Department of Commerce, Community, and Economic Development
Alaska Oil and Gas Conservation Commission
Loading...
HomeMy WebLinkAboutGMC Data Report No. 224
Visua.l kerogen and vitrinite reflectance data derived from washed cuttings (90' -
6,100') and from core chips (4,739' - 4,894') of the BP Exploration (Alaska) Inc.
Kuparuk Uplands Ekvik No. 1 well, and derived from unwashed cuttings (300' -
6,500') of the BP Alaska Inc. Kuparuk Unit No. 1 well.
r:~ GE~O<.o
'~ S
~/ ~ 0
~¡ALS
Received 20 April 1994
(added 8 pages of text 20 July 1995)
Total of 21 pages in report
Alaska Geologic Materials Center Data Report No. 224
KEROGEN MICROSCOPY OF
SAMPLES FROM '!WO WELLS,
ALASKA
Q
Prepared For:
Chevron USA, Inc.
P.O. Box 1635
Houston, TX 77251
Prepared By:
Wallace G. Dow
DGSI Project: 94/2879
February 11, 1994
"
GMC Data Report No. 224
DGSI
Total Quality Geochemistry
1/21
DG8I . 8701 NEW TRAILS DRIVE . THE WOODLANDS, TX 77381 · (713) 363-2176 · FAX (713) 292-3528 · TELEX 881137 DGSI
DISCUSSION
Bit cuttings samples from two wells were analyzed with kerogen microscopy only. No
geochemical or geological information were provided to help with data interpretation.
Some of the maturity calculations, especially on the Kuparuk well samples, are open to
~estion and must be confirmed by other information.
Ekvik No. 1 Well
All nine of the samples analyzed from this well contain both terrigenous and lipid
organic matter with t.he t.errigenous component. generally predominating. St.ructured
lipids consist of land plant derived sporinite, cutinit.e, resinite and suberinite as
well as liptodetrinite of unknown affinity. ,These kerogens should generate primarily
gas although there could be some waxy oil generating potential in three cutinite rich
samples from between 90 and 2,880 feet. Low background and lipid fluorescence intensity
and limited solid bitumen (except in the 5,970-6,100 foot sample) indicates that. oil has
not been generated.
Because of the high percentage of t.errigenous organic matter, vitrinite is abundant
and calculated maturit.ies are based on reliable reflectance populations. Samples from
3,500 feet and deeper contain some high reflecting, probably recycled vitrinite that was
excluded
from the maturity calculations.
The
cal~ulat.ed vitrinite reflectance
maturities are supported by other indices such as TAl, structured lipids fluorescence
color and intensity, and unstructured lipids texture.
There is a persistent maturity increase with depth and the top of the oil window
(0.6 R) is just being approached in the deepest sample. The entire section penetrated
o
is therefore immature and has not generated oil or gas. A maturity offset between 2,~80
and 3,570 feet may be caused by a reverse fault between these two depths. This
conclusion must be considered tentative until it is supported by geological information.
Considering the excellent quality of the reflectance maturity calculations, however, the
presence of such a fault is a distinct probability.
9-1/2079 - 1
GMC Data Report No. 224
2/21
~uparuk No. 1 Well
Eight samples from this well also contain mixed terrigenous and aquatic organic
ma~ter with the terrigenous component predominating. Structured lipids are primarily
liptodetrinite but there is some higher plant sporinite and cutinite in the two shallowest
samples. The organic matter in these samples should yield only gas, possibly including
minor wet gas.
Vitrinite is abundant in all of the samples analyzed but most contain multiple
vitrinite populations and it is sometimes difficult. to determine which population
represents the true maturity of t.he samples. Other maturit.y indices are also affected
because they parallel the reflectance maturities. The sit.uation is complicated by the
fact that cavings below reverse faults can be more mature than indigenous material. There
is some high reflective vitrinite in all of the samples which appears to be recycled and
this material was excluded from the maturit.y calculations.
Our vitrinite reflectance maturity calculations are mostly based on the lowest good
vitrinite population in t.he samples. There appears to be a general increase with depth
with strong offsets between 1,300 and 2,100 feet and between 4,85Q and 5,750 feet.
Maturity revers.als at these two depth positions could indicate reverse faults. The
maturity offset at t.he shallow fault position indicates a greater throw than the lessor
offset at the deeper position. Because of . the mult.iple vitrinite populat.ions, our
maturity calculations are suspect and must be support.ed by geological data. If our
interpretation is correct, t.he shallowest thrust plate is within t.he oil window, the
second plate is just approaching the oil window, and the third plate is immature.
Hydrocarbon generation is suspended throughout. the section by cooling associated with
overburden removal and is not active at t.he present time.
9~/2B79 - 2
GMC Data Report No. 224
3/21
VISUAL KEROGEN ANALYSIS TECHNIQUES
Visual kerogen analysis employs a Zeiss Universal microscope system equipped with
halogen, xenon, and tungsten I ight. sources or a Jena Lumar microscope equipped wit.h
halogen and mercury light sources. Vitrinite reflect.ance and kerogen typing are
performed on a polished epoxy plug of unfloat.ed kerogen concentrate using reflect.ed
light from the halogen source. The digit.al indicator is calibrated using a glass
standard with a reflect.ance of 1.02% in oil. This calibration is linearly accurate for
ref1ect.ance values ranging from peat. (Ro 0.20%) through anthracite (Ro 4.0%).
Reflectance values are recorded only on good quality vitrinite, including obvious
contamination and recycled material. The relative abundance of normal, altered,
lipid-rich, oxidized, and coked vitrinite is recorded. When good quality, nOI"1Ilðl
vitrinite is absent., notations are made indicating how the maturity is affected by
weathering, oxidation, bitumen saturation, or coking. When normal vitrinit.e is absent
or sparse, other macerals may be substituted. Solid bitumen, for example is present in
many samples. Although it often has a different reflectance than vitrinite, Jacob's
calibration chart can be used to obtain an estimated vitrinite reflect.ance equivalent.
Graptolites have about the same reflectance as vitrinite and can often be used to obtain
maturity data in early Paleozoic rocks that have no vitrinite.
Unstructured lipid kerogen changes in t.exture and color during the mat.uration
process. Typically, unstructured kerogen at low maturity is reddish brown and
amorphous. Somewhere between Ro 0.50 to 0.65%, the kerogen takes on a massive texture
and is gray in color. At higher maturity, generally above Ro 1.30%, unstructured
kerogen is light gray and micrinized.
Kerogen t.yping and maturity assessments from the polished plug are enhanced by
utilizing fluorescence from blue light ~xcitation. The xenon or mercury lamp is used
with an excitation filter at 495 nm coupled with a barrier filter of 520 nm. With the
Jena microscope we also have the option of observing fluorescence under ultra violet
excitation. The intensity of fluorescence in the epoxy mounting medium (background
fluorescence) correlates well with the onset of oil generation and destruction. The
identification of structured and unstructured liptinite is also enhanced with the use of
fluorescence in those samples having a mat.urity less than Ro 1.3%. The relative
abundance and type of pyrite is also recorded.
TAl is performed using tungsten or halogen light source that is transmitted through
a glass slide made from the unfloated kerogen concentrate. Ideally, TAr color is based
on spoririite of terrestrial origin. When sporinite is absent. TAl is estimated from the
unstructured lipid material. Weathering, bitumen admixed with the unstructured material
and micrinization can darken the kerogen and raise the TAl value. The character of the
organic matter in transmitted light is correlated with observations made in reflected
light for kerogen typing.
Kerogen
reinforced by
light to
The light is
pyrite, and
typing and maturity assessments from the slide preparation are also
using different light sources. The slide is first observed in transmitted
obtain TAl color and organic matter structure or type.
then switched to reflected halogen light to observe structure and amount of
finally to reflected blue light excitation from the xenon or mercury source
GMC Data Report No. 224
4/21
for fluorescence. The fluorescence of structured and unstructured liptinite is not
masked by the epoxy fluorescence as it is in the reflected light mode because the
mounting medium is non-fluorescent. Remnant lipid structures (e.g. sporinite and
alginite) within the unstructured kerogen can often be identified in blue light.
Maturity calculations are made from the vitrinite reflectance histograms.
Decisions as to which reflectance measurements indicate the maturity of the sample are
based not only on .the histogram but on all of the kerogen descriptive elements as well.
Because it is not done at the time of measurement, alternate maturity calculations can
be made if kerogen data and geological information dictate.
In summary, vitrinite reflectance measurements are performed on a polished plug in
reflected light, TAr is performed on a slide in transmitted light, and kerogen typing is
estimat.ed from both preparations using a combination of reflected, transmitted, and
fluorescent light techniques. Fluorescence in blue light is used to enhance the
identification of structured and unstructured lipid material, solid bitumens, and
drilling mud contaminants. Fluorescence also correlates with the maturity and state of
preservation of the sample. Maturity calculations from measured reflectance data are
made from the histograms and are influenced by all of the kerogen data.
VISUAL KEROOEN ANALYSIS GLOSSARY
Several key definitions are included in this glossary in order to make our reports
more self-explanatory. In our reports, we refer to organic substances as macerals.
Macerals are akin to minerals in rock, in that they are organic constituents that have
microscopically recognizable characteristics. However, macerals vary widely in their
chemical and physical properties, and they are not crystalline.
1. UNSTRUCTURED KEROGEN, or sometimes called structure less organic matter (SOM) and
bituminite; it is widely held that unstructured kerogen represents the bacterial
breakdown of lipid material. It also includes fecal pellets, minute particles of
algae, organic gels, and may contain a humic component. As described on the first
page of this section, unstructured lipid kerogen changes character during
maturation. The three principal stages are amorphous, massive, and micrinized.
Amorphous kerogen is s imply wi thout any structure. Mass lve kerogen has taken on a
cohesive structure, as the result of polymerization during the process of oil
generation. At high maturity, unstructured kerogen becomes micrinized. Micrinite
is characterized optically by a.n aggregation of very small (less than one micron)
round bodies that make up the kerogen.
2. STRUCTURED LIPID KEROGEN consists of a group of macerals ~hich have a recognized
structure, and can be related to the original living tissue from which they were
derived. There are many different types, and the types can be grouped follows:
ð. Alqinite, derived from algae. It is sometimes very useful to distinguish
the different algal types, for botryococcus and pediastrum are associated
with lacustrine and non-marine source rocks, while algae such as
tasmanites, gloecapsomorpha, and nostocopsis are typically marine.
Acritarchs and dinoflaggelates are marine organisms which are also
included in the algal category.
GMC Data Report No. 224
5/21
b. Cutinite, derived from plant cuticles, the remains of leaves.
c. Resinite, (including fluorinite) derived from plant resins, balsams,
latexes, and waxes.
d. Sporinite, derived from spores ðnà pollen from a wide variety of land
plants.
e. Suberinite is derived from the corky tissue of land plants.
f. Liptodetrinite is that structured lipid material that is too small to
be specifically identified. Usually, it is derived from alginite or
sporinite.
g. Undifferentiated. At times, one can readily distinguish structured lipid
material from the unstructured wit.hout being able to make a specific
determination of the structured material.
The algae are an important part of many oil source rocks, both marine and
lacustrine. Alginite has a very high hydrogen index in Rock-Eval pyrolysis. Resins,
cuticles, and suberinite contribute to the waxy, non-marine oils that are found in
Africa and t.he Par East. At vitrinite reflectance levels above Ro 1.2 - 1.4%,
structured lipid kerogen changes structure and it becomes very difficult to distinguish
them from vitrinite.
3. SOLID BITUMEN, also called migrabitumen and solid hydrocarbon. In 1992, the
International Committee for Coal and Organic Petrology (ICCP) has decided to
include solid bitumen in the Exsudatinite group. Solid bitumens are expelled
hydrocarbon products which have particular morphology, reflectance and fluorescence
properties which make it possible to identify them. They represent two classes of
substances: one which is present at or near the place where it was generated, and
second as a subst.ance which is present in a reservoir rock and may have migrated a
great distance from its point of origin. The solid bitumens have been given names,
such as gilsonit.e, impsonite, grahamite, etc., but they represent generated heavy
hydrocarbons which remain in place in the source rock or have migrated into a
reservoir and mature along with the rock. Consequently, it is possible to use the
reflectance of solid bitumens for maturation detèrminations when vitrinite is not
present.
4. HUMIC TISSUE, that is organic material derived from the woody tissue of land
plants. The most important of this group is:
a. Vitrinite is derived from woody tissue, which has been subjected to a
minimum amount of oxidation. Normally, it is by far the most abundant maceral
in humic coals, and because the rate of change of vitrinite reflectance is at
a more even pace than it is for other macerals, it offers the best means of
obtaining thermal maturity data in coals and other types of sedimentary rocks.
Because the measurement of vitrinite is so important, care is taken to distinguish
normal (fresh, unaltered) vitrinite from other kinds of vitrinite. Rouqh vitrinite does
not take a good polish and therefore may not yield good data. oxidized vitrinite may
have a reflectance higher or lower than fresh vitrinite; this is a problem often
encountered in outcrop samples. Lipid-rich vitrinite, or saprovitrinite, has a lower
reflectance than normal vitrinite, and will produce an abnormally low thermal maturity
GMC Data Report No. 224
6/21
value. Coked vitrinite is vitrinite that has structures found in vitrinite heated in a
coke oven. Naturally coked vitrinite is the product of very rapid heating, such as that.
found adjacent to intrusions. Where it is possible to do so, vitrinite derived from an
upho1e port.ion of a well will be identified as caved vitrinite. Recycled vitrinite is
the vitrinite of higher maturity which clearly can be separated from the indigenous
first-cycle vitrinite population. Often, the recycled vitrinite merges in with the inert
group.
b. Inertinite is made up of woody tissue that has been matured by a different
pathway. Early int.ense oxidation, usually involving charring, fungal attack,
biochemical gelification, creates the much more highly reflecting fusinite and
semi-fusinite. Sometimes the division between vitrinite and fusinite is
transitional. Sclerotinite, fungal remains having a distinct morphology are
considered to be inert. An import.ant consideration is that the inerts, as the
name implies, are largely non- reactive, -dead carbon-, and they have an
extremely low hydrogen index in Rock-Eval pyrolysis.
S. OTHER ORG.h.NIC MATERIAL
a. In the table, we have put lipid-rich, caved and recycled vitrinite in this
section so that we could show the percentages of these macerals; they are
described above.
b. Exsudatinite. Oil and oily exudates fall in this group. Exsudatinite
differs from the solid bitumens on the basis of mobility and solubility. We
prefer to maintain this distinct.ion although the ICCP has now included the
solid bitumens in wit.h the Exsudatinite group.
c. Graptolites are marine orga~isms that range from the Cambrian to the lower
Mississippian; it has been found that they have a reflectance similar to that.
of vitrinit.e. Because vitrinite is lacking in early Paleozoic rocks, the
proper identification and measurement of graptolites is important in these
sediments.
6. PYRITE. Various forms of pyrite can be readily identified under the microscope.
Euhedral is pyrite with a definite crystalline habit. Framboida1 is pyrite in the
form of grape-like clusters which are made up of euhedral to subhedral crystals.
Framboidal pyrite is normally found in sediment.s with a marine influence; for
example, coals wit.h a marine shale roof rock usually contain framboidal pyrite.
Massive pyrite is pyrite with no particular external form; often this is pyrite
that forms rather late in the pore spaces of the sediment. Replacement/infilling
is self-explanatory.
GMC Data Report No. 224
7/21
."
'"
)10
-4
...-L
ZONES OF PETROLEUM
GENERATION AND DESTRUCTION
ORGANIC MATTER TYPE
AMORPHOUS (OIL) MIXED COALY (GAS)
ro-
C5
;z
~
""
-L
--L
!lOt
c:
.
<:
~1""".5 I t
~ :. _ ~:;- 0· PEAK OIL CfNERATlON
· ~-7 I
<CI:ICD ,..,. 1 I
no - -
.~ ~ -~ ~=8 Oil -^" :
r-~>% '"t'I:...L I
g_ ~·~l.O . ~ PEAK W£ï·GA.$ GEN
~ ~ '" _ ~ 120 _ WET PEAK OR) -:<1AS CEN
:s: ~ .._ :z..Lil..QIU~.!! - - - - - - GAS -,--- - - ---
~ ~- : ~ DRY
.~ f ...il.... ~E.I:~UWO~ _ _ _ _ Y- _ _ _ _ GAS _ _ ___
~ ~ I
! I
...:...- >
%.
-1
::0
> --
n
~
I'r'I
3.0 ,
- DRY. GAS PRESERVATION UMrr
- - - - --. - - - - - - - - - - -- -'.-- -. - - ----..
~
~
...
.
5.0
~
-<
43ð5_
,-
-<
en
("') ë.ñ
>
:= en
-!Lea ~ N
0---4-
:z 3:
-- > - -
:z ~70 >c -z
-..--- .... 0
90 ='= ci - m'
-", - x
==
o 2QSL 3q
c;") .....:.»
",
2:
..!L
-1JL
..!12...
1
+
-~
:I:
m
::tJ
š:
»
r-
2 ~
m
::0
I~
+ ~
+ -
4
+
CORRELATION OF VARIOUS MATURATION INDICES AND ZONES
OF PETROLEUM GENERATION AND DESTRUCTION.
GMC Data Report No. 224
75 ~
- ,..,
c;
:::
~
--ªL ~
.JML
iL
8/21
C)
~
n
tï
Po)
~
Po)
~
(t)
"'0
o
:4
Z
o
tv
tv
+:>-
#1 EKVIK
Project: DGSI/94/2879
FLUORESCENCE 1 TAl
REFLECTED TRANSMITTED
LIPIDS LIPIDS
DGSI
LIPIDS
UNSTRUcnJRED
HUMIC OTHER
RELATIVE ABUNDANCE
VITRINITE
ORGANIC MATTER
Ro
UNSTR. STRU.
UNSTR. STRU.
TAl FLUOR. TAl FLUOR.
SIRUcnJRED
DATE: a:: ~
~ UJ i
~ ~
w ß ~ UJ ..
ar:: ~ 1
UJ Go ~ ~ z 0
<0 l: ~ UJ ~ z ã UJ
::I ~ 'ž ~ ~ :E ~ w ~ z Is
~ 219/94 ffi a J UJ Q. J
Q. 0 W ~ ~ ~ ~ I:: I:: UJ ~ ~ l: ar:: Õ ~ ~ ~ ~ ~ ~
~ ~ J: ~ ~ <0 Z I:: UJ w 0 ~ ~ :5
... ~ a t= z æ '= -I ð a a:: ~ a:: ~ CI w a:: !2 w a:: !2
IL ~ iZ w w w UJ w w ~ Ó ~ 0 g ~ J g J g ~
~ ~ 0 Q. Go ~ Go ::; ar:: « Go Go ar:: ~ J ñ: Õ w w 0 ;;i w ;l UJ
OEPTIIIN FEET ~ l: l: l: 0 w ~ l: l: >- t 0 ~ 0 0 ~ 0 ~ :í 0 ~ 0 ~
:> en ~ Go t- ar:: ::; 0 0 0 > 0 > 0
CTG LD ,)B C S YL 0 1 0 1
1 90 210 ~ 10 T r 10 T 20 55 5 itA T + + B 1 Y 4 o 'I.d. y 4 0.31
Comments: Unstructllrell kerogenllif/iclllt to identify ill slide.
CTG r.J) S YL YR T)B 0 2
2 1020 - 1140 x 10 5 T 5 75 5 T UA M + + ? 1 0 2 1 ',.d. 2 BL 0 0.33
Comments: ~ome.li1!¡'t oxitlat;on.
CTG :'D C S YL YR ') 0 2 0 0 2
3 1950 - 2070 x 10 10 10 T 10 55 5 T UA Itt + II M ~ 1 Y 4 1 'I.tI. 1 Y 3 0.37
Comments:
CTG ~D C R S 1 0 1
4 2760 - 2880 x 15 5 10 T T 5 20 45 UA M + + OB J Y 4 1 '1.tI. 0 1 2 0.43
Comments: Bitllminite?
CTG ~D YR 0 1
5 3570 - 3690 x 30 5 10 50 5 UII M + 11 M M '1 1 Y 4 1 2 0 1 0 2 0.39
Comments: Some Ii~"t oxidation rims.
SAMPLE STRUCTURED OTHER PYRITE ABUND. FLUOR. VIT. REFLECT. FLUOR. TAl COLOR
ANALYST TYPE/PREP LIPIDS ORGANIC MA TIER INTENS. EQUIVALENCE COLOR VALUES
CTG Cullin.. AL AI.lalt. E EuudatlnU. E Euh.dnl N N.M 0 NeM B Bltum.. W WhIt. 1· Straw Y.llew
Castano cc c...,.. Cere 58 Suber_It. G Gra,..UC" F FraIDbeld T Trac. W.ak G Grapt.llt.. G Gr... 1 P.1e Y....",
X O'Connor SWC SideW.UCere C . Cutln1t. VL Upld-Rkb Vlulnlt. MA Maatv. Suaaa AmI. 1 Mederat. VL Upld-Rkh VltrlDlt. Y Y..", 1+ y.Dow
OC Outcrep LD Uptedettl.alt. VC Vlulnlt.C.fttamlaatlen RI R.plac.. M Mod. Amr. 3 Str·RI VC VltrlaIt. C.nts.. o 0.....,. 1· Y"w-Ora...
NI N. '.....n... U 1 r."llI1'u. VIt RecJcled Vltrlnlt. tnnll + Lar.. AlAI. .. 'nt...... VR RecJcled Vltrlnlt. R RM 1 c.w..
C Cui S Sperlalt. ++ AbuAda.c B Pr.",. 1" A.ller
MICROSCOPE R Rul,"t. DL Rlack 3- ReddI.~ Dr._
K "n..en 0 Other 3 M..u- Br.",.
\0 Jena WR Whole Reck 3" Dark Dr._
- VISUAL KEROGEN ANAL YSIS
N X Zeiss L Ucht ... Dr.....Bbck
-
..... N.t PeterIL T olal Quality Geochemistry D Park .. RIa,k
04" ntack-O,...._
a
~
n
t:J
þ)
rt"
þ)
~
(1)
"0
o
>-t
~
#1 EKVIK
Project: DGSI/94/2879
FLUORESCENCE I TAl
ORGANIC MATTER RELATIVE ABUNDANCE REFLECfED TRANSMITTED Ro
LIPIDS HUMIC OTHER VITIUNITE LIPIDS LIPIDS
DGSI UNSI'RUCI1JRED SIllUCI1JRED UNSTR. STRU. UNSTR. STRU.
TAl FLUOR.. TAl FLIJOR..
DATE: II: ~ 11.I
~ .., ~
~ ~ 1
11.I a ~ w t i
~ w ~
0.. ..... ~ ~ u ~
~ ::!!; ~ ~ Z
:I !z <J ~ :I ~ w. ~ ~ w
f 2/9/94 ¡ ::> a ::> LIJ 0.. II: ~
~ 0 w ~ ~ ~ ~ t: ~ ILl g ~ ~ a: Õ a ~ ~ ð ~ ~ ILl b-
~ ~ X ~ ~ 011 2 ILl W 0 ~ « ILl II: ~ :s
~ a ~ ~ ã !j a II: ~ II: ~ 0 ILl II: ~ LIJ II: ~
~ « w LIJ .... W ILl W t: t: 4( d a ~ 3 g >C 3 0 3 3 :1
ã ~ 0 0.. 4- 0.. ~ ~ « 0.. 0.. ee ee ..... ee ::> IIJ ILl 0 g ILl ILl «
DEPTIIIN FEET z 3 ~ ~ ~ 0 ILl ~ ~ ~ >- t 0 ~ 0 li: ð 0 0 ~ 0 ~ ~ ~ ~ ~ 0 ~ t:
::> <II ~ 4- ..... ee ~ 0 0 0 0 0 >
CTG r..n YL YR 'fA B 0 1 0
6 4530 - 4650 K 45 5 10 30 5 5 ¡" J,f + U" M . },f DB 1 Y 2 2 2 OB 1 Y 2 0.42
Comments: ROllghJ dark oxidation. Nlltshell contamination.
(X ~D S VR ¡" 0 1 0 1 2- Y 2
7 4739 - 4894 r 20 5 T T 15 45 15 )fA M + + 'JB 1 y 2 2 2 BL 0 2 YO 3 0.46
Comments:
CTG "'.n YL VR ¡" "'JB 0 1 0 2
8 5190 - 5310 L 40 5 10 30 5 10 'fA M + }f M ""? 1 Y 2 2 2 OB 1 Y 3 0.46
Comments: Dark oxidation.
CTG "'.n YL VR 0
9 5970 - 6100 K 20 5 5 10 45 5 10 ¡" M + 1-1 M - M ,¡JB 1 0 2 3 2 OB 1 Y 2 0.55
Comments: Sanae. Large (ra!naellts solid bitllmen - Ro 0.03 - 0.28.
z
o
N
N
.¡::...
~
o
-
N
~
Comments:
ANALYST
SAMPLE
TYPEIPREP
erG Cuulac'
CC C.DY. Cere
SWC SideWaUC.n
OC Olltcr.p
NI N. Inforll1.
C Cui
x
Castano
O'Connor
MICROSCOPE
x
Jena
Zeiss
K K.nt··
\VR wtt.1e Rock
Ld. N.' D.,.,III.
STRUCTURED OTIIER PYRITE ADUND. FLUOR. VIT. REFLECT.
LIPIDS ORGANIC MA TIER INTENS; EQUIVALENCE
AL AIIIDlt. E Euudatlak. E Euh~dr,1 N N... 0 N.ne B Bltum.n
S8 Suberlnlt. G Crapt.JlI.. F Frambold T Trace Weak C CnptoUI..
C CutlDlle VL UpJd.Rkb Vltrlal.. MA Mauw. SID,n Am.. 2 Mo~nle VL Llpld-Rkla Vlrrlal'.
LD Uptedetrlnlte VC Vltrlllll.Coltlallllaatio. RI R~pbn- M Med. Am" 3 Stnal VC Vftrlalt. C..talD.
U UnJlß'~r. VR Recyd~d Vltrlalt. 1afiß + urea A.... .. 1.lens. VR. R.cycled VI'rlal..
S S(>o rlnile ++ AbundaDt
R R..InU.
0 onler
VISUAL KEROGEN ANALYSIS
Total Quality Geochemistry
FLUOR. TAl COLOR
COLOR VALUES
W WhIt. 1- Strawv.u.w
C Crftll t Pale V.Dew
V v.u.w 1+ v.new
0 OnDle 2-. V.Bow-Oraa,.
R R.d 2 Gelde.
8 Dc.... 2+ A_her
BL Black 3- Reddbll Bh_
:J MedIaa Dr__
:J+ Dark Br._
L Ll¡ht 4- Br._Black
D nork .. lUa.k
... ßlack-0r-'I'"
11/21
l
r:.
~
F:EFLE\:T~"·.NCE ~,,;-.:\LUES
. t
3'
1.61
i
n
GMC Data Report No. 224
*0.34
:'0:0.3«1
"-=0.35
~0.36
~0.38
*0.38
*0.41
~0.43
*0.43
*0.49
, I
1
Values
o
* = Maturity
*0.23 ,A.:O.31
~0.29 *0.31
*0.29 *0.31
*0.30 *0.31
*0.30 *0.31
~O.30 ~O.32
:lr-1j.30 *0.32
""-0.30 *0.33
*0.30 ~O.33
~O.30 *0.33
5
10
15
# 20'
No. Reading~ : 30
--~----------------------------------------------
l
tj
~
r:EROGEN
s td. Dcv. : 0. 05
#:1 EKVIK
1020 - 1140 ft. CTG
INTERPRETED MÞ~URITY : 0.33 Ro
REFLECTi:..NCE V¡~LUES
,~
...1
j
21. . I
I
,10:0.35
'&':0.35
,10:0.35
*0.36
*0.38
*0.38
*0.39
*0.39
0.40
o . '1 0
Values
, l'
k = Ma.turity
~O.23 ~O.29
~O.24 ~O.30
~O.25 *0.30
*0.25 ,10:0.30
/.:0.25 *0.30
'&':0.26 ~O.31
~0.26 *0.31
~O.26 ~O.32
*0.29 *0.33
~O.29 *0.35
#: 20
15
10
5
Ù
Ho. Rcading~ : 28
-~-----------------------------------------------
KEROGEN
S td. Dcv. : 1,). 05
#1 EKVIK
90 - 210 ft. CTG
INTERPRETED ~\TURITY : 0.31 Ro
12/21
l
o
5
t
REFLECTANCE VALUES
.
·l
":11
oJ
I . I I .. 'I'
o 1
* = Maturity Values
~O.33 ~O.41 ~O.45
~O.34 *0.41 ~O.45
.0.37 ~0.42 *0.45
~O.39 *0.42 *0.45
~O.39 *0.43 *O.4Q
~û.39 *0.43 *0.4b
*0.40 ~ù.43 ~0.46
* ù . 40 "-: l) " £111 :J.: 0 " ,16
~O.40 *0.44 ~O.46
~ Q tlO ~ 0 . 4 5 ~ 0 . 4 Ò
GMC Data Report No. 224
~O.46
*0.48
~O.18
~O.49
*ù.58
I
,"')
...
# 20 ,
15
10
5
No. Reading~ : 35
~------------------------------------------------
L
"
.. '5
~:ERùGEH
Std. Dev. : v.05
#1 E.KVIK
2760 -2880 ft. CTG
INTERPRETED ~l~TUR ITY : '.). <1 3 Ro
REFLECTANCE V¡~LUES
It
I
, I
3
, I '
2
n , {l .' , ( ,
1
Values
~0.37
*0.37
*0.37
~O.38
*0.39
*0.39
*0.39
"" 0 . t1 0
*0.41
* 0 . '141
'* = Maturity
*0.26 *0.34
*0.28 *0.34
*0.31 *0.34
~O.32 *0.35
*0.32 *0.35
~0.33 *0.36
*0.33 ~O.36
*0.33 ,10:0.36
*0.34 *0.36
~O.34 .).:0.37
# 20 ...
15 .
10
5
Ù
No. Rcading~ : 33
-------------------------------------------------
* 0 . t14
* 0 . '16
*0.59
O.i9
1.04
f:EF:0GEN
#1 El<:VIK
1950 - 20iO ft. ~CTG
I~ITERPRETED ~\TURITY : ú.3i Ro
t) . tj r3.
Std. DC"l.
#1 E1<VIK
3570 - 3690 ft. CTG
INTERPRETED MATURITY: 0.39 Ro
¡':EROGEN
Std. De~'.
Ü.ùï
---------------------------~---------------------
No. Readings : 29
#: 20 ~
15 ·
10 "
~ I '''I'
1 2
5 "
v
-f..: = Maturity
-f..:O.26 *0.36
~O.27 ~O.36
,1.:0.30 *0.38
*0.31 ~O.38
*0.33 *0.39
*0.33 *0.39
~O.34 *0.39
~O.35 *0.'11
*0.35 *0.42
*0.35 *0.42
Valucz
,Ac 0 . '1 2
~0.43
*0.44
,Ir 0 . '14
,1.:0.45
,1.:0.45
,J.:0.48
,J.:0.50
,J.:0.54
0.66
. ). .
3
\~
REFLECT¡~.NCE V¡~LUES
0.74
0.90
1.02
1.17
1.22
1.26
#1 E1<VIK
4530 - 4650 ft. CTG
INTERPRETED MÞ~TURITY : 0.42 Ro
KEROGEN
std. Dcv. : ú.ú7
5
l
~
----------------------------~------~-------------
No. Rcadingz : 22
#: 20 ,
15
10 "
5 .
I .l I' n I
o 1
~ ~ Maturity Valuc~
*0.29 ~O.42 *0.49
*0.29 *0.43 ~O.5i
*0.35 *0.43 0.61
*0.36 *0.44 0.62
*0.37 *0.44 0.64
*0.37 ~0.44 0.66
*0.41 ~O.46 0.67
*0.41 ~O.47 O.iO
*0.42 *0.49 û.ï8
~ Q 42 ~ 0 . 49 1 . 35
GMC Data Report No. 224
"I .. I
2
F:EFLECTi:.NCE ~.i ¡~UES
~I
.'
I .
,{ .
5
L
r:.
13/21
14/21
L
"
'5
rll n I - I I ¡ , I
2 3 ,~
REFLECT¡~JCE vALUES
o
k == 'Maturi ty Values
~O.38 *0.46 0.83
~O.39 *0.46 0.83
*0.41 *0.46 0.84
*0.41 *0.47 0.92
*0.41 *0.49 1.0l
*0.42 *0.52 l.Oi
~0.42 *0.52 1.37
*0.44 ~O.52 1.13
~O.45 *0.60 1.43
~O.4b O.ï3 1.85
GMC Data Report No. 224
#: 20 ,
15
10
5
No. Rcadings : 19
_________~_______________________'____4____________
l
o
". \ n
I . - ~ '
t:EROCEN
#1 EKVIK
5190 - 5310 ft. CTG
.INTERPRETED MATURITY : o. '16 Ro
S td . DC"\/T . : 0. 05
n" '" ""I '"
2 3 II
REFLECTANCE VALUES
v.ï9
0.82
0.92
0.93
1 . 0 tl
1.11
1.25
1.35
l.S6
5.09
I J J I
,
*0.53
*0.54
*0.54
*0.55
*0.56
0.64
0.66
0.67
0.70
0.77
Valuez
o
* = Maturity
kO.37 ."'=0.43
*0.38 ~O.43
*0.39 ~0.43
*0.39 *0.45
*0.39 *0.45
*0.41 *0.48
*0.41 *0.50
~O.41 *0.50
hO.42 ~O.51
*0.42 *0.51
5 ·
10 ·
15
If: 20
Nb. ReQdingo : 25
----~--------------------------------------------
0.06
KEROGEN
Std. Dcv.
#1 EKVIK
4739 - 4894 ft. CORE
INTERPRETED MATURITY : 0.46 Ro
#1 EKVIK
5970 - 6100 ft. CTG
INTERPRETED MATURITY : o. 55 HO
KEROGEN
Std. Dev. : 0.08
-~~----------------------------------------------
No. RCQdingz : 19
# 20·
15 ·
10 ~
~mi
1
5 ·
o
* = Maturity Values
~O.41 *0.59 O.i6
~O.44 *0.59 0.84
~O.45 ~O.60 0.85
~8:49 ~8:g£ 8:~~
*0.49 *0.64 O.9i
~8.50 ~O.66 l.09
~ .53 *0.68 1.15
~ .54 *0.68 1.18
~O.55 O.i4 1.24
GMC Data Report No. 224
cr ,,1l "fJ
2 3
I '
I .
,I
REFLECTN~CE VALUES
1.2ï
1.36
1.93
~:~!
2.9i
I "
5 .
L
o
15/21
C)
~
()
ö
~
.-+
~
:;:d
(1)
"0
o
~
Z
o
tv
tv
~
~
0"1
-
tv
~
DGSI
LIPIDS
UNSTRUCTIJR£D
DATE: ~
w a
II: w
w ~ ~ ~ ~
~ ~
~ 2/15/94 ~ U) g a
w :>
Q. a: 0 w
~ ~ III ;¡: ~ ~
... ~ Z
IL ~ ëi
2 0
DEPTH IN FEET :> :i
10 300-
Comments:
11 1200-
Comments:
12 2100-
Comments:
13 2900-
Comments:
141 3700-
Comments:
ANALYST
CTG
400 x
10
ORGANIC MATTER
STRucruRED
HUMIC OTHER
#1· KUPARUK
Project: DGSI/94/2879
RELATIVE ABUNDANCE
VITRINITE
FLUORESCENCE I TAl
REFLECTED T~NSMITTED
LIPIDS LIPIDS
Ro
UNSTR. STRtJ.
a:
II.:
~ ~
z 0
III ~ ~ III 'ž
~ ~
:> III Q. ~
l ~ g ~ c C III ~ g ~ a: ¡ a
III Z· 2 III III 0 X III a a: ~ a:
~ W w w a ~ -w w ~ ~ ~ 0 ~ w 9 9
Q. ~ ~ :; ëi Q. Q. .... :J a ~ w
l: g III ~ l: l: >- ~ 0 2 0 x 0 0 ~ 0
~ Q. .... a: 0 0 0 0
LD ( UA
5 5 20 60 F' M + 'J1 M B 1 0
tTG LD S
1300 x 35 5 T
Trace IIllls/Iell cOlllamillatioll.
CTG LD
2200 x 35 5
CTG LD
3000 K 35 5
Trace nutshell contamilladon.
CTG LD
3800 x 15 5
Castano
X O'Connor
MICROSCOPE
X
Jena
Zeiss
SAMPLE
TYPElPREP
CTG Cutl!n&.
CC C.IIV. Cere
SWC SId.WaUCore
OC Outer.p
NI N. Imona.
C Cui
K Kenl°·
WR wa..1e Reck
....1. Not Ddor...
STRUCTURED
LIPIDS
AL AI&Iait.
5B Subera.k.
C Cutllllt.
LD Upt.detrlnlt.
U U.d1If....
S SperlJllt.
R R.ala".
o Oilier
C
5 20 35
T 20 40
T 20 40
T 20 60
OTHER
ORGANIC MATfER
E Euadadnlte
G GraptoUt..
VL Upld-Rlch Vltrlnlt.
VC VUrlalt.C.Dbmlaatlea
va Recyclod Vllrlnlt.
P
1-fA M + 'If M
F'
UA M + Jf M
-r;o
~fA M + " M
'JIA M M " M
PYRITE ABUND.
M 'JB 1 0
'JB 1
M TJL 0 0
'JB 1
M 11L 0 0
M
1JB
1 0
FLUOR.
INTENS.
UN~'TR. STRU.
TAl FLUOR. TAl FI.UOR.
~ w
~ ~ i
III
!ž g ïi
>
ë ¡
"'- w
Z w ~
~ :> ~ ~ a:
~ w b-
~ 0 w cr: ~ w ~ ~ 2 ::
~ :> 0 :>
III 0 ~ ~ .... ~ ~ w ië :I
~ < ~ ~ ~
III 0 0
1 2- 0
2 l...d. 2 Y 2 0.41
2
1 3
BL
2 0
o
1
o
2 Y
1
2 0.72
1
2 0.51
1
2 0.54
1
2 0.52
2
1 3 2+ BL 0
2
1 j 2+ BL 0
2 2 '1.4.
o
o
o
VIT. REFLECT. FLUOR. TAl COLOR
EQUIVALENCE COLOR VALUES
B Bltum.a W WIUt. 1- Stra.,. YeDew
e Gnptolll.. G Gnen 1 Pale Y.Dew
VL Upld-Rkh VltrlaJt. V VeDew 1+ V.Dew
VC VltrlAll. C.II"" 0 Or.lll· 2- V.u.w-Ora...
va RKJdod Vltrlnk. R R.d 1 Gelde.
B Br._ 1+ Amber
BL Bbck 3- RedoIkla Dr._
3 Modl_ Dr._
1+ Dark Br._
L U¡a.t ... Dr._Black
D Dark .. 8b1ck
..+ Bbck-OpoCJIM
E Euh.dnl N N.... 0 NOM
F Fnmbelcl T Trace 1 W..k
MA Manln SmaU AmI. 2 Mederat.
RI Replac.. M Med. AmI. 3 SU.III
IaßlI + Lara. AmI. ~ lalollS.
-t+ Abuadaftt
VISUAL KEROGEN ANALYSIS
Total Quality Geochemistry
C)
~
n
tj
~
~
~
þd
.g
o
:4
Z
o
N
N
+:-.
-
-.J
-
tv
-
#1 KUPARUK
Project: DGSI/94/2879
FLUORESCENCE I TAl
REFLECTED TRANSMITTED
LIPIDS LIPIDS
ORGANIC MATTER
LIPIDS HUMIC OTHER
RELATIVE ABUNDANCE
VITRINITE
DGSI UNSTRUcnJRED STRU cnJ RED
DATE: ~
UJ c l
; ~ ~ g g ~ g
2 2/15/94 UJ CII ~ c l
~ UI => ~ UJ
a: 0 UJ ~ g ~ ~ !l ~ ª
~ ~ :I: ~ ~
... ~ ~ ïr. UJ .... UJ w a ~ UJ
Õ ~ 0 Q. ~ Q. ~ :ï ïr. Q.
DEPTH IN FEET z :i ~ ~ 0 ~ ~
=> (/)
erG LD
4850 X 30 5
_. .. _ ___ _. Tract of grapl'¡te-Ilke fragme~ts.
erG LD
5850 x 15 10
Same.
15 4750-
Comments:
16 5750-
Comments:
17 6400-
Comments:
C1G
6500 x
20
Comments:
Comments:
ANAL YST
SAMI'LE
TYPE/PREP
C7G CultJD¡;,
CC C."Y. C.re
SWC SldeW_UCer.
OC Oulc:r.p
NI Ne InCorÞl.
C C..I
x
Castano
O'Connor
MICROSCOPE
x
Jena
Zeiss
K Ku·c··
WR 'Vlaole R.ck
Ld. N.t D.tum.
LD
10
S11tUCTUlŒU
I.II'IDS
AL AI,lnIt.
SB Suberlait.
C Cathille
LD Uptedetrlnlt.
IJ Uadlffu.
S Sperl.I'.
R R.dafl.
o 0......
20 45
0::
UJ
~
W ~
Q.
~ ~ ~
~ w 0 ð
Ii.! æ ;;i =>
Q. >- ~ t- ~ 0
~ 0
Q. t- o::
r-
'fA M M tf M
.- ----..-"J u__
r;-
10 65 '1fA M It! 1.{ M
1;
20 50 tfA M + \{ M
I I
OTHER
ORGANIC MA TIER
E Eulldatbdt.
G . Grept.Ula
VL Upld-Rkla Vltrlnlt.
VC VltriD.lt.C....lDlnat..a
VR Rec:yd.d Vllrlnll.
I·YRrn:
AIlUND.
Ro
UNSTR. STRU. UNSTR. SfRU.
TAl FLUOR. TAl FLUOR.
~ w
~ ¡
Ii.! t- ..
!Z 0 i
w
!l æ w
~ ~ Õ Ë i ~ ~
ß 0:: ~ Þ
~ a tr ~ ~ ~ ~ w IC ~ w 0:: J
0 ~ 0 .... w 3 0 UJ 3 0 Ii.! ïr. :!
ð ð ð 0 ð c;
0 ~ ~ ~ ~ ~ -< ~ 5
0 0 0 0 > 0
- T DB 1 0
0
- T OD 1 Y
1JD 1 0
2
2 2+ 0
o
2 10.66
I
2 0.49
I
2 0.52
I
I
2
2...d.
o
1 2 OD 1
2 3 2+ BL 0
o
--,,- ,.-.-- _.._-.-._._~ -...--, .
. - .. -. .-. I J - . --,
"'LUnIt.
INTENS.
VIT.ltEF..I<:Cf. Jo'(,UOR. TAICOI.OR
EQUIVALENCE COLOR VALUES
B Blhu'uft W WWt. 1· Stn.. V.IIe..
G Gnpt.Utu G Gr... t Pale Y.Ie..
VL Up&cJ-Rkb Vltrla/te Y y.a."" 1+ Y .1Ie""
VC VltrInJl. C....... 0 OnllJe 1- Y 6",,-Ora1ll_
VR Recyc:led Vlh'lDIt. R Red 1 Gel«le.
B Dr... 1+ A.ber
BL Bbc:k J- R...... Dr...
] MediIua Br__
J+ DukBr...
L "".t ... Bra_BIIIck
U Dark .. .UA' It
..+ Blatk-Op.qlM
E Euhedral N NOM 0 Noaa
F Fr..bold T Trece Weak
MA Muslv. SmaU AmI. 1 Modtn..
RI Rephc.. M Med. AIDI. 3 Slr·1IJ
bßII + Lar,. A.I. .. lilt.",.
++ A'-dan.
VISUAL KEROGEN ANALYSIS
Total Quality Geochemistry
/. "
.......,.
'L ..>
:. r,
#1 KUPARUK
300 - 400 ft. CTG
I~PRETED MATURITY: 0.41 Ro
KEROGEN
Std. Dev. : 0.05
No. Readings : 30
--------------------------------~----------~-----
# 20 ·
.
15 ·
10
5 ·
, fþ , , , , I ' , , '21 ' , , , 1 ' , , '3 . , , , I . , , '4 ' " , I ' , . , 5 ' . , , I ' . , '6
Values REFLECTANCE VALUES
"'-0.43 0.80
"'-0.44 0.82
"'-0.44· 0.98
"'-0.44
"'-0.44
""0.45
"'-8.46
"'- .48
,10:0.50
,10:0.59
°
.J.:. = Maturity
~0.34 ~0.39
""0.34 *0.40
~0.35 *0.40
*0.36 ""0.41
*0.37 "'-0.41
*0.37 ,lt0.41
.;..8.37 ""0.41
* .38 *'8.43
*0.39 .;.. .43
';"0.39 ""0.43
#1 KUPARUK
1200 - 1300 ft. CTG
INTERPRETED MATURITY: 0.72 Ro
KEROGEN
Std. Dev. : 0.11
No. Readings : 29
-----~---------------~-------~-------------------
# 20'
15 ·
10
, . I ' , , '2' . , , . , . . . '3' . , , . I . . . . 4. . , . . I . , . . 5 ' . . . ì . . . . 6
REFLECTANCE VALUES
5 ·
:". r I
0' 1
"" = Maturity Values
0.35 ~0.57 "'-0.71
0.37 *0.60 *0.71
0.41 *0.63 *0.71
0.41 ""0.64 ~0.73
0.43 *0.64 *0.73
0.46 *0.66 *0.73
0.46 ~0.68 ~0.76
*0.52 ';"0.69 *0.77
*0.54 ~0.69 *0.79
~0.56 *0.70 *0.82
*0.82
*0.86
*0.88
*0.89
""0.89
*0.90
1.03
1.12
GMC Data Report No. 224
18/21
#1 KUPARUK
2100 - 2200 ft. -CTG
INTERPRETED MATURITY : 0.51 Ro
KEROGEN
S td. Dev. : 0.10
No. Readings : 25
--~--------------------------~---------~~--------
: 11 , r, , '21 ' , , , I ' , , '31 ' , , . 1 ' . . '4 . . . 'I . . . . 5 . . , , I . , , . 6
* = Maturity Values REFLECTANCE VALUES
*0.33 ~0.52 ~0.61 0.81 1.12
*0.34 ~0.52 ~0.61 0.85 1.15
~0.37 ~0.53 ~O.62 0.86 1.22
*0.40 ~0.53 ~0.64 0.88 1.50
~0.40 *0.54 ~0.65 0.98
~8:~~ ~8:~i 8:~~ i:8~
*0.48 *0.59 0.78 1.09
*0.48 *0.59 0.79 1.09
#: 20 ":
15
10
5
0
#1 KUPARUK
2900 - 3000 ft. CTG
INTERPRETED MATURITY: 0.54 Ro
KEROGEN
Std. Dev. : O. 17
No,. Readings : 28
-----------~-----~-------------------------------
# 20'
15
10
5 : LJ n
:~ r In, 1 ' . . . r ' , 'I' " ',.
012 3
"'....'....1
4
. . 's - - . , I' .. ~
~ = Maturity Values
0.24 ~O.44 ~0.62
*0.31 ~0.47 ~0.70
"0.32 *0.49 ~0.71
~0.32 ~0.51 ~O.72
~0.33 *0.58 ~0.76
~O.33 *0.59 *0.76
*0.34 *0.60 *0.76
"0.34 ~0.62 *0.78
*0.35 *0.62 *0.78
*0.40 ~O.62 0.92
REFLECTANCE VALUES
0.93
0.97
1.02
1.04
1.06
1.09
1.20
1.21
1.27
2.05
GMC Data Report No. 224
19/21
#1 KUPARUK
3700 - 3800 ft. CTG
INTERPRBr~ MATURITY: 0.52 Ro
KEROGEN
Std. Dev. : O. 10
No. Readings : 23
------------~-~--------------------------~-------
# 20 ~
15 ·
10 ·
5 ·
11Tl n '21' . . , I ' , , '3 . . . . 1 ' , , '4 ' " , ' I . . , . 5' . . , 1 . , , , 6
REFLECTANCE VALUES
o
* = Maturity Values
*0.40 ~0.46 *0.65
~O.43 ~0.48 ~0.71
~O.44~0.50 *0.72
~O.44 ~0.51 0.86
~O.44 ~O.54 0.86
*0.45 *0.54 0.87
~0.45 ~0.59 0.90
~O.46 *0.61 0.90
~O.46 *0.63 0.99
*0.46 *0.64 1.01
1.02
1.07
1.07
1.07
1.14
1.18
1.32
1.40
1.56
1.76
#1 KUPARUK
4750 - 4850 ft. CTG
INTERPRL~~ MATURITY: 0.66 Ro
KEROGEN
Std. Dev. : O. 18
No. Readings : 22
---~~---~----------------------------------------
#: 20 ,
15
10 ·
5 0: rU\- ~ 1-r . . '21 . . . , 1 ' . , JI . . . . I . . '4 . , , 1 .. . . 5 .. .. I . . . 6
* = Maturity Values REFLECTANCE VALUES
0.36 *0.62 ~0.88 1.04 1.29
*0.40 *0.64 ~0.89 1.06 1.32
~0.43 ~0.65 *0.89 1.08 1.36
~0.45 *0.66 0.95 1.19 1.42
~O.47 *0.69 0.98 1.20 1.53
*0.48 *0.81 0.98 1.21
~O.48 *0.84 1.01 1.22
~O.48 *0.84 1.01 1.23
*0.55 *0.86 1.04 1.25
~O.62 *0.88 1.04 1.28
GMC Data Report No. 224
20/21
#1 KUPARUK
5750 - 5850 ft. CTG
INTERPRb~BD MATURITY: 0.49 Ro
KEROGEN
Std. Dev. : 0.08
No. Readings : 19
--------------~--~---------------------~---------
:#: 20·
15 ..
10
5 ~ I r--
O:~ 1 ih-n n . 2' . . , . I . . . '3' . . , , I' . . '4 · . .. , . . . . 5 . . . . I. . . . . 6
* = Maturity Values REFLECTANCE VALUES
*0.35 *0.50 0.68 0.92 1.24
*0.38 *0.54 0.71 0.92 1.25
*0.40 *0.55 0.74 0.94 1.32
*0.41 *0.56 0.75 0.97 1.45
*0.42 *0.57 0.77 0.98 1.49
~8:i~ ~8:~~ 8:ái 1:81 1.61
*0.46 *0.59 0.82 1.10
~0.48 *0.60 0.86 1.10
*0.49 0.67 0.88 1.16
#1 KUPARUK
6400 - 6500 ft. CTG
INTERPRBr~ MATURITY: 0.52 Ro
KEROGEN
Std. Dev. : 0.05
No. Readings : 24
-~------------------~----------------------------
#: 20 ,
15 ..
10 .
5
o I' 1fHl., n . '21 . . . . , . . . '3 . . . . I . . . . 4 . , . . I . .. . 5 . . . . I . . . . 6
* = Maturity Values REFLECTANCE VALUES
~0.43 *0.52 *0.56 0.84
*0.44 *0.53 *0.58 0.88
*0.45 *0.53 *0.58 0.91
*0.45 *0.53 *0.60 0.92
*0.46 *0.54 0.68 1.04
*0.48 *0.54 0.71 1.06
*0.49 *0.54 0.72 1.19
*0.50 *0.54 0.76 1.22
*0.51 *0.55 0.78 1.25
~0.52 *0.56 0.82 1.63
GMC Data Report No. 224
21/21