Alaska Logo
Department of Commerce, Community, and Economic Development
Alaska Oil and Gas Conservation
Commission
Loading...
HomeMy WebLinkAboutGMC Data Report No. 224 Visua.l kerogen and vitrinite reflectance data derived from washed cuttings (90' - 6,100') and from core chips (4,739' - 4,894') of the BP Exploration (Alaska) Inc. Kuparuk Uplands Ekvik No. 1 well, and derived from unwashed cuttings (300' - 6,500') of the BP Alaska Inc. Kuparuk Unit No. 1 well. r:~ GE~O<.o '~ S ~/ ~ 0 ~¡ALS Received 20 April 1994 (added 8 pages of text 20 July 1995) Total of 21 pages in report Alaska Geologic Materials Center Data Report No. 224 KEROGEN MICROSCOPY OF SAMPLES FROM '!WO WELLS, ALASKA Q Prepared For: Chevron USA, Inc. P.O. Box 1635 Houston, TX 77251 Prepared By: Wallace G. Dow DGSI Project: 94/2879 February 11, 1994 " GMC Data Report No. 224 DGSI Total Quality Geochemistry 1/21 DG8I . 8701 NEW TRAILS DRIVE . THE WOODLANDS, TX 77381 · (713) 363-2176 · FAX (713) 292-3528 · TELEX 881137 DGSI DISCUSSION Bit cuttings samples from two wells were analyzed with kerogen microscopy only. No geochemical or geological information were provided to help with data interpretation. Some of the maturity calculations, especially on the Kuparuk well samples, are open to ~estion and must be confirmed by other information. Ekvik No. 1 Well All nine of the samples analyzed from this well contain both terrigenous and lipid organic matter with t.he t.errigenous component. generally predominating. St.ructured lipids consist of land plant derived sporinite, cutinit.e, resinite and suberinite as well as liptodetrinite of unknown affinity. ,These kerogens should generate primarily gas although there could be some waxy oil generating potential in three cutinite rich samples from between 90 and 2,880 feet. Low background and lipid fluorescence intensity and limited solid bitumen (except in the 5,970-6,100 foot sample) indicates that. oil has not been generated. Because of the high percentage of t.errigenous organic matter, vitrinite is abundant and calculated maturit.ies are based on reliable reflectance populations. Samples from 3,500 feet and deeper contain some high reflecting, probably recycled vitrinite that was excluded from the maturity calculations. The cal~ulat.ed vitrinite reflectance maturities are supported by other indices such as TAl, structured lipids fluorescence color and intensity, and unstructured lipids texture. There is a persistent maturity increase with depth and the top of the oil window (0.6 R) is just being approached in the deepest sample. The entire section penetrated o is therefore immature and has not generated oil or gas. A maturity offset between 2,~80 and 3,570 feet may be caused by a reverse fault between these two depths. This conclusion must be considered tentative until it is supported by geological information. Considering the excellent quality of the reflectance maturity calculations, however, the presence of such a fault is a distinct probability. 9-1/2079 - 1 GMC Data Report No. 224 2/21 ~uparuk No. 1 Well Eight samples from this well also contain mixed terrigenous and aquatic organic ma~ter with the terrigenous component predominating. Structured lipids are primarily liptodetrinite but there is some higher plant sporinite and cutinite in the two shallowest samples. The organic matter in these samples should yield only gas, possibly including minor wet gas. Vitrinite is abundant in all of the samples analyzed but most contain multiple vitrinite populations and it is sometimes difficult. to determine which population represents the true maturity of t.he samples. Other maturit.y indices are also affected because they parallel the reflectance maturities. The sit.uation is complicated by the fact that cavings below reverse faults can be more mature than indigenous material. There is some high reflective vitrinite in all of the samples which appears to be recycled and this material was excluded from the maturit.y calculations. Our vitrinite reflectance maturity calculations are mostly based on the lowest good vitrinite population in t.he samples. There appears to be a general increase with depth with strong offsets between 1,300 and 2,100 feet and between 4,85Q and 5,750 feet. Maturity revers.als at these two depth positions could indicate reverse faults. The maturity offset at t.he shallow fault position indicates a greater throw than the lessor offset at the deeper position. Because of . the mult.iple vitrinite populat.ions, our maturity calculations are suspect and must be support.ed by geological data. If our interpretation is correct, t.he shallowest thrust plate is within t.he oil window, the second plate is just approaching the oil window, and the third plate is immature. Hydrocarbon generation is suspended throughout. the section by cooling associated with overburden removal and is not active at t.he present time. 9~/2B79 - 2 GMC Data Report No. 224 3/21 VISUAL KEROGEN ANALYSIS TECHNIQUES Visual kerogen analysis employs a Zeiss Universal microscope system equipped with halogen, xenon, and tungsten I ight. sources or a Jena Lumar microscope equipped wit.h halogen and mercury light sources. Vitrinite reflect.ance and kerogen typing are performed on a polished epoxy plug of unfloat.ed kerogen concentrate using reflect.ed light from the halogen source. The digit.al indicator is calibrated using a glass standard with a reflect.ance of 1.02% in oil. This calibration is linearly accurate for ref1ect.ance values ranging from peat. (Ro 0.20%) through anthracite (Ro 4.0%). Reflectance values are recorded only on good quality vitrinite, including obvious contamination and recycled material. The relative abundance of normal, altered, lipid-rich, oxidized, and coked vitrinite is recorded. When good quality, nOI"1Ilðl vitrinite is absent., notations are made indicating how the maturity is affected by weathering, oxidation, bitumen saturation, or coking. When normal vitrinit.e is absent or sparse, other macerals may be substituted. Solid bitumen, for example is present in many samples. Although it often has a different reflectance than vitrinite, Jacob's calibration chart can be used to obtain an estimated vitrinite reflect.ance equivalent. Graptolites have about the same reflectance as vitrinite and can often be used to obtain maturity data in early Paleozoic rocks that have no vitrinite. Unstructured lipid kerogen changes in t.exture and color during the mat.uration process. Typically, unstructured kerogen at low maturity is reddish brown and amorphous. Somewhere between Ro 0.50 to 0.65%, the kerogen takes on a massive texture and is gray in color. At higher maturity, generally above Ro 1.30%, unstructured kerogen is light gray and micrinized. Kerogen t.yping and maturity assessments from the polished plug are enhanced by utilizing fluorescence from blue light ~xcitation. The xenon or mercury lamp is used with an excitation filter at 495 nm coupled with a barrier filter of 520 nm. With the Jena microscope we also have the option of observing fluorescence under ultra violet excitation. The intensity of fluorescence in the epoxy mounting medium (background fluorescence) correlates well with the onset of oil generation and destruction. The identification of structured and unstructured liptinite is also enhanced with the use of fluorescence in those samples having a mat.urity less than Ro 1.3%. The relative abundance and type of pyrite is also recorded. TAl is performed using tungsten or halogen light source that is transmitted through a glass slide made from the unfloated kerogen concentrate. Ideally, TAr color is based on spoririite of terrestrial origin. When sporinite is absent. TAl is estimated from the unstructured lipid material. Weathering, bitumen admixed with the unstructured material and micrinization can darken the kerogen and raise the TAl value. The character of the organic matter in transmitted light is correlated with observations made in reflected light for kerogen typing. Kerogen reinforced by light to The light is pyrite, and typing and maturity assessments from the slide preparation are also using different light sources. The slide is first observed in transmitted obtain TAl color and organic matter structure or type. then switched to reflected halogen light to observe structure and amount of finally to reflected blue light excitation from the xenon or mercury source GMC Data Report No. 224 4/21 for fluorescence. The fluorescence of structured and unstructured liptinite is not masked by the epoxy fluorescence as it is in the reflected light mode because the mounting medium is non-fluorescent. Remnant lipid structures (e.g. sporinite and alginite) within the unstructured kerogen can often be identified in blue light. Maturity calculations are made from the vitrinite reflectance histograms. Decisions as to which reflectance measurements indicate the maturity of the sample are based not only on .the histogram but on all of the kerogen descriptive elements as well. Because it is not done at the time of measurement, alternate maturity calculations can be made if kerogen data and geological information dictate. In summary, vitrinite reflectance measurements are performed on a polished plug in reflected light, TAr is performed on a slide in transmitted light, and kerogen typing is estimat.ed from both preparations using a combination of reflected, transmitted, and fluorescent light techniques. Fluorescence in blue light is used to enhance the identification of structured and unstructured lipid material, solid bitumens, and drilling mud contaminants. Fluorescence also correlates with the maturity and state of preservation of the sample. Maturity calculations from measured reflectance data are made from the histograms and are influenced by all of the kerogen data. VISUAL KEROOEN ANALYSIS GLOSSARY Several key definitions are included in this glossary in order to make our reports more self-explanatory. In our reports, we refer to organic substances as macerals. Macerals are akin to minerals in rock, in that they are organic constituents that have microscopically recognizable characteristics. However, macerals vary widely in their chemical and physical properties, and they are not crystalline. 1. UNSTRUCTURED KEROGEN, or sometimes called structure less organic matter (SOM) and bituminite; it is widely held that unstructured kerogen represents the bacterial breakdown of lipid material. It also includes fecal pellets, minute particles of algae, organic gels, and may contain a humic component. As described on the first page of this section, unstructured lipid kerogen changes character during maturation. The three principal stages are amorphous, massive, and micrinized. Amorphous kerogen is s imply wi thout any structure. Mass lve kerogen has taken on a cohesive structure, as the result of polymerization during the process of oil generation. At high maturity, unstructured kerogen becomes micrinized. Micrinite is characterized optically by a.n aggregation of very small (less than one micron) round bodies that make up the kerogen. 2. STRUCTURED LIPID KEROGEN consists of a group of macerals ~hich have a recognized structure, and can be related to the original living tissue from which they were derived. There are many different types, and the types can be grouped follows: ð. Alqinite, derived from algae. It is sometimes very useful to distinguish the different algal types, for botryococcus and pediastrum are associated with lacustrine and non-marine source rocks, while algae such as tasmanites, gloecapsomorpha, and nostocopsis are typically marine. Acritarchs and dinoflaggelates are marine organisms which are also included in the algal category. GMC Data Report No. 224 5/21 b. Cutinite, derived from plant cuticles, the remains of leaves. c. Resinite, (including fluorinite) derived from plant resins, balsams, latexes, and waxes. d. Sporinite, derived from spores ðnà pollen from a wide variety of land plants. e. Suberinite is derived from the corky tissue of land plants. f. Liptodetrinite is that structured lipid material that is too small to be specifically identified. Usually, it is derived from alginite or sporinite. g. Undifferentiated. At times, one can readily distinguish structured lipid material from the unstructured wit.hout being able to make a specific determination of the structured material. The algae are an important part of many oil source rocks, both marine and lacustrine. Alginite has a very high hydrogen index in Rock-Eval pyrolysis. Resins, cuticles, and suberinite contribute to the waxy, non-marine oils that are found in Africa and t.he Par East. At vitrinite reflectance levels above Ro 1.2 - 1.4%, structured lipid kerogen changes structure and it becomes very difficult to distinguish them from vitrinite. 3. SOLID BITUMEN, also called migrabitumen and solid hydrocarbon. In 1992, the International Committee for Coal and Organic Petrology (ICCP) has decided to include solid bitumen in the Exsudatinite group. Solid bitumens are expelled hydrocarbon products which have particular morphology, reflectance and fluorescence properties which make it possible to identify them. They represent two classes of substances: one which is present at or near the place where it was generated, and second as a subst.ance which is present in a reservoir rock and may have migrated a great distance from its point of origin. The solid bitumens have been given names, such as gilsonit.e, impsonite, grahamite, etc., but they represent generated heavy hydrocarbons which remain in place in the source rock or have migrated into a reservoir and mature along with the rock. Consequently, it is possible to use the reflectance of solid bitumens for maturation detèrminations when vitrinite is not present. 4. HUMIC TISSUE, that is organic material derived from the woody tissue of land plants. The most important of this group is: a. Vitrinite is derived from woody tissue, which has been subjected to a minimum amount of oxidation. Normally, it is by far the most abundant maceral in humic coals, and because the rate of change of vitrinite reflectance is at a more even pace than it is for other macerals, it offers the best means of obtaining thermal maturity data in coals and other types of sedimentary rocks. Because the measurement of vitrinite is so important, care is taken to distinguish normal (fresh, unaltered) vitrinite from other kinds of vitrinite. Rouqh vitrinite does not take a good polish and therefore may not yield good data. oxidized vitrinite may have a reflectance higher or lower than fresh vitrinite; this is a problem often encountered in outcrop samples. Lipid-rich vitrinite, or saprovitrinite, has a lower reflectance than normal vitrinite, and will produce an abnormally low thermal maturity GMC Data Report No. 224 6/21 value. Coked vitrinite is vitrinite that has structures found in vitrinite heated in a coke oven. Naturally coked vitrinite is the product of very rapid heating, such as that. found adjacent to intrusions. Where it is possible to do so, vitrinite derived from an upho1e port.ion of a well will be identified as caved vitrinite. Recycled vitrinite is the vitrinite of higher maturity which clearly can be separated from the indigenous first-cycle vitrinite population. Often, the recycled vitrinite merges in with the inert group. b. Inertinite is made up of woody tissue that has been matured by a different pathway. Early int.ense oxidation, usually involving charring, fungal attack, biochemical gelification, creates the much more highly reflecting fusinite and semi-fusinite. Sometimes the division between vitrinite and fusinite is transitional. Sclerotinite, fungal remains having a distinct morphology are considered to be inert. An import.ant consideration is that the inerts, as the name implies, are largely non- reactive, -dead carbon-, and they have an extremely low hydrogen index in Rock-Eval pyrolysis. S. OTHER ORG.h.NIC MATERIAL a. In the table, we have put lipid-rich, caved and recycled vitrinite in this section so that we could show the percentages of these macerals; they are described above. b. Exsudatinite. Oil and oily exudates fall in this group. Exsudatinite differs from the solid bitumens on the basis of mobility and solubility. We prefer to maintain this distinct.ion although the ICCP has now included the solid bitumens in wit.h the Exsudatinite group. c. Graptolites are marine orga~isms that range from the Cambrian to the lower Mississippian; it has been found that they have a reflectance similar to that. of vitrinit.e. Because vitrinite is lacking in early Paleozoic rocks, the proper identification and measurement of graptolites is important in these sediments. 6. PYRITE. Various forms of pyrite can be readily identified under the microscope. Euhedral is pyrite with a definite crystalline habit. Framboida1 is pyrite in the form of grape-like clusters which are made up of euhedral to subhedral crystals. Framboidal pyrite is normally found in sediment.s with a marine influence; for example, coals wit.h a marine shale roof rock usually contain framboidal pyrite. Massive pyrite is pyrite with no particular external form; often this is pyrite that forms rather late in the pore spaces of the sediment. Replacement/infilling is self-explanatory. GMC Data Report No. 224 7/21 ." '" )10 -4 ...-L ZONES OF PETROLEUM GENERATION AND DESTRUCTION ORGANIC MATTER TYPE AMORPHOUS (OIL) MIXED COALY (GAS) ro- C5 ;z ~ "" -L --L !lOt c: . <: ~1""".5 I t ~ :. _ ~:;- 0· PEAK OIL CfNERATlON · ~-7 I <CI:ICD ,..,. 1 I no - - .~ ~ -~ ~=8 Oil -^" : r-~>% '"t'I:...L I g_ ~·~l.O . ~ PEAK W£ï·GA.$ GEN ~ ~ '" _ ~ 120 _ WET PEAK OR) -:<1AS CEN :s: ~ .._ :z..Lil..QIU~.!! - - - - - - GAS -,--- - - --- ~ ~- : ~ DRY .~ f ...il.... ~E.I:~UWO~ _ _ _ _ Y- _ _ _ _ GAS _ _ ___ ~ ~ I ! I ...:...- > %. -1 ::0 > -- n ~ I'r'I 3.0 , - DRY. GAS PRESERVATION UMrr - - - - --. - - - - - - - - - - -- -'.-- -. - - ----.. ~ ~ ... . 5.0 ~ -< 43ð5_ ,- -< en ("') ë.ñ > := en -!Lea ~ N 0---4- :z 3: -- > - - :z ~70 >c -z -..--- .... 0 90 ='= ci - m' -", - x == o 2QSL 3q c;") .....:.» ", 2: ..!L -1JL ..!12... 1 + -~ :I: m ::tJ š: » r- 2 ~ m ::0 I~ + ~ + - 4 + CORRELATION OF VARIOUS MATURATION INDICES AND ZONES OF PETROLEUM GENERATION AND DESTRUCTION. GMC Data Report No. 224 75 ~ - ,.., c; ::: ~ --ªL ~ .JML iL 8/21 C) ~ n tï Po) ~ Po) ~ (t) "'0 o :4 Z o tv tv +:>- #1 EKVIK Project: DGSI/94/2879 FLUORESCENCE 1 TAl REFLECTED TRANSMITTED LIPIDS LIPIDS DGSI LIPIDS UNSTRUcnJRED HUMIC OTHER RELATIVE ABUNDANCE VITRINITE ORGANIC MATTER Ro UNSTR. STRU. UNSTR. STRU. TAl FLUOR. TAl FLUOR. SIRUcnJRED DATE: a:: ~ ~ UJ i ~ ~ w ß ~ UJ .. ar:: ~ 1 UJ Go ~ ~ z 0 <0 l: ~ UJ ~ z ã UJ ::I ~ 'ž ~ ~ :E ~ w ~ z Is ~ 219/94 ffi a J UJ Q. J Q. 0 W ~ ~ ~ ~ I:: I:: UJ ~ ~ l: ar:: Õ ~ ~ ~ ~ ~ ~ ~ ~ J: ~ ~ <0 Z I:: UJ w 0 ~ ~ :5 ... ~ a t= z æ '= -I ð a a:: ~ a:: ~ CI w a:: !2 w a:: !2 IL ~ iZ w w w UJ w w ~ Ó ~ 0 g ~ J g J g ~ ~ ~ 0 Q. Go ~ Go ::; ar:: « Go Go ar:: ~ J ñ: Õ w w 0 ;;i w ;l UJ OEPTIIIN FEET ~ l: l: l: 0 w ~ l: l: >- t 0 ~ 0 0 ~ 0 ~ :í 0 ~ 0 ~ :> en ~ Go t- ar:: ::; 0 0 0 > 0 > 0 CTG LD ,)B C S YL 0 1 0 1 1 90 210 ~ 10 T r 10 T 20 55 5 itA T + + B 1 Y 4 o 'I.d. y 4 0.31 Comments: Unstructllrell kerogenllif/iclllt to identify ill slide. CTG r.J) S YL YR T)B 0 2 2 1020 - 1140 x 10 5 T 5 75 5 T UA M + + ? 1 0 2 1 ',.d. 2 BL 0 0.33 Comments: ~ome.li1!¡'t oxitlat;on. CTG :'D C S YL YR ') 0 2 0 0 2 3 1950 - 2070 x 10 10 10 T 10 55 5 T UA Itt + II M ~ 1 Y 4 1 'I.tI. 1 Y 3 0.37 Comments: CTG ~D C R S 1 0 1 4 2760 - 2880 x 15 5 10 T T 5 20 45 UA M + + OB J Y 4 1 '1.tI. 0 1 2 0.43 Comments: Bitllminite? CTG ~D YR 0 1 5 3570 - 3690 x 30 5 10 50 5 UII M + 11 M M '1 1 Y 4 1 2 0 1 0 2 0.39 Comments: Some Ii~"t oxidation rims. SAMPLE STRUCTURED OTHER PYRITE ABUND. FLUOR. VIT. REFLECT. FLUOR. TAl COLOR ANALYST TYPE/PREP LIPIDS ORGANIC MA TIER INTENS. EQUIVALENCE COLOR VALUES CTG Cullin.. AL AI.lalt. E EuudatlnU. E Euh.dnl N N.M 0 NeM B Bltum.. W WhIt. 1· Straw Y.llew Castano cc c...,.. Cere 58 Suber_It. G Gra,..UC" F FraIDbeld T Trac. W.ak G Grapt.llt.. G Gr... 1 P.1e Y....", X O'Connor SWC SideW.UCere C . Cutln1t. VL Upld-Rkb Vlulnlt. MA Maatv. Suaaa AmI. 1 Mederat. VL Upld-Rkh VltrlDlt. Y Y..", 1+ y.Dow OC Outcrep LD Uptedettl.alt. VC Vlulnlt.C.fttamlaatlen RI R.plac.. M Mod. Amr. 3 Str·RI VC VltrlaIt. C.nts.. o 0.....,. 1· Y"w-Ora... NI N. '.....n... U 1 r."llI1'u. VIt RecJcled Vltrlnlt. tnnll + Lar.. AlAI. .. 'nt...... VR RecJcled Vltrlnlt. R RM 1 c.w.. C Cui S Sperlalt. ++ AbuAda.c B Pr.",. 1" A.ller MICROSCOPE R Rul,"t. DL Rlack 3- ReddI.~ Dr._ K "n..en 0 Other 3 M..u- Br.",. \0 Jena WR Whole Reck 3" Dark Dr._ - VISUAL KEROGEN ANAL YSIS N X Zeiss L Ucht ... Dr.....Bbck - ..... N.t PeterIL T olal Quality Geochemistry D Park .. RIa,k 04" ntack-O,...._ a ~ n t:J þ) rt" þ) ~ (1) "0 o >-t ~ #1 EKVIK Project: DGSI/94/2879 FLUORESCENCE I TAl ORGANIC MATTER RELATIVE ABUNDANCE REFLECfED TRANSMITTED Ro LIPIDS HUMIC OTHER VITIUNITE LIPIDS LIPIDS DGSI UNSI'RUCI1JRED SIllUCI1JRED UNSTR. STRU. UNSTR. STRU. TAl FLUOR.. TAl FLIJOR.. DATE: II: ~ 11.I ~ .., ~ ~ ~ 1 11.I a ~ w t i ~ w ~ 0.. ..... ~ ~ u ~ ~ ::!!; ~ ~ Z :I !z <J ~ :I ~ w. ~ ~ w f 2/9/94 ¡ ::> a ::> LIJ 0.. II: ~ ~ 0 w ~ ~ ~ ~ t: ~ ILl g ~ ~ a: Õ a ~ ~ ð ~ ~ ILl b- ~ ~ X ~ ~ 011 2 ILl W 0 ~ « ILl II: ~ :s ~ a ~ ~ ã !j a II: ~ II: ~ 0 ILl II: ~ LIJ II: ~ ~ « w LIJ .... W ILl W t: t: 4( d a ~ 3 g >C 3 0 3 3 :1 ã ~ 0 0.. 4- 0.. ~ ~ « 0.. 0.. ee ee ..... ee ::> IIJ ILl 0 g ILl ILl « DEPTIIIN FEET z 3 ~ ~ ~ 0 ILl ~ ~ ~ >- t 0 ~ 0 li: ð 0 0 ~ 0 ~ ~ ~ ~ ~ 0 ~ t: ::> <II ~ 4- ..... ee ~ 0 0 0 0 0 > CTG r..n YL YR 'fA B 0 1 0 6 4530 - 4650 K 45 5 10 30 5 5 ¡" J,f + U" M . },f DB 1 Y 2 2 2 OB 1 Y 2 0.42 Comments: ROllghJ dark oxidation. Nlltshell contamination. (X ~D S VR ¡" 0 1 0 1 2- Y 2 7 4739 - 4894 r 20 5 T T 15 45 15 )fA M + + 'JB 1 y 2 2 2 BL 0 2 YO 3 0.46 Comments: CTG "'.n YL VR ¡" "'JB 0 1 0 2 8 5190 - 5310 L 40 5 10 30 5 10 'fA M + }f M ""? 1 Y 2 2 2 OB 1 Y 3 0.46 Comments: Dark oxidation. CTG "'.n YL VR 0 9 5970 - 6100 K 20 5 5 10 45 5 10 ¡" M + 1-1 M - M ,¡JB 1 0 2 3 2 OB 1 Y 2 0.55 Comments: Sanae. Large (ra !naellts solid bitllmen - Ro 0.03 - 0.28. z o N N .¡::... ~ o - N ~ Comments: ANALYST SAMPLE TYPEIPREP erG Cuulac' CC C.DY. Cere SWC SideWaUC.n OC Olltcr.p NI N. Inforll1. C Cui x Castano O'Connor MICROSCOPE x Jena Zeiss K K.nt·· \VR wtt.1e Rock Ld. N.' D.,.,III. STRUCTURED OTIIER PYRITE ADUND. FLUOR. VIT. REFLECT. LIPIDS ORGANIC MA TIER INTENS; EQUIVALENCE AL AIIIDlt. E Euudatlak. E Euh~dr,1 N N... 0 N.ne B Bltum.n S8 Suberlnlt. G Crapt.JlI.. F Frambold T Trace Weak C CnptoUI.. C CutlDlle VL UpJd.Rkb Vltrlal.. MA Mauw. SID,n Am.. 2 Mo~nle VL Llpld-Rkla Vlrrlal'. LD Uptedetrlnlte VC Vltrlllll.Coltlallllaatio. RI R~pbn- M Med. Am" 3 Stnal VC Vftrlalt. C..talD. U UnJlß'~r. VR Recyd~d Vltrlalt. 1afiß + urea A.... .. 1.lens. VR. R.cycled VI'rlal.. S S(>o rlnile ++ AbundaDt R R..InU. 0 onler VISUAL KEROGEN ANALYSIS Total Quality Geochemistry FLUOR. TAl COLOR COLOR VALUES W WhIt. 1- Strawv.u.w C Crftll t Pale V.Dew V v.u.w 1+ v.new 0 OnDle 2-. V.Bow-Oraa,. R R.d 2 Gelde. 8 Dc.... 2+ A_her BL Black 3- Reddbll Bh_ :J MedIaa Dr__ :J+ Dark Br._ L Ll¡ht 4- Br._Black D nork .. lUa.k ... ßlack-0r-'I'" 11/21 l r:. ~ F:EFLE\:T~"·.NCE ~,,;-.:\LUES . t 3' 1.61 i n GMC Data Report No. 224 *0.34 :'0:0.3«1 "-=0.35 ~0.36 ~0.38 *0.38 *0.41 ~0.43 *0.43 *0.49 , I 1 Values o * = Maturity *0.23 ,A.:O.31 ~0.29 *0.31 *0.29 *0.31 *0.30 *0.31 *0.30 *0.31 ~O.30 ~O.32 :lr-1j.30 *0.32 ""-0.30 *0.33 *0.30 ~O.33 ~O.30 *0.33 5 10 15 # 20' No. Reading~ : 30 --~---------------------------------------------- l tj ~ r:EROGEN s td. Dcv. : 0. 05 #:1 EKVIK 1020 - 1140 ft. CTG INTERPRETED MÞ~URITY : 0.33 Ro REFLECTi:..NCE V¡~LUES ,~ ...1 j 21. . I I ,10:0.35 '&':0.35 ,10:0.35 *0.36 *0.38 *0.38 *0.39 *0.39 0.40 o . '1 0 Values , l' k = Ma.turity ~O.23 ~O.29 ~O.24 ~O.30 ~O.25 *0.30 *0.25 ,10:0.30 /.:0.25 *0.30 '&':0.26 ~O.31 ~0.26 *0.31 ~O.26 ~O.32 *0.29 *0.33 ~O.29 *0.35 #: 20 15 10 5 Ù Ho. Rcading~ : 28 -~----------------------------------------------- KEROGEN S td. Dcv. : 1,). 05 #1 EKVIK 90 - 210 ft. CTG INTERPRETED ~\TURITY : 0.31 Ro 12/21 l o 5 t REFLECTANCE VALUES . ·l ":11 oJ I . I I .. 'I' o 1 * = Maturity Values ~O.33 ~O.41 ~O.45 ~O.34 *0.41 ~O.45 .0.37 ~0.42 *0.45 ~O.39 *0.42 *0.45 ~O.39 *0.43 *O.4Q ~û.39 *0.43 *0.4b *0.40 ~ù.43 ~0.46 * ù . 40 "-: l) " £111 :J.: 0 " ,16 ~O.40 *0.44 ~O.46 ~ Q tlO ~ 0 . 4 5 ~ 0 . 4 Ò GMC Data Report No. 224 ~O.46 *0.48 ~O.18 ~O.49 *ù.58 I ,"') ... # 20 , 15 10 5 No. Reading~ : 35 ~------------------------------------------------ L " .. '5 ~:ERùGEH Std. Dev. : v.05 #1 E.KVIK 2760 -2880 ft. CTG INTERPRETED ~l~TUR ITY : '.). <1 3 Ro REFLECTANCE V¡~LUES It I , I 3 , I ' 2 n , {l .' , ( , 1 Values ~0.37 *0.37 *0.37 ~O.38 *0.39 *0.39 *0.39 "" 0 . t1 0 *0.41 * 0 . '141 '* = Maturity *0.26 *0.34 *0.28 *0.34 *0.31 *0.34 ~O.32 *0.35 *0.32 *0.35 ~0.33 *0.36 *0.33 ~O.36 *0.33 ,10:0.36 *0.34 *0.36 ~O.34 .).:0.37 # 20 ... 15 . 10 5 Ù No. Rcading~ : 33 ------------------------------------------------- * 0 . t14 * 0 . '16 *0.59 O.i9 1.04 f:EF:0GEN #1 El<:VIK 1950 - 20iO ft. ~CTG I~ITERPRETED ~\TURITY : ú.3i Ro t) . tj r3. Std. DC"l. #1 E1<VIK 3570 - 3690 ft. CTG INTERPRETED MATURITY: 0.39 Ro ¡':EROGEN Std. De~'. Ü.ùï ---------------------------~--------------------- No. Readings : 29 #: 20 ~ 15 · 10 " ~ I '''I' 1 2 5 " v -f..: = Maturity -f..:O.26 *0.36 ~O.27 ~O.36 ,1.:0.30 *0.38 *0.31 ~O.38 *0.33 *0.39 *0.33 *0.39 ~O.34 *0.39 ~O.35 *0.'11 *0.35 *0.42 *0.35 *0.42 Valucz ,Ac 0 . '1 2 ~0.43 *0.44 ,Ir 0 . '14 ,1.:0.45 ,1.:0.45 ,J.:0.48 ,J.:0.50 ,J.:0.54 0.66 . ). . 3 \~ REFLECT¡~.NCE V¡~LUES 0.74 0.90 1.02 1.17 1.22 1.26 #1 E1<VIK 4530 - 4650 ft. CTG INTERPRETED MÞ~TURITY : 0.42 Ro KEROGEN std. Dcv. : ú.ú7 5 l ~ ----------------------------~------~------------- No. Rcadingz : 22 #: 20 , 15 10 " 5 . I .l I' n I o 1 ~ ~ Maturity Valuc~ *0.29 ~O.42 *0.49 *0.29 *0.43 ~O.5i *0.35 *0.43 0.61 *0.36 *0.44 0.62 *0.37 *0.44 0.64 *0.37 ~0.44 0.66 *0.41 ~O.46 0.67 *0.41 ~O.47 O.iO *0.42 *0.49 û.ï8 ~ Q 42 ~ 0 . 49 1 . 35 GMC Data Report No. 224 "I .. I 2 F:EFLECTi:.NCE ~.i ¡~UES ~I .' I . ,{ . 5 L r:. 13/21 14/21 L " '5 rll n I - I I ¡ , I 2 3 ,~ REFLECT¡~JCE vALUES o k == 'Maturi ty Values ~O.38 *0.46 0.83 ~O.39 *0.46 0.83 *0.41 *0.46 0.84 *0.41 *0.47 0.92 *0.41 *0.49 1.0l *0.42 *0.52 l.Oi ~0.42 *0.52 1.37 *0.44 ~O.52 1.13 ~O.45 *0.60 1.43 ~O.4b O.ï3 1.85 GMC Data Report No. 224 #: 20 , 15 10 5 No. Rcadings : 19 _________~_______________________'____4____________ l o ". \ n I . - ~ ' t:EROCEN #1 EKVIK 5190 - 5310 ft. CTG .INTERPRETED MATURITY : o. '16 Ro S td . DC"\/T . : 0. 05 n" '" ""I '" 2 3 II REFLECTANCE VALUES v.ï9 0.82 0.92 0.93 1 . 0 tl 1.11 1.25 1.35 l.S6 5.09 I J J I , *0.53 *0.54 *0.54 *0.55 *0.56 0.64 0.66 0.67 0.70 0.77 Valuez o * = Maturity kO.37 ."'=0.43 *0.38 ~O.43 *0.39 ~0.43 *0.39 *0.45 *0.39 *0.45 *0.41 *0.48 *0.41 *0.50 ~O.41 *0.50 hO.42 ~O.51 *0.42 *0.51 5 · 10 · 15 If: 20 Nb. ReQdingo : 25 ----~-------------------------------------------- 0.06 KEROGEN Std. Dcv. #1 EKVIK 4739 - 4894 ft. CORE INTERPRETED MATURITY : 0.46 Ro #1 EKVIK 5970 - 6100 ft. CTG INTERPRETED MATURITY : o. 55 HO KEROGEN Std. Dev. : 0.08 -~~---------------------------------------------- No. RCQdingz : 19 # 20· 15 · 10 ~ ~mi 1 5 · o * = Maturity Values ~O.41 *0.59 O.i6 ~O.44 *0.59 0.84 ~O.45 ~O.60 0.85 ~8:49 ~8:g£ 8:~~ *0.49 *0.64 O.9i ~8.50 ~O.66 l.09 ~ .53 *0.68 1.15 ~ .54 *0.68 1.18 ~O.55 O.i4 1.24 GMC Data Report No. 224 cr ,,1l "fJ 2 3 I ' I . ,I REFLECTN~CE VALUES 1.2ï 1.36 1.93 ~:~! 2.9i I " 5 . L o 15/21 C) ~ () ö ~ .-+ ~ :;:d (1) "0 o ~ Z o tv tv ~ ~ 0"1 - tv ~ DGSI LIPIDS UNSTRUCTIJR£D DATE: ~ w a II: w w ~ ~ ~ ~ ~ ~ ~ 2/15/94 ~ U) g a w :> Q. a: 0 w ~ ~ III ;¡: ~ ~ ... ~ Z IL ~ ëi 2 0 DEPTH IN FEET :> :i 10 300- Comments: 11 1200- Comments: 12 2100- Comments: 13 2900- Comments: 141 3700- Comments: ANALYST CTG 400 x 10 ORGANIC MATTER STRucruRED HUMIC OTHER #1· KUPARUK Project: DGSI/94/2879 RELATIVE ABUNDANCE VITRINITE FLUORESCENCE I TAl REFLECTED T~NSMITTED LIPIDS LIPIDS Ro UNSTR. STRtJ. a: II.: ~ ~ z 0 III ~ ~ III 'ž ~ ~ :> III Q. ~ l ~ g ~ c C III ~ g ~ a: ¡ a III Z· 2 III III 0 X III a a: ~ a: ~ W w w a ~ -w w ~ ~ ~ 0 ~ w 9 9 Q. ~ ~ :; ëi Q. Q. .... :J a ~ w l: g III ~ l: l: >- ~ 0 2 0 x 0 0 ~ 0 ~ Q. .... a: 0 0 0 0 LD ( UA 5 5 20 60 F' M + 'J1 M B 1 0 tTG LD S 1300 x 35 5 T Trace IIllls/Iell cOlllamillatioll. CTG LD 2200 x 35 5 CTG LD 3000 K 35 5 Trace nutshell contamilladon. CTG LD 3800 x 15 5 Castano X O'Connor MICROSCOPE X Jena Zeiss SAMPLE TYPElPREP CTG Cutl!n&. CC C.IIV. Cere SWC SId.WaUCore OC Outer.p NI N. Imona. C Cui K Kenl°· WR wa..1e Reck ....1. Not Ddor... STRUCTURED LIPIDS AL AI&Iait. 5B Subera.k. C Cutllllt. LD Upt.detrlnlt. U U.d1If.... S SperlJllt. R R.ala". o Oilier C 5 20 35 T 20 40 T 20 40 T 20 60 OTHER ORGANIC MATfER E Euadadnlte G GraptoUt.. VL Upld-Rlch Vltrlnlt. VC VUrlalt.C.Dbmlaatlea va Recyclod Vllrlnlt. P 1-fA M + 'If M F' UA M + Jf M -r;o ~fA M + " M 'JIA M M " M PYRITE ABUND. M 'JB 1 0 'JB 1 M TJL 0 0 'JB 1 M 11L 0 0 M 1JB 1 0 FLUOR. INTENS. UN~'TR. STRU. TAl FLUOR. TAl FI.UOR. ~ w ~ ~ i III !ž g ïi > ë ¡ "'- w Z w ~ ~ :> ~ ~ a: ~ w b- ~ 0 w cr: ~ w ~ ~ 2 :: ~ :> 0 :> III 0 ~ ~ .... ~ ~ w ië :I ~ < ~ ~ ~ III 0 0 1 2- 0 2 l...d. 2 Y 2 0.41 2 1 3 BL 2 0 o 1 o 2 Y 1 2 0.72 1 2 0.51 1 2 0.54 1 2 0.52 2 1 3 2+ BL 0 2 1 j 2+ BL 0 2 2 '1.4. o o o VIT. REFLECT. FLUOR. TAl COLOR EQUIVALENCE COLOR VALUES B Bltum.a W WIUt. 1- Stra.,. YeDew e Gnptolll.. G Gnen 1 Pale Y.Dew VL Upld-Rkh VltrlaJt. V VeDew 1+ V.Dew VC VltrlAll. C.II"" 0 Or.lll· 2- V.u.w-Ora... va RKJdod Vltrlnk. R R.d 1 Gelde. B Br._ 1+ Amber BL Bbck 3- RedoIkla Dr._ 3 Modl_ Dr._ 1+ Dark Br._ L U¡a.t ... Dr._Black D Dark .. 8b1ck ..+ Bbck-OpoCJIM E Euh.dnl N N.... 0 NOM F Fnmbelcl T Trace 1 W..k MA Manln SmaU AmI. 2 Mederat. RI Replac.. M Med. AmI. 3 SU.III IaßlI + Lara. AmI. ~ lalollS. -t+ Abuadaftt VISUAL KEROGEN ANALYSIS Total Quality Geochemistry C) ~ n tj ~ ~ ~ þd .g o :4 Z o N N +:-. - -.J - tv - #1 KUPARUK Project: DGSI/94/2879 FLUORESCENCE I TAl REFLECTED TRANSMITTED LIPIDS LIPIDS ORGANIC MATTER LIPIDS HUMIC OTHER RELATIVE ABUNDANCE VITRINITE DGSI UNSTRUcnJRED STRU cnJ RED DATE: ~ UJ c l ; ~ ~ g g ~ g 2 2/15/94 UJ CII ~ c l ~ UI => ~ UJ a: 0 UJ ~ g ~ ~ !l ~ ª ~ ~ :I: ~ ~ ... ~ ~ ïr. UJ .... UJ w a ~ UJ Õ ~ 0 Q. ~ Q. ~ :ï ïr. Q. DEPTH IN FEET z :i ~ ~ 0 ~ ~ => (/) erG LD 4850 X 30 5 _. .. _ ___ _. Tract of grapl'¡te-Ilke fragme~ts. erG LD 5850 x 15 10 Same. 15 4750- Comments: 16 5750- Comments: 17 6400- Comments: C1G 6500 x 20 Comments: Comments: ANAL YST SAMI'LE TYPE/PREP C7G CultJD¡;, CC C."Y. C.re SWC SldeW_UCer. OC Oulc:r.p NI Ne InCorÞl. C C..I x Castano O'Connor MICROSCOPE x Jena Zeiss K Ku·c·· WR 'Vlaole R.ck Ld. N.t D.tum. LD 10 S11tUCTUlŒU I.II'IDS AL AI,lnIt. SB Suberlait. C Cathille LD Uptedetrlnlt. IJ Uadlffu. S Sperl.I'. R R.dafl. o 0...... 20 45 0:: UJ ~ W ~ Q. ~ ~ ~ ~ w 0 ð Ii.! æ ;;i => Q. >- ~ t- ~ 0 ~ 0 Q. t- o:: r- 'fA M M tf M .- ----..-"J u__ r;- 10 65 '1fA M It! 1.{ M 1; 20 50 tfA M + \{ M I I OTHER ORGANIC MA TIER E Eulldatbdt. G . Grept.Ula VL Upld-Rkla Vltrlnlt. VC VltriD.lt.C....lDlnat..a VR Rec:yd.d Vllrlnll. I·YRrn: AIlUND. Ro UNSTR. STRU. UNSTR. SfRU. TAl FLUOR. TAl FLUOR. ~ w ~ ¡ Ii.! t- .. !Z 0 i w !l æ w ~ ~ Õ Ë i ~ ~ ß 0:: ~ Þ ~ a tr ~ ~ ~ ~ w IC ~ w 0:: J 0 ~ 0 .... w 3 0 UJ 3 0 Ii.! ïr. :! ð ð ð 0 ð c; 0 ~ ~ ~ ~ ~ -< ~ 5 0 0 0 0 > 0 - T DB 1 0 0 - T OD 1 Y 1JD 1 0 2 2 2+ 0 o 2 10.66 I 2 0.49 I 2 0.52 I I 2 2...d. o 1 2 OD 1 2 3 2+ BL 0 o --,,- ,.-.-- _.._-.-._._~ -...--, . . - .. -. .-. I J - . --, "'LUnIt. INTENS. VIT.ltEF..I<:Cf. Jo'(,UOR. TAICOI.OR EQUIVALENCE COLOR VALUES B Blhu'uft W WWt. 1· Stn.. V.IIe.. G Gnpt.Utu G Gr... t Pale Y.Ie.. VL Up&cJ-Rkb Vltrla/te Y y.a."" 1+ Y .1Ie"" VC VltrInJl. C....... 0 OnllJe 1- Y 6",,-Ora1ll_ VR Recyc:led Vlh'lDIt. R Red 1 Gel«le. B Dr... 1+ A.ber BL Bbc:k J- R...... Dr... ] MediIua Br__ J+ DukBr... L "".t ... Bra_BIIIck U Dark .. .UA' It ..+ Blatk-Op.qlM E Euhedral N NOM 0 Noaa F Fr..bold T Trece Weak MA Muslv. SmaU AmI. 1 Modtn.. RI Rephc.. M Med. AIDI. 3 Slr·1IJ bßII + Lar,. A.I. .. lilt.",. ++ A'-dan. VISUAL KEROGEN ANALYSIS Total Quality Geochemistry /. " .......,. 'L ..> :. r, #1 KUPARUK 300 - 400 ft. CTG I~PRETED MATURITY: 0.41 Ro KEROGEN Std. Dev. : 0.05 No. Readings : 30 --------------------------------~----------~----- # 20 · . 15 · 10 5 · , fþ , , , , I ' , , '21 ' , , , 1 ' , , '3 . , , , I . , , '4 ' " , I ' , . , 5 ' . , , I ' . , '6 Values REFLECTANCE VALUES "'-0.43 0.80 "'-0.44 0.82 "'-0.44· 0.98 "'-0.44 "'-0.44 ""0.45 "'-8.46 "'- .48 ,10:0.50 ,10:0.59 ° .J.:. = Maturity ~0.34 ~0.39 ""0.34 *0.40 ~0.35 *0.40 *0.36 ""0.41 *0.37 "'-0.41 *0.37 ,lt0.41 .;..8.37 ""0.41 * .38 *'8.43 *0.39 .;.. .43 ';"0.39 ""0.43 #1 KUPARUK 1200 - 1300 ft. CTG INTERPRETED MATURITY: 0.72 Ro KEROGEN Std. Dev. : 0.11 No. Readings : 29 -----~---------------~-------~------------------- # 20' 15 · 10 , . I ' , , '2' . , , . , . . . '3' . , , . I . . . . 4. . , . . I . , . . 5 ' . . . ì . . . . 6 REFLECTANCE VALUES 5 · :". r I 0' 1 "" = Maturity Values 0.35 ~0.57 "'-0.71 0.37 *0.60 *0.71 0.41 *0.63 *0.71 0.41 ""0.64 ~0.73 0.43 *0.64 *0.73 0.46 *0.66 *0.73 0.46 ~0.68 ~0.76 *0.52 ';"0.69 *0.77 *0.54 ~0.69 *0.79 ~0.56 *0.70 *0.82 *0.82 *0.86 *0.88 *0.89 ""0.89 *0.90 1.03 1.12 GMC Data Report No. 224 18/21 #1 KUPARUK 2100 - 2200 ft. -CTG INTERPRETED MATURITY : 0.51 Ro KEROGEN S td. Dev. : 0.10 No. Readings : 25 --~--------------------------~---------~~-------- : 11 , r, , '21 ' , , , I ' , , '31 ' , , . 1 ' . . '4 . . . 'I . . . . 5 . . , , I . , , . 6 * = Maturity Values REFLECTANCE VALUES *0.33 ~0.52 ~0.61 0.81 1.12 *0.34 ~0.52 ~0.61 0.85 1.15 ~0.37 ~0.53 ~O.62 0.86 1.22 *0.40 ~0.53 ~0.64 0.88 1.50 ~0.40 *0.54 ~0.65 0.98 ~8:~~ ~8:~i 8:~~ i:8~ *0.48 *0.59 0.78 1.09 *0.48 *0.59 0.79 1.09 #: 20 ": 15 10 5 0 #1 KUPARUK 2900 - 3000 ft. CTG INTERPRETED MATURITY: 0.54 Ro KEROGEN Std. Dev. : O. 17 No,. Readings : 28 -----------~-----~------------------------------- # 20' 15 10 5 : LJ n :~ r In, 1 ' . . . r ' , 'I' " ',. 012 3 "'....'....1 4 . . 's - - . , I' .. ~ ~ = Maturity Values 0.24 ~O.44 ~0.62 *0.31 ~0.47 ~0.70 "0.32 *0.49 ~0.71 ~0.32 ~0.51 ~O.72 ~0.33 *0.58 ~0.76 ~O.33 *0.59 *0.76 *0.34 *0.60 *0.76 "0.34 ~0.62 *0.78 *0.35 *0.62 *0.78 *0.40 ~O.62 0.92 REFLECTANCE VALUES 0.93 0.97 1.02 1.04 1.06 1.09 1.20 1.21 1.27 2.05 GMC Data Report No. 224 19/21 #1 KUPARUK 3700 - 3800 ft. CTG INTERPRBr~ MATURITY: 0.52 Ro KEROGEN Std. Dev. : O. 10 No. Readings : 23 ------------~-~--------------------------~------- # 20 ~ 15 · 10 · 5 · 11T l n '21' . . , I ' , , '3 . . . . 1 ' , , '4 ' " , ' I . . , . 5' . . , 1 . , , , 6 REFLECTANCE VALUES o * = Maturity Values *0.40 ~0.46 *0.65 ~O.43 ~0.48 ~0.71 ~O.44~0.50 *0.72 ~O.44 ~0.51 0.86 ~O.44 ~O.54 0.86 *0.45 *0.54 0.87 ~0.45 ~0.59 0.90 ~O.46 *0.61 0.90 ~O.46 *0.63 0.99 *0.46 *0.64 1.01 1.02 1.07 1.07 1.07 1.14 1.18 1.32 1.40 1.56 1.76 #1 KUPARUK 4750 - 4850 ft. CTG INTERPRL~~ MATURITY: 0.66 Ro KEROGEN Std. Dev. : O. 18 No. Readings : 22 ---~~---~---------------------------------------- #: 20 , 15 10 · 5 0: rU\- ~ 1-r . . '21 . . . , 1 ' . , JI . . . . I . . '4 . , , 1 .. . . 5 .. .. I . . . 6 * = Maturity Values REFLECTANCE VALUES 0.36 *0.62 ~0.88 1.04 1.29 *0.40 *0.64 ~0.89 1.06 1.32 ~0.43 ~0.65 *0.89 1.08 1.36 ~0.45 *0.66 0.95 1.19 1.42 ~O.47 *0.69 0.98 1.20 1.53 *0.48 *0.81 0.98 1.21 ~O.48 *0.84 1.01 1.22 ~O.48 *0.84 1.01 1.23 *0.55 *0.86 1.04 1.25 ~O.62 *0.88 1.04 1.28 GMC Data Report No. 224 20/21 #1 KUPARUK 5750 - 5850 ft. CTG INTERPRb~BD MATURITY: 0.49 Ro KEROGEN Std. Dev. : 0.08 No. Readings : 19 --------------~--~---------------------~--------- :#: 20· 15 .. 10 5 ~ I r-- O:~ 1 ih-n n . 2' . . , . I . . . '3' . . , , I' . . '4 · . .. , . . . . 5 . . . . I. . . . . 6 * = Maturity Values REFLECTANCE VALUES *0.35 *0.50 0.68 0.92 1.24 *0.38 *0.54 0.71 0.92 1.25 *0.40 *0.55 0.74 0.94 1.32 *0.41 *0.56 0.75 0.97 1.45 *0.42 *0.57 0.77 0.98 1.49 ~8:i~ ~8:~~ 8:ái 1:81 1.61 *0.46 *0.59 0.82 1.10 ~0.48 *0.60 0.86 1.10 *0.49 0.67 0.88 1.16 #1 KUPARUK 6400 - 6500 ft. CTG INTERPRBr~ MATURITY: 0.52 Ro KEROGEN Std. Dev. : 0.05 No. Readings : 24 -~------------------~---------------------------- #: 20 , 15 .. 10 . 5 o I' 1fHl., n . '21 . . . . , . . . '3 . . . . I . . . . 4 . , . . I . .. . 5 . . . . I . . . . 6 * = Maturity Values REFLECTANCE VALUES ~0.43 *0.52 *0.56 0.84 *0.44 *0.53 *0.58 0.88 *0.45 *0.53 *0.58 0.91 *0.45 *0.53 *0.60 0.92 *0.46 *0.54 0.68 1.04 *0.48 *0.54 0.71 1.06 *0.49 *0.54 0.72 1.19 *0.50 *0.54 0.76 1.22 *0.51 *0.55 0.78 1.25 ~0.52 *0.56 0.82 1.63 GMC Data Report No. 224 21/21