B-2994 11:07a~ 20.0uM Figure 13. SEM photomicrograph of clay-tree quartz grain surface, 4420.25' (OA) C:'\TIFFS'\NANCY'\B4S8115A.TIF46B1.15 £1;. Log: 49780 Mag=4999 FOV=26.552631 29.9KV 19-28-2994 91:91p~ 5.Ø9uM Figure 14. High-magnification SEM view of authigenic grain-coating smectite, 4681.15' (OBe) SEM photomicrographs of clay-tree grain surfaces at 4420.25' (with some authigenic kaolinite in the lower center of the view), and of smectite-coated grain surfaces at 4681.15'. Scale bars are at lower left of each photomicrograph: Figure 13 is at 800X, Figure 14 at 4000X. Photos by N. Houghton (Core Lab, Houston). 34 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Detrital Sandstones ofthe M and 0 Sands in the V-111PB1 are composed predominantly of quartz and lithic :&agments. Extrabasinal sediments are derived :&om a mixture of recycled siliciclastic sediments and low-grade metasediments (Brookian), and recycled dolomitic rocks, with episodic input :&om an active pyroclastic volcanic center. With the exception of the volcanic-related detritus, composition is relatively uniform throughout, with small systematic stratigraphic trends in the relative proportions of rock :&agment types. Intrabasinal material (shell :&agments, foraminifera, glauconite, rip-ups) is generally minor and concentrated in specific facies. All sands are lithic arenites and sublitharenites, dominated by mono crystalline quartz. Important secondary grain types include polycrystalline quartz and chert, shale and argillite rock :&agments, quartz-mica schists, alkali feldspar, plagioclase feldspar (especially in the more volcanic-rich horizons), detrital dolomite crystals, a variety oflarge mica flakes (including muscovite, biotite, and metamorphic chlorite), volcanic rock :&agments (mostly intermediate to acidic in composition, with devitrification textures; occasionally more mafic with plagioclase laths and small phenocrysts), and stable heavy minerals (zircon, tourmaline, rutile, sphene). Many samples have traces of a bright greenish, altered, microporous rock :&agment type, of presumed metavolcanic origin. There are rare instances (in the OBb Sand) where the heavy mineral suite includes traces of amphibole. Intrabasinal grain types, present in trace to minor quantities, include shale rip-up clasts, macrofossil shell :&agments (mostly mollusks), calcareous and arenaceous foraminiferal tests, and glauconite clay pellets. Table 7 presents a summary ofthe zonal averages for major detrital grain types. A series of ternary plots illustrate the compositional character of the sands, both as individual samples and as zonal averages. Figure 15 is a plot of quartz - feldspar - totallithics (including polycrystalline quartz and chert) average zonal compositions. Figure 16 (zonal averages) and Figure 17 (individual samples) are total quartz (including polycrystalline quartz and chert) - feldspars -lithics ternary plots. A ternary plot of quartz- chert -lithics is included as Figure 18 (zonal averages). Other plots of zonal averages include volcanic rock :&agments - metamorphic rock :&agments - sedimentary rock :&agments (Figure 19), volcanic :&agments - metamorphic :&agments - plagioclase feldspar (Figure 20), and monocrystalline quartz - potassium feldspar - plagioclase feldspar (Figure 21). Some of the trends evident in these plots are discussed in the following paragraphs. The Schrader Bluff sandstones in the V-Ill PB 1 are lithic arenites in composition, dominated by quartz, chert, and metasedimentary rock :&agments; feldspars, volcanics, sedimentary rock :&agments and detrital dolomite crystals are common phases as well. It is possible that the volcanic component has been slightly underestimated: XRD data suggests that bentonitic tuff :&agments may be present through much of the interval, but have not been recognized as such in thin section (such grains would be non-descript argillaceous :&agments that would probably be identified as sedimentary or metasedimentary rock :&agments). Secular trends in detrital composition are discussed further in the section on Stratigraphic interpretations. 35 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ern 1ìlb1 Qð. 0Ba 0I3b 'f'0Bc 0Bd 0Ba 0Bf U 20 30 40 60 70 80 90 15. Totallithics averaged zone Ternary total and totallithics chert and averaged zone. 32.4 Table 7. Average detrital Zonal averages 7.3 3.9 1 13.1 11.1 11 1 15.1 1 zone detrital phases, based on feldspars (plagioclase and 23.2 V~llIPB 6.2 and rock detrital dolomite crystals and shell converted to % detrital framework. · · · · · · C! · · 1'vb1 · Qí\ 0Ba · 0Bb · "f Œ3c ·  08d 0Be · œ · · · · · · Uthics · 20 30 40 50 60 70 80 90 · · 16. Total averaged zone · and chert and · and lithic · · at · · ,80 · · · · · · · Fspa- Lí!hics · 10 20 30 4û 50 60 70 80 90 · 17. Total - Lithics individual · oftotal {Qt, and chert and · total feldspars, and lithic zone. · · · · · · · · · · · Quartz · iVb1 · OA · œa 0Bb · .cec · . J¡.0Bd .. œa · œ · · · · · O1ert lithìcs · 10 20 30 40 50 60 70 60 90 · · 18. - Chert - Lithics zone · Ternary and and lithic fragments, · · VRF · · iVb1 · OA œa · 0Bb · .cec 0Bd · œa · œ · · · · . · M1F SRF · 10 20 30 40 50 60 70 80 90 · 19. Volcanic- rock zone · rock and · · · · · · · · · · · · VRF · 1IIb1 · QiI., · œa CI!b · " œc · .&0Bd œa · œ · · · · " · IlifF . · 10 20 30 40 50 60 70 80 00 · · 20, Volcanic rock rock zone ofvoIcanic rock rock and · averaged by · · em · · 1IIb1 +QiI., · C& · 08b " œc · .& 03d · C& œ · · · · · !<spar Rag · 10 20 30 40 50 60 70 SO 00 · · 21. quartz - Potassium zone · feldspar (Kspar), and plagioclase zone. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .. .. · · · · · · · · · · · · · · · · · · · X-ray Diffraction results Forty-seven samples have been analyzed by X-ray diffraction methods (Core Lab, Mike Kelton) for estimates of modal mineralogy, with an emphasis on clay minerals. Complete results are available in the Vl11_Petrog.xls spreadsheet file. The X-ray diffraction (XRD) samples were run in several different groups, including one early group as part of a formation damage study, and a small group of shale samples analyzed to compare the clay assemblage with that of associated sandstones. Details ofthe analytical conditions and sample preparation techniques can be found in the corresponding reports from Core Lab. Summaries of the major minerals present, averaged by zone (Table 8) and facies (Table 9), are presented in the following tables. The major phases identified by XRD are quartz, plagioclase and alkali feldspars, dolomite (ferroan in part), pyrite, and clay minerals. Minor phases present in a few samples include calcite, siderite, and heulandite (called clinoptilolite in the early Core Lab reports). The clay mineral assemblage is dominated by illite, kaolinite, and chlorite in the Mbl and upper OA; and by smectite, illite, and chlorite in the lower sands (Table 10). See Figure 35 through Figure 37 for ternary plots of clay mineral stratigraphic distribution. SAND Quartz Kspar Plag Dol Sid Pyrite Heul Clays Mbl 90 1 1 0 1 0 0 7 OA 66 3 10 3 1 1 0 17 OBa 65 4 10 5 0 2 0 15 OBb 57 3 11 5 1 3 0 21 OBc 55 2 11 4 5 2 0 20 OBd 57 4 12 3 0 2 1 20 OBe 55 5 14 0 1 2 5 18 OBf 59 3 16 1 2 5 0 15 Table 8. XRD mineralogy, averaged by stratigraphic zone, for major phases Zonal averages of major mineral phases (wt%) as determined by XRD: quartz, potassium feldspar (Kspar), plagioclase feldspar (Plag), dolomite (Dol, includes ferroan dolomite), siderite (Sid), pyrite (includes maracasite), heulandite (Heul, originally identified as clinoptilolite), and total clay minerals. Note the low feldspar and clay content in Mbl, and the high plagioclase content in OBe and OBi Heulandite is confmed to the most volcanic-rich zones. FACIES Quartz Kspar Plag Dol Sid Pyrite Heul Clays DC 93 1 0 0 0 0 0 5 MSF 69 3 10 3 1 1 0 14 PLSF 62 4 10 4 2 3 0 15 LSF 58 4 13 3 1 3 2 17 DLSF 51 3 12 5 1 3 0 27 LOS 52 4 12 3 0 1 0 28 Table 9. XRD mineralogy, averaged by depositional facies, for major phases Facies averages of major mineral phases (wt%) as determined by XRD: quartz, potassium feldspar (Kspar), plagioclase feldspar (Plag), dolomite (Dol, includes ferroan dolomite), siderite (Sid), pyrite (includes maracasite), heulandite (Heul, originally identified as clinoptilolite), and total clay minerals. 41 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · There is a progressive increase in clay content in the more distal facies, with a concomitant decrease in quartz abundance. Pyrite is slightly more abundant further offshore; other minerals do not exhibit any strong facies trends. SAND Mbl OA OBa OBb OBc OBd OBe OBf Clays 7 17 15 21 20 20 18 15 Smectite o 21 49 50 48 50 64 60 IIIite/Mica 22 30 23 25 24 25 21 23 Kaolinite 61 22 7 6 10 6 3 2 Chlorite 17 28 21 19 18 19 12 15 Table 10. XRD clay mineralogy, averaged by stratigraphic zone Zonal averages of total clay minerals (wt%) and relative amounts of smectite (includes minor high- expandability illite/smectite), illite/mica, kaolinite, and chlorite. Looking more specifically at the transition zone within the OA Sand (around 4410-20' CMD), from smectite-rich clay assemblage in the lower part ofthe zone to a kaolinite- rich, smectite-free assemblage in the upper part of the zone, the following table looks at zonal averages of absolute amounts (rather than relative amounts, as in Table 10) of kaolinite and smectite, while subdividing the OA. SAND Mbl Upper OA Lower OA OBa OBb OBc OBd OBe OBf Smectite o 1 10 7 10 9 10 11 9 Kaolinite 4 4 2 1 1 2 1 1 o Table 11. Zonal averages (wt%) of smectite and kaolinite content Zonal averages of absolute abundances (XRD, wt%) of smectite and kaolinite clays. The OA Sand has been subdivided into upper (above 4419' core depth) and lower (below 4419') sub-zones, with the boundary placed within a transition zone :trom a smectitic to a kaolinitic clay assemblage. In a few samples, the smectitic clay was identified as a high-expandability (80-90%) mixed-layer illite/smectite. The smectitic component ofthese mixed-layer clays has been used to calculate averages. In most cases, the smectite clay is very well crystallized, and resembles the bentonitic alteration product of volcanic ash (Figure 12). Figure 23 is a depth plot of the absolute smectite abundances in individual samples. 42 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18 - 16 14 12 10 8 6 4 2 o 4350 4400 Smectite 4450 4500 4550 4600 4650 4700 4750 Figure 23. Depth plot of smectite abundance (wt%) from XRD analyses most zones, smectite abundance is distinctly the lower, more distal part of the parasequences. Mixed-layer illite/smectite makes up smectitic clay distal lower shoreface, and of the smectitic clay in offshore/shelf sample (Table 12). For discussions and illustrations smectite and its distribution, see discussion of clay content section on Texture. FACIES Clays Smectite lHitelMica Kaolinite Chlorite 5 0 21 63 17 MSF 14 19 29 24 28 15 50 23 7 20 LSF 17 56 23 5 17 27 29 7 21 LOS 28 47 29 8 18 Table 12. XRD clay mineralogy, averaged by depositional facies Facies averages of total day minerals (wt%) and relative amounts of smectite (includes minor high- expandability illite/smectite), kaolinite, and chlorite. Kaolinite is more common most proximal facies (especially the channel facies developed only to a lesser extent the most shoreface deposits Sands). Pure, smectite is most abundant proximal lower shorefaee lower shoreface sandstones, while mixed- layer illite/smectite is dominant clay more distal environments. 24 is a ternary plot illustrating contrast clay assemblage among various depositional facies. difference nature of the smectitic clay - pure and in shoreface sands, high-expandability mixed-layer in more offshore muddy settings - may a different location for clay (tuffaeeous fragments sands, clay matrix offshore sediments), and/or a greater degree of reworking degradation smectite deposited the offshore 43 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Smectite DC MSF PLSF LSF DLSF LOS Kaol 10 20 30 40 50 60 70 80 90 Chi 24. Smectite - Kaolinite - Chlorite clay mineral ternary plot, averaged by depositional facies Ternary plot of the normalized abundances of smectite (induding the smectitic component of mixed illite/smectite), kaolinite, and chlorite, averaged by depositional facies: channel (DC), middle shoreface (MSF), proximal lower shoreface lower shoreface distal lower shoreface (LSF), and lower offshore/shelf (LOS). Samples a channel setting are smectite-free, are also exclusively Mbl Sand. shoreface sands are from OA smectite-free) and zones, so the intermediate position MSF average may mixing of smectite-free and smectite-rich stratigraphic occurrences. Samples aU the more distal depositional facies are from zones, and share a very clay assemblage. Samples described as "shale" nearly lower offshore/shelf facies classification comes a distal lower shoreface interval). Shale samples have a higher clay content sands, clay assemblage is very of sands BP-Sunbury undertook a mineralogical analysis (CI1002-8 XRD.doc) of seven samples V -Ill 1 core as part of an assessment of damage potential. Based on X-ray diffraction results on clay fractions, samples from the upper OA Sand are ( <10% of clay assemblage), two samples lower OA moderate amounts smectite 5-30%), two samples OBd are smectite-rich (about 85% of clay suite). These results are very to those obtained present study, and stratigraphic controls on 44 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Diagenetic Diagenesis of Schrader sandstones in the V-IIIPBI is dominated by mechanical compaction, with the precipitation of significant authigenic cements largely confined to the volcanic-rich sands and around the OBe and to isolated carbonate concretions. Compaction Mechanical compaction is the primary diagenetic mechanism altering the porosity and permeability of reservoir sandstones V-Ill PB 1 core. Mechanical compaction comprises the decrease in the absolute bulk volume of the sediment. At shallow depths, individual grains are squeezed closer together, and rearrange themselves via rotation and slippage. Sand grains relatively low compressive strength (termed "ductile" grains) begin to deform plastically increasing wherever such grains are common enough to be load-bearing. deformation becomes progressively more severe increasing Ultimately, highly ductile grains can be squashed entirely, oozing adjacent intergranular pores to what is termed "pseudomatrix", no longer recognizable as discrete grains. extreme level of deformation is rarely ever approached the relatively shallow reservoir sands of the V-II , but strongly deformed grains are common these ductile-rich deposits. Grains a higher compressive strength (known as "rigid" grains) behave brittlely than plastically. Grains crystal boundaries (such as chert) or cleavage planes (feldspars) can by fracturing when stresses exceed the mechanical strength of the grain. Some fracturing of grains is observed in the V-Ill PB 1. mechanical composition of sands (in terms of relative amounts rigid and ductile grains clay matrix), averaged by zone, is illustrated Figure 25. The degree of plastic deformation of grains is compared by zone Figure 26 ductiles) and Figure 27 (mica Rgid 1Vb1 +OA 0Ba 0Bb 'If 08c Á 0Bd 0Be 0Bf D.Jctile 10 20 30 40 50 60 70 80 90 I\IBtrix 25. Rigid grains - Ductile grains Matrix ternary plot, averaged by stratigraphic zone of rigid grains, ductile grains, and matrix (commonly referred to as the RDM plot), averaged by stratigraphic zone. 45 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · UlD9f [l¡c!iles 1\Ib1 CA 0Ba CEb 08c "'0Bd 0Be 0Bf SI cef 10 20 30 40 50 60 70 80 90 Ext D9f 26. Undeformed Slightly deformed Extensively deformed ductile grains ternary, by zone Ternary ofundeformed (Uille£), slightly deformed (Sl De£), and extensively deformed (Ext De£) ductile grains, averaged by stratigraphic zone UlD9f Mea 1\Ib1 CA 0Ba CEb 'V 08c 0Bd 0Be 0Bf SI cef 10 20 30 40 50 60 70 80 90 Ext D9f Figure 27. Undeformed - Slightly deformed Extensively deformed mica flakes ternary, by zone Ternary ofundeformed (Uille£), deformed (Sl De£), and extensively deformed (Ext De£) mica flakes, averaged by stratigraphic zone. Mica is essentially absent from the Mb 1 Sand; in aU zones, absolute amounts of mica are low, leading to considerable scatter when normalized. 46 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · The primary measure of the degree of mechanical compaction which a sandstone has undergone is intergranular volume, the point count-based amount of total volume not occupied by the detrital grain ftamework (or by secondary pores or replacement minerals in locations originally occupied by ftamework grains); a related term is "minus-cement porosity". The intergranular volume ofa clean sandstone at deposition is equal to its porosity, typically on the order of 40% (depending on sorting and facies). Porosity decreases due to compaction and cementation; intergranular volume measures only the compactional part of porosity loss. In the following table, zonal averages for intergranular volume are given, along with several other related measures of volume change and ftamework contraction. Compo Volume MacrolTotal Deformed SAND IGV Loss Porosity Ductile Grains Mb1 32.7 8.5 0.78 0.65 OA 29.9 12.6 0.62 0.57 OBa 27.5 15.0 0.57 0.71 OBb 28.2 14.8 0.46 0.77 OBc 30.6 10.8 0.49 0.70 OBd 32.3 9.3 0.47 0.69 OBe 32.4 8.4 0.08 0.67 OBf 28.9 13.9 0.55 0.67 Table 13. Zonal averages of compaction parameters, V -lllPB 1 point-count data Zonal averages of intergranular volume (lGV, %BV), compactional volume loss (%BV, corrected for change in bulk volume), ratio of macropores to total thin-section porosity, and ratio of deformed ductile grains (slightly to extremely deformed) to total ductile grains. Compactional volume loss is the percent change in bulk volume suffered by a given initial aggregate of sand grains due to compaction. Pores visible in thin section have been classified as macropores (>20 microns across) or mesopores «20 microns). Smaller values of the Macro/Total Porosity ratio indicate a greater proportion of smaller (compacted and/or cemented) visible pores. It is evident ftom the figures in Table 13 that there is no significant or consistent increase in the effects of mechanical compaction over the depth range ofthe cored interval. The OBe Sand has one of the highest average IGV values, possibly because the relatively high level of early-formed zeolite cement served to stiffen the ftamework. The preponderance of small pores in OBe sandstones cemented by heulandite and smectite is reflected in the anomalously low proportion of macropores. IGV is at minimum, and the proportion of deformed ductile grains is at a maximum, in the OBa and OBb Sands. Clearly other factors are involved in controlling the extent of mechanical compaction. These other factors probably include sorting, the amount and distribution of clay matrix (which may act to enhance grain rotation and catalyze incipient pressure solution), the amount and type of ductile grains (argillite ftagments are probably softer than dacite grains); and the amount, location, and timing of pore-filling cements (early-formed pore- filling cements being the most effective at minimizing compaction). A series of charts (Figure 28 and Figure 29) and correlations quantify the relationships between IGV and the abundance of ductile grains (without trying to differentiate among different grain types or degrees of ductility) and the amount of pore-filling cement (also with no attempt to distinguish different types of cement, relative timing, or distribution). 47 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .. · · · · · · · · · · · · · ~~--' 40 J, . 35 . HiCmt . . 30 --~ :> ~ 25- 20 15 ~_.~,.~~.- 10 0 5 10 15 20 25 30 Ductiies Figure 28. Ductile grain content vs. intergranular for low- and high-cement samples Crossplot of point-count data (%BV): total ductile grain content (DucHIes) vs. intergranular volume (IGV), grouped by the amount of pore-filling cement Low-cement samples have less than 10% cement, high-cement samples have 10% or more cement. high-cement samples the highest lowest IGV are both cemented by and smectite. appears to be a amount ofheulandite cement (somewhere between 4 19%) to create a mechanically framework to resist compaction. and are ineffective at retarding compaction, at least the abundances observed these samples (less than about 6%). Separate regressions for samples yield equations. samples e <10% cement): IGV= r2 = samples (> 10% IGV = 38.9 - O.35*Ductiles r2 = 0.34 standard error estimate ofIGV these correlations is poor correlations reflect the uncertainties in types cements. 48 · · · · · · · · · · · · · · · · · · · · · · .\ · · · · · · · · · · · · · · · · · · · · · 40 1 35 . . . I . 30 ~ 25 20 - . 15 10 o 5 10 15 Cement 20 25 30 Figure 29. Pore-filling cement vs. inter granular volume, for low- and high-cement samples Crossplot of point-count data (%BV): pore-filling cement (Cement) and intergranular volume (lGV), grouped by cement content Low-cement samples have less than 10% cement, high-cement samples have 10% or more cement For samples, there is no relationship between amount of cement and intergranular volume. For samples that are cemented, there is a good correlation between the amount of cement IGV. probably means the cements or zeolite) are generally during diagenesis, and the only variable is whether or not there is a amount cement to have an impact on sand's behavior. linear regression correlation between IOV and eement content samples only: IGV= + r2 =0.62 regression of IOV against ductile grain content and following correlation is amount of = 34.8 - r2 0.48 + Standard error (JOV) = 3.1 It is that the moderate correlation this relationship is of threshold effects both ductile grain cement abundances: at grains or cement, the correlation is very poor to non-existent, geometric factors playa role. When ductile content or surpass some become significant, there is a very good the available data, it appears thresholds are somewhere 20% for and on order of 5% for these cements (early-forming or 49 · · · · · · · · · · e' · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Authigenic phases Important authigenic phases in these sandstones include: calcite, primarily as a coarsely- crystalline pore-filling cement within concretionary bodies; siderite, as a microcrystalline replacement of clay matrix along certain stratigraphic horizons; kaolinite, as a grain- replacing and pore-filling phase, usually a fmely-crystalline, microporous aggregate of numerous book-like particles; pyrite, as widespread, pore-lining microcrystalline (10 microns or less) ftamboids and occasional larger crystal aggregates; heulandite, a zeolite mineral commonly associated with unstable volcanic deposits, as small (10-20 microns), stubby tabular pore-lining crystals and microporous aggregates; and smectite, as a widespread grain-coating phase in the volcanic-rich sands, in many cases intimately associated with heulandite as a microporous, pore-filling mixture. The following paragraphs contain more details on the occurrences ofthe major authigenic phases. Calcite: Calcite occurs as a coarsely-crystalline to poikilitic pore-filling cement in patches or spots up to 1 mm across that occur in association with similar patches to form vuggy or spongy concretionary bodies with diameters up to several centimeters (see upper right and center left photomicrographs in Figure 31). Such concretions are most common in the upper OBd Sand, but occur rarely in younger and older sands as well. In some cases the concretions develop in sands with carbonate shell ftagments, or with volcanic glass shards (now preserved only as molds within a patch of calcite cement). In some cases the calcite patches are rimmed by microcrystalline pyrite. Sand grain packing density within the patches is very open, suggesting that the cement formed prior to any significant compaction. Siderite: The primary occurrence of siderite is as a microcrystalline replacement of biogenic clay matrix, particularly in the OA Sand. Siderite also occurs as widespread but sparse, minute (10 microns) pore-lining rhombic crystals through much of the OA Sand, in association with the micritized matrix. A third occurrence of siderite, throughout the cored interval, is as the microcrystalline replacement of dilated, splayed biotite flakes to form large, irregular micritic aggregates. Kaolinite: Kaolinite is a common (and probably underestimated) pore-filling authigenic phase, occur most commonly as small patches of finely-crystalline, microporous aggregates of book-like crystals filling several adjacent intergranular pores (see lower two photos in Figure 31). Kaolinite is widespread in the Mbl, OA, and OBd Sands; it is rare to absent in the OBb, OBc, OBe, and OBf Sands. Pyrite: Pyrite is present in consistently high amounts (1-3%) throughout most of the OBa through 0 Bf Sands. Pyrite occurs as small (10-20 microns diameter) pore-lining crystals and ftamboids, crystal aggregates, and occasional grain-replacing microcrystalline masses (after argillaceous ftagments or lignitic flakes). Pyrite forms relatively early, and much of it is probably associated with near-surface microbial sulfate-reduction activity. Heulandite: Heulandite is a zeolite mineral, commonly found as a diagenetic product in volcanogenic sands. It forms a solid solution series with clinoptilolite. In fact, this phase was identified as clinoptilolite by the original XRD analyses, but later chemical information (energy-dispersive spectra during SEM studies) confirm that this is actually 50 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · calcium heulandite (empirical formula Ca1.5Nao.75A4Si14036.12(H20)), with an unusual elongate bladed crystal habit (Figure 30). Ca-heulandite has a grain density of2.2 glcc, a calculated electron density of2.18 glcc, and a calculated photoelectric factor (PEF) of 4.18 barns/cc. In these sandstones, heulandite occurs as fmely-crystalline (up to 10 microns in the longest dimension) tabular and bladed crystals growing in ftom pore walls to form microporous pore-filling masses, in some cases associated with smectitic clay. Heulandite is present only in sands of the OBf, OBe, and lower OBd zones; it is most abundant towards the top of the OBe Sand. Smectite: Smectite occurs as a grain-coating clay (Figure 34) and within intergranular pores as a microporous fill (in association with heulandite), in sandstones with high volcanic (in particular, tuffaceous volcanic) content, such as the OBe Sand. Smectitic grain coats are quite thin, on the order of 5-10 microns, and may be below optical resolution in some cases. Traces of smectitic coats are recognized sporadically up into the OBa Sand, but such coats are consistently present only over limited intervals (5-10') ofthe OBe and OBd Sands. Based on XRD data, smectite is also present as an alteration and replacement of tuffaceous volcanic rock ftagments, now recognizable only as indeterminate argillaceous grains. The XRD signature of smectite in these sandstones is quite distinct and well crystallized, typical of bentonites (altered tuffaceous deposits). Smectite-rich bentonitic grains probably overwhelm the XRD response of any authigenic grain coats. These bentonitic grains are inferred to be present ftom about the middle of the OA Sand through the OBi There is a transition zone in the OA (around 4410-20'), in which bentonite-bearing middle shoreface sands are rapidly replaced upwards by bentonite-ftee middle shoreface sands, with no obvious physical contact or change in petrographic character. The detailed stratigraphic distribution ofXRD smectite (Figure 23) suggests that some of the clay matrix in distal shaly sands is bentonitic in origin. A series of petrographic stratigraphy logs, Figure 39 through Figure 41, document the approximate stratigraphic distribution of the major authigenic phases (where present in greater than trace amounts). Average abundances of major authigenic phases, by zone and by depositional facies, are summarized in Table 14 and Table 15, respectively. SAND Calcite Siderite Kaolinite Pyrite Heulandite Smectite Mb1 0.0 0.5 0.3 0.1 0.0 0.0 OA 0.0 1.8 1.0 0.0 0.0 0.0 OBa 0.0 0.6 0.2 0.9 0.0 0.4 OBb 0.0 1.0 0.3 2.1 0.0 0.5 OBc 0.0 7.9 0.2 1.3 0.0 0.1 OBd 0.3 0.6 0.2 2.7 1.9 1.1 OBe 0.0 1.1 0.0 1.3 9.1 3.1 OBf 0.0 2.1 0.0 3.0 0.2 0.9 Table 14. Point-count abundances of authigenic phases, averaged by zone Zonal averages (point-count data, %BV) of major authigenic phases. Averages may be misleading for phases with a strong bimodal distribution, such as the carbonates: carbonate cement is largely concentrated within discrete concretions, which are not representatively sampled by the point-count assemblage. 51 FACIES Calcite Siderite Kaolinite Pyrite Heulandite Smectite -. DC 0.0 0.5 0.3 0.1 0.0 0.0 MSF 0.0 1.6 0.9 0.1 0.0 0.0 PLSF 0.2 2.9 0.3 1.7 0.0 0.3 LSF 0.0 1.1 0.1 2.1 3.7 1.8 DLSF 0.0 1.3 0.0 3.3 0.0 0.0 Table 15. Point-count abundances of authigenic phases, averaged by depositional facies Average content (point count, %BV) of major authigenic phases, by depositional facies. No point count samples were selected from the Lower Offshore/Shelffacies; the Distal Lower Shoreface (DLSF) is represented by a single sample. ,-- -~."I'" ....."",..". ....,"'....: ..... ,..~~ .'., C:~TIFFS~NANCV~B468115B.TIF 4681.15 £t. Log: 49789 Mag=3999 FOV=35.493597 29.9KV 19-28-2994 91:94PM 19.9uM Figure 30. SEM photomicrograph of bladed heulandite crystals, 4681. J 5' (OBe Sand) High-magnification view (note 10 micron scale bar) of abundant elongate crystals of Ca-heulandite lining and partially filling pores in a sample from 4681.15', in a heulandite-rich interval near the top of the OBe Sand, XRD analysis indicates 10 wt% heulandite in this sample. Photo by Core Lab. 52 32. ~.~. : '" . ~.. ~, ~~~' Y¿~~TIFFS'4566_8E.TIF 4566.8 *~ Log: S84BZ "ag=1888 FOV=18S.Z1e5ZS Z8.8K~ Z8.8uM 4566.80' (OBc): Pore-filling authigenic kaolinite (Ka); note thin smectitic coats on grain surfaces. Scale bar = 20 microns ,;.:.,t~~::~7~:~~r~ chit,; .,,; ,; .}':t ¿ "'_'.j"':'''':' .\¡~lii-J~' '.L~ , iC'. ,,-'- ,". ~_:-~:::;. .,:,,!~; -.'" _;..'f'......~~~;~ . ."...:~.'_..:f"7.ì'.- Z8.8K~ 4721.70' (OBf): extensive grain-coating smectite (Sm); authigenic Kspar (Kf: upper left). Scale bar = 20 microns. Figure 34. Scanning electron photomicrographs of 4566.80' and 4721.70' -. Core Labs photos 56 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Illite Mb1 OA OBa OBb 'Y OBc  OBd OBe OBf Chi Smec 10 20 30 40 50 60 70 80 90 35. Illite - Smectite - Chlorite clay mineral plot, averaged by stratigraphic zone Ternary based on XRD data, of the relative abundances ofillitic clays, smectite (Smec), and chlorite (Chi), averaged by stratigraphic zone. Illite Mb1 OA OBa OBb 30 'Y OBc OBd OSe OSf 30 ~ 10 Smec Kaol 10 20 30 40 50 60 70 80 90 Figure 36. Illite - Smectite - Kaolinite clay mineral ternary plot, averaged by stratigraphic zone based on XRD data, of the relative abundances of illitic clays, smectite (Smec), and kaolinite (Kaol), averaged by stratigraphic zone. 57 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Smectite Mb1 OA OBa OBb '" OBc À OBd OBe OBt Kaol 10 20 30 40 50 60 70 80 90 Chi 37. Smectite - Kaolinite - Chlorite clay mineral ternary plot, averaged by stratigraphic zone Ternary plot, based on XRD data, of the relative abundances smectite, kaolinite (Kaol), and chlorite averaged by stratigraphic zone. Smectite Mb1 OA OBa OBb VI OBc .. OBd OBe OSt Carb 10 20 30 40 50 60 70 80 90 Pyrite 38. Smectite - Carbonate - Pyrite ternary diagram, averaged by stratigraphic zone plot (based on XRD data), of smectite, total carbonate (calcite, dolomite, siderite; may include some detrital dolomite or calcite shells), and averaged by stratigraphic zone. 58 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · > ¡:: "E W ::::> 5J- o '" '" .~ u. o ~ a. Grain Size Carb Cmt Ü :;;: 2 '" ct C c: 2 Ë ¡:: w >. ( ) + 'õ :2 "- ro ¡:: ( ) 2 2 15 0 c. Õ E ~ J:: ¡¡: ¡:: ¡:: [I! ¡¡: :£ ß ¡:: !!J ( ) (/) ¡¡: ~ " i! '" 0 00 > 'ã. ¡:: Õ ( ) '3 \ij >. N 5:, -' 0 0 '" E ( ) " J:: (/) U "- "- u "- ;.:: (/) :r: 0 (/) C§ Depth 4398 ---¡¡¡¡o 4402 ~ 4406 -4408 4410- 4412 ~ ~ 4418 ~ 4422 -4424 '0 ¡:: '" (/) --~-- '" Q) o 4506 D Q) o _m__~"~_ 39. Petrographic stratigraphy log, OA OBb Sands, V-IllPBl 59 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Grain Size Carb Cmt (}) 1:5 :;¡ 2 > ( ) œ 0:: ë c: .2< Ë c: "(3 I- W >. <D + "õ 0 <= W ro a. ëii c: <D ~ 2 2 '6 0 ~ ü: c: Q, LÇ c: 0 :::J Q, LL .c: c: :š 13 2 Q) e (/) ü: 2 ,s. 0 ro 0 0 > c: c: ~ 0 ( ) :; (jj ã) '" >.-' 0 0 ro E Q) .c: a. ü a. Ü a. >::: (j) I (/) o co o '0 co o 4664 4666 4668 4670 4672 4674 ~ " 4678- 40. Petrographic stratigraphy log, OBc through OEd Sands, V -Ill PEl 60 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Grain Size Carp Cmt t) 2 I I 2 > [I! 0:: >,1 I ë c: 2 Ë c: I- LU ( ) + 'õ 0 'ë: w CL ro~ c: ( ) ~ 2 'ö 0 Q. E '" '<:1 ¡:¡: c: Q. t5 c: " :::J ( ) ¡:¡: 2 c: " '" 0 !!2 ( ) 1ñ 5 (f) > 'õ, c: ( ) :; ãj 0 >, '" .~ -' 0 E ( ) ill .<: (f) Ü CL Ü (f) I 0 (f) " c: . '" (f) ( ) co o " c: '" (f) " co o Cõ o Figure 41. Petrographic stratigraphy log, OBd through OBf Sands, V -111PBl 61 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · reservoir Schrader sandstones cored in good to excellent, permeabilities dean sandstones rangmg from many tens to hundreds of millidarcies. Because very grain size of most of these sandstones, pore are also rather smalL This does the sandstones vulnerable to major damage by relatively amounts of pore-lining authigenic phases. sandstones such good permeability, the capillary properties are not that advantageous (small pores throats, area). As a result, irreducible water saturations are fairly high all the best sandstones. Sandstones such very fine pores are liable to damage by capillary blocking (loss of wellbore filtrate the formation that is very slow to produce back) by migrating fines (loose is present sandstones, usually at fairly low levels, nor are velocities of high-gravity to be to kaolinite). Two ternary plots provide an overview of pore system of these sandstones. 42, Pores - Matrix, it is dear youngest sands (Mbl, OA, OBb) have mostly open pores, whereas those the more volcanic-rich older zones (OBd-OBt) have amounts of cement The character of the system itself is documented Figure 43, Macropores - Mesopores - Micropores. Fbres 1Vb1 OA 08b 0Bc "Y0Bd .À 08e 08e 0Bf Cerrant 10 20 30 40 50 60 70 80 90 M3trix Figure 42. Pores - Cement Matrix ternary diagram for all point-count samples, zone data) of macropores, cement, and averaged 62 · · · · · · · · · · · · · · · · · · · · '. · · · · · · · · · · · · · · · · · · · · · · · IVBcroFbr MJ1 Q/\ 0Ba 08b T 0Bc 0Bd 0Be 0Bf lVèsoFbr 10 20 30 40 McroFbr 50 60 70 80 90 43. Macropores - Mesopores Micropores ternary averaged by stratigraphic zone Ternary and routine core data) of macropores (>20 microns across), mesopores (visible but <20 microns in and micropores (not optically resolvable; calculated ITom difference between core porosity and total visible porosity) Most sand out: , coarser- sands, a pore system OBe, extensive heulandite a pore system about evenly may be a progression increasing OBb upwards, not conform to 44 provide visual evidence of the character of varymg and pore types. type proportions correlate Compare, example, two photographs Figure 44, 4511.15' and 4567.0'. porosity is very for both sandstones, proportion of macropores is significantly greater 4567.0': absolute permeability is nearly twice as high 4567.0' than 4511.15'. appears to be: porosity is mostly macropores = 100-1000 permeability; macropores < mesopores = 100 porosity primarily micropores = 1-10 terms petrographic parameters mix types, most are size, clay cement. Multivariate linear regression analyses of permeability as a size, amount cement correlation equations. 63 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Log(HPERM) = 10.8*MGS - 0.09*Matrix - 0.06*Cement + 1.68 r2 = 0.71 Standard error (Log Permeability) = 0.35 Log(HPERM) = 2.82 - 0.11 *Matrix - 0.065*Cement ~ = 0.67 Standard error (Log Permeability) = 0.38 where HPERM is the horizontal plug permeability, in millidarcies; MGS is mean grain size :fYom point counting, in microns; Matrix is total matrix content, :fYom point counts (%BV); and Cement is the total pore-filling cement content, :fYom point counts (%BV). These standard errors translate to a factor of about 2 to 2.5. Microporosity is present in these sandstones primarily within clay matrix and argillaceous rock :fYagments, with some associated with authigenic smectite when present. The multivariate linear regression equation for microporosity is as follows: Microporosity = 0.21 *Lithics + 0.84*Matrix + 1.36*Smectite + 0.37 ~ = 0.64 Standard error (Microporosity) = 2.2 where Microporosity is the estimated amount of pores too small to resolve optically (the difference between measured core plug porosity and total thin-section porosity, %BV); Lithics is the total lithic :fYagment content :fYom point counts (not including chert or other polycrystalline quartzose grains, %BV); Matrix is total matrix content, :fYom point counts (%BV); and Smectite is the amount of authigenic smectite identified during point counting (%BV). The coefficients for both matrix and smectite are too high to be physically meaningful, and probably reflect the difficulties in properly quantifying such microcrystalline phases in a very [me-grained sand by point counting. Reasonable values of microporosity associated with matrix or smectite rims are apt to be quite high, on the order of50% (possibly more, for smectite) of the total amount counted. 64 6% 9% · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Interpretations Stratigraphic Multiple stacked sandstone reservoirs are present in the cored interval of the V-IIIPBl. These reservoirs represent various depositional facies, some more proximal and some more distal. The 0 Sands reservoirs consist of a series of incomplete, shallow marine shoreface successions punctuated by stratigraphic discontinuities. None of the 0 Sands exhibit a continuous vertical facies succession; individual sands are typically incomplete upwards-shoaling progradational sequences with transgressive caps. The Mbl Sand, also cored in the VIIIPBl, is stratigraphically separated ITom the 0 Sands, and records a transition ITom marine to deltaic depositional environments (S. Phillips, written communication). Textural attributes such as grain size and clay content are functions of depositional facies and are the major controls on reservoir quality. First-order differences in reservoir quality between stratigraphic intervals can be largely explained in terms of facies differences. There is a small difference in depth of burial, as the shallowest sands have a few hundred feet less overburden and lower effective stress. Differences in the degree of compaction between reservoirs, however, are not evident, and only rather subtle signs, such as the distribution of pore throat radii (see section on Mercury injection capillary pressure results) attest to the impact of increasing stress with depth. The most important change of a truly stratigraphic nature in this interval is the evolution of sand detrital composition (with some zones being volcanic-rich, others much less so), and the consequent differences in diagenesis. The more volcanic-rich zones are liable to suffer considerable precipitation of pore-lining and pore-bridging heulandite and smectite. These microcrystalline phases serve as baffles in the pore system, and, because of their widespread distribution and high cation exchange capacity, have a strong impact on the sandstone's electrical properties. As discussed above in the section on Detrital properties (e.g., Figure 20), volcanic input peaks during the OBe Sand, having increased slightly after deposition of the OBf. After the OBe, the influx of volcanic detritus dropped back to previous levels in the OBd, and then continued to fall steadily throughout the rest of the cored interval. Active pyroclastic volcanism waned, and volcanic-derived sand was gradually diluted and replaced by sands of a metasedimentary origin. The table below compares a selection of point-count parameters averaged by zone to illustrate this evolution. 66 I I · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · SAND Fw MGS FELDSPAR VRF HEUL SMEC Mb1 119 1.2 0.2 0.0 0.0 OA 102 5.0 2.2 0.0 0.0 OBa 89 5.3 2.8 0.0 0.4 OBb 90 4.3 2.0 0.0 0.5 OBc 92 5.3 1.4 0.0 0.1 OBd 91 7.5 3.3 1.9 1.1 OBe 107 10.7 5.3 9.1 3.1 OBf 103 9.3 3.3 0.2 0.9 Table 16. Zonal averages of selected point-count parameters Zonal averages of selected point-count parameters: ttamework mean grain size (Fw _ MOS, in microns: mean size of all grains at least 30 microns in diameter); total feldspars (plagioclase and alkali); volcanic rock ftagments (VRF); heulandite (Reul); and smectite (Smec). All values except grain size are in units of%BV. Note the maximum in feldspar, VRF, heulandite, and smectite content in the OBe, accompanied by a local peak in grain size. The dominant depositional facies in the OBe and OBfis lower shoreface, a bit more distal than the facies developed in most of the younger sands. So the relatively coarse mean grain size is all the more noteworthy, and may reflect an overall coarser and less recycled shoreface system. The differences in composition and diagenesis are reflected in the petrophysical properties of the sandstones. The table below is a summary of two such properties, horizontal permeability and Sw (402'), the calculated water saturation at a capillary pressure equivalent to an oil column height of 402' above the free water level, as a function of stratigraphic zone. To minimize variations due solely to facies differences, only samples from the lower shoreface depositional facies have been included in the averages. SAND Mbl OA OBa OBb OBc OBd OBe OBf Lower Shoreface HPERM Sw (402) 366 16 37 23 72 14 85 33 41 61 Table 17. Zonal averages of permeability and Sw (402) for lower shoreface sands only Averages, by stratigraphic zone, ofhorÍzontal (air) penneabiJity, in md, and calculated water saturation at 402' above ftee water level (Sw (402)), based on MICP data, using data ftom lower shoreface sandstones only. No such sandstones are present in the Mbl, OBb, or OBc Sands. There are significant variations in the zonal averages of both penneability (20x variabiJity) and irreducible water saturation (2-3x), even though the samples are drawn ftom a single depositional facies with relatively uniform grain size, sorting, clay content, and burrowing. Nor does reservoir quality increase systematically with depth. 67 I I · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Depositional facies The V -lllPB 1 cored interval has been interpreted in terms of depositional facies based on the sedimentological and ichnological descriptions ofthe core by a number of workers. The facies recognized are part ofa delta/bay complex (Mbl) or a shallow- marine shoreface system (OA through OBi). Depositional facies of the Mbl (and not found anywhere else in the core) include distributary channel sands (DC), splay sands, bay-fill muddy sands and bay muds. The shallow marine facies present throughout the 0 Sands, and arranged in a series of complex upwards-coarsening parasequences, include middle shoreface (MSF), proximal lower shoreface (PLSF), lower shoreface (LSF), distal lower shoreface (DLSF), and lower offshore/shelf (LOS). No single parasequence contains a complete distal-to-proximal facies progression. Instead, individual sand bodies are interpreted to consist of a lower progradational highstand component, capped by a discontinuity (falling-stage sequence boundary), and overlain by an upwards- deepening transgressive component (S. Phillips, written comm.). Distinctions among the various shoreface environments are based on differences in burrow types and intensity, diversity and abundance of palynoflora, relative clay content, and the types and preservation of primary depositional structures. There are ranges of petrophysical and petrographic properties in a given shoreface environment that can partially overlap the ranges of adjacent facies (e.g., MSF and PLSF or LSF and DLSF). Assignment of a given plug within such a transitional contact to a specific facies is somewhat arbitrary, and may have the effect of biasing global averages of properties for that facies. Bearing in mind this caveat, there typically are still significant differences between depositional facies in the averages of many properties. Thin-section descriptions have been sorted by facies in the "Dep Env" worksheet of the Vlll_Petrog.xls spreadsheet file. The typical petrographic character ofthe major depositional facies is summarized in the following paragraphs. Lower Offshore / Shelf (8 samples, OBb through OBe): silty shale and sandy siltstone, moderately to well sorted, common to abundant biogenic clay matrix (in rare cases replaced by micritic siderite), common to abundant pyrite; carbonate cement is rare to absent (due to the lack of macropores to be filled). Distal Lower Shoreface (4 samples, OBb and OBc): silty very fme sandstone, moderately to well sorted, common biogenic clay matrix, common ductile grains, common to abundant pyrite, minor authigenic carbonate crystals. Lower Shoreface (45 samples; OA, OBa, OBd, OBe, OBi): very fme to fine-grained, occasionally slightly silty, well to very well sorted; biogenic clay matrix is typically rare to absent; ductile grains are common, pyrite is minor to abundant (largely due to stratigraphic variations), and carbonate cement is rare to absent except within concretionary zones. Proximal Lower Shoreface (39 samples, OBa through OBd): very fme to fine-grained, very well sorted, generally matrix-rree, with common to abundant pyrite, and localized concretionary carbonate cement. Middle Shoreface (22 samples, mostly OA and a few OBa): very fine to fme-grained, very well sorted, with widespread minor micritized biogenic matrix (in the OA Sand), little or no pyrite, and rare to absent carbonate cement. 68 ~ t · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Distributary Channel (10 samples, all Mbl): fme-grained, very well sorted, matrix-tree, with few ductile grains, no pyrite, and very rare authigenic carbonate cement. Point-count properties, averaged by depositional facies, are summarized in Table 18 (texture and pore system) and Table 19 (detrital and diagenetic); XRD mineralogy averages for the facies are presented in Table 20. FACIES MGS Fw MGS %CLAY Matrix MacroPor MesoPor MicroPor DC 117 119 0.5 0.7 24.5 6.9 3.6 MSF 94 101 1.3 1.6 16.5 10.0 7.1 PLSF 84 96 2.6 2.6 13.0 9.8 9.8 LSF 77 96 4.1 4.6 5.4 11.1 11.9 DLSF 28 63 15.5 15.7 0.0 6.7 20.0 Table 18. Facies averages of selected point-count textural measures, V -lllPB 1 Point-count textural and pore-system parameters, averaged by depositional facies: mean grain size (MGS) and rramework mean grain size (Fw_MGS), both in microns; %Clay-sized material; % clay matrix; macropores, mesopores, and micropores; all values except grain sizes are %BV. ~ ~ .... y .... ~ ~ = .= .... ~ ~ .... .... .. .... y = ~ "C e .... = ..:¡ .... «I = .... = ~ c. = .... .... ~ = .... ~ .... = .... ~ U ~ - .... ,.Q y - .. .... "C «I y .. .. ~ = ~ .... ~ - .... - "Z = e ~ "C .. ~ ~ ~ .... ~ I FACIES ~ ~ ~ ~u 00 == 00 ~ ~ DC 1.2 30.4 0.2 0.1 0.0 0.0 0.5 0.1 1.1 MSF 5.0 34.8 2.2 0.8 0.0 0.0 1.6 0.1 2.8 PLSF 5.1 34.0 2.3 3.9 0.3 0.0 2.9 1.7 6.1 LSF 8.8 33.2 3.9 2.4 1.8 3.7 1.1 2.1 9.5 DLSF 6.7 24.3 1.0 2.0 0.0 0.0 1.3 3.3 4.7 Table 19. Facies averages of selected point-count detrital and diagenetic categories, V -lllPB 1 Point-count detrital and diagenetic parameters, averaged by depositional facies (all %BV): total feldspars, total lithic rragments (including chert), volcanic rock rragments, detrital carbonate (shells, dolomite crystals); smectite; heulandite; siderite; pyrite; and pore-filling cement (P-F Cement). ~ .... .... ~ ~ .... ,.Q .... - - y .... = ~ ~ .. .. = .... «I e = ~ ~ ~- FACIES U ~ == ~u 00 DC 0.3 0.0 0.0 5.3 0.0 MSF 3.6 0.6 0.0 14.0 3.1 PLSF 6.5 2.7 0.0 15.0 7.5 LSF 3.7 2.5 1.7 17.3 9.5 DLSF 5.5 3.0 0.0 26.5 10.6 LOS 3.3 1.3 0.3 28.0 11.9 Table 20. Facies averages of selected XRD mineral estimates, V -lllPBl Average XRD mineralogy by facies: total carbonates (Carb), pyrite, heulandite (Heul), total clay minerals, total smectite (including smectitic portion of mixed layer clays). 69 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Much of the apparent variation in mineralogy with depositional facies is probably better explained in terms of stratigraphic changes in provenance and diagenesis. These depositional facies are generally very distinct in tenns of petrophysical properties, which raises the possibility of using statistical means to recognize the facies :from wire line data. Global averages for selected petrophysical properties are summarized in Table 21. DC MSF PLSF LSF DLSF LOS CORE Porosity 34.7 30.2 30.7 27.3 24.3 22.4 Horiz. Penneability 1895 330 245 84 6 4 Vert. Penneability 1796 107 145 9 2 1 Kv/Kh 0.83 0.75 0.40 0.64 1.4 1.4 Grain Density 2.65 2.69 2.71 2.70 2.73 2.74 Sw 68 39 44 60 83 90 ELECTRICAL Archie "m" 1.73 1.86 1.84 1.86 Archie "n" 1.90 1.78 1.78 1.67 Qv 0.03 0.15 0.64 0.75 MICP SW @ 402' aFWL 7 20 25 36 72 WIRELlNE GR 29 54 53 66 72 84 RHOB 2.07 2.16 2.17 2.24 2.34 2.36 NPHI 45 45 45 43.5 42 42 RD 6.7 26.3 13.4 7.2 4.5 4.3 PEF 2.2 2.7 2.9 3.2 3.2 3.3 DT 119 112 118 112 108 107 DTS 255 231 242 227 232 229 Table 21. Average petrophysical properties by depositional facies, V-IIIPBI Selected petrophysical properties averaged by depositional facies over the entire cored interval. Measurements from routine core plugs include porosity (%BV), horizontal and vertical permeability (millidarcies), KvIKh ratio, grain density (g/cc), and water saturation (%PV). Electrical properties special core analyses include the Archie exponents "m" and "n" (not clay-corrected), and the Waxman-Smits Qv factor (from CoCw tests). A representative value from mercury injection capillary pressure measurements is the calculated wetting phase saturation at a pressure equivalent to a hydrocarbon column height of 402' above free water level (aFWL) in an oillbrine system. Average values for wireline logs are given for: gamma ray (OR, API units), bulk density (RHOB, g/cc), neutron porosity (NPHI, %BV), deep resistivity (RD, ohm-m), photoelectric factor (PEF), sonic slowness (DT, msec/ft), and shear sonic slowness (DTS, mseclft). Properties that depend primarily on various textural criteria (e.g., different measures of clay content or mean grain size) tend to be well correlated with depositional facies. On the other hand, properties that are significantly affected by changes in composition or pore-system parameters (subject to diagenetic modification) are much more likely to exhibit an equal or stronger control by stratigraphic setting. Some ofthese properties were discussed in the preceding section. As volcanism-related minerals are largely 70 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · coníìned to the older sands (OBd, DBe, pore-scale properties such as conductivity and relative are to be significantly different these zones than similar depositional facies in younger sands. Compare the permeability and Qv values 21. A log model for formation needs to be zone- lithofacies-specific. Poroperm crossplots of all data points are included as Figure 45 ehorizontal permeability) and 46 (vertical permeability). Facies-specific regression parameters and descriptive statistics for porosity and horizontal permeability are listed Table 22. See the section below on Routine core analyses for further comparisons of permeability distributions different facies. 10000 1000 -- 100 E ... ( ) Il. J: 1 0 -- 1 - 0,1 o 5 10 15 20 POI" 25 30 35 40 45. Porosity vs. horizontal permeability crossplot for an data points, coded by depositional facies Semi-logarithmic crossplot of core plug porosity and horizontal permeability, for all samples by depositional facies: DC distributary MSF middle shoreface, PLSF - proximal lower shoreface, LSF -lower shoreface, DLSF - distal lower shoreface, LOS lower offshore/shelf regression A b Max 0.0002 0.4398 0.922 0.68 4300 0.0005 0.4107 0.817 1.07 2240 0.3754 0.739 0.09 0.79 843 0.0003 0.4156 0.571 0.09 18 3310 0.0257 0.199 0.137 0.11 1.19 35 0.0107 0.227 0.261 0.13 1.86 50 FACIES DC MSF LOS Table 22. Facies-specific poroperm regression parameters and variance, horizontal permeability regression parameters form HPERM = A *exp(b*POR)) and iTactional variances for core plug porosities and horizontal permeabilities, averaged by depositional facies. Note the single high maximum value in the LSF facies Gust below a contact with a more proximal facies). 10000 ~-_. '-- 1000 - MSF E 100 - ... ( ,) a.. > 10 - 1 n 0.1 0 5 10 15 35 40 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .._n-. 46. Porosity vs. vertical permeability crossplot for all data points, coded by depositional facies Semi-logarithmic crossplot of core plug and vertical permeability, for all samples by depositional facies: DC - distributary channel, MSF - middle shoreface, PLSF - proximal lower shoreface, LSF - lower shoreface, DLSF - distal lower shoreface, LOS -lower offshore/shelf general, classifying data points by facies more tightly-grouped categories a the two schemes is the categories. SAND OBc zone results a way to compare divided by the mean Val" Val" (HPERM) 0.19 1.06 DC 0.11 0.68 0.17 2.29 MSF 0.09 1.07 0.17 2.03 0.13 2.03 LSF 0.09 18 0.20 2.74 0.11 1.19 0.14 1.62 LOS 0.13 1.86 0.09 1.25 0.06 0.87 Table 23. Variances of core porosity and permeability, averaged by zone and by facies Variance of core plug porosity (Var (POR)) and permeability (Var (HPERM»), averaged by stratigraphic zone (SAND) or depositional facies (F AGES). penneability is as stratigraphic categories), have a variance greater depositionaL reflects the fact facies, and is the more proximal facies and consistently to porosity to exception of lower shorefaee deposits, other category, stratigraphic or lower shoreface is more defined zone between the consistently clean sands sands of more distal deposits. 72 I: · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · order to extrapolate the results learned cored interval the V-III, the cored of the 0 Sands was described terms of lithofacies characteristics (Figure 47), forming the basis for a petrofacies classification scheme. lithofacies description was used combination with petrophysical data as the basis to classify intervals core into one of several petrofacies. Discriminant analysis logs was then carried out in an effort to match the classifications based on core description, generally very good (Figure 48). Schrader Bluff Lithofacies C) o Highly bioturbated, vf- fg sandstone (>80% md perm) Stratified vf-fg sandstone, low-angle H CS (>80% sand; 70-175 md perm) o (0 sandstone (;¡ . G.!ôld..'d &w>d Be<.!':> M Mõ::'5i"o IJ,·OI/;,,;url)J:llm:'$ R- ft.~jl:-:"}C' and siltstone (50-80% 21 Siltstone wi (20-50% vfg sandstone md l J Siltstone « 20% 47. Diagram illustrating the five major lithofacies defined for the V-IIIPBl 0 Sand interval diagram of the main reservoir and non-reservoir lithofacies identified in the cored interval ofthe 0 Sands in the V -Ill PB L The lithofacies scheme has not been formally extended to cover the more deltaic environments encountered in the Mb 1 Sand core. 73 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · I. Lithofacies Log Model Transform Well; V·111PB1 4381.0 - 467S.0 FEET Filter: CORE_FACIES,CORE_FACIES::> 0 "" ., '" -:.¡ '" c'-' '" In '" ..,.. '=' - .,.. N '" "" ~ '" ? 0 ~ ëi5 o "- o a.. Ê "- IV a.. G . Graded Sand Beds M . Massive Bioturbated Rippled --;7 lithofacies :3 Histogram 100 80 >. (,) 80 <: '" ::¡ ~ 40 ... 20 0 CALC_SB_MVOL_ILUTE_1 0 Color: Facies Classification 11IIIII 1 2 :3 4 48 Perm 8in (md) Facies 48 >175 me! Facies 4 70-115 me! Facies 3 10-10 me! 0.01 20.4 40.7 61.1 81.4 101.8 122.1 142.5 More 48. Petrofacies from core wire line log response, and poropenn data This summarizes the various used in constructing a model for the 0 Sands in the V-Ill PB 1 : lithofacies identified from the description of the conventional core, statistical of core plug poropenn data associated with each lithofacies, and wireline log response. correspond to facies corresponding to Petrofacies 1, shale, corresponds / facies. 2, siltstone sandstone, corresponds to a range of depositional Shoreface, Lower Lower / Reservoir petrofacies 3, as a constituent depositional facies, is very strongly correlated the Lower setting. Petrofacies and sandstone, corresponds to Shoreface depositional facies, some overlap the Shoreface Middle Shoreface Petrofacies sandstone, is to best-quality shoreface facies: Lower Shoreface and Middle following table is a concordanee petrofacies classification values of core plugs common to and depositional facies are Lower 74 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Petrofacies Dep. Facies 1 2 3 4 4b MSF 2 3 13 14 32 PLSF 0 3 10 37 48 LSF 5 34 77 18 0 DLSF 14 37 1 0 0 LOS 127 21 1 0 0 Table 24. Number of core plugs common to depositional facies and petrofacies The major depositional facies listed in the concordance above are: MSF - middle shoreface; PLSF - proximal lower shoreface; LSF - lower shoreface; DLSF - distal lower shoreface; LOS - lower offshore/shelf. The values listed are the number of core plugs common to both the depositional facies and the petrofacies corresponding to that cell (e.g., 2 plugs assigned to the Middle Shoreface facies are also assigned to Petrofacies 1,3 to Petrofacies 2, and 13 to Petrofacies 3,etc.). Note that these values are the number of common plugs, which does not necessarily correspond to thickness of cored interval due to high-density plugging of selected reservoir zones. In terms of stratigraphic distribution, the heterolithic petrofacies 3 is an important component ofthe OA, OBa, and OBb Sands, and the primary petrofacies for the OBd and older intervals. Petrofacies 4 is a small part of the OA, OBa, and OBd intervals, and the major petrofacies in OBb and OBc. Petrofacies 4b is a minor part ofthe OBb, OBc, and OBd reservoirs, and the dominant petrofacies in the OA, and OBa Sands. Selected average petrographic and petrophysical properties of the five main petrofacies (including the non-reservoir petrofacies I and 2) are summarized in Table 25, below. Petrofacies 4b is, by most measures, the highest quality group of reservoir sandstones: it is the coarsest- grained (due in large part to the influence ofMb1 distributary channel sandstones), most porous and permeable, with the least clay and the lowest irreducible water saturation (e.g., SW( 402') :&om MICP analyses). The pore system of 4b sandstones is dominated by macropores, with subordinate mesopores and minor micropores. Reservoir petrofacies 4 is much less permeable (especially in terms of vertical permeability, as expected for a strongly laminated sand), with a finer grain size and more clay than 4b, and a pore system dominated by mesopores rather than macropores. Petrofacies 3 is of similar grain size to Petrofacies 4, with slightly more clay and slightly higher Sw(402'), but has a pore system dominated by micropores. If the influence of the Mbl distributary channel sandstones were excluded :&om the averages for Petrofacies 4b, the gap in reservoir quality between 4b and the other reservoir petrofacies would narrow somewhat, but 4b would remain the best by nearly all measures (Table 26 and Table 28 through Table 30). 75 Petrofacies 1 2 3 Core Porosity (%BV) 22.4 25.2 27.5 Core horizontal perm (md) 4.1 15.5 104 Core vertical perm (md) 1.4 3.7 14.5 Grain Density (glee) 2.73 2.71 2.71 Core water saturation 90 76 61 MICP Sw@402' aFWL 94 48 32 XRDClayminerals(wt%) 30 18 17 Mean Grain Size (microns) 75 72 Pt Count Matrix (%BV) 6.3 5.5 Macroporosity (%BV) 0.6 6.9 Mesoporosity (%BV) 10.3 10.1 Microporosity (%BV) 15.8 11.7 Archie "m" 1.84 1.88 Archie "n" 1.62 1.68 Gamma Ray (API units) 83 75 62 NPHI (%BV) 41.8 43 43.9 RHOB (glee) 2.37 2.30 2.24 Table 25. Average petrophysical and petrographic properties by petrofacies Selected average core, X-ray dif:traction, point-count, electrical, and wireline properties for the 5 major petrofacies: core plug porosity, horizontal permeability, vertical permeability, grain density, and Dean-Stark water saturation; equivalent water saturation at 402' above :tree water level (aFWL), based on mercury injection capillary pressure data (MICP); point-count estimates of mean grain size, matrix content, pore types (macro, meso, and micro); calculated apparent Archie "m" and "n" exponents (not clay-corrected); and average values of the gamma ray, neutron porosity, and bulk density wireline logs. NOTE: averages for Petrofacies 4b include data :trom the Mbl Sand (distributary channel depositional facies, corresponding to Lithofacies 4b), although the petrofacies scheme has not been extended to the Mbl. For petrofacies that correspond to several different depositional facies, these global averages may be somewhat misleading. For example, Petrofacies 4b, corresponding to proximal lower shoreface and middle shoreface facies, exhibits significant internal variability when subdivided by inferred depositional setting and compared to deltaic sands of the Mbl Sand: · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4 29.6 174 51 2.71 42 28 17 79 3.0 8.9 12.1 8.4 1.83 1.76 54 45.6 2.19 4b 33.5 1007 1115 2.68 49 19 11 102 1.1 19.3 8.6 5.2 1.79 1.87 42 45.6 2.10 Depositional Facies DC Core Porosity (%BV) 35.5 Core horizontal perm (md) 2048 Grain Density (glee) 2.65 XRD Clay minerals (wt%) 5.3 Mean Grain Size (microns) 127 ,Macroporosity (%BV) 30.7 Mesoporosity (%BV) 3.7 Microporosity (%BV) 1.9 Qv (based on CoCwtests) 0.03 Table 26. Variability within Petrofacies 4b by depositional facies A verage properties for Petrofacies 4b (and Lithofacies 4b of the Mbl Sand), by depositional facies MSF 32.4 474 2.68 12.3 100 18.1 8.9 5.9 0.09 PLSF 32.2 355 2.71 13.0 93 15.8 10.2 6.1 0.33 76 I I · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Petrofacies 3, despite its heterolithic character, exhibits somewhat less variation among the depositional facies that it corresponds to, as summarized in the following table. Depositional Facies MSF PLSF LSF Core Porosity (%BV) 28.3 27.9 27.7 Core horizontal perm (md) 92 32 124 Grain Density (g/cc) 2.69 2.72 2.71 XRD Clay minerals (wt%) 15.0 19.0 17.9 Mean Grain Size (microns) 63 74 Table 27. Variability within Petrofacies 3 by depositional facies Average core and petrographic properties for Petrofacies 4b, by depositional facies. Variability is generally modest, with the largest range exhibited by permeability values (factor of 4x). Depositional facies are: MSF - middle shoreface, PLSF - proximal lower shoreface; LSF - lower shoreface. Because Petrofacies 3 probably includes the better quality samples ITom the lower shoreface and the lower quality samples from more proximal settings (high-quality samples being classified into Petrofacies 4 or 4b), the average permeability for Petrofacies 3 is actually higher in its more distal examples. A similar anomaly is apparent in the average mean grain size, where lower shoreface samples are slightly coarser than those ITom the proximal lower shoreface. As the basis for a log model of permeability, the petrofacies classification scheme may actually prove to be a more objective (and more sensitive to controls on log response) basis than the more traditional depositional facies (Figure 48). Another potential concern with a classification scheme such as the petrofacies defined for the V-I11PB1 is the presence of significant stratigraphic variation. The following tables present zonal averages of selected core and petrographic parameters for the three reservoir petrofacies (3, 4, and 4b). ZONE Mbl OA OBa OBb OBc OBd OBe OBf Core Porosity (%BV) 3 4 4b 26.3 31.5 35.5 28.6 30.3 32.2 28.2 30.4 33.3 27.3 30.0 31.9 29.1 30.7 27.0 28.6 31.9 26.9 28.3 Horizontal Permeability (md) 3 4 4b 81 190 2045 311 319 401 38 128 453 26 132 348 137 461 87 157 355 15 94 Table 28. Average porosity and permeability by zone for the three reservoir petrofacies Zonal averages of core plug porosity and of core plug permeability (horizontal air permeability) for the three major reservoir petrofacies. No data are available for entries marked by "---". NOTE: averages ITom the MbI Sand (strictly speaking, Lithofacies 3, 4, and 4b) have been included for comparison; the petrofacies scheme has not been extended to the Mbl. 77 · · · · · · · · · · · · · · · · · · · · · · í. · · · · · · · · · · · · · · · · · Sw @ 402' aFWL (MICP) Qv (CoCw) ZONE 3 4 4b 3 4 4b Mb1 24.7 6.6 0.078 0.029 OA 36.6 23.5 17.3 0.160 0.091 OBa 23.2 26.9 0.257 0.284 OBb 31.8 33.0 0.987 OBc 15.4 0.574 0.379 OBd 24.7 37.3 21.4 0.400 0.719 OBe 36.6 0.629 OBf 60.9 0.449 Table 29. Average irreducible water saturation and Qv by zone for the three reservoir petrofacies Zonal averages of irreducible water saturation (as represented by the calculated water saturation at 402' above fÌ"ee water level in an oillbrine system, as calculated fÌ"om MICP data) and ofQv (calculated fÌ"om CoCw electrical properties tests) for the three major reservoir petrofacies. NOTE: averages fÌ"om the Mbl Sand (strictly speaking, Lithofacies 3, 4, and 4b) have been included for comparison; the petrofacies scheme has not been extended to the Mbl. ZONE Mb1 OA OBa OBb OBc OBd OBe OBf XRD Total Clays (wt%) 3 4 4b 11.5 5.3 17.5 19.0 12.3 20.0 17.0 13.0 19.0 17.3 16.5 16.0 Point Count Clay Matrix (%BV) 3 4 4b 2.0 0.2 2.3 1.0 5.8 3.0 0.7 5.3 6.0 0.0 2.7 6.1 2.7 1.4 5.0 5.2 20.7 15.0 14.7 14.0 12.0 Table 30. Average XRD clays and point-count matrix by zone for the three reservoir petrofacies Zonal averages of total clay mineral content (based on X-ray diffraction analyses) and of clay matrix content (based on point-count data fÌ"om thin sections) for the three major reservoir petrofacies. NOTE: averages fÌ"om the Mbl Sand (strictly speaking, Lithofacies 3, 4, and 4b) have been included for comparison; the petrofacies scheme has not been extended to the Mbl. 78 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · PETROPHYSICAL APPLICATIONS It is important to have a solid understanding ofthe petrographic basis (texture, mineralogy, clay distribution, etc.) for core plug petrophysical measurements, in order to extrapolate the core results reliably and appropriately to other wells. Core coverage and core analysis is unusually extensive and comprehensive in the V-IIIPBI, and this well affords a unique opportunity to correlate petrographic characteristics with a variety of petrophysical measurements on core plugs. The following sections deal with specific types of routine and special core analyses, and compare results with the petrographic properties of the plugs. During the selection of petrographic samples, considerable effort was made to include plugs which were to be used for various special core analyses and, when possible, to carry out more than one type of petrographic analysis (thin section, X- ray difftaction, SEM, LPSA) on the same plug to allow cross-correlation of petrographic parameters. Table 31 is a summary list of the number ofSCAL samples that were also studied petrographically, by the type of special core analysis and the type of petrographic technique used. Following that, in Table 32, is a summary of the total number of plug samples used for the different routine and special core analyses, grouped by stratigraphic zone and by depositional facies. Some feel for how representative the petrographic data are can be gleaned by comparing the number of petrographic samples to the total number of plugs for a given analysis. For any particular SCAL test, the number of samples is rarely more than 5% ofthe number of routine plugs in a given zone or facies. ê C,) ~ ~ ~ ~ .- U ( ) U .- ~ 0 0 ~ .- ~ ì::; U ( ) p:: .- <I:; ANALYSES Thin Sections 12 15 21 28 15 Point Counts 11 8 5 18 11 X-ray Di:f&action 16 1 4 7 14 LPSA 1 1 7 10 6 Table 31. Summary of petrographic analyses on SCAL samples Number of petrographic analyses, by type of analyses, for each of the major special core analyses: values are the number of petrographic analyses of a specific type (thin section, point count, XRD, LPSA) performed on the same or adjacent (within 0.35') plug (usually a trim end from the plug) as the special core analysis (CoCw - multiple salinity electrical properties, FF-RI - standard electrical properties; ReI Perm - oillbrine relative permeability; MICP - mercury injection capillary pressure at overburden stress; Air/Oil Pc - air/oil capillary pressure). In some cases more than one type of special core analysis was performed on the same plug (e.g., relative permeability and MICP). 79 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (!) (!) 1-0 5 u 0 ~ öI) u ð ~ ~ ~ - (!) u Õ ¡:: I ~ 'r:: ~ 0 ~ ~ ~ ì::; ~ u ~ p::: < (!) U Stratigraphic Zone Mbl 73 3 3 0 3 3 0 OA 124 3 3 4 6 4 3 OBa 60 2 1 4 4 2 3 OBb 74 2 2 0 3 2 0 OBc 64 2 2 0 2 2 0 OBd 103 2 3 10 8 3 8 OBe 52 2 2 0 2 2 0 OBf 12 1 1 0 1 1 0 Depositional Facies DC 49 2 3 0 2 2 0 Bay+ 24 1 1 0 1 1 0 MSF 61 4 3 4 5 4 3 PLSF 92 5 5 9 8 5 7 LSF 133 5 6 5 11 7 4 DLSF 53 0 0 0 2 0 0 LOS 150 0 0 0 0 0 0 Table 32. Stratigraphic and facies distribution of routine and special core analyses Number of plugs analyzed for routine and special core measurements, by stratigraphic zone (sand intervals Mbl through OBf) and by depositional facies. Numbers for routine core analyses include all plugs for which routine properties were measured (including most SCAL plugs). Special analyses: CoCw - multiple salinity electrical properties; FF-Rl- standard electrical properties; ReI Perm - oil/brine relative permeability; MICP - mercury injection capillary pressure; Air/Oil Pc - air/oil capillary pressure; Centrifuge - oil/brine endpoint saturations). Depositional facies: DC - distributary channel; Bay+ - bay, bay fill, splay; MSF - middle shoreface; PLSF - proximal lower shoreface; LSF - lower shoreface; DLSF - distal lower shoreface; LOS -lower offshore/shelf 80 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Routine core analyses Routine measurements of core plug porosity, permeability, and grain density, as well as oil and water saturations, reflect the petrographic characteristics of the plug. Most of the Schrader Bluff sandstones in this core are well sorted and lightly cemented. Porosity differences in a given facies tend to be small outside of concretionary horizons, but there are significant differences between facies. Permeability is rather sensitive to subtle differences in petrographic properties such as grain size and clay matrix content (and so, indirectly, to changes in depositional facies). Grain density reflects mineralogy. There are some variations in detrital composition, primarily in the abundances of different lithic fTagments, between stratigraphic zones, but the resulting density differences are usually minimal. High-density authigenic phases, such as siderite, ankerite, and pyrite, have a larger impact on plug-scale grain density. In the more volcanogenic sands within and near OBe, the locally high contents of low-density heulandite cement can also have a material effect on measured grain densities. There are brief discussions of some of the petrographic aspects of porosity and grain density values, and a more extended treatment of permeability, in the following sections. Porosity Due to increasing clay matrix and compaction, total porosity decreases progressively in an offshore direction (Table 33). Zonal average porosity values are less consistent, and depend to a large extent on the mix of facies sampled in a given stratigraphic interval. Facies Distributary Channel Middle Shoreface Proximal Lower Shoreface Lower Shoreface Distal Lower Shoreface Lower Offshore/Shelf Porosity 34.7 30.2 30.7 27.3 24.3 22.4 Table 33. Core plug porosity values (%BV) averaged by depositional facies Core plug helium porosity values (%BV) averaged (arithmetic mean) by depositional facies. All samples were weighted equally, so the averages for some facies may be slightly skewed by intensive sampling of the best quality and/or most homogeneous sands for special core analyses. Another important aspect of porosity is the fTaction of the total porosity which is effective at storing and transmitting hydrocarbons, so-called "effective porosity". Poorly- connected or dead-end pores contribute little to fluid flow, and micro pores tend to be water-filled except at very high capillary pressures; such pores are part of the total measured ("helium") porosity, but are not effective for reservoir purposes. One method of estimating the amount of effective porosity is to compare the amount of porosity visible in thin section with the total (helium) core plug porosity (Figure 49). Extrapolating the observed good correlation to zero visible porosity suggests that nearly 23 porosity units consist of ineffective micropores. Restricting the thin-section values to macropores (> 20 microns) only results in a marginally better correlation (Figure 50). 81 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · difference indicates the connectedness of size, pores are about equally 40 35 30 25 20 ( 15 J: 10---- 5 0 0 5 He POR = 0,3499*TS_Por + 22.77 R2 = 0.7616 10 15 20 25 30 35 40 TS 49. Thin-section porosity vs. helium (core plug) porosity Crossplot of thin-section porosity ITom point counts (TS Porosity, %BV, both macropores and mesopores) and total (helium) porosity ITom routine core plug analyses (%BV). The linear regression line and its equation are included on the graph. 45 40 35 30 25 20 -... ø J: 15 -~----- 10 5 ----..-- 0 0 5 He POR = 0,3104*MacroPor + 26,719 R2 = 0.8141 10 15 20 25 30 35 40 50. Thin-section macropores vs. helium (core porosity Crossplot ofthin-section macropores (apparent diameter < 20 microns) from counts (%BV) and total porosity ITom routine core plug analyses (%BV). The linear regression line and its equation are included on the · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40 30 20 10 0 0 10 20 30 40 He 51. Core plug porosity vs. estimated microporosity Crossplot of core plug helium porosity %BV) and microporosity estimated by the difference between helium porosity and visible (thin-section) porosity from point counts (Micropores, %BV). amount of microporosity is not consistent sample to fact, it varies inversely amount porosity, as would be expected. porosities 25% or the porosity consists of microporosity. As porosity increases, clay decreases, and absolute and relative amounts of microporosity decrease as decreasing increasing is described regressIOn and samples - porosities correspond to a greater sharp corresponding increases penneability. consequent 83 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Absolute permeabilities are a strong and generally consistent of porosity these sandstones. Unless otherwise stated, "permeability" to horizontal plug air permeability this discussion. but ineffective micropores have a significant impact on the ability of a sandstone to transmit fluids at a given porosity. Even rather values of total porosity correspond to quite permeabilities, as porosity is almost entirely ineffective for values less than about 25%. The pay cutoff for porosity is liable to be surprisingly distribution of measured permeability values is quite striking and polymodal, when viewed from a stratigraphic and a facies perspective. stratigraphic distribution of permeabilities is illustrated Figure 52. Most zones exhibit three major modes, at about 1-5 10-50 md, 100-500 mixture of modes is largely the result of presence of facies in each zone, more distal facies constituting the modes more facies values. facies Sand is unique cored and distributary sandstones this zone a at darcy-level permeabilities. OBe Sand, extensive zeolite and smectite cement even more proximal facies, lacks 100- 500 mode The 1 mode is also well developed OBb and OBc Sands, because these zones of the more distal facies. 50 45 Mb1 OBa aBc OBd ~,~.._.~.~ OBe 40 35 30 25 20 15 10 5 0 5 10 50 100 500 1000 >1000 52. Frequency distribution of horizontal plug permeabilities by stratigraphic zone Frequency distribution histogram (smoothed line graph) of horizontal Klinkenberg permeability values for aU core plugs SCAL plugs), grouped by stratigraphic zone. Note the trimodal nature of the distribution in most zones. 84 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Various measures of the average zonal permeability values are listed ZONE MEAN MEDIAN GEOMEAN Mb1 1294 687 205 OA 168 15.5 18.3 OBa 168 42.7 38.5 OBb 39.2 5.4 7.5 OBc 56.1 2.9 4.2 OBd 132 39.8 26.9 OBe 9.5 4.9 4.5 84.6 61.6 52.6 Table 34. Arithmetic mean, median, and geometric mean of all plug permeability values by zone Summary of average horizontal permeabilities, in millidarcies, weighting all plugs equally, for each stratigraphic zone: arithmetic mean (Mean), median, and geometric mean (Geomean). averages incorporate data a zone, proportions of facies; some zones are more heavily analyses others, skewing averages towards values. It is misleading to the quality of the zones from these averages alone. Interpretations are more are viewed terms depositional facies. Figure 53 presents by facies. 70 DC MSF PLSF 60 LSF DLSF LOS 50 40 30 20 10 0 5 10 50 100 500 1000 >1000 HPERM Figure 53. Frequency distribution of horizontal plug permeabilities by facies Frequency distribution histogram (smoothed line graph) of horizontal Klinkenberg permeability values for all core plugs (including SCAL plugs), grouped by depositional facies (DC - distributary channel; MSF - middle shoreface; PLSF - proximal lower shoreface; LSF - lower shoreface; DLSF - distal lower shoreface; LOS - lower offshore/shelf). Note the trimodal nature ofthe distribution in individual stratigraphic zones reflects an upwards-shoaling facies sequence, with modes representing shallower-water facies. 85 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · All facies have a single dominant mode of permeability values; most have at least secondary mode as well. The primary mode for distributary channel sandstones (making up the Mb1 Sand) is 1000-5000 md, much higher than and quite distinct from that of any other facies. Distributions for middle shoreface and proximal lower shoreface sandstones are quite similar, with a strong primary mode at 100-500 md; it would be worth a brief look to compare other aspects of these facies (e.g., electrical and capillary properties) to decide whether it would be justified to combine them into a single composite facies for reservoir description purposes. Distal lower shoreface and lower offshore/shelf sandstones are also quite similar to each other in terms of permeability distributions, with a strong primary mode at 1-5 md and a significant fraction of samples at <1 md. Lower shoreface sands fit quite symmetrically between the two pairs of more proximal and more distal facies, with a well-developed normal distribution and a strong primary mode at 10- 50 md. Looking back at Figure 52, it is clear that the multiple modes that characterize most of the stratigraphic zones are simply the sum ofthe various facies that make up that zone. Various facies-based averages of permeability are listed in the table below. FACIES MEAN MEDIAN GEOMEAN Distributary Channel 1895 1780 944 Middle shoreface 330 293 155 Proximal lower shoreface 230 190 146 Lower shoreface 84 22 23 Distal10wer shoreface 5.9 2.9 3.4 Lower offshore/shelf 4.1 1.8 1.7 Table 35. Arithmetic mean, median, and geometric mean of all horizontal permeability values by facies Summary of average horizontal permeabilities, in millidarcies, weighting all plugs equally, for each depositional facies: arithmetic mean (Mean), median, and geometric mean (Geomean). There is a marked progressive decrease in permeability from proximal to distal depositional settings, no matter how the average is computed. As illustrated in Figure 53, the shoreface facies of the 0 Sands fall naturally into three groups in terms of average permeability: high-quality proximal facies (middle and proximal lower shoreface) with average permeabilities around 200 md; low-quality distal facies (distal lower shoreface and lower offshore/shelf) that average around 2 md; and the intermediate group oflower shoreface sands. Note that for most facies the skewness (departure from a normal distribution, as indicated qualitatively by the difference between the arithmetic mean and the median value) of the distribution is on the order of a factor of 2, whereas for the lower shoreface sands it is nearly a factor of 4. This means that there are a small number of high-permeability outliers in the lower shoreface (the maximum permeability for a lower shoreface sand is 3310 md, in the OA Sand just below a contact with middle shoreface deposits), an important concern when modeling a dynamic situation such as a waterflood. 86 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 0000 -- 1000 p f5 100 - LSF , ~ DO w ~ 10 - LOS 0.1 o 5 10 15 20 Por-50 25 30 35 40 54. Median porosity vs. median averaged by depositional facies Semi-logarithmic cross plot of median core plug porosity (por-50, %BV) and median horizontal permeability (HPERM-50, %BV), averaged by depositional facies: distributary channel (DC), middle shoreface (MSF), proximal lower shoreface lower shoreface (LSF), distal lower shoreface (DLSF), and lower offShore/shelf (LOS). regression of porosity on results r2 = 0.994 standard error value shoreface between 87 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Vertical permeabilities FACIES MEAN MEDIAN GEOMEAN Kv/Kh Distributary Channel 1796 1645 1097 0.83 Middle shoreface 107 27.6 38.8 0.75 Proximal lower shoreface 145 34.0 50.1 0.40 Lower shoreface 9.2 5.5 4.4 0.64 Distal lower shoreface 2.4 2.3 1.8 1.4 Lower offshore/shelf 1.2 0.44 0.47 1.4 Table 36. Arithmetic mean, median, and geometric mean of vertical penneability values by facies Summary of average vertical permeabilities, in millidarcies, weighting all plugs equally, for each depositional facies: arithmetic mean (Mean), median, and geometric mean (Geomean). Kv/Kh is the ratio of vertical permeability to horizontal permeability from an adjacent plug location. The situation for facies-average vertical permeabilities is similar to that for horizontal permeabilities, with a distinct proximal-to-distal gradient of decreasing K v. Unlike the distribution of horizontal values, however, the distribution of vertical permeabilities is most skewed for the proximal shoreface settings (middle shoreface and proximal lower shoreface) rather than for the lower shoreface. Average vertical permeability is slightly higher in proximal lower shoreface sands than in middle shoreface sands, perhaps due to the influence of increased burrowing activity on primary depositional structures such a planar laminations. The homogenizing effect of bioturbation is quite evident in the distal facies, where Kv/Kh, the ratio of vertical to adjacent horizontal permeability, averages greater than one. Taking the discussion of effective porosity (see section on Porosity, above) a step further, there should be a good correlation between effective porosity and permeability, since it is the effective pores that are actually responsible for transmitting fluids. A strong relationship is evident between permeability and either total thin-section porosity (Figure 55) or macropores (Figure 56). The relationships were quantified by calculating the regression of thin-section porosity or macropores on the logarithm of horizontal permeability, resulting in the following equations: LOG (HPERM) = 0.08*(Thin-Section Porosity) + 0.35 r2 = 0.75 Standard error (Log Perm) = 0.32 LOG (HPERM) = 0.07*Macropores + 1.2 r2 = 0.84 Standard error (Log Perm) = 0.26 When core plug (helium) porosities are used rather than thin section-derived porosity values, the correlation is just as good (Figure 57): LOG (HPERM) = 0.2*(He Porosity) - 4.1 r2 = 0.81 Standard error (Log Perm) = 0.28 88 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · :æ a:: w a.. J: 1 0000 ~-- 1000 100 10 0.1 o 5 10 15 20 25 TS 55. Thin-section porosity vs. core plug horizontal permeability Semilogarithmic crossplot of visible section) porosity (TS and horizontal permeabilities from core analyses 10000 1000 I I :¡¡ 100 11:1:: w a.. J: 10 0.1 o 5 10 15 20 25 Macropores 56. Thin-section macropores vs. core plug horizontal permeability Semilogarithmic crossplot of macropores (>20 microns apparent and horizontal permeabilities from core analyses md). 30 35 40 %BV) from counts, 30 35 40 %BV) from point counts, 89 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · _.__..~~. 10000 ----- 1 000 -~- 10 :æ IX: w !:I. :r:: 0,1 o 5 10 15 20 25 POROSITY 30 35 40 ' I I , 57. Core plug porosity and thin-section macropores vs. horizontal penneability Semilogarithmic crossplot of macropores (>20 microns apparent diameter, %BV) from point counts, and total (helium) porosity from core analyses POR, %BV) against horizontal plug penneabilities md). proportions of between total porosity IS Because of phases, inverse correlation between total core macropores of ineffective core porosity/permeability trend, permeability orders is to lose over 30 as good as type of pores) and steeper translates to a decrease decrease it most terms pore size 58 the mesopores, and micropores as a absolute pore systems consisting occur only sands, on order a darcy. as the of mesopores micropores increase. 30% porosity consists macropores, the 50 Macropores do appear to have a bigger impact on permeability mesopores: a sand with about 60% mesopores 40% micropores have a on the order of20 based on 58, whereas a sand 60% macropores and 40% micropores a closer to 200 is some between classes, ternary serve as basis a of a section of a percussion sidewall core, was available 90 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · MesoPor MacroPor < 20 md 20-50 md A 50-100 md 100-200 md 200-501 md >501 md 10 20 30 40 50 60 70 80 90 MicroPor Figure 58. Macropores Mesopores - Micropores ternary plot, grouped by horizontal permeability -- -- --------------------'---.. 91 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Density density range major detrital grain types that make up sandstones this core is fairly and generally not too different density of quartz e2.65 g/cc). density phases, such as detrital dolomite and chlorite, do occur only minor amounts. Differences measured grain density are due largely to the abundances of authigenic phases, high-density phases such as pyrite and ferroan carbonates, or low-density minerals such as heulandite. Zonal averages of grain density are an average of distal and proximal depositional settings, and changes high- density authigenic mineral contents are largely averaged out. Because strong between locally abundant volcanogenic detritus (predominantly the OBe Sand) and low-density zeolite cement, the average grain density of only the volcanic-rich zone is affected. average grain density ofllie stratigraphic zones is about 2.72 glee for zones except the has little way of distal facies to balance clean sands, and the OBe, an average grain density of2.66 glee because significant content specific to that zone. density measurements by stratigraphic zone are displayed Figure 59. 70 60 50 -- 40 -, 30- 20- 10 ~ 0 2,60 2.64 2,68 2.72 2.76 2,80 >2,80 59. Frequency distribution of grain density measurements, by stratigraphic zone distribution histogram of an grain density measurements on core plugs, grouped by stratigraphic zone. of density values for most sands are better sorted or more skewed others. a strong primary mode around 2.67 glee and a bay deposits zone), OBe, a secondary <2.60 glee. are most common OBe Sands. also has a mode density values (>2.80) 92 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · terms an offshore depositional facies, there is a trend of increasing grain density as indicated following table. FACIES DC MSF PLSF LSF DLSF LOS GRAIN DENSITY 2.65 2.69 2.71 2.70 2.73 2.74 Table 37. Average grain density by depositional facies Sample-based average of grain density (glee) by depositional facies: DC - distributary channel; MSF - middle shoreface; PLSF proximal lower shoreface; LSF -lower shoreface; DLSF distal lower shoreface; and LOS - lower offshore/shelf. progressIve mcrease density a distal direction is inferred to be the result of increasing and content offshore. facies reservoir potential emiddle to lower shoreface), the range average grain density is use a limestone the computation more accurate values. An exception to this needs to be treated to its zeolite content DC BAY MSF PLSF LSF DLSF LOS 60. Frequency distribution of grain density measurements, by depositional facies Frequency distribution histogram of aU grain density measurements on core plugs, grouped by depositional facies. average IS lower shoreface sands are scattered. 93 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Sinee increasing grain density is associated increasing contents of clay matrix and cements being a complication to the there is a good relationship between grain density and porosity. ---- 2,50 2,60 DC --~ 2,70 BAY MSF 2,80 PLSF 2,90 LSF ... 3.00 DLSF C) LOS 3.10 3,20 -- 3.30 0 5 10 15 20 25 30 35 40 Par 61. Core plug porosity vs. grain density, coded by depositional facies Crossplot of core plug porosity (%BV) and density (Gr Density, glee) for all samples, identified by depositional facies: DC - distributary BAY bay fill and splay, MSF - middle shoreface, PLSF - proximal lower shoreface, LSF -lower shoreface, DLSF - distal lower shoreface, LOS - lower offshore/shelf Note that the scale ofthe grain density axis is inverted. a few exeeptions two carbonate-eemented MSF Figure 61), there is a consistent progression to more facies increasing porosity decreasing grain Changes grain density porosity are subtle porosity values between 20 35%. porosities, carbonate pyrite cements, and porosity drops rapidly as grain porosities, sandstones of Mb 1 there is a correlation porosity density increases. Sand are involved, density. 94 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Electricalproperlies In order to improve calculations of fluid saturations ÍÌom wireline log data, electrical properties measurements (formation factor, resistivity index) were carried out by Core Lab (Houston) on a total of 34 samples. The analyses were divided into two groups: for the ftrst group 17 samples), measurements of apparent formation factors were made at a single salinity (approximately that of formation brine), followed by a series of measurements of resistivity indices at decreasing values of water saturation. For the second group of 17 samples, formation factor measurements were made at a number of water salinities (ranging ÍÌom formation brine near 15,000 ppm NaCI up to 200,000 ppm) - known as CoCw measurements, which allow the calculation of any electrical conductivity through the rock matrix rather than the pore fluids. The CoCw tests were then followed by resistivity index measurements at multiple water saturations. When the matrix conductivity is known (usually expressed in terms ofQv), it is possible to compute "clay-corrected" values for the formation factor and resistivity index, and ÍÌom them to compute corrected values of the Archie cementation (m) and saturation (n) exponents. Traditionally electrical properties values corrected for matrix conductivity are marked with an asterisk: thus F* (or FF*) is the corrected version of the formation factor (the uncorrected version is sometimes noted as Fa for apparent formation factor), RI* is the corrected resistivity index, m* and n* the corrected Archie exponents. Table 38 and Table 39 present a compilation of the apparent and corrected (when available) values of formation factor and resistivity index for all electrical properties samples, together with selected petrographic properties relevant to the electrical character ofthe sample. The ability of the rock matrix to conduct electricity is related to its effective cation exchange capacity, in which electrical current is able to flow by way of cations moving between pore fluid and mineral surfaces. For many minerals, the cation exchange capacity (CEC) is near zero; for others, such as smectite with a very high specific surface area and a clay crystal structure with an intermediate layer charge deftciency, the CEC (measured on a per gram basis) is quite high. The effective CEC can be calculated ÍÌom the results of CoCw measurements. More commonly, wet chemical techniques are used to determine a bulk CEC value for a powdered sample of the rock. Such chemical measurements ofCEC were done for most of the CoCw samples, a total of 16 in all. These measured values are also listed in Table 38 and Table 39. The electrical properties of a reservoir sandstone are a function of its pore system (number, size, connection of pores), saturation state, and fluid properties, as modifted in some rocks by significant matrix conductivity in parallel to the current conducted through the pore fluids. It is reasonable to expect correlations between petrographic and petrophysical parameters related to the pore system and matrix conductivity (e.g., grain size, clay content, smectite, permeability) and the various measures ofthe reservoir's electrical properties. The following section illustrates some ofthese correlations, with the goal of estimating electrical properties in these sandstones in uncored wells, either from physical samples (cuttings or sidewall cores), or indirectly from wire line log responses. 95 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14 - 12 10 8 u. u. 6 4 2 0 50 70 90 110 130 150 MGS 62. Point-count mean size ys. formation factor Crossplot clay-corrected). mean grain size (MOS, and the measured formation factor not 14 12 10 8 u. u.. 6 4 2--- o o 2 4 6 8 10 % CLAY 63. Point-count %Clay-sized particles YS. formation factor Crossplot of the clay-corrected). estimate of clay-sized material (% and formation factor not is correlated, with eFigure 62) and content 63). followed by an electrical current through expected. is also sensitive to good correlation with scatter, mean SIze tortuosity of sandstone, so some correlation is size and content, and exhibits a · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10000 1000 ----- :æ œ: 100 III Q. ::t: 10 o 2 4 6 8 Formation Factor 10 12 14 64. Formation factor vs. horizontal plug permeability Semi-logarithmic crossplot of formation factor (uncorrected for clay effects) and horizontal plug permeability regression of the logarithm of horizontal permeability on correlation factor Formation Factor = r2 0.66 - 2.5*Log error (FF) = .2 exchange capacity current by surface are Via is a measure of a of charged (cations). tests on a powdered of the gram emeq/g). any geometric factors conductive minerals are to the properties sandstone, is not reflected the CEC tests. One situation results must of sandstones significant day, as Schrader sandstones oftms study. X-ray measurements of total day and content are performed on samples no geometric Smectite is a a exchange capacity, due to its surface area and moderate zeolites also CEC, are conducting electrical current these samples, is no correlation content. There is a good as expected, smectite content 65). where very layer not effective between CEC CEC XRD 97 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · --- 16 -~- 14 12 10 (,) w 8 (.) 6 4 2 o o 2 4 6 8 XRD Smectite 10 12 14 65. XRD estimates of total smectite content vs. CEC Crossplot of X -ray diffraction estimates of smectitic clays (XRD Smectite, wt%) and measured cation exchange capacity (CEC, meq/g). A regression analysis above yields correlation CEC= r2 = + 0.99 error (CEC) = 1 measures of day and less good, even though these phases are a conductive portion of sandstones total day or smectite content, CEC measurement does not discriminate occurrences of the same - + 0.83*Smectite + error (CEC) = 3 r2 = where is cation capacity (meq/g), Matrix is estimate of day content (%BV), and Smectite is point-count measurement authigenic smectite content (%BV). A more accurate measure a sandstone's electrical 1S a porosity- cation exchange capacity calculated results of (CoCw tests). tests measure actual exeess of a sandstone to presence effective cation exchange capacity - surfaees are exposed to pore conduction of current. 98 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · measurements of CEC and conductivity-based measurements of Qv vary with the composition sandstone of conductive phases. the Schrader Bluff sandstones V -11 is generally a reasonably good correlation between CEC and Qv, fact that amount of ineffective cation exchange capacity, though rather large, is consistent sample to sample. 16 14 12 10 ~ 9 () 8 ~ !.I.i () 6- . 4 -~ 2 ~ 2 o ~ 0 0.5 Qv . Mb1 19% Heul Shaly 1.5 2 Figure 66. Qv vs. CEC, samples grouped by stratigraphic zone Crossplot ofQv (calculated from CoCw results) and cation exchange capacity (CEC, meq/g, from chemical measurements whole rock). Samples are identified by stratigraphic zone. Numbers next to the OA samples are the weight% smectite values from XRD. Two samples with Qv fall far off the general one with 19% heulandite, the other with extensive clay matrix. samples at CEC Qv, regressIOn two between CEC= + clay) one end CEC only ideal approach to base correlations to OA Sand. general Note Smectite-poor samples have deeper sample 9% smectite has Qv, and above the only those phases conductivity, such as properties on occurrences, up less 5% phases be to and consistent IS these good (Figure 67). 99 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1,6 1,2 0,8 0.4 o o 2 3 pt Ct Smectite 4 5 67. Point-count smectite content vs. Qv Crossplot of the point-count estimate of authigenic smectite content (%BV) and Qv (calculated from CoCw electrical properties is a general correlation is phases be amount increasing Qv especially Qv, smectite, or no suggests particular the clay matrix. Using samples correlation equation is obtained. Qv= r2 = 0.89 + 0.236 error = 18 where Smectite is zero values 1S correlating Qv smectite content (%BV, non- all possible samples are considered, the possible obtained by smectite and and clay matrix content. - error = 0.165 r2 = 0.85 where Matrix is the point-count estimate clay content (%BV). sum is considered, correlation is good, not as good as 1S alone (Figure 68). Because it is to quantify smectite, correlations such values are not as good as they of the smectite is marked, as indicated 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1.6 1.4 Qv = 109*(Matrix+Smectite) 1.2 R2 = 0.71 1--~ d 0.8 0.6 0.4 0.2 o o 2 4 6 Matrix + Smectite 8 10 Figure 68. Sum of matrix and smectite content vs. Qv Crossplot ofthe sum of point-count clay matrix and authigenic smectite (%BV) and Qv (calculated from CoCw electrical properties measurements). Linear regression equation and correlation coefficient are displayed on the chart. The anomalous data point (orange square) is the only sample with abundant heulandite. linear regression following equation: clay authigenic onQv - + O.095*Clay Matrix + Standard 1 effective conductivity of clay dispersed a sandstone as a pore- matrix is less smectite occurs as gram coats. greater effectiveness of smectite is probably to greater cation exchange capacity surface area of compared to more and to geometry smectite, leading to a proportion content directly to Even though it is clear that the smectite content derived from X-ray analyses comprises authigenic smectite a impact on the sand's properties) and smectite altered fragments (presumably or on influence on electrical properties, not involved the sand's system), there is nevertheless a decent between Qv and XRD smectite content, at Qv<O.l, as 69. This to of a amount against a constant background of relatively structural clay. 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1,8 1.6 1.4 1.2 - 1 ~ 0.8 --~ ----. 0.6 ~ 0.4 0.2 o o 2 4 6 8 10 12 14 XRD Smectite 69. Smectite content from XRD vs. Qv Crossplot of smectite content detennined by X-ray diffraction analysis (XRD Smectite, wt%) and Qv, calculated from CoCw tests. Two samples with very Qv values are annotated (Heul = abundant heulandite cement, Shaly = abundant clay matrix), and are not induded in the regression calculations. two anomalous samples cement or Qv very Qv values (due to regression of XRD smectite - + r2 = 0.65 correlation convenient, as it is generally easier reliable estimates of content diffraction point counts provide a more direct measure electrically active to counts, even of the 102 ............................................ SAMPLE Electrical LPSA Point Count XRD ( ) I;IJ I;IJ I;IJ ( ) ~ I;IJ ~ ~ ~ ..... ~ ( ) ( ) ~ ( ) I;IJ ~ ~ .¡::: ',¡:i "'0 0 S I-< ~ ..... ( ) ( ) U r;r.¡ r;r.¡ ~ 0 - ',¡:i "'0 = ..... µ.. * > ~ ~ ~ (.) ~ Po Po u ~ µ.. ~ u - ( ) (.) 0 (.) µ.. CI u 1 s - ( ) N Cd µ.. U ~ ~ ~ I;IJ I-< ";; S ~ µ.. r;r.¡ ~ ( ) (.) õ ~ ~ ~ ~ ~ r;r.¡ Depth ~ E-i 4047.00 Mbl DC 5.81 4049.20 Mbl DC 5,81 5.96 0.024 0.51 146 0 0 0 0 33 3 0 3 0 0 4066.50 Mbl DC 5.59 5.79 0.034 0.92 123 0 0 0 0 33 4 9 9 0 0 4068.00 Mbl DC 6,23 4077.00 Mbl DC 7.65 86 2 2 0 0 6 17 9 4079.15 Mbl BF 9.00 9.75 0,078 1.66 12 0 0 4406.25 OA MSF 7.46 8,00 0.065 0.96 12 0 0 4408.95 OA MSF 7.62 4413.30 OA MSF 8.35 9.46 0.117 1.46 13 2 0 4415.00 OA MSF 8.05 102 0 0 0 0 14 10 8 4420.25 OA MSF 9.02 10.65 0.160 8.25 88 2 2 0 0 10 11 9 19 9 0 4422,00 OA MSF 12.51 4470.70 OBa PLSF 7.57 10.01 0.284 13 7 0 4489.40 OBa MSF 8.51 10.98 0.257 7.70 80 2.5 3 0 0 20 11 3 17 7 0 4494.00 OBa LSF 11.10 54 9 8 1 0 7 10 12 20 10 0 4510.00 OBb PLSF 9.46 4511.15 OBb PLSF 9.94 25.32 1.379 7.93 58 9 9 0 0 5 10 12 17 9 0 4515.00 OBb PLSF 9.63 67 4.5 4 0 0 10 10 11 19 9 0 4518.80 OBb PLSF 10.35 17.37 0.594 11.33 14 8 0 Table 38. Selected petrographic properties of plugs with electrical properties measurements, Mbl through OBb Sands 103 ............................................ SAMPLE Electrical LPSA Point Count XRD ( ) $ rJJ rJJ rJJ rJJ $ ~ ..... :.a ~ ~ ( ) ~ $ rJJ ~ ~ 'fi 6 .- ( ) ( ) U (/) (/) 'C ª - 'fi "'t:I s:: ¡;.;¡. * :> ~ ~ 1i:i ) ~ ~ u ã .- ¡;.;¡. ~ - - ( ) 0 u ¡;.;¡. a u u ::E 8 - ( ) N t1:I ¡;.;¡. U ~ ~ ~ rJJ ts ~ 8 ~ ¡;.;¡. ~ (/) ~ ~ ~ (/) ~ E-i Depth 4564.00 OBc PLSF 9.01 35 8 4566.50 OBc PLSF 12,70 20.93 0.574 8.29 16 8 0 4570.00 OBc PLSF 10.12 90 2.5 3 0 0 10 10 8 4570.75 OBc PLSF 8.76 12.53 0.379 6.37 98 2 98 3.5 2 tr 0 11 9 10 14 8 0 4616.15 OBd LSF 8.82 12.82 0.400 9.93 78 2 3 0 0 11 10 7 22 12 0 4618.00 OBd LSF 9.83 4633.00 OBd PLSF 7.23 90 0.5 1 1 0 17 10 6 4635.70 OBd LSF 8.92 16.12 0.719 13.85 70 5 5 1 1 9 13 7 4658.00 OBd LSF 10.02 4681.00 OBe LSF 12.37 4681.15 OBe LSF 12.63 34.88 1.549 8.48 106 1 2 4 19 1 12 12 13 9 10 4692.60 OBe LSF 12.26 21.06 0.629 9.74 80 4 6 2 7 1 15 11 15 10 3 4694.00 OBe LSF 10.20 88 3.5 3 3 2 1 13 15 4719.80 OBf LSF 9.00 89 3.5 3 1 0 12 8 10 4721.40 OBf LSF 11.50 17.34 0.449 8.18 79 4 6 1 0 7 8 14 15 9 0 Table 39. Selected petrographic properties of plugs with electrical properties measurements, OBc through OBfSands 104 7L 9% 9<;"0. properties of the Schrader 11 PB 1 been measured a variety of ways, drainage tests. preserve original framework and pore geometry ofthe sandstone samples, capillary (MICP) measurements were carried out on at net overburden stress, to approximate reservoir stress conditions. tests were performed by Core Lab on a total of 29 samples. Measured capillary properties are a strong function sandstone absence of any significant cements. 72, by depositional facies, and there is a clear distinction between the coarser, sandstones facies sandstones more distal facies. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5000 4500 DC MSF 4000 PLSF 3500 LSF DLSF 3000 2500 t) i:l. 2000 1500 1000 500 0 0.0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Sw 72. Mercury/air pressure vs. wetting-phase averaged by depositional facies Crossplot phase saturation (Sw, %PV) and pressure for capillary pressure measurements on all samples, averaged by depositional facies (DC distributary channel; MSF - middle shoreface; PLSF - lower shoreface; LSF lower shoreface; DLSF distal lower no MICP measurements oflower offshore/shelf samples). 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40 35 OA OSa OBd OSe osr 25 ~ co [20 ... u. 15 5 o <0,025 0,050 0.075 0,10 0,25 0,50 0.75 1,0 2.5 5,0 Pore Throat Radius 7.5 10 25 50 75. Calculated relative pore volume as a function throat for lower shoreface sands Frequency distribution of pore throat radii weighted by the incremental pore volume accessed by throats of a given radius, for all samples from a lower shoreface depositional facies, by zone. comparison to results water level an saturation, Sw water to Orion As evident significant microporosity present many of these sandstones, de saturation continues characteristics, two parameters to serve as proxies above system, can be for a reservoir 73, reflecting is a relative pressure to are 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Two petrographic parameters exert a cemented sandstones Schrader clay matrix content. sizes of pores and pore distribution absolute values be correlations are the following charts. on capillary properties the 11 PB 1 : mean grain and set grain These are by 100 80 60 ~ 40 UJ 20 0 20 40 60 80 100 120 PtCt MGS 76. Point-count mean grain size vs. Sw (402) ftom MICP data Crossplot ofthe mean grain size ftom water saturation at 402' above the ftee water and Sw the based on MICP measurements. 2 r = - water is strongly Coarser sandstones phase saturations. pressures (or heights above relates Swi to position as a 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 8 6 0 It) Il:: 4 2 0 20 40 60 80 100 120 PtCt MGS 77. Point-count mean size vs. median pore throat size (R50) Crossplot of the mean size from (PtCt MGS, radius (R50, calculated from MICP measurements. Data stratigraphically into two groups: younger sands from the Mb 1 from the more volcanic-influenced OBd OBfintervaL and the median pore throat are classified OBc Sands, and older sands gram SIze groups, cluster coarser deposits. are fÌ'om samples have no - . .. mcreases mcreasmg mean SIze, IS presenee of widespread pore-filling and cements. range of detrital content most of these IS the effects matrix are incorporated to a extent mean grain size variable not case mean size been used as clay effects on 110 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10 8 6 o II) ~ 4 - 2 o o 5 10 PtCt '%ClA Y 15 20 78. Point-count %clay-sized materia! VS. median pore throat radius (R50) Crossplot of the percentage of day-sized from counting %CLA Y, %BV) and the median pore throat radius (R50, microns), calculated ftom MICP measurements. Data are classified stratigraphically into two groups: younger sands ftom the Mb 1 OBc Sands, and older sands ftom the more volcanic-influenced OBd OBf interval. types of are IS no size) exert a 3% content is - or irreducible water cementeas IS suggesting a SEM photos). It is analyses R50 correlation equations: (Hg Perm) r2 = 0.66 - error (R50) = 1.2 111 · · · · · = + 11 · r2 = 0.73 · multivariate equations, it is possible to · properties as a of mean grain and clay contents. The · table below illustrates range of capillary properties predicted common · petrographic situations. · MGS Sw Facies · 60 0 0 1.3 56 · 60 0 5 33 <0.1 16 · 60 5 0 33 1.3 22 · 60 5 5 39 <0.1 6 60 10 0 39 1.3 9 · 75 0 0 24 2.2 79 · 75 0 5 · 75 5 0 32 · 75 5 5 37 9 75 10 0 37 2.2 13 · 85 0 0 2.8 1 · 85 0 5 .3 28 · 85 5 0 29 2.8 · 85 5 5 35 1.3 11 85 10 0 35 16 · 95 0 0 3.4 126 · 95 0 5 27 1.9 35 · 95 5 0 27 · 95 5 5 95 10 0 33 3 · 0 0 19 158 · 105 0 5 25 2.5 · 105 5 0 25 63 · 1 5 5 32 2.5 18 105 10 0 32 25 · 115 0 0 7 200 · 115 0 5 23 3.1 · 115 5 0 23 4.6 · 115 5 5 30 3.1 22 115 10 0 30 4.6 32 · Table 40. Predicted capillary properties for typical values of grain size, matrix, and heulandite · of predicted values ofSw (402), the phase saturation (%PV) at 402' above the tree · water level; R50, the median pore throat radius (microns); and the calculated absolute · for selected values of mean grain size (MOS, microns), clay matrix content (%BV), · and heulandite content (%BV). facies are indicated at the corresponding average MOS. · · 112 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · MacroPor . .. MesoPor MicroPor 10 20 30 40 50 60 70 80 90 Sw < 20 . Sw 20-30 Sw 3040 . Sw > 40 . . 79. Macropores - Mesopores - ternary plot, grouped by Sw (402) range of macropores (pores with diameters> 20 mesopores pores with apparent diameters < 20 and (pores not resolved in thin section, calculated by difference between core and thin section porosity based on data, with classified by the corresponding value of Sw the estimate of irreducible water saturation (calculated phase saturation at 402' above free water from MICP measurements. capillary IS tenus system. large are apt to have a pore system composed A sandstone whose behavior is very is to possess a pore system consisting largely of micropores. Figure 79 approach. Sandstones are coarse contain significant biogenic or cement are tenus of pore system tenus texture. Since diagenetic modification of these sandstones been generally a correlation radius be expected. of pore types on 79. relationships between count-based macropores (Figure or total are also developed. is also a moderate (core porosity) R50 83), content R50 (Figure 78). 113 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7 6 5 4 o In 0::: 3 2 o o 5 10 15 20 25 30 80. Macropores vs. median pore throat radii Crossplot of macropores from counts (pores> 20 microns calculated median pore throat radii from MICP tests (R50, microns). %BV) and regressIOn and is: - r2 = 0.85 A can between 60 50 40 30 20 10 0 0 5 10 15 20 25 M 81. Macropores vs. calculated water saturation @402' above free water level Crossplot of macropores from counts > 20 microns apparent %BV) and calculated water saturation at 402' above free water level in an oil/brine system from MICP tests (Sw 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · regressIOn equation for macroporosity Sw IS: Sw (402) = - 1.25*Macropores r2 = 0.91 Sw (402) is calculated water above free water level (an approximation of expected in Macropores is mIcrons across. (%PV) an oillbrine system at "irreducible" water saturation to be measure (%BV) of pores larger 7 6 5 4 0 10 a::: 3 - 2 o o 10 20 30 40 TS 82. Total thin-section porosity vs. median pore throat radii Crossplot of total thin-section porosity from radii from MICP tests (R50, microns). counts (%BV) and calculated median pore throat regressIOn porosity R50 is: - r2 = 0.68 where porosity, is median pore %BV. radius, and TS-Por is Correlations macroporosity are Macroporosity is a or possibly using digital image basis for capillary sidewall core. both Sw (402) and R50. sections, by But these correlations do provide a a section a rotary or percussion 15 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7 6 5 4 <::I It) 0::: 3 2 o o 5 10 15 20 25 83. Calculated vs. median pore throat radii Crossplot of micropores (%BV), calculated as the difference between measured core plug porosity and total thin-section porosity from counts, and median pore throat radii (R50, microns). regression correlation equation and IS: - Selected samples, accompanied to 85 are photomicrographs properties. 116 ........ ..~....~.. ... ......................... SAMPLE MICP LPSA Point Count XRD ( ) 00 00 00 00 ( ) ( ) ..... '@j -- ..... ( ) ( ) ( ) ~ >< ..... '"'0 I-< S ( ) ..... M ~ ~ 'fš S ..... ..... ( ) 00 Ö 0 í/1 í/1 .¡:: § 0 - 'fš '"'0 ( ) 0 «i § ~ U § I:i ..... 0 ~ ö - ~ - ( ) ~ 0 u 5 l/) :r: '-" u u ~ S - ( ) ~ ~ ã3 ~ - N cd ~ '$. '$. 00 I-< S ã3 ~ '$. í/1 ( ) u í/1 '$. :r: cd ~ ~ í/1 p.. '$. ~ E-I :r: Depth 4042.95 Mbl DC 1660 13 4 5 4 0 0 4065.00 Mbl DC 374 5.8 9 8 113 0 1 0 0 26 4 6 4083.00 Mbl Splay 16.2 0.9 7 25 11 0 0 4408.50 OA MSF 201 4.1 10 18 57 7 99 0.5 1 0 0 21 13 0 10 0 0 4409.25 OA MSF 238 4.5 10 16 55 8 92 1 1 0 0 20 7 4 4409.40 OA MSF 202 4.1 13 18 108 0.5 1 0 0 19 6 9 4416.00 OA MSF 157 3.8 13 18 4423.10 OA MSF 24 1.1 18 29 70 5 86 3 3 0 0 12 13 5 4430.00 OA LSF 8.3 0.6 29 37 4472.10 OBa PLSF 120 2.2 13 29 66 8 90 0.5 1 0 0 16 8 8 12 5 0 4472.95 OBa PLSF 103 2.3 14 28 77 6 86 1 1 0 0 16 11 4 4475.00 OBa PLSF 135 3.2 14 23 14 7 0 4480.00 OBa LSF 27 1.4 20 23 43 5 63 4 3 1 0 4 7 18 4509.00 OBb PLSF 208 4.7 13 33 4517.00 OBb PLSF 14 1.0 23 32 59 6.5 6 1 0 8 9 12 4542.00 OBb DLSF 0.02 0,026 135 94 30 11 0 4569.10 OBc PLSF 148 3.7 12 15 4579.00 OBc DLSF 2.1 0.22 43 50 28 16 16 0 0 0 7 20 23 10 0 Table 41. MICP and petrographic data for individual samples, Mbl through OBc Sands 117 ........ ............ ...-. ..-...-........ .-. ..... SAMPLE MICP LPSA Point Count XRD Q.) r:f.¡ r:f.¡ r:f.¡ ~ 2 ..... r:f.¡ Q.) -. ~ ..... Q.) ~ ~ ~ M "0 t) Q.) ..... r:f.¡ ~ ~ .¡:: ..... ..... :.a Q.) Q.) 0 0 í/J í/J t) ~ 0 0 - .~ ::: ..... It) 0 ~ ~ - ö - 1d Q.) ~ ~ ~ U ~ 0 ~ ~ U U - N 5 ~ ~ ~ S ~ I-< I-< ëa Q.) - ~ is 'èf!- 'èf!- u r:f.¡ S ~ 'èf!- í/J ~ ~ Q.) u Õ p.¡ í/J 'èf!- ~ ~ í/J Depth 'èf!- E-; 4623.00 OBd LSF 399 6.4 5 14 4624.00 OBd LSF 14.6 0.26 16 49 17 5 0 4628.35 OBd PLSF 290 5.2 9 21 69 6 101 2 2 0 0 20 10 2 4630.80 OBd PLSF 301 5.0 9 21 77 6 92 1 1 tr 0 20 11 3 4639.70 OBd LSF 40 1.5 22 34 43 10 75 1.5 2 3 4 5 14 10 4643.30 OBd LSF 14 0.68 31 40 49 9 80 0.5 1 4 5 3 16 7 4646.00 OBd LSF 26 1.5 22 25 57 4 81 1.5 4 1 8 4 16 9 4657.00 OBd LSF 21 1.1 18 35 48 10 12 1 0 6 6 16 4685.00 OBe LSF 4.3 0.42 22 46 4696.00 OBe LSF 6.8 0.69 43 37 100 3.5 4 1 5 2 16 10 4722.80 OBf LSF 3.4 0.06 41 61 71 6 8 1 1 5 9 14 17 11 0 Table 42. MICP and petrographic data for individual samples, OBd through OBf Sands 118 8. 29% 40% · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · pressure In addition to mercury injection capillary pressure measurements, another type of capillary pressure measurement was performed, using air as wetting phase and a simulated reservoir as the non-wetting phase a porous plate apparatus. The air/oil capillary pressure measurements are meant to supplement the MICP data, and to serve as a check on the of the MICP results when recalculated to a more realistic fluid system. These tests, like the MICP measurements, were carried out by Core Lab (Houston) on 19 core plugs held at net overburden pressure conditions that approximate stress conditions. Data from the air/oil capillary pressure tests consist of saturation values at a series pressures, 1 to 50 psi. The saturation at the maximum pressure, Sw (50), has been selected for use comparisons petrographic parameters, the value the greatest contrasts between samples properties. Because the aspects pore system capillary properties of a reservoir rock are largely the same as those there is a good correlation between Sw (50) and core values, as illustrated below. 1 0000 . . ~~._.._--_. 100 . 10 . 1 . o 10 86. Air/oil Sw (50 psi) vs. horizontal permeability Semi-logarithmic crossplot of air/oil wetting phase saturation at 50 psi (Sw (50), %PV) and horizontal core plug permeability md). regression of the of horizontal permeability on Sw (50) yields the Sw (50 psi) = 65 -16.8*Log (HPERM) r2 = 0.85 error (Sw) = relationship of Sw (50) and between Sw (402) permeability air/oil system is closely mercury/air to 120 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 100 ~ 80 Sw (402') 60 :::> a.. ~ C> 20 - 40 o 1 10 100 HPERM 1000 1 87. Air/oil Sw (50) and Hglair Sw (402) vs. horizontal plug permeability Semi-logarithmic crossplot of horizontal core plug permeability and wetting phase saturations (%PV): Sw (50 - 50 psi air/oil capillary pressure; and Sw (402'), the Hglair capillary pressure equivalent to a position 402' above free water level in an oillbrine system. A regressIOn on Sw (402) yields the (402') = r2 = error (Sw) = 6.8 50 40 I 30 I I~ 20 10 o 50 70 90 110 130 150 MGS 88. Point-count mean grain size vs. air/oil Sw (50 Crossplot of mean grain size (MGS, microns), as determined by point-count methods, and air/oil wetting phase saturation at 50 psi (Sw (50), %PV). A linear regression of mean grain size on Sw Sw (50 psi) = r2 = 0.68 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 50 40 Ô 30 ~ ~ en 20 10 0 0 5 10 15 20 Figure 89. Microporosity vs. air/oil Sw (50 psi) Crossplot of micro porosity (%BV, as determined by the difference between core porosity and thin- section porosity) and air/oil wetting phase saturation at 50 psi (Sw (50), %PV). regression of micro porosity on Sw (50) yields Sw = 2.3*Microporosity + r2 = 0.63 50 40 30 3: 00 20 10 0 0 5 10 15 20 25 30 35 90. Point-count macroporosity vs. air/oil Sw (50 psi) Crossplot of macro porosity (%BV, point-count pores> 20 microns across) and air/oil wetting phase saturation at 50 psi (Sw (50), %PV). regression of micro porosity on Sw (50) yields the equation: Sw (50 psi) = -1.2*Macroporosity r2 = 0.84 ............................................ SAMPLE Air/Oil Pc LPSA Point Count XRD ,,-., a.> ¡;I) ¡;I) ¡;I) ¡;I) ~ ... a.> i ,,-., ,,-., .... ~ .... ~ a.> e ~ ~ ... .... .... ¡;I) "0 ¡;I) ¡;I) ¡;I) 0.. ~ ~ .¡:: 'B ¡.., .... a.> a.> 0.. 0.. í/'1 í/'1 § 0 0 - 'B "0 § .... 0 ~ - ò ëJ ~ a.> ~ ~ ~ U § u - 00 Vi U S ] a.> N ro '-" '-" '-" ~ :::E ~ ¡.., ¡.., ] S ~ ~ ~ ~ ~ í/'1 ~ ~ u í/'1 í/'1 ~ ~ ~ ~ 0 í/'1 í/'1 ~ Eo-< Depth 4049.00 Mbl DC 3370 22 12 8 146 0 0 0 0 33 3 0 3 0 0 4066.10 Mbl DC 1720 62 16 10 124 2 113 0 1 0 0 26 4 6 4079.00 Mbl BF 48 97 41 34 12 0 0 4407.10 OA MSF 431 52 22 14 100 2 99 0.5 1 0 0 16 8 9 4413.0 OA MSF 259 84 30 19 13 2 0 4419.00 OA MSF 62 98 57 41 15 3 0 4428,00 OA LSF 18 97 60 43 20 7 0 4471.10 OBa PLSF 404 70 33 25 76 4 96 0 tr 0 0 15 11 7 14 7 0 4489.00 OBa MSF 45 97 47 34 17 7 0 4511.00 OBb PLSF 116 87 41 30 83 3 3 1 0 9 9 12 17 9 0 4518.00 OBb PLSF 76 97 44 30 4567.00 OBc PLSF 109 97 34 25 56 5 83 0 0 0 0 10 7 10 17 9 0 4571.10 OBc PLSF 595 78 28 22 98 2 98 3.5 2 tr 0 11 9 10 14 8 0 4616.00 OBd LSF 86 96 41 29 78 2 3 0 0 11 10 7 22 12 0 4637.80 OBd LSF 27 96 58 45 4661.95 OBd LSF 52 97 51 42 15 10 3 4682.00 OBe LSF 10 100 52 43 57 7 77 4 4 6 12 0 10 17 4693.00 OBe LSF 35 99 55 46 80 4 6 2 7 1 15 11 15 10 3 4721.80 OBf LSF 62 97 51 41 73 6.5 6 1 0 7 8 14 12 7 0 Table 43. Air/oil capillary pressure and petrographic data for individual samples 123 Pore · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Relative permeability Steady-state relative oil/brine permeability tests were carried out on composite core plugs in the laboratories ofExxonMobil. The composite plugs consisted ofmuItiple standard 1.5" plugs from adjacent depths with very similar properties, as measured by routine core analyses, visual inspection, and CT inspection. Tests were run on composite plugs from 4 intervals: one in the OA Sand (about 4407-10', with absolute permeabilities on the order of500 md), one in the OBa (4472-74', permeabilities around 150 md), and two in the OBd (4626-29' and 4640-44'). In the OBd sand, the upper composite plug was from an interval of planar-bedded sands with permeabilities averaging around 250 md , while the lower plug was composed of samples from an interval of laminated sands, with measured permeabilities of individual core plugs around 25 md, an order of magnitude lower than in the upper OBd zone. For this report, three end-point parameters have been selected from the relative permeability results to serve as comparative parameters for understanding the impact of petrographic characteristics on the reservoir's two-phase fluid behavior. These end-point values are: . irreducible water saturation, Sw¡' %PV; · fmal oil saturation, Sof, %PV; and · brine permeability at fmal oil saturation, Kw @ Sof, in millidarcies. In a well-sorted, lightly cemented sand reservoir like the Schrader Bluff, the expectation would be that Swi and Sof both decrease with increasing grain size in a water-wet reservoir, as the specific surface area ofthe sand grains decreases. The introduction of micropores, via interstitial clay matrix or microporous pore-filling cements such as heulandite and smectite, can complicate this relationship. The number of individual plugs used for relative permeability tests that were also the subject of point-count or XRD analysis is unfortunately fairly small, so relationships are not always clearly defmed. There is, as expected, a good correlation between Swi and mean grain size (Figure 93). There is an excellent correlation between the weight% clay minerals from XRD and Swi (Figure 94). Since a large fraction of the total clay content of these sandstones is composed of structural clay (argillaceous lithic fragments), which presumably plays little role in fluid flow characteristics such as relative permeability, it is at first surprising to see such a strong correlation with XRD clay content. Because the sample suite was deliberately chosen to be homogeneous, it may well be that the amount of structural clay is quite similar in all the samples, and small variations in dispersed clay (biogenic clay matrix) result in a significant impact on Swi. Linear regression analyses of these two correlations result in the following equations: 8wi (%PV) = 103 - 0.77*MG8 (microns) ~ = 0.71 8wi (%PV) = 4.5*XRD Clay (wt%)- 24 r2 = 0.995 125 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · The strong relation between total clay content and Swi suggests the possibility of a transform for log-based V sh to Swi. The number of measured samples is limited, and the required precision in V sh may be problematic, but it may be a useful approach. 60 50 40 'i 30 fJ) 20 10 0 20 40 Ià ^ 60 80 ptCt M GS 100 120 Figure 93. Point-count mean grain size vs. irreducible water saturation (from relative penn tests) 60 -. 50 40 I~ 30 20 10 0 0 --- <> B <> 5 10 XRD Clay 15 20 Figure 94. Total clay minerals (XRD) vs. irreducible water saturation (from relative penn tests) 126 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · MacroPor Swi < 30 . Swi 30-40 Swi > 40 . . MesoPor 10 20 30 40 50 60 70 80 90 MicroPor 95. Macropores - Mesopores - Micropores plot, grouped by measured Swi plot of macropores (pores with diameters> 20 mesopores (visible pores with apparent diameters < 20 and (pores not resolved optically in thin section, calculated by difference between core and thin section porosity values), based on data, with samples classified the corresponding value of Swí, the estimate of irreducible water saturation from oiJ/brme steady-state relative measurements. system, terms Swí, appears to be the amounts of macroporosity mesoporosity; microporosity, at least to total porosity, as seen samples, does not have a significant terms pore system, larger pores translate a lower Differences (core porosity associated a greater relative pore Swí and pore size samples both relative petrographic data, representing a range of porosity grain size. the oil/brine saturation measurements to petrographic data are saturation (Sot). changes mean Kw @ SOf, does · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 50--- 40 30 -~~ ..... o en 20 - 10 o 20 40 60 80 PtCt MGS 100 120 96. Point-count mean grain size VS. fInal oil saturation relative perm tests) Crossplot of mean grain size from point-count measurements MGS, microns) and the final oil saturation after waterflood, Sof (%PV). 60 50~- 40 ~--~-- ..... o 30 en 20~- 10 --~ o o 10 20 30 Swi 40 50 60 97. Swi vs. Sofby stratigraphic zone, from relative permeability tests Crossplot of the endpoint saturations Swi and Sof, from relative permeability tests, grouped by stratigraphic zone: OA, OBa, upper OBd (OBd-U), and lower OBd There is no no is a good correlation between Swi - 128 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1000 - 100 .... o w @ 10 3: ~ 0.1 20 40 60 80 PtCt MGS 100 120 98. Point-count mean grain size vs. brine permeability at fmal oil saturation Semi-logarithmic crossplot of mean grain size ftom point-count measurements (PtCt MGS, microns) and the permeability to brine at final oil saturation, K w @ Sof (md). A regression @ Sof and mean size yields (Kw @ Sof) = O.023*MGS - 0.11 r2 = 0.47 Standard error (Log Kw) = 0.3 regression can be to set a depositional facies. of Kw as a function of grain and, MGS 65 75 85 95 105 115 Kw Sof Facies 70 119 Table 44. Estimated brine permeabilities as a function of mean grain size Calculated brine permeabilities at final oil saturation, K w @ Sof, in millidarcies, as a function of mean grain size (MGS, microns). The depositional facies with the average MGS is noted in the Facies column (LSF -lower shoreface, PLSF - proximal lower shoreface, MSF - middle shoreface, DC - distributary The calculations are based on the regression equation derived ftom 98. Other measured relative results are those between the Figure 99, between measured Sw¡' at Sof 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 60 50 40 .~ 30 (f) 20 10 0 0 300 400 HPERM 500 100 200 600 700 Figure 99. Absolute horizontal plug permeability vs. irreducible water saturation (from reI. perm tests) Crossplot of the measured horizontal plug permeability (HPERM, and the irreducible water saturation determined during steady-state relative permeability tests (Swi, %PV). regression of permeability on Swi Swi = 44.3 - r2 = 0.65 600 500 - 400 ... 0 (f) 300 ~ 200 100 0 0 100 200 300 400 500 HPERM ~~--,--~-~._~- Figure 100. Absolute horizontal plug Crossplot of horizontal plug @ Sof, md). 600 ---~.~ vs. brine permeability at Sor(from reI. perm tests) at final oil saturation and brine 130 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · permeability is strongly correlated to absolute permeability sandstones. Regression analysis, excluding the anomalous at (591, 28) the intercept to zero, results the following equation: Kw @ Sof= O.4466*HPERM r2 = 0.87 Standard error eK w) = 36 400 300 .¡ rn @ 200 0 ~ 100 0 20 40 60 80 PtCt MGS 100 101. Point-count mean grain size ys. end-point oil permeability reL perm tests) Crossplot of mean grain size from measurements MGS, microns) and oil permeability at irreducible water saturation (Ko @ Swi, 700 600 500 j 400 rn @ o 300 ~ 200 _...~"~~ 100 o o 100 200 300 400 HPERM 500 600 102. Horizontal plug permeability ys. Crossplot of absolute horizontal permeability saturation (Ko @ Swi, oil permeability (from reL perm tests) these setting 120 700 and oil at irreducible water 131 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Correlations with end-point permeabilities, Ko @ Swi, are illustrated Figure 101 (mean grain size and Ko) and Figure 102 (horizontal permeability and Ko). regression equations derived for the MGS-Ko and HPERM-Ko correlations are as follows: Ko @ Swi = 8.3993 *M GS - 664 r2 = 0.76 Ko @ Swi = O.5484*HPERM r2 0.79 As an example ofthe potential applications of the correlations developed this section, below (Table 45) is a summary of average properties major reservoir facies, predicted irreducible water saturations and permeabilities that correspond to facies' properties. the correlations used these calculations are based on linear regressions: assumption of a linear relationship is a reasonable one over a range of data, the assumption breaks down at extreme values of the predicted variable ee.g., the coarse grain and absolute permeability distributary sandstones). pore system 103), coded by permeability, does not give a consistent relationship between pore size distribution and permeability, to an of data points. Facies Average Swi Ko Kw Median Swi Ko Average Swi 77 <10 46 22 43 10 1 51 84 38 42 66 190 35 104 85 14.5 41 94 31 126 113 31 161 131 39 117 13 319 381 1780 <10 976 795 5.0 <10 Table 45. Predicted irreducible saturation and end-point permeabilities based on average facies properties Summary of average properties (mean grain microns; horizontal permeability, millidarcies; XRD Clay minerals, wt%) for the major reservoir depositional facies, and the predicted values of irreducible water saturation (Swi, %PV), oil permeability at irreducible water saturation (Ko, millidarcies), and brine permeability at final oil saturation (Kw, millidarcies) based on correlations with the corresponding facies property. Average values for mean grain size and XRD Clay are arithmetic means, while that for horizontal permeability is the median. For the distributary channel (DC) facies, median permeability is too high, and average XRD clay content too low, to permit meaningful results from the global correlations developed for Swi. Similarly, mean grain size of lower shoreface (LSF) sandstones is too fine to conform to the linear relationship derived from the fuJl data set. 132 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · MacroPor Ko = 255 md Ko = 193 md Ko = 79 md Ko=41md Ko = 3 md MesoPor 10 20 30 40 50 60 70 80 90 MicroPor Figure 103. Macropores Mesopores - Micropores ternary plot, grouped by measured Ko @ Swi Ternary plot of macropores (pores with apparent diameters> 20 microns), mesopores (visible pores with apparent diameters < 20 microns), and micropores (pores not resolved in thin section, calculated by difference between core and thin section porosity values), based on data; measured values of oil permeability at irreducible water saturation are given for each of the data points. 133 ............................................ ( ) "-' "-' "-' ~ ..... "-' ( ) ~ '~ 'S ~ ..... ( ) ( ) ( ) ~ ( ) ..... "-' 00 ~ ~ ..... '.¡:J "'0 5 ¡.., 5 ..... :.e ( ) ( ) 00 00 00 ¡.., ~ 0 - 'B § '~ <.., ® c.? ~ 1d u ~ ~ ~ u ~ '0 ® 0 - - ( ) tI:I 00 00 ~ u u ~ S ] ¡.., ëa ( ) ] N p;.¡ [$ J ~ ~ ~ "-' ~ S 0 ~ 00 ~ ( ) õ ~ ~ ~ ~ 00 ~ Depth ~ Eo-< 4407,65 OA MSF 591 24 283 16 28 4408.70 OA MSF 558 21 255 18 253 57 7 99 0.5 1 0 0 21 13 0 10 0 0 4408.85 OA MSF 385 21 165 4409.55 OA MSF 387 26 193 18 170 108 0.5 1 0 0 19 6 9 4472.25 OBa PLSF 257 30 78.6 17 66 66 8 90 0.5 1 0 0 16 8 8 12 5 0 4473.10 OBa PLSF 144 36 40.7 77 6 86 1.0 1 0 0 16 11 4 4473.15 OBa PLSF 94 42 32.9 22 24 68 4 4474.10 OBa PLSF 55 42 15.5 23 4.7 4626.20 OBd PLSF 389 15 392 19 267 65 5 4627.20 OBd PLSF 133 29 120 38 23 4627.40 OBd PLSF 64 32 54.1 46 2.6 12 6 0 4627.70 OBd PLSF 241 46 142 4628.75 OBd PLSF 386 24 273 27 136 4640.15 OBd PLSF 53 38 22.6 19 8.5 49 6 4641.10 OBd PLSF 10 51 4.12 15 1.2 4643.60 OBd PLSF 16 47 3.10 49 9 80 0.5 1 4 5 3 16 7 4643.75 OBd PLSF 32 40 5.89 16 1.9 4643.90 OBd PLSF 22 53 2.82 18 0.6 17 11 3 Table 46. Oil/brine relative permeability and petrographic data for individual plug samples 134 H»4. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · logs respond to and petrophysical characteristics of the Schrader sandstones that comprise the reservoirs this well. Properties of interest include the presence amounts of clay and argillaceous sand grains fragments), along some authigenic clays esmectite and kaolinite). these clays have an impact on neutron porosity, some on gamma ray; water saturations affected. Clay how a amount of clay permeability. presenee some radioactive phases (potassium feldspars, volcanic rock fragments) complicates the evaluation from logs. a informed by stratigraphic facies contexts) be needed to obtain a reliable diagnosis reservoir Some of results of such approaches are discussed sections on GAMLS. section we just at some or neutron logs selected a sand grains) so GR to 90 80 70 60 «I 50 E 40 Mb1 OA E 1«1 Ie!) 30 AOBa .OBb I 20 OBc OBd 10 OBe OBf 0 0 5 10 15 20 25 30 35 XRD 106. XRD clay minerals vs. gamma ray response, by stratigraphic zone 136 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · IS a content (wt%) GR response is OBe and, to a lesser extent, volcanic content and most same data, classified by petrofacies (or lithofacies, between ray response to estimate of clay at log depth. content for some samples, especially those Sands - the highest 107 presents case 90 80 70 60 II! 50 E 40 E ~ 30 20 10 0 0 1 3 4 5 10 15 XRD 20 25 30 35 107. XRD clay minerals vs. gamma ray response, by petrofacies cleanest a good due = + on clay a even other sands character. content. 137 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 100 90 ~-- 80 70 60 !II 50 E . E 40 Mb1 OA !II C) 30- OBc 20 10 OBe OBf 0 0 5 10 15 20 PtCt Matrix 108. Point-count estimate of clay matrix content vs. gamma ray response, by stratigraphic zone Cross plot of clay matrix content from counts units), classified by stratigraphic zone. %BV) and gamma ray log response 1 00 ---~ 90 80 70 60 !II 50 E E 40 !II C) 30 20 10 o o 10 20 30 Matrix -I- Ductiles 40 50 109. Point-count estimate of clay matrix and ductile vs. gamma ray response Crossplot of the sum of clay matrix and all ductile grains, from point counts (Matrix + Ductiles, %BV) and gamma ray log response units), zones, 138 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · is not itself radioactive. It does it is possible to adsorb even large the heulandite-cemented sandstones filling zeolite. a rather open crystal structure, so anomalously response be the result of adsorbed to most can be radioactive: radioactive volcanic rock fragments. as smectite and elements formerly contained volcanic glass has now been phases. case, GR response is a good as measured not of dispersed clay clay content is most and volcanic GR values may reflect increased of the more labile volcanics may radioactive into of total clay content, between zones (OBe). neutron log responds to hydrogen atoms, and so provides an estimate porosity clays. neutron study is because between at to changes 60 ~. 50 40 :J: 30 Q. :z 20 10 0 0 5 10 15 20 25 30 35 XRD no. XRD estimate of total clay minerals vs. neutron porosity Crossplot oftotal clay minerals from X-ray diffraction (XRD Clay, wt%) and neutron porosity (NPHI, %BV). anything, a very weak inverse correlation between clay and to fact that most tend to the lowest porosities, sands are more porous less compacted (leaving more clay do 139 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 60 50 40 J: 30 Il. Z 20 10 0 0 5 10 15 20 PtCt Matrix 111. Clay matrix content, from point counts, VS, neutron porosity Crossplot of day matrix content from %BV). counts Matrix, %BV) and neutron porosity as total porosity, content of clays zeolites. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · GAMLS GAMLS (Geologic Analysis via Maximum Likelihood System) is a multipurpose computer program whose basic approach is a clustering analysis. Also, predictions can be made using the relationships developed within a clustering analysis. Any type of numerical data can be clustered, though the system was developed with wire line log data in mind. Different types of data can be included as variables within the same clustering run. For instance, well log data, XRD data, and core analysis data could be included in the same run. The user has the ability to specify which and how many input variables to use, how many modes (clusters) to partition samples into, and how to initialize the clustering run. GAMLS has the ability to cluster using datasets with much missing data and to do multi-well clustering in the same run. Missing parameters in a ''test'' well can be predicted based on clustering results rrom a model well(s). GAMLS develops a generalized multi-dimensional solution that results in an n-dimensional relationship for each mode, where "n" is the number of input variables used. GAMLS assigns samples to modes in a probabilistic fashion, so that transitional or gradational relationships are clearly highlighted. Further information about GAMLS is available at www.albany.net/~mulchone/gamls.htm. Some preliminary clustering runs have been carried out as part ofthis petrographic study to compare the statistically-defmed modes or clusters rrom GAMLS analysis to depositional facies and petrographic characteristics rrom the core, and to investigate an independent approach to permeability prediction. Several clustering runs were completed, using different combinations of input variables (wireline logs, core porosity and core permeability), and different values for the targeted number of modes. The depth range studied was 4350-4800', spanning the cored interval ofthe 0 Sands but omitting the Mb1 Sand. In all clustering runs, missing values for input variables (in this case, core data for depths without plug coverage) are filled in based on clustering results and consistent with the n-dimensional relationships with the other variables for that sample. So informal predictions of missing core data are available rrom all the clustering runs. One of the clustering runs ("C2W3-PERM") was used as the basis for making a more formal explicit prediction of permeability. The probabilistic mode assignments for several of the runs are illustrated in Figure 112. Figure 113 is a comparison of the informal permeability predictions rrom selected clustering runs. Agreement is generally good, despite differences in input variables, number of modes, and initialization. The predicted values of permeability rrom the formal effort using C2W3-PERM are compared to measured core plug values in Figure 114. A linear regression of the logarithms of measured on predicted values yields the following correlation equation: Log (HPERM) = 0.81 Log (Predicted Perm) + 0.18 r2 = 0.80 Standard Error (Log (HPERM)) = 0.42 where HPERM is the measured horizontal core plug permeability and Predicted Perm is the GAMLS-generated predicted value. The standard error is equivalent to a factor of about 2.6. 141 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 112. Cumulative mode probability plots for four GAMLS clustering runs, V -IIIPB I Different colors represent different modes in each track, with no relationships between tracks. 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10000 1000 -C2W3-PERM Core2W10M C2W3M10 100 :æ I:t: w Il. x: 10 - O,1~~ 0,01 4350 4400 4450 4500 4550 4600 4650 4700 4750 4800 113. Comparison of informal permeability for several GAMLS clustering runs plot of the informal values generated GAMLS runs. Each of the runs utilized measured permeability as one of the variables, and measured values are of the displayed curves. Agreement between the different runs is generally good, particularly within the cored interval where the is better constrained. 10000 1000 E ... 100 II» Il. ¡-g ..... .~ 10 "C ~ Il. 0,1 0.1 10 100 1000 10000 HPERM 114. Measured core plug permeability vs. GAMLS predicted permeabilíty Logarithmic crossplot of measured horizontal core plug permeability and predicted permeability (Predicted md) based on the C2W3-PERM GAMLS clustering run. The ideal one-to-one correlation is shown as a dashed line. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Well BP V·111 PB1 ,:; :::;) GR '" c: W "- OJ o GAMLS 7V12M C2VV3-Perm Matrix RD PEF POf o 20 - 4350 - 4375 Cfj - 4400 :2 _ « o -:::;- - 4425 Cfj - 4450 '" OJ o no.....· a... _ -- 4475 -' :2 mm...:..d..:- Cfj =-- 4500 .......... a.. - '" , OJ o 4525 o " - 4550 Cfj - "- " o - 4575 w' OJ o Cfj " - 4600 -' -;;::- - 4625 '" " OJ o -' - - 4650 Cfj - '", OJ o Cfj -' . - 4725 Cõ" o - 4750 4775 - 4800 115. Composite wireline-core-GAMLS-petrographic log (see text for explanations) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Well SP V·111 PSi ~ GR 30-130 ~ ¡ß 'ü .~ 'ê ~ 1P Q) Il 0 ~ o u" Z - 4475 '" m 0 - 4500 -4525 -'" m 0 4550 u m 0 4600 - 4625 -0 m 0 - 4650 - 4675 w m 0 -4700 -4725 ã:i 0 - 4750 -4775 - 4800 RD 1·100 GAMLS Mode Probabilities C2W3-Perm OT 50-150 NPm 0-30 4350 116. Composite wireline-facies-core-GAMLS-petrographic log (see text for explanations) I · · · · · · '. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · APPENDICES Files on CD The following list is a summary ofthe digital files included on the CD accompanying this report. Vlll_Report.doc............... ...... ............ ............. ..This report (MS-WORD format) VI 1 l_Report.pdf.. . .., ...... ...... ..... ... .... ..... .........This report (Adobe Acrobat format) Vlll_Petrog.xls... .., ..... ............ ....Petrographic observations, point counts, XRD data Vlll_ GAMLS.xls............ ..................... ........ .....Integrated wireline and core data Vlll_ GrSize.xls...................... ............... .LPSA, point-count grain size data, charts VI 1 l_LPSA.xls... ......... .... ...... ... ............... ........ ...Compilation ofLPSA data files Vlll_Petrofacies.xls..... ................. . Petrographic data sorted, averaged by petrofacies VI 1 l_PKS.xls. ............................... ........... ...Statistics, charts for routine core data V 111_ SCAL-stats.xls. . . . . . . . . . . . . . . .. . . . . . . . ... Statistics, charts for special core analysis data Vlll_ Wireline.xls................ ........ ............ .... .... ...Petrographic data vs. GR, NPHI V -Ill PB 1 PB 1 (D pper )Log_ CoreDescription. pdf. . . . . . . . . . . . . . .... . . . Core description, Mb 1 Sand V-lllPBlPBlLog_CoreDescriptionJan04.pdf..... ...Core description, OA through OBf Sands BPV-l1 lPBlGrainSizeData6-04.xls... ... ..... ...M. Wilson grain size data (fIrst sample group) BPV-l1 lPBlGrainSizeData(extrasamples)9-04.xls.......M. Wilson grain size data (2nd group) BPV -11lPBlPointCountData6-04.xls.......... ..M. Wilson point count data (1 st sample group) BPV-l1 lPBlPointCountData(extrasamples)9-04.xls....M. Wilson point count data (2nd group) LogData05.xls............................................. . Wire line log data, at 0.5' increments V_Ill_FINAL _Routine _PP _ Ko _ wSCAL _ data.xls............... ..Sample list and database VI 1 l_CoreAnnotated.pdf.. . ......... ...... ..... ....... ... ... ... .....Annotated core description MICP............ ....Folder with Core Lab MICP data files, related compilation spreadsheet SEM............................................. . Folder with Core Lab SEM photomicrographs TernPlots... ... ..... ......... .... .... ................ .....Folder with all ternary plots (Zetaware) VIII_Photos................................... ...Folder with all thin section photomicrographs 146 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Photomicrographs The following table is a list of the digital,photomicrographs included on the CD. The photos are identified by sample depth, file name (all in JPEG format), magnification factor (expressed as the approximate horizontal field of view), and brief comments on the subject ofthe photo. DEPTH FILE V111_ 4042a 4042.95 V111_ 4042b V111_ 4042c V111 4047a 4047.00 V111_ 4047b V111_ 4047c V111_ 4049a 4049.00 V111_ 4049b V111_ 4049c V111_ 4052a 4052.00 V111_ 4052b V111_ 4052c V111_ 4058a 4058.00 V111_ 4058b V111_ 4058c V111_ 4062a 4062.00 V111_ 4062b V111 4062c V111_ 4066a 4066.50 V111_ 4066b V111_ 4066c V111_ 4068a 4068.00 V111_ 4068b V111_ 4068c 4076.00 V111_ 4076a V111_ 4076b V111_ 4077a 4077.00 V111_ 4077b V111_ 4077c V111_ 4079a 4079.00 V111 4079b V111_ 4079c V111_ 4083a 4083.00 V111_ 4083b V111_ 4083c V111_ 4085a 4085.00 V111_ 4085b V111_ 4085c FoView 5 2.5 0.65 5 2.5 0.65 5 2.5 0.65 2,5 0.65 5 2.5 0.65 5 5 2.5 0.65 5 2.5 0.65 5 2.5 0.65 2.5 0.65 5 2.5 0.65 5 2.5 0.65 5 2.5 0.65 2.5 0.65 5 Notes Open framework, excellent porosity Unconsolidated quartz-chert sand Chert grains, pore-filling kaolinite Porous uncemented quartz -chert sand Very well-sorted, open framework Microporous Ls/Lms Porous quartz-chert sandstone Large chert grain in porous sandstone Small kaolinite patch; leached Kspar Porous quartz-chert sand Microporous green RF Clean very well-sorted sand Porous very well-sorted sand Sedimentary/metasedimentary RF OveNiew of porous sand Very well-sorted very fine porous sand Porous quartz-lithic sandstone Ductile microporous lithic grains Large chert grain in porous sandstone Open framework, excellent porosity Kaolinite patch; chert-Kspar Isolated outsize grains in porous sand Dark chert in open framework Moderately open framework More lithics, less WS than above Compaction, microporous RF Outsize grains; mod. close-packed Large quartz, chert grains Microporous ductile grains Compacted bimodal slightly shaly sand Outsize grains in compacted sand lithics in VF-F sand Clean bimodal sand Coarse quartz-chert in bimodal sand Compacted VF sand matrix Silty burrow-fill in shale Sandy shale matrix Pyrite, lignitic OM 147 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · DEPTH FILE V111_ 4398a 4398.10 V111_4398b V111_ 4398c 4399.00 V111_ 4399a V111_ 4399b V111 4407a 4407.10 V111 4407b V111_ 4407c V111_ 44076a 4407.65 V111_ 44076b V111_ 44076c V111_ 44085a 4408.50 V111_ 44085b V111_ 44085c V111_ 4408a 4408.95 V111_ 4408b V111_ 4408c V111_ 44092a 4409.25 V111_ 44092b V111_ 44092c V111_ 4409a 4409.40 V111_ 4409b V111_ 4409c V111_4413a 4413.00 V111_ 4413b V111_ 4413c V111_4415a 4415.00 V111_4415b V111_4415c V111_4416a 4416.00 V111_ 4416b V111 4416c V111_4419a 4419,00 V111_4419b V111 4419c V111_ 4420a 4420.25 V111_ 4420b V111_ 4420c V111_ 4422a 4422.00 V111_ 4422b V111 4422c V111_ 4423a 4423.10 V111_ 4423b V111_ 4423c FoView Notes 5 Bioturbated fabric, biogenic matrix 2.5 Relatively coarse porous sand lams 0.65 Shaly burrow-fill 2.5 Very well-sorted, lithic-rich 0.65 Muscovite, chert 5 Micritic burrow-fill in lithic sandstone 2.5 Patchy micrite, porosity 0.65 Pore-lining micrite near burrow-fill 5 Clean, very well-sorted sand 2.5 Mod. open framework, good porosity 0.65 Pinpoint pore-lining carbonate crystals 5 Very well sorted. open framework. porous 2.5 Quartz-Kspar-lithic sand 0.65 Quartz grains, intergranular porosity 5 Micritic burrow-fill 2.5 Lithics in mod open framework 0.65 Quartz-Lms very fine sand 5 Micritic burrow-fill 2.5 Open framework, intergranular pores 0.65 Small patch of pore-filling kaolinite 5 Very well-sorted porous sand 2.5 Porous quartz-lithic sandstone 0.65 Pore-filling kaolinite, detrital chlorite 5 Very well-sorted porous sand; lithics 2.5 Outsize chert; Ls/Lms 0.65 Ls/Lms, carbonate rock fragment (CRF) 5 Micritic burrow-fill 2.5 Porous quartz-lithic sandstone 0.65 Pore-lining micrite 5 Micritic burrow-fill 2.5 Micritic burrow-fill 0.65 Edge of small micritic burrow-fill 5 Slightly bioturbated fabric 2.5 Small micritic burrow-fill 0.65 Mod close-packed framework 5 Burrow matrix patches 2.5 Mod. open quartz-lithic sandstone 0.65 Muscovite, chert, metasedimentary RF 5 Micritic burrow-fill in bioturbated sand 2.5 Irregular bioturbated packing 0.65 Green RF, chert, Lms 2.5 Bioturbated lithic sand 0.65 Slightly shaly burrow-fill 5 Clean/shaly bioturbated fabric 148 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · DEPTH FILE V111_ 44231 a 4423.10 V111_44231b V111_44231c V111_ 4428a 4428.00 V111_ 4428b V111_ 4428c V111_ 4430a 4430.00 V111_ 4430b V111_ 4430c V111_ 4471a 4471.10 Y111_4471b V111_4471c V111 44721a 4472.10 V111_44721b V111_ 44721c V111_ 44729a 4472.95 V111_ 44729b V111_ 44729c Y111_4474a 4474.10 V111_4474b V111_ 4474c V111_ 4480a 4480.00 V111_ 4480b V111_ 4480c V111 44800a 4480.00 V111_ 44800b V111_ 44800c V111_ 4489a 4489.40 V111_ 4489b V111_ 4489c V111 4494a 4494.00 V111_ 4494b V111_ 4494c V111_ 4505a 4505.00 V111_ 4505b V111_ 4505c 4507.00 V111_ 4507a V111_ 4507b Y111_4511a 4511.00 V111_4511b V111_4511c V111_ 45112a 4511.15 V111_45112b V111 45112c FoView Notes 5 Mod. open quartz-lithic sandstone 2.5 Porous quartz-lithic sandstone 0.65 Intergranular pores, pore-filling kaolinite 5 Laminated very fine sand 2.5 Pyrite nodules in massive sand 0.65 Close-packed silty sand 5 Pyrite nodule in very fine sand 2.5 Lignitic flakes in close-packed sand 0.65 Lms flakes in silty sand 5 Pyrite nodules in porous sandstone 2.5 Mod. open framework; pyrite nodules 0.65 Mica, kaolinite, metasedimentary RF 5 Pyrite nodule 2.5 Porous uncemented sand 0.65 Slightly deformed mica flake, Lms 5 Pyrite aggregates; open framework 2.5 Mod. close-packed, porous 0.65 Chert, Lms, K-feldspar 5 Honeycomb carbonate concretion 2.5 Patchy carbonate cement 0.65 Carbonate spot; pyrite 2.5 Clean/shaly; pyrite 0.65 Pyrite, Fe-carbonate, Ls/Lms 5 Clean/shaly planar laminations 5 Planar laminations 2.5 Pyrite nodules 0.65 Lignitic organics; metasedimentary RF 5 Pyrite nodule in porous sandstone 2.5 Intergranular pores, open framework 0.65 Very fine to fine quartz-lithic-Kspar sand 5 Planar laminations, pyrite nodules 2.5 Mod. close-paced framework 0.65 Pyrite framboids, pores 2.5 Pyrite nodule in lithic sand 0.65 Ls/Lms, sphene 5 Slightly shaly planar lams 2.5 Close-packed, lithic-rich 0.65 Mica, chert, pyrite, Ls/Lms 5 Porous quartz-lithic sandstone 2.5 Mod. open framework 0.65 Pyrite, kaolinite 5 Pyrite nodules in porous sandstone 2.5 Quartz-lithic-mica sandstone 0.65 Carbonate, pyrite, metasedimentary RF 149 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · DEPTH FILE V111_ 4515a 4515.00 V111_ 4515b V111_4515c V111_4517a 4517.00 V111_ 4517b V111_ 4517c 4520.00 V111_ 4520a V111_ 4520b 4552.00 V111_ 4552a V111_ 4552b 4559.00 V111_ 4559a V111_ 4559b V111_ 4564a 4564.00 V111_ 4564b V111_ 4564c 4566.00 V111_ 4566a V111_ 4566b V111_ 4567a 4567.00 V111_ 4567b V111_ 4567c V111 4570a 4570.00 V111_ 4570b V111_ 4570c V111_ 45707a 4570.75 V111_ 45707b V111 45707c V111_ 4578a 4578.00 V111_ 4578b V111_ 4578c V111_ 4579a 4579.00 V111_ 4579b V111 4579c V111_ 4588a 4588.00 V111_ 4588b V111_ 4588c 4597.00 V111 4597a V111_ 4597b V111_ 4610a 4610.00 V111_ 4610b V111_ 4610c 4614.00 V111_ 4614a V111_ 4614b V111_ 4616a 4616.00 V111_ 4616b V111_ 4616c FoView Notes 5 Pyrite in mod. close-packed sandstone 2.5 Pore-lining pyrite framboids 0.65 Mica, metasedimentary RF, pyrite 5 Planar laminations, pyrite 2.5 Shaly/clean laminations 0.65 Chert-mica-metasedimentary RF in lamina 2.5 VWS; lithics, G-R pyrite 0.65 Microcrystalline pyrite 2.5 OM, pyrite in sandy shale 0.65 Microcrystalline pyrite, carbonate crystals 2.5 Tunnel AF in bioturbated sandy shale 0.65 Microporous shaly sand 2.5 Slightly lignitic planar lams 0.65 Very fine, lithic-rich 5 Cleanllignitic lams 2.5 VWS, lithic-rich 0.65 Mica, Ls/Lms, carbonate 5 Shaly lens, spotty calcareous cement 2.5 Patchy carbonate, porosity 0.65 Quart-Kspar-chert, carbonate cement 5 Compacted porous quartz sand 2.5 Patchy carbonate cement 0.65 Quartz-metasedimentary RF-chert sand 5 Intergranular pores in coarser sand 2.5 Patchy carbonate cement 0.65 Microcrystalline pore-lining pyrite; carbonate 2.5 Silty burrow-fill in shale 0.65 Silty burrow-fill, pyrite 5 Silty burrow-fill in shale 5 Clay burrow-fill in siltstone 2.5 Lignite, pyrite in bioturbated siltstone 0.65 Pyritic siltstone 2.5 Clean/shaly laminations 0.65 Uncemented silt 5 Pyrite nodule; burrows 2.5 Bioturbated sandy shale 0.65 Silty matrix with pyrite 2.5 Bioturbated micritic shale 0.65 Micrite matrix 5 Silty burrow-fill in micritic shale 2.5 Faint lams in lithic sand 0.65 Carbonate, pyrite in clean lam 5 Close-packed clean sandstone 2.5 Quartz-Kspar-lithic sand 0.65 Intergranular pores, microcrystalline pyrite 150 · · · · · · · · · · · · · · · · · · ~ · · · - · · · · · · · · · · · · · · · · · · · · · DEPTH FILE V111_ 4626a 4626.20 V111_ 4626b V111_ 4626c V111_ 4626d V111_ 4627a 4627.40 V111 4627b V111_ 4627c V111_ 4628a 4628.35 V111 4628b V111_ 4628c V111. 4630a 4630.80 V111_ 4630b V111_ 4630c V111 4630d V111_ 4633a 4633.00 V111_ 4633b V111_ 4633c 463400 V111_ 4634a . V111_4634b V111_ 4635a 4635.70 V111_ 4635b V111_ 4635c V111_ 4639a 4639 70 V111_ 4639b . V111 4639c V111_ 4639d V111_ 4640a 4640.15 V111_ 4640b V111_ 4640c V111_ 46433a 4643.30 V111_ 46433b V111_ 46433c V111_ 46433d V111_ 4643a 4643.90 V111_ 4643b V111_ 4643c 4646.00 V111. 4646a V111_ 4646b V111_ 46460a 4646.00 V111_ 46460b V111 46460c V111_ 46460d V111_ 4651a 4651.00 V111_ 4651b V111_ 4651c FoView Notes 5 Honeycomb carbonate concretion 2.5 Edge of carbonate concretion 0.65 Kaolinite patch; pyrite 0.65 Carbonate cement patch 5 Mod. close-packed quartz-lithic sand 2.5 Pores, pyrite in compacted sand 0.65 Pyrite framboids, pores 5 Pyrite in porous sandstone 2.5 Pores, pyrite, mod. open framework 0.65 Pore-lining pyrite, metasedimentary RF 5 Spongy calcite concretion 2.5 Mod. compacted sand at edge of concretion 0.65 Large pores, pore-lining pyrite 0.65 Pyrite framboids 5 Open framework, pyrite aggregates 2.5 Pyrite in porous sandstone 0.65 Pore-lining pyrite in very fine sandstone 2.5 Pyrite nodules; open framework 0.65 Microcrystalline pyrite, Fe-carbonate 5 Porous, slightly pyritic sandstone 2.5 Pyrite, planar laminations 0.65 Metasedimentary RF, pyrite, pores 5 Faint planar laminations 2.5 Close-packed, lithic-rich 0.65 Microcrystalline pyrite; pore-filling heulandite 0.31 Stubby pore-filling heulandite (COVER PHOTO) 5 V. well-sorted, mod open framework, porous 2.5 Pyrite aggregates in porous sand 0.65 Splayed mica; pyrite aggregates 5 Close-packed; pyrite aggregates 2.5 Lithic-rich sand 0.65 Microcrystalline pyrite; pore-filling heulandite 0.31 Heulandite, pyrite 5 Mod. close-packed; pyrite, lithics 2.5 Quartz-lithic sand with pyrite 0.65 Pore-filling heulandite-smectite(?), pyrite 2.5 Planar-lam lithic sand 0.65 Very fine quartz-chert-lithic sand 5 Shale wisp; close-packed framework 2.5 Pores, smectite(?) 0.65 Pore-filling smectite(?); metasedimentary RF 0.31 Pore-filling smectite(?) 5 Clean/shaly planar laminations 2.5 Pyrite nodule in shaly lamination 0.65 Good porosity in clean lamination 151 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · DEPTH FILE V111_ 4659a 4659.00 V111 4659b V111_ 4659c 4674.00 V111_ 4674a V111_ 4674b V111_ 4679a 4679.00 V111 4679b V111_ 4679c V111_ 4681a 4681.15 V111_4681b V111_4681c V111_ 4681d V111_ 4682a 4682.00 V111_ 4682b V111_ 4682c V111_ 4682d V111_ 4689a 4689.00 V111_ 4689b V111_ 4689c V111_ 4692a 4692.60 V111_ 4692b V111_ 4692c V111_ 4694a 4694.00 V111_ 4694b V111_ 4694c V111_ 4694d V111_ 4696a 4696.00 V111_ 4696b V111_ 4696c V111_ 4696d V111 4702a 4702.00 V111_ 4702b V111_ 4702c V111_4711a 4711.00V111_4711b V111 4711c V111_ 4719a 4719.00 V111_4719b V111_ 4719c V111_ 4719d V111_47198a 4719.80 V111_ 47198b V111 47198c 4721.00 V111_4721a V111 4721b Fo~ew Notes 2.5 Lam/burrowed sand 0.65 Clean silty lam 5 Vertical burrow in planar lam sand 2.5 Silty slightly lignitic shale 0.65 Microcrystalline pyrite in shale matrix 2.5 Sandy burrow-fill, coarse carbonate crystals 0.65 Compacted lithic sand; Fe carbonate 5 Sandy carbonate burrow-fill 5 Pyrite aggregates; close-packed 2.5 Compacted; pore-filling heulandite 0.65 Pore-filling zeolite cement 0.31 Heulandite, pyrite 5 Pyrite nodule; microporous pore-filling zeolite 2.5 Close-packed; microporous cement 0.65 Extensive heulandite, microcrystalline pyrite 0.31 Microporous heulandite cement 2.5 Compacted lithic sand 0.65 Sphene, microcrystalline pyrite in VF sand 5 Carbonate concretionary burrow(?) 5 Open/closed framework 2.5 Intergranular pores; mod. open framework 0.65 Microporous pore-filling smectite(?) 5 Small pores; mod. close-packed 2.5 Quartz-lithic compacted sandstone 0.65 Pore-filling heulandite 0.31 Pore-filling microporous heulandite 5 Shaly burrow-fill 2.5 Compaction, small pores 0.65 Pore-filling microporous heulandite 0.31 Pore-filling microporous heulandite 2.5 Clean/shaly lams with pyrite 0.65 Microcrystalline pyrite in porous silt 5 Sand/shale contact 2.5 Bioturbated shaly sand 0.65 Compacted quartz-lithic silt 2.5 Sand/shale contact; AF 2.5 Compacted quartz-lithic sand 0.65 Microxtln pyrite; microporous P-F zeolite(?) 0.31 Close-up of tabular zeolite(?) 5 Carbonate shell 5 Mod. open porous very fine sandstone 2.5 Quartz-Kspar-lithic-muscovite sandstone 0.65 Pore-lining pyrite, intergranular pores 2.5 Porous lithic-rich sand 0.65 Lithics, pyrite, intergranular pores 152 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · DEPTH FILE FoView Notes V111_ 47214a 5 Very well-sorted porous sand 4721.40 V111_ 47214b 2.5 Quartz-lithic sand V111_ 47214c 0.65 Leached Kspar; andesitic VRF V111_ 47218a 5 Mod. open quartz-lithic sandstone 4721.80 V111 47218b 2.5 Mod. close-packed lithic arkose V111 47218c 0.65 Lithic-rich; pyrite V111_ 4722a 5 Pyrite nodule in porous sandstone 4722.80 V111_ 4722b 2.5 Pyritized grains in lithic sandstone V111_ 4722c 0.65 Pyritized grains in porous sandstone V111_ 4722d 0.31 Pore-filling heulandite; muscovite V111_ 4724a 2.5 Lithic-rich/-poor lams; pores 4724.00 V111_ 4724b 0.65 Ductile RF, microcrystalline pyrite V111 4724c 0.65 Lithic-poor; Fe-carbonate, pores Table 47. List of photomicrographs, by depth, file name, magnification (field of view), and subject 153