Alaska Logo
Department of Commerce, Community, and Economic Development
Alaska Oil and Gas Conservation
Commission
Loading...
HomeMy WebLinkAboutGMC Data Report No. 244 Visual kerogen analysis and maceral vitrinite reflectance data from cuttings (2,910' - 13,500') and from core (12,399') of the Union Oil Company of California Trail Ridge Unit No.1 well. ) r~ GE~OZQ '~ ~ ~ / ÇI::) 0 ~¡A.LS Received 8 May 1995 Total of 17 pages in report Alaska Geologic Materials Center Data Report No. 244 VISUAL KEROGEN ANALYSIS SUWvfARY Fourteen whole rock samples were analyzed with kerogen microscopy. The samples contain a mixture of sandstone and coaly material, except for samples 95RI015 and 1016, which contain no organic material at all. The mean reflectance ranges between 0.30 to 0.46%, indicating a very low thermal maturity. However, the indicated maturity is probably too low due to vitrinite suppression because all of the coals are dominated by lipid-rich vitrinite such as desmocollinite" and they contain a significant amount of resinite and sporinite. Most of the measured reflectance values are on telocollinite but a few of the lower values are believed to be on desmocollinite. Good examples of suberinite were noted in several samples and cell structure in corpohuminite is very well displayed in two samples. The Visual Kerogen Analysis tables provide the details. GMC Data Report No. 244 1/11 VISUAL KEROGEN ANALYSIS TECHNIQUES Visual kerogen analysis employs a Zeiss Universal microscope system equipped with halogen, xenon, and tungsten light sources or a lena Lumar microscope equipped with halogen and mercury light sources. Vitrinite reflectance and kerogen typing are performed on a polished epoxy plug of unfloated kerogen concentrate using reflected light from the halogen source. In certain situations, the whole rock is used for analysis. This approach is used for coals, where acid treatment is unnecessary ,in studies of solid bitumen and graptolites where preservation of rock structure is important, and in samples too small for acid treatment. The digital indicator is calibrated using a glass standard with a reflectance of 1.02% in oil. This' calibration is linearly accurate for reflectance values ranging from peat (~ 0.20%) through anthracite (R:> 4.0%). Reflectance values are recorded only on good quality vitrinite, including obvious contamination and recycled material. The relatiye abundance of nonnal, altered, lipid- rich, oxidized, and coked vitrinite is recorded. 'When good quality, normal vitrinite is absent, notations are made indicating how the maturity is affected by weathering, oxidation, bitumen saturation, or coking. When normal vitrinite is absent or sparse, other macerals may be substituted. Solid bitumen, for example is present in many samples. Although solid bitumen has a different reflectance than vitrinite, Landis and Castaño's calibration chàrt can be used to obtain an estimated vitrinite reflectance equivalent. Graptolites have a slightly higher reflectance' than vitrinite and can often be used to obtain maturity data in Paleozoic rocks that have no vitrinite. Unstructured lipid kerogen changes in texture and color during the maturation process. . TypiÒally, unstructured kerogen at low maturity is reddish brown and amorphóùs. Somewhere between Ro 0.50 to '0.65%, the kerogen takes on a massive texture 'and is gray in color. At higher maturity, generally above Ro 1.30%, unstructured kerogen is light gray and micrinized. . Kerogen typing and maturity assessments from the polished plug are enhanced by utilizing fluorescence from blue light excitation. The xenon or mercury lamp is used with an excitation filter at 495 nm coupled with a barrier filter of 520 nm. With the lena microscope we also have the option of observing fluorescence under ultraviolet excitation. The intensity of fluorescence in the epoxy mounting medium (background fluorescence) correlates well with the onset of oil generation and destruction. The identification of structured and unstructured liptinite is' also enhanced with the use of fluorescence in those samples having a maturity less than Ro 1.3%. The relative abundance and type of pyrite is also recorded. T AI is performed using tungsten or halogen light source that is transmitted through a glass slide made from the unfloated kerogen concentrate. Ideally, T AI color is based on sporinite of terrestrial origin. When sporinite is absent, T AI is estimated from the unstructured lipid material. Weathering, bitumen admixed with the unstructured material and micrinization can darken the kerogen and raise the T AI value. The character of the organic matter in transmitted light is correlated with observations made in reflected light for kerogen typing. GMC Data Report No. 244 2/17 Kerogen typing and maturity assessments from the slide preparation are also reinforced by using different light sources. The slide is first observed in transmitted light to obtain T AI color and organic matter structure or type. The light is then switched to reflected halogen light to observe structure and amount of pyrite and finally to reflected blue light excitation from the xenon or mercury source for fluorescence. The fluorescence of structured and unstructured liptinite is not masked by the epoxy fluorescence as it is in the reflected light mode because the mounting medium is non- fluorescent. Remnant lipid structures (e.g. spo~te and alginite) within the unstructured kerogen can often be identified in blue light. Mafurity calculations are made from the vitrinite reflectance histograms. Decisions as to which reflectance measurements indicate the maturity of the sample are based not only on the histogram but on all of the kerogen descriptive elements as well. Because it is not done at the time of measurement, alternate maturity calculations can be made if kerogen data and geological information dictate. In summary, vitrinite reflectance measurements are performed on a polished plug in reflect~d light, TAl is performed on a slide in transmitted light, and kerogen typing is estimated from both preparations using a combination: of reflected, transmitted, and fluorescent light techniques. Fluorescence¡ll blueiight is used to enhance the identification of structured and unstructured lipid material, solid bitumens, and drilling mud contaminants. Fluorescence also correlates with the maturity : and state of preservation of the sample. Maturity . c~lculations from measured reflectance data are mid~ from the hi~tograrns and are influencedbyall of the kerogen data. I: r ;'. l 'j \ I . VISUAL· KEROGEN'ANAL YSIS GLQSSARY Several key definitions are included in this' glossary in order to make our reports more, self-explanatory. In our reports,'· we ·refer to organic substances as macerals. Macerals are akin to minerals ill rock in that they are organic constituents that have microscopically recogniZable characteristics. However, macerals vary widely in their chemical and physical properties and they are not crystalline. 1. UNSTRUCTURED KEROGEN is sometiIDes called 'structureless organic matter (SOM) or bituminite. It is widely held that unstructured kerogen represents the bacterial breakdoWn of lipid material. ,:It also includes fecal pellets, minute particles of algae,' organic gels, and may contain a humic component. As described on the fIrst page of this section, unstructured lipid kerogen changes character during maturation. The three principal stages are amorphous, massive, and micrinized. .Amorphous. kerogen is simply without any structure. Massive kerpgen has taken on a cohesive structure, as the result of polymerization during the process of oil generation. At high maturity, unstructured kerogen becomes micrinized. Micrinite is characterized optically by an aggregation of very small (less than one micron) round bodies that make up the kerogen. GMC Data Report No. 244 3/17 ..-..--..---....,.. . ...-.-..-. 2. STRUCTURED LIPID KEROGEN consists of a group of macerals which have a recognized structure, and can be related to the original living tissue from which they were derived. There are many different types, and the types can be group follows: a. Alginite, derived from algae. It is sometimes very useful to distinguish the different algal types, for botryococcus and pediastrum are associated with lacustrine and non-marine source rocks, while algae such as tasmanites, gloecapsomorpha, and nostocopsis are typically marine. Acritarchs and dinoflaggelates are marine organisms which are also included in the algal category. b. Cutinite, derived from plant cuticles, the remains of leaves. c. Resinite, (including fluorinite) derived from plant resins, balsams, latexes, and waxes. d. Sporinite, derived from spores and pollen from a wide variety of land plants. e. Suberinite is derived from the corky tissue of land plants. f. Liptodetrinite is that stnictured 'lipid material that is too small to be specifically identified. Usually, it is derived ftom alginite or sporinite. The algae are an important part of many oil source rocks, both marine and lacustrine. Alginite has a very high hydrogen index in Rock-Eval pyrolysis~ Resins, cuticles, and suberinìte contribute to thewax.y, non-marine oils that are found in Africa and the Far East. At vitrinite reflectance levels above Ro' 1.2 - 1.4%, structured lipid kerogen changes structure and it becomes very difficult to distinguish them from vitrinite. . ' 3. SOLID BITUM:EN also is called migrabitumen and solid hydrocarbon. In 1992, the International' Committee for Coal' and Organic Petrology (ICCP) decided to include solid bitumen in the Exsudatinite gròup.! Solid bitumens are expelled hydrocarbon products which have particular morphology, reflectance and fluorescence properties which make it possible to identify them. They represent two classes of substances: one which is present at or near the place where it was generated, and second is a substance which is present in a reservoir rock and may have migrated a great distance from its point of origin. The solid bitumens have been given names, such as gilsonite, impsonite, grahamite, etc., but they represent generated heavy hydrocarbons which remain in place in the source rock or have migrated into a reservoir and mature along with the rock. Consequently, it is possible to use the reflectance of solid bitumens for maturation determinations when vitrinite is not present. 4. HlJ!vfIC TISSUE is organic material derived from the woody tissue of land plants. The most important of this group are vitrinite and inertinite: a. Vitrinite is derived from woody tissue which has been subjected to a minimum amount of oxidation. Normally it is by far the most abundant maceral in humic coals and because the rate of change of vitrinite reflectance is at a more even pace than it is for other macerals, it offers the best means of GMC Data Report No. 244 4/17 -.--. ..-..---.-..... . - .----- obtaining thermal maturity data in 'coals and other types of sedimentary rocks. Because the measurement of vitrinite is so important, care is taken to distinguish normal (fresh, unaltered) vitrinite from other kinds of vitrinite. Rough vitrinite does not take a good polish and therefore may not yield good data. Oxidized vitrinite may have a reflectance higher or lower than fresh vitrinite; this is a problem often encountered in outcrop samples. Lipid-rich vitrinite, or saprovitrinite, has a lower reflectance than normal vitrinite and will produce an abnormally low thermal maturity value. Coked vitrinite is vitrinite that has structures found in vitrinite heated in a coke oven. Naturally coked vitrii1ite is the product of very rapid heating, such as that found adjacent to intrusions~ Where it is possible to do so~ vitrinite derived from an uphole portion of a well will be identified as caved vitrinite. Recycled vitrinite is the vitrinite of higher maturity which clearly can be separated from the indigenous first-cycle vitrinite population. Often, the recycled vitrinite merges in with the inert group. b. Inertinite is made up of woody tissue that has been matured by a different pathway. 'Early intense oxidation, usually involving chaffing, fungal attack or biochemical gelification, creates the much more highly reflecting fusinite and semi...fusinite. Sometimes the division between vitrinite and fusinite is transitional. 'Sclerotinite, fungal remains having a distinct morphology, are considered to be inert. An important consideration is that the inerts, as the name implies, are largely non- reactive "dead carbon" and they have an extremely low hydrogen index iD. Rock-Ev~l pyrolysis. 5. OTHER ORGANIC MATERIAL a. Lipid-rich, caved' and recycled 'vitrinite. These are put in this section so we can show the percentages of these macerals; they are described above. b. Exsudatinite. Oil and oily exudates fall in this group. Exsudatinite differs from the solid bitumens on the basis of mobility and solubility. We prefer to maintain this distinction although the ICCP has now included the solid bitumens in with the Exsudatinite group. c. Graptolites are marine organisms that range from the Cambrian to the lower Mississippian; it has been found that they have a reflectance slightly higher than vitrinite. Because vitrinite is lacking in early Paleozoic rocks, the proper identification and measurement of graptolites is important in these sediments. 6. PYRlTE. Various forms of pyrite can be readily identified under the microscope. Euhedral is pyrite with a definite crystalline habit. Framboidal is pyrite in the form of grape-like clusters which are' made up of euhedral to subhedral crystals. Framboidal pyrite is normally found in sediments with a marine influence; for example, coals with a marine shale roof rock usually contain framboidal pyrite. Massive pyrite is pyrite with no particular external form. Often this is pyrite that forms rather late in the pore spaces of the sediment. Replacement/infilling is self- explanatory. GMC Data Report No. 244 5/17 ZONES OF PETROLEUM . GENERATION AND DESTRUCTION '"C m » - .? ORGANIC MATTFR TYPF ~ AMORPHOUS (Oil) MIXED COALY (GAS) Î G) z =i m 70 .ill.. .3 .4 to q < 75 :E "tJ tEI::¡_ I -m-< ~ ;;Q.5 I G5 ~ ~ 0 ~ =-6 1\ f P:lU,X on, G3NnA'rION' ~ 43S ~ Q _m· ' ~ VJ = - I 80 0(") ëi5 - (), CD :11_ 7 -..... O<C2::¡ ER-=- I - k5 :þ 0 - C Î_ 8 OIL I ~-i r- t" ~ m-=-- I. . 0 ~ .,.,> - () '. ^ Z ,.J.I Þ03 Z -i- 9' ' :þ ~ E> g _ ~~:O . ~'. "',..:_ _ PIIU.I'II'r/1GAS G11:N .1!.. ~_ 450 __~' ~ (J) ~ 1~, .' '. ""-'WET PJWttm' . -œsGZN ~o- . ~ - J] :>ILFLOOR ' . ~ 1.~ - - - - - - GAS - - - - - ~ø 470 1- ~'_ , . I¡..~':'.."" :. . ~'I: DRY', ...!L Z S :1, . ~ A ; ...2.0 _WET GAS noolt -:- _ ~_ .:.. G S _ _ _ l!QQ. !II g .-:- :þ z· -i J: J] :þ - () ::¡ m 3.0 DRY GAS PRESERVATION LIMIT ~-------------- 550 ~ ~ Z t'J ~ 5.0 '",":" 1 + - :t - m ~ :þ r- 2 ~ m ::D :þ -i Õ z + Z o _m x - ~ ~ 3 + 4 + CORRELATION OF VARIOUS MATURATION INDICES AND ZONES I ' ! OF PETROLEUM GENERATION·, AND DESTRUCTION. GMC Data Report No. 244 6/17 Q ~ n tj ~ ~ ~ (Ð '0 o ::¡ Z o N ~ ~ DGSI DATE: u: ILl 10 2 £ 3/14/95 ~ ID OR DEPTH 1 95R1013 Comments: . 2 95R1014 Comments: 3 95R1015 Comments: 4 95R1016 Comments: 5 95R1017 Comments: ANALYST X Castano O'Connor MICROSCOPE -.I - - -.I X Jena Zeiss 95R1013 - 1026 DGSI PROJECT: 95/3227 ORGANIC MATT~R LIPIDS . HUMIC OTHER UNSTRUCJlJRED . STRUCIlJRED RELATIVE. ABUNDANCE; VITRINITE· FLUORESCENCE / TAl REFLECfED TRANSMITTED LIPIDS LIPIDS UNSIR. Sl'RU. Ro UNSTR. STIlU. TAl FLUOR. TAl FLUOR. u: ~ ILl ~ ILl ~ i ~ ~ ILl ß ë. ILl ïi ~ ~ ~ z 0 ~ ~ i ~ ~ ILl ê. w z Õ "- ILl i ~ ~ I 2 ~ ~ ~ z ~ ~ ~ ::t ILl ::t 0 ~ ~ ~ ~ t: t: ILl l l u: ::J: CI ~ ~ i f f ILl ~ ILl i i 10 Z 2 ~ ~ 0 I ~ ~ 2 j It W ~ CI ~ W ... ~ 8 Q ~ ~ It: 2 ~ ILl ~ ~ ILl 9 ~ ~ ILl ILl ::J ~ ILl ~ CI \:! ~ g ::t ::t ~ iZ :I ~ ~ ~ 0 ILl t ~ l- i: x 0 8 ~ ~ ~ õ ~ :I ~ 0 8 0 ~ ::t II) ~ I- ;:¡ 0 0 0 > 0 ç R C VL WR 5 10 5 [10 70 llA Particles of coal and sandstone intermixed. Inerts.mainly sc1erotinite. ç R C VL WR.. 4 8 3 r 10 75 'I1A T Similar to previous sample. WR Barren of or !anic matter. WR As above. WR 1l S C 631 J'L 10 80 [ SAMPLE STRUcrURED OTHER TYPEIPREP LIPIDS ORGANIC MATTER erG Cauble. AL AI&laIt. E EuudadøJte CC CeDV. C.n SB SuberiDIte G GnptoHtea SWC S&ckW.lICore C Cutlalt. VL Lipid-Rich Vitrlnlte OC Outcrop LD Llptodetrlalte VC VitrliútcCootamlDatlon M MiDe U UødI«er. VR Recyded Vitrinite Q Quarry S Spuinite NI N.IDfulII. R Rerinlt. 0 Otber K KnogeD WR WIIole Reck C Coal I.d. Not Dolerftl. + ++ Lipid-rich vitrinite dominates. + ++ 'I1A WA 1JfA 1i' - ++ PYRITE ABUND. FLUOR. INTENS. E Eubednl N . NOBe 0 Nene F Fnmbold T Trace Weak MA Musive Sm.U Amt. 2 Moderate RI Repbce. M Med. Amt. 3 Strenc bûdl + Large Amt. 4 InteDIC ++ Abundant VISUAL KEROGEN ANALYSIS Total Quality Geochemistry o 1- 1 Y 3 2 Some !(Teen fluor cufinite noted. o 1- 1 Y 3 2 I 2 VIT. REFLECT. EQIDV ALENCE B Bltamea G GnptoHtCl VL Upld-Rkh Vitrinite VC VItrloIt. CeRtaIn. VR Rcc:yded Vitrlalte FLUOR. COLOR w WhIt. G GreeD Y YeUow o OnDge R Red B Dr.1m BL Black L Ught D Dark 0.34 0.34 0.33 TAl COLOR VALUES 1- Straw Yellow 1 Pale YeUn, 1+ YeDaw z- YeUøw-Orange 2 Coldea 2+ Amber 3- Reddlrli Dro_ 3 Medlua Dr._ 3+ Dark DroWD 4- Dro_Black .. Black ..+ Black-Op'qu. a ~ n tJ ~ ..... ~ ~. ~ o ::¡ Z o N ..þ.. ..þ.. DGSI~' DATE: II: W III ~ ~ 3/14/95 ~ a ID OR DEPTH 6 95R1018 Comments: 7 95R1019 Comments: 8 95R1020 Comments: 9 95R1021 Comments: 10 95R1022 Comments: ANALYST x Castano O'Connor MICROSCOPE x Jena Zeiss 00 - - -.1 UNSTRUcrURED ~ a f ~ ~ ~ ~ ~ ã z ::> ~ ~ '~ g ~ ~ II) æ l~ ~ In ::> a ;¡; ~ ~ 00( IWR'I CfG CIrUJaI. CC Cony. Core ., SWC SideW.OCore OC Outer.p M Mine Q QuarT)' NI N. Inform. K Kerogen WR Whole Rock C Coal 1.01. Not Ih'.rm. 95R1013 -1026 DGSIPROJECT: 9&3227 .- , ORGANIC MATtER.' ~~·C._-"C~~.· ~~'~REEAtrVË~,;ÄBONDANCE'. LIPIDS HUMIC OTHER ' . VITRINITE STRUcnJRED ~' II: W ¡ '0 I o ~ g ,I- a w ~ o u, ~ ~ ~ x a 6 ~ ~ ::>. Ó' a ~ §. § ~ II: 2 AL Al&lø.Ite S8 Suberlulte C Cutlnlte LD Llptødetrinlte U UndifTer-. S Sporlnlte R Redn1te o Other E· EUUlhdalte E Eubednl N None 0 NOlie :G GnptðUtu F Fnmbeld T Tnce 1 Weak VL L~RkIa Vitrinite MA Mastive SmaU AmI. 1 Modente VC VitrlnlteContamlution RI Replace- M Mod. Am" 3 Strong . VR RKyded.VltriDlte infiD + I..ute AmI. 4 Jateme ++ Abundant VISUAL KEROGEN ANALYSIS Total Quality Geochemistry FLUORESCENCE I TAl REFLECTED TRANSMITTED LIPIDS LIPIDS UNSTR. SfRU. UNSTR. STRU. TAl FLUOR. TAl FLUOR. II: g o u ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ III w ~ II: o ~ o o ~' ~ ~ ~ ~" ~ ~ !¡¡ !f ~ .' ~.~ w w w w 3 ~ « w w ~ ~ ~ ~ g , ~ ~. ~. t. 'l sue VL WR 10 5 8, 1 r 5 70 ''JfA T M + + ¡IIerts- Ro 0.64%+. U= Low Ro (0.18-0.22) bands o(yellow brown-fluor. Fluor strollKer tlta" VL. I t 51 S 31 u 21 I ~ I 5\ V~ I - t'A I T I AI I + I 1 + I 1- J I I ~ I ~1 ~ I I I I I I I /nerts- Ro 0.51%+. U= As above. ~B S R VL E WR~ r 1 3 r 65 30 T 'JIA T ++ + M- VL- desmocolllinite Suberi,lite fluor G~ ,)B S R W VL ,IYR 1 6 10 j r 40 40 ,.: 'JIà T + + + HigJ,er Ro O,a1l previous samples. -' As above. ,)B S R l..D U IYR 1 6 10 3 r 50 30 '\fA T + + + ¡"erts .56 Similar to 95RI021. SAMPLE STRUCTURED ·OTHER PYîiITE ABUND. . FLUOR. TYPEIPREP LIPIDS ORGANIC MATTER INTENS. ~ ~ ~ II: g o u o y 1- 4 1 2 GY I- I- Y 3 ·1 GY I- I- Y 4 1 GY I- I- y 4 2 VIT. REFLECT. FLUOR. EQUIVALENCE COLOR B Bltame. W White G Graptolltu G Green VL Llpld-Rkh Vltrlø.lte Y Yellinr VC Vitrinite Cootam. 0 Orange VR Recycled VItrinite R Red B Brown BL Bbdc L Ught D Dark ~ ~ ~ w ~ II: g o u TAl COLOR VALVES 1- su-.w YeDew t rale Yelllnr 1+ Yellow 1- YeDo1'l'-Onoge 1 G.ldell 2+ Amber 3- Reddish Br.1'I'1I 3 Mecßam ßr01'l'D 3+ Dark ßr01'l'll 4- Brown-Bbclc 4 Dbck ,ft- Dlack-Op"que Ro ~ ~ ~ w ~ ¡ t; . i i w Is w Þ I:: ~ z « J ~ 0.38 0.30 0.36 0.41 0.43 C) E;:: () o ~ ... ~ :;:0 .g o ~ Z o N ~ ~ \0 - ...- -.I DGSI DATE: It: W co :::t ~ 3/14/95 § ID OR DEPTH 11 95R1023 Comments: 12 95R1024 Comments: 13 95R1025 Comments: 14 95R1026 Comments: Comments: ANAL YST X Castano O'Connor MICROSCOPE x Jena Zeiss 95R1013 - 1026 DGSI PROJECT: 95/3227 .. ORGANIC MATTER FLUORESCENCE I TAl REFLECfED TRANSMITTED LIPIDS LIPIDS . LIPIDS HUMIC. -O'(IIE~ _RELATIVE ABUNDANCE -- ---VITRINITE UNSTRucruRED srnUcnJRED ~ w -- C ~ W 0.. ~ ~ z i: ~ ~ w ~ w ~ OJ :::t ~ w :> ~ c :> w ~ 0.. a: 0 ~ ~ ~ ~ ~ ~ t= t= w ~ !! ~ ~ I co z !l III W ~ t- ir w w w w c ~ W W ~ ~ ~ ~ 0 Ë ~ 0.. 0.. ~ w ir ~_ C 11- => -< :Ë i: i: fI1 ~ !š; i:- fl S C l..D VL E WR 10 4 IT -- T 50 15 T - UA T lWRJ -I S SB LD VL E 10 1 T - ~ r 65 10 T Cell structure in vitrinite exceptiollal'v well preserved. 'l S LD VL E WR'- 11 6 1 T 55 15 T Similar to previous sample. - 'l S LD 8 10 2 '< UA T a: ~ 0 ~ a: ~- 0 ~ ~ 0 -~ ~ + + + 1+ 1 WR - r VL 40 40 -UA T + + 1fA T + + VL Ro <0.39. Ro UNSTR. STRU. UNS1R. STRU. TAl FLUOR. TAl FLUOR. ~ w ~ !f i w t i !z ã ~ Ii. W Z w ~ -I ~ ~ :> ~ ~ a: 0_, c ~ w ~ w t= I ir ~ C IE: Æ a: Æ 0 w II: !2 w It: !2 z ~ 0 å c- ~ g g )C :> g 3 g :> 0 ~ w w ir :I 0 ëï: ð 0 0 ~ 0 ~ -< 0 ~ -< 0 ~ !š; a: ::; 0- 0 0 co 0 > 0 0 I- I + y 3 1 0.42 +1 -1:-] 1 0 ;1 1 I 1 1 I y 2 0.44 :-- 0 I 1 + y 4 1 0.46 0 1 1 + y 3 1 0.43 SAMPLE STRUCTURED OTHER "YRI1'E ABUND. FLUOR. VIT. REFLEcr. FLUOR. TAl COLOR TVPEIPREP 1,IPIDS ORGANIC MAUER INTENS. EQUIVALENCE COLOR VALUES erG cøttJa,. AL AlJllllte E EuØ4htJnlte E Eubednl N None Nene B Blhmaen W Wlúte 1- Straw Yellow CC CODV. Core SB Suberlnlle G Graptolites F Fnmbold T Trace Wuk G GraptoUtu G Green 1 Pare Yellow SWC SideWaUCore C CutJalte VL. U~Rkb VItrinite MA loIassive SnuD Awt. 2 Moderate VL Liplcl-Rkh Vitrinite Y Yellow 1+ YeOow OC Outcrop LI) Uptodetrlulte VC VltrlniteColltamlnatloD RI Repla~e- M MCII1Amt. Strong VC Vitrinite Contam. 0 Orange 2- Yellew-OraDge M Mine tJ Uudlfrer. VR RKycled Vitrinite iDfiD + LJIr~e^mt. Inteme VR Recycled Vitrinite R Red 2 Golden Q QlDrry S Sporlnlte ++ Abundsnt B Buwn 2+ Amber NI No IlICum. R Reslalte BL Black 3- Reddish Bro1fJl 0 Other 3 Medhnn Bn1fll K Kerogen 3+ Dark Brown WR Whoa. Rock VISUAL KEROGEN ANAL YSIS L Light 4- Brown-Dlack C Co.1 Total Quality Geochemistry D Dark 4 Black ..d. Not Detum. 4+ Black-Opaque VITRINITE REFLECTANCE SAMPLES: 95R1013 - 1226 DGSI # OTHER 10: Sample No. 95/3227 95R1013 15 ¡[~' 10 - ~ I 5 - ~ v rrRINrTE MEAN 0.34 ST DEV 0.04 VARIANCE 0.00 MINIM UM 0.28 MAXIMUM 0.43 NUM SER 22 BIT UM EN ,"::0. MEAN ST DEV VARIANCE MINIM UM MAXIM UM NUM SER o j 1 3 2 o 0.23 VO.2B. V 0..31 VOJ3 Y 0.36 Y 0.38 0.23 YO.29 Y Ò.31 YO.34 YO.36 Y 0.43 0.24 Y 0.29 YO.33 ' Y 0.35 YO.36 0.25 VO.29 YO.33 YO.35 YO.37 0.26 YO.29 YO.33 YO.36 YO.37 OGSI# 95/3227 Sample No. 2 OTHER 10: 95R1014 15-:¡:,' ~ 10 - 11~ ;¡~\~ rW 5 -It i11 v rTR IN rTE MEAN 0.34 ST DEV 0.05 VARIANCE 0.00 MINIM UM 0.27 MAXIM UM 0.44 NUMBER 29 BITUMEN ~!:;:: .~...:' ,~~~ MEAN ST DEV VARIANCE MINIM UM M A X 1M U M NUM BER o 2 3 TYPE WR Toe TMAX HI VRo 8 Ro VRE 0.34 Visual Kerogen Summary Unstructured Lipids Structured Lipids 20 Solid Bitumen Inertinite Vitrinite 10 CXher 70 TOTAL 100 Background Fluorescence TAl Unstructured TAl Structured Weak-Mod COMMENTS: TYPE WR TOC TMAX HI VRo 8 Ro VRE 0.34 Visual Kerogen Summary Unstructured Lipids Structured Lipids 15 Solid Bitumen Inertinite Vitrinite 10 Other 75 TOTAL 100 Background Fluorescence Weak-Mod 0.24 YO.27 YO.29 YO.31 YO.37 YO.38 VO.4 , TAl Unstructured 0.24 v 0.28 V 0.29 Y 0.32 YO.37 VO.38 V 0.42 TAl Structured 0.25 V 0.28 V 0.30 V 0.35 VO.37 VO.39 V 0.44 0.25 V 0.28 V 0.30 Y 0.35 V 0.37 VO.39 COMMENTS: Y 0.27 YO.29 Y 0.30 Y 0.36 V 0,37 Y 0.40 GMC Data Report No. 244 10/17 VITRINITE REFLECTANCE SAMPLES: 95R1013· 1226 OGSI # 95/3227 Sample No. 3 TYPE WR OTHER 10: 95R1015 TOC TMAX HI 15 V fTRINITE V Ro 0.00 MEAN 0.00 B Ro ST DEV N.A. VRE VARIANCE N.A. MINIM UM 0.00 10 - MAXIM UM 0.00 NUM BER , Visual Keroqen Summary Unstructured Lipids B[TUMEN Structured Lipids 5 - MEAN Solid Bitumen ST DEV V ARIA N C E Inertinite MINIM UM Vitrinite MAXIM UM 0 NUM BER Other I TOTAL 0 0 1 2 3 Background Fluorescence '/',,1 " ,~ I TAl Unstructured TAl Structured COMMENTS: DGSI # 95/3227 Sample No. 4 TYPE WR OTHER 10: 95R1016 TOC. TMAX HI ¡ 5 V fTRINITE V Ro 0.00 MEAN 0.00 B Ro ST 0 EV N.A. VRE V A FlIANCE N.A. MINIM UM 0.00 10 - M A X 1M U M 0.00 NUM BER 1 Visual Kerogen Summary Unstructured Lipids BITUMEN Structured Lipids 5 - MEAN Solid Bitumen ST DEV v A RIANCE Inertinite MINIM UM Vitrinite MAXIMUM NUM BEA Other 0 TOTAL 0 0 2 3 Background Fluorescence T f-I Unstructured TAl Structured COMMENTS: GMC Data Report No. 244 11/17 VITRINITE REFLECTANCE SAMPLES: 95R1013..1226 OGSI# 95/3227 Sample No. 5 TYPE WR OTHER 10: 95R1017 TOC TMAX HI 15 VITRINITE VRo 0.33 MEAN 0.33 BRo ST DEV 0.05 VARIANCE 0.00 VRE MINIM UM 0.25 10 - MAXIM UM 0.41 N U M B ER 10 Visual Kerogen Summary Unstructured Lipids BITUMEN Structured Lipids 10 5 - MEAN Solid Bitumen ST D EV VARIANCE Inertinite MINIM UM Vitrinite 10 MAXIM UM 0 N U M B ER Other 80 0 2 TOTAL 100 '1 ! Background Fluorescence Weak-Mod VO.25 v 0.35 TAl Unstructured !: ' '," , TAl 'Structured VO.28· Y 0.36 V o~ 28 V 0.37 VO.32 V 0.38 COMMENTS: VO.33 V 0041 OGSI# 95/3227 Sample No. 6 TYPE WR OTHER 10: 95R1018 TOC TMAX HI t .5 V ITRINfTE \lRo 0.38 MEAN 0.38 BRo ST D EV 0.08 VARIANCE 0.01 VRE MINIM UM 0.30 10 -. MAXIM UM 0.64 NUM SER 16 Visual Keroaen Summary Unstructured Lipids BIT UM EN Stn.ietured Lipids 25 5- MEAN Solid Bitumen ST DEV VARIANCE Inertinite MINIM UM Vitrinite 5 MAXIM UM Ñ1 NUM BER Other 70 0 TOTAL 100 0 2 Background Fluorescence Weak-Mod 0.17 Q.20 0.26 V 0.30 VO.36 V 0.39 TAl Unstructured 0.18 0.22 . 0.27 VO.31 .V 0.37 V 0.39 TAl Structured 0.19 0.23 0.29 VO.~1 V 0.38 V 0.40 0.19 0.23 0.29 V 0.33 V 0.38 V 0.41 COMMENTS: 0.20 0.24 VO.30 V 0.34 V 0.39 V 0.64 Low Ro is VL GMC Data Report No. 244 12/17 13/17 GMC Data Report No. 244 Background Fluorescence Weak-Mod 0.19 ,0.25 V,O.29 V 0.34 YO.36 YO.37 V 0.41 0.53 TAl Unstructured , , TAl Structured 0.20 0.25 VO.31 YO.34 Y 0.36 Y 0.37 YO.41 0.21 0.26 VO.32 VO.35 YO.36 YO.37 Y 0.43 0.23 Y 0.28 VO.33 V 0.36 V 0.37 YO.38 V 0.46 COMMENTS: 0.25 YO.29 YO.33 Y 0.36 Y 0.37 YO.41 0.50 Visual Kerogen Summary Unstructured Lipids Stn.ic'tured Up ids 5 Solid Bitumen Inertinite Vitrinite 65 Other 30 TOTAL 100 '0.36 WR TOe, TMAX HI V Ro B Ro VRE TYPE COMMENTS: ! ': Low Ro Is VL ,I Background Fluorescence TN ,Unstructured TAl Structured Weak-Mod Visual Kerogen Summary Unstructured Upfds Structured Lipids 10 Solid Bitumen Inertinite Vitrinite 5 Other 85 TOTAL 100 0.30 WR TOC TMAX HI VRo B Ro VRE TYPE MEAN ST DEV VA RIANCE MINIM UM MAXIM UM NUM SER BITUMEN V fTRINfTE MEAN 0,36 STOEV 0.04 VARIANCE 0.00 M 'NIMUM 0,28 MAX'''' UM 0.46 NUM e'ER 26 , I I ~ 8 MEAN ST 0 EV VARIANCE M IHIM UM MAXIM UM I NUM SER 3 BIT UMEN 0.30 0.06 0.00 0.28 0.42 8 MEAN ST DEV VARIANCE MINIM UM MAXIM UM NUM SER V fTRINITE 7 SAMPLES: 95R1013 - 1226 3 Y9.2~" YO.,33 , Y 0.42 0.49 ' 0.51 Sample No. YO.26 YO.26 YO.27 YO.27 YO.28 Sample No. 2 2 o o 15~t,i I""'" ~!, ~\:~. !~~ 10 - 1 5-1 95/3227 95R1020 OGSI #: OTHER 10: , 0:23 0.23 0.24 0.24 0.24 0.20 q}1 q.22 , , 0.,22 0.21 ' I" ' 0.20 0,.22 ' !' '0.22 0.20', 0.21 ;0.2~ d.22 0.21 0.21 0.22 0.23 0.21 0.21 0.22 0.23 1 , 1 I, o I ~.if'.", ~:~ , , o 5 - 10 - 15 - 95/3227 95R1019 OGS/# OTHER 10: VITRINITEMFLECT ANCE VITRINITE RE;FLECT ANCE DGSI # OTHER 10: 95/3227 95R1021 Sample No. 15 10 - 5 - 0 0 2 VO.32 .vO)7 v 0.40 ~ 0,42 V 0,43 V 0..44 ",1', ,: ,/,··1'1 :,1 I V.O.36 VO.37 VOAl ;y 0,42 V 0.43 v 0.44 VO.3.6. : VO.S8 VIO,41 V 0.42 V 0.43 v 0.44 V 0.37 V 0.39 V 0.42 V 0.42 V 0.43 V 0.44 V ().37 V 0.39 V 0,42 V 0.42 V 0.43 V 0.47 OGSI# 95/3227 Sample No. OTHER ID: 95R1022 15 ::~ I I ~:~,. ~~~ , I',~>- , .~ dP~ "- .' ..'So . [0 - 5 - o o 2 ,..,-,-,,,-"'-~ ..... SAMPLES: 95R1013 - 1226 9 VITRINITE MEAN 0.41 ST 0 EV 0.03 VARIANce 0.00 MINIM UM 0.32 MAXIMUM 0.47 NUM SER 30 BITUMEN MEAN ST oev VARIANCE MINIM UM MAXIM UM NUM SER 3 ; (! ::i (0 VITRINITE MEAN 0.43 STOeV 0.03 VAA~NCE O~O . MINIM UM 0.37 MAXIM UM 0.48 N,UM SER . 32 BITUMEN MEAN' ST 0 EV VARIANCE MINIM UM MAXIMUM NUM SER 3 TYPE WR TOC TMAX HI VRo B Ro VRE 0.41 Visual Kerogen Summary Unstructured Lipids Structured Lipids 20 Solid Bitumen Inertinite Vitrinite 40 Other 40 TOTAL 100 Background Fluorescence TAl. Unstructured TAil Structured Weak-Mod COMMENTS: TYPE WR TOC TMAX HI, VRo B Ro VAE 0.43 Visual Kerogen Summary Unstructured Lipids Structured Lipids 20 Solid Bitumen Inertinite Vitrinite 50 Other 30 TOTAL 100 Background Fluorescence Weak-Mod 0.31 V 0.40 V 0.41 y 0.43 V 0.44 V 0.46 V 0.48 0.50 -rAI.Unstructured VO.3? y 0.41 V 0.42 YO.43 V 0.44 VO.46 V 0.48 0.51 TAl Structured VO.37 YO.41 V 0.42 V 0.43 V 0.44 V 0.47 V 0.48 0.51 VO.4Q V 0.41 Y 0.43 V 0.43 V 0.45 V 0.47 0.50 0.56 COMMENTS: V 0.40 Y 0.41 V 0.43 V 0.44 YO.46 YO.47 0.50 GMC Data Report No. 244 14/17 VITRlNIT~ REFLECTANCE DGSI# OTHER 10: 15 10 .,.... 5 - o . 0, , "-'--.,. SAMPLES: 95R1013 -1226 95/3227 95A1023 Sample No. 11 W <'it ~ I m ~ ..t~ VITRINITE MEAN 0.42 ST DEV 0.04 VAR~NCE OßO MINIM UM 0.38 MAXIM UM 0.50 NUM BER 30 BIT UM EN MEAN ST oev VARIANCE MINIM UM MAXIM UM NUM BEA I 2 3 , : Y~:36 VO.38 Y9·40 :y 0.42 YO.44 Y 0.47 0.69 "":"11', ~"0.36," VO.39 , V'{).40 v 0.43 YÒ.44 V 0.48 VO}6' V 0.39 VÔ.40 : v 0.43 V 0.45 Y 0.49 YO.36 'YO.40 v 0.42 V 0.44 V 0.45 V 0.49 V 0.37 YO.40 V 0.42 YO.44 Y 0.45 YO.50 DGSI# OTHEf11D: 1 5 10- 5 - o 95/3227 95A1024 Sample No. 12 TYPE WA TOC TMAX HI V Ro B Ro VRE 0.42 " , ! ,i II I: V rTRINITE ¡MEAN 0.44 :ST DEV 0.05 ¡VARIANCE 0,00 M IN 1M U M 0.36 MAXIMUM 0.53 NUM BER' , 35 Visual Kerogen Summary Unstructured Upfds Structured Upids 15 Solid Bitumen Inertinite Vitrinite 50 Other 35 TOTAL 100 'I ¡ Baokground Fluorescence TAl Unstructured , TÁrStructured Weak·Mod I COMMENTS: TYPE WR TOe: TMAX HI V,Ro 8 Ro VRE 0.44 BITUMEN MEAN 5T D ev VARIANCE MINIM UM MAXIM UM N U M B ER Visual Kerogen Summary Uns~ructured Upids StructÙred Upids 15 Solid Bitumen Inertinite Vitrinite 65 Other 20 TOTAL 100 Background Fluorescence Weàk-Mod VO.36 V 0.40 V 0.41 V 0.43 YO.44 YO.46 V 0.52 TAl Unstructured VO.3? V 0.40 V 0.41 YO.43 V 0.45 V 0.48 V 0.53 TAl Structured Y 0.38 vd.40 V 0.41 V 0.43 V 0.45 V 0.48 V 0.53 V 0.40 V 0.40 VO.41 YO.43 V 0.45 YO.50 V 0.53 COMMENTS: V 0.40 V 0.41 V 0.41 YO.44 V 0.45 YO.SO YO.S3 o 2 GMC Data Report No. 244 15/17 VITRINITE REFLECtANCE SAMPLES: 95R1 013 .. 1226 OGSI# OTHER 10: Sample No. 95/3227 95R1025 13 5 - v rrRINrrE MEAN 0.46 ST OEV 0.04 VAR~NCE O~O MINIM UM 0.36 MAXIM UM 0.53 NUM SER 32 10 - 2 5 - BITUMEN MEAN ST C EV VARIANCE M fNIM UM MAXIM UM NUM SER o ¡ 1 o " YO.36 Y.0.43 YO.~5 . YO.46 Y 0.47 Y 0.48 YO.52 YO.38 . YO.44 YO.45 YO.46 YO.47 YO.48 YO.53 YO.39 V '0.44 Y 0.45 V 0.46 YO.47 YO.50 0.61 YO.39 YO.44 YO.45 YO.46 Y 0.47 V 0.50 V 0.41 V 0.45 YO.46 YO.46 YO.48 YO.51 OGSI# 95/3227 Sample No. 14 OTHER 10: 95R1026 15 v rrRINrrE MEAN 0.43 ST DEV 0,03 VARIANCE 0.00 MINIM UM 0.39 MAXIMUM 0.50 NUM SER 35 10 - ¡¡iJf 1~ ~~'fj ~~~ ~\': I ~ f"WÆ "".' ~~:. . . ~~~~. : MEAN ST DEV V ARrANCE MINIM UM MAXIM UM N U M B ER BITUMEN 5 - o o 2 TYPE WR TOC TMAX HI VRo B Ro VRE 0.46 Visual Kerogen Summary Unstructured lipids Structured lipids 20 Solid Bitumen Inertinite Vitrinite 55 Other ,25 TOTAL 100 , '¡ I i Background Fluorescence TAl ~nstructured TAl Structured Weak-Mod COMMENTS: TYPE WR TOC TMAX HI V Ro B Ro VAE 0.43 Visual Kerogen Summary Unstructured Uplds Structured Up ids 20 Solid Bitumen Inertinite Vltlinite 40 Other 40 TOTAL 100 Background Fluorescence Weak·Mod 0.31 YO.39 YO.40 YO.41 YO.43 YO.44 YO.45 V 0.46 TAl Unstructured 0.32 VO.39 V 0.40 V 0.42 YO.44 v 0.45 Y 0.45 V 0.46 TAl Structured 0.37 V 0.39 V 0.40 YO.42 V 0.44 Y 0.45 V 0.45 V 0.49 0.38 V 0.40 V 0,41 YO.42 V 0.44 YO.45 Y 0.45 VO.50 COMMENTS: VO.39 YO.40 V 0.41 V 0.43 V 0.44 V 0.45 V 0.46 GMC Data Report No. 244 16/17 ::íBlnplU LUY ~II ,,"UUI - - - SystEM JounCE ID HUMBER ~ _ q,,5:"DJ1 (3) wElt "¡ME OR t=IElD AARtY .. I . ~ Trc.../ f<lolJ"C - (51 FI@b - "'0 o ;4 _ _ - ,~~DE m DEGREES- -. 0 ~ tv t (,01 dtCT10N SAMPLE NUMBER I:J.. r/J Ie I J j()/~ / " IJ' J"J'- ¡f)/-7 II) / t )DJ' IOø?t7 )p,;} I I/)~:J )P~ :J )þ:JlJ J()~S- Jþ;)' I - -.J -. ~, - - - t11110WHBHIP t2D) DEPTH OR Uvt OUTCROP HUMBER :J'1/0 -. cJ~'" J I/tJ~D - Jll/ 7"-· )'S"', ¡,O - l~ J 1f? I , ~l'f_ J"I? - f( S- 8// - tJ'/l) -1/ "? D ',)70 - ~"þ 'C 9'J IÞ "'7111)- -IJ'I.1P'" 1/11""- II' 71> -- . J~¡)Þb );J.19D -Jt1LJdtJ J.. ' .þ - /;1 ",D 1-3 3~f) - Jj J$"O J 34?O" J~1.soÞ- I J. .:J 'It'¡ · 11) GEOCHEMIST 1 JS) BASIN_ Œ~L ~-lO UJ(ttJDE- IN DEORæg- - . - - (12) JL.\NGE- ttl FORMAT1ÒN __~h_ __ --'- - ~ - - ---' -- - - (8)- -- C2¡ GEOLOGIC AGE SAMPLE TtPE _ - - - ~~..,..-- - --- --. ~ -~-- . ______0·___·'0 -~-~-_..------ - - CD- - C2I OPEMTOR toCt lEASE OR SEASO~ - - (1)-OEOGRA.PHIC -AR~ -- - -tt3) COUNTY \ _.---- - -~.- - ---- . -U") STATE \ (1~ - COUNTRY VI DEPOStTIOHA.l -- tNVIRONMEHT (11) UTHOlOGY ! - .---.. 1- . ,t~ COMMENTS Co r~ c h 'I' J