Department of Commerce, Community, and Economic Development
Alaska Oil and Gas Conservation Commission
Loading...
HomeMy WebLinkAboutGMC Data Report No. 244
Visual kerogen analysis and maceral vitrinite reflectance data from cuttings (2,910' -
13,500') and from core (12,399') of the Union Oil Company of California Trail Ridge
Unit No.1 well.
)
r~ GE~OZQ
'~ ~
~ / ÇI::) 0
~¡A.LS
Received 8 May 1995
Total of 17 pages in report
Alaska Geologic Materials Center Data Report No. 244
VISUAL KEROGEN ANALYSIS SUWvfARY
Fourteen whole rock samples were analyzed with kerogen microscopy. The samples
contain a mixture of sandstone and coaly material, except for samples 95RI015 and 1016, which
contain no organic material at all. The mean reflectance ranges between 0.30 to 0.46%,
indicating a very low thermal maturity. However, the indicated maturity is probably too low due
to vitrinite suppression because all of the coals are dominated by lipid-rich vitrinite such as
desmocollinite" and they contain a significant amount of resinite and sporinite. Most of the
measured reflectance values are on telocollinite but a few of the lower values are believed to be
on desmocollinite. Good examples of suberinite were noted in several samples and cell structure
in corpohuminite is very well displayed in two samples. The Visual Kerogen Analysis tables
provide the details.
GMC Data Report No. 244
1/11
VISUAL KEROGEN ANALYSIS TECHNIQUES
Visual kerogen analysis employs a Zeiss Universal microscope system equipped
with halogen, xenon, and tungsten light sources or a lena Lumar microscope equipped
with halogen and mercury light sources. Vitrinite reflectance and kerogen typing are
performed on a polished epoxy plug of unfloated kerogen concentrate using reflected
light from the halogen source. In certain situations, the whole rock is used for analysis.
This approach is used for coals, where acid treatment is unnecessary ,in studies of solid
bitumen and graptolites where preservation of rock structure is important, and in samples
too small for acid treatment. The digital indicator is calibrated using a glass standard
with a reflectance of 1.02% in oil. This' calibration is linearly accurate for reflectance
values ranging from peat (~ 0.20%) through anthracite (R:> 4.0%).
Reflectance values are recorded only on good quality vitrinite, including obvious
contamination and recycled material. The relatiye abundance of nonnal, altered, lipid-
rich, oxidized, and coked vitrinite is recorded. 'When good quality, normal vitrinite is
absent, notations are made indicating how the maturity is affected by weathering,
oxidation, bitumen saturation, or coking. When normal vitrinite is absent or sparse, other
macerals may be substituted. Solid bitumen, for example is present in many samples.
Although solid bitumen has a different reflectance than vitrinite, Landis and Castaño's
calibration chàrt can be used to obtain an estimated vitrinite reflectance equivalent.
Graptolites have a slightly higher reflectance' than vitrinite and can often be used to
obtain maturity data in Paleozoic rocks that have no vitrinite.
Unstructured lipid kerogen changes in texture and color during the maturation
process. . TypiÒally, unstructured kerogen at low maturity is reddish brown and
amorphóùs. Somewhere between Ro 0.50 to '0.65%, the kerogen takes on a massive
texture 'and is gray in color. At higher maturity, generally above Ro 1.30%, unstructured
kerogen is light gray and micrinized. .
Kerogen typing and maturity assessments from the polished plug are enhanced by
utilizing fluorescence from blue light excitation. The xenon or mercury lamp is used
with an excitation filter at 495 nm coupled with a barrier filter of 520 nm. With the lena
microscope we also have the option of observing fluorescence under ultraviolet
excitation. The intensity of fluorescence in the epoxy mounting medium (background
fluorescence) correlates well with the onset of oil generation and destruction. The
identification of structured and unstructured liptinite is' also enhanced with the use of
fluorescence in those samples having a maturity less than Ro 1.3%. The relative
abundance and type of pyrite is also recorded.
T AI is performed using tungsten or halogen light source that is transmitted
through a glass slide made from the unfloated kerogen concentrate. Ideally, T AI color is
based on sporinite of terrestrial origin. When sporinite is absent, T AI is estimated from
the unstructured lipid material. Weathering, bitumen admixed with the unstructured
material and micrinization can darken the kerogen and raise the T AI value. The
character of the organic matter in transmitted light is correlated with observations made
in reflected light for kerogen typing.
GMC Data Report No. 244 2/17
Kerogen typing and maturity assessments from the slide preparation are also
reinforced by using different light sources. The slide is first observed in transmitted light
to obtain T AI color and organic matter structure or type. The light is then switched to
reflected halogen light to observe structure and amount of pyrite and finally to reflected
blue light excitation from the xenon or mercury source for fluorescence. The
fluorescence of structured and unstructured liptinite is not masked by the epoxy
fluorescence as it is in the reflected light mode because the mounting medium is non-
fluorescent. Remnant lipid structures (e.g. spo~te and alginite) within the unstructured
kerogen can often be identified in blue light.
Mafurity calculations are made from the vitrinite reflectance histograms.
Decisions as to which reflectance measurements indicate the maturity of the sample are
based not only on the histogram but on all of the kerogen descriptive elements as well.
Because it is not done at the time of measurement, alternate maturity calculations can be
made if kerogen data and geological information dictate.
In summary, vitrinite reflectance measurements are performed on a polished plug
in reflect~d light, TAl is performed on a slide in transmitted light, and kerogen typing is
estimated from both preparations using a combination: of reflected, transmitted, and
fluorescent light techniques. Fluorescence¡ll blueiight is used to enhance the
identification of structured and unstructured lipid material, solid bitumens, and drilling
mud contaminants. Fluorescence also correlates with the maturity : and state of
preservation of the sample. Maturity . c~lculations from measured reflectance data are
mid~ from the hi~tograrns and are influencedbyall of the kerogen data.
I: r ;'. l
'j \ I .
VISUAL· KEROGEN'ANAL YSIS GLQSSARY
Several key definitions are included in this' glossary in order to make our reports
more, self-explanatory. In our reports,'· we ·refer to organic substances as macerals.
Macerals are akin to minerals ill rock in that they are organic constituents that have
microscopically recogniZable characteristics. However, macerals vary widely in their
chemical and physical properties and they are not crystalline.
1. UNSTRUCTURED KEROGEN is sometiIDes called 'structureless organic matter
(SOM) or bituminite. It is widely held that unstructured kerogen represents the
bacterial breakdoWn of lipid material. ,:It also includes fecal pellets, minute
particles of algae,' organic gels, and may contain a humic component. As
described on the fIrst page of this section, unstructured lipid kerogen changes
character during maturation. The three principal stages are amorphous, massive,
and micrinized. .Amorphous. kerogen is simply without any structure. Massive
kerpgen has taken on a cohesive structure, as the result of polymerization during
the process of oil generation. At high maturity, unstructured kerogen becomes
micrinized. Micrinite is characterized optically by an aggregation of very small
(less than one micron) round bodies that make up the kerogen.
GMC Data Report No. 244
3/17
..-..--..---....,.. .
...-.-..-.
2. STRUCTURED LIPID KEROGEN consists of a group of macerals which have a
recognized structure, and can be related to the original living tissue from which
they were derived. There are many different types, and the types can be group
follows:
a. Alginite, derived from algae. It is sometimes very useful to distinguish the
different algal types, for botryococcus and pediastrum are associated with
lacustrine and non-marine source rocks, while algae such as tasmanites,
gloecapsomorpha, and nostocopsis are typically marine. Acritarchs and
dinoflaggelates are marine organisms which are also included in the algal
category.
b. Cutinite, derived from plant cuticles, the remains of leaves.
c. Resinite, (including fluorinite) derived from plant resins, balsams,
latexes, and waxes.
d. Sporinite, derived from spores and pollen from a wide variety of land
plants.
e. Suberinite is derived from the corky tissue of land plants.
f. Liptodetrinite is that stnictured 'lipid material that is too small to be
specifically identified. Usually, it is derived ftom alginite or sporinite.
The algae are an important part of many oil source rocks, both marine and
lacustrine. Alginite has a very high hydrogen index in Rock-Eval pyrolysis~
Resins, cuticles, and suberinìte contribute to thewax.y, non-marine oils that are
found in Africa and the Far East. At vitrinite reflectance levels above Ro' 1.2 -
1.4%, structured lipid kerogen changes structure and it becomes very difficult to
distinguish them from vitrinite. . '
3. SOLID BITUM:EN also is called migrabitumen and solid hydrocarbon. In 1992,
the International' Committee for Coal' and Organic Petrology (ICCP) decided to
include solid bitumen in the Exsudatinite gròup.! Solid bitumens are expelled
hydrocarbon products which have particular morphology, reflectance and
fluorescence properties which make it possible to identify them. They represent
two classes of substances: one which is present at or near the place where it was
generated, and second is a substance which is present in a reservoir rock and may
have migrated a great distance from its point of origin. The solid bitumens have
been given names, such as gilsonite, impsonite, grahamite, etc., but they represent
generated heavy hydrocarbons which remain in place in the source rock or have
migrated into a reservoir and mature along with the rock. Consequently, it is
possible to use the reflectance of solid bitumens for maturation determinations
when vitrinite is not present.
4. HlJ!vfIC TISSUE is organic material derived from the woody tissue of land
plants. The most important of this group are vitrinite and inertinite:
a. Vitrinite is derived from woody tissue which has been subjected to a
minimum amount of oxidation. Normally it is by far the most abundant
maceral in humic coals and because the rate of change of vitrinite reflectance
is at a more even pace than it is for other macerals, it offers the best means of
GMC Data Report No. 244
4/17
-.--. ..-..---.-.....
. - .-----
obtaining thermal maturity data in 'coals and other types of sedimentary
rocks.
Because the measurement of vitrinite is so important, care is taken to distinguish
normal (fresh, unaltered) vitrinite from other kinds of vitrinite. Rough vitrinite does not
take a good polish and therefore may not yield good data. Oxidized vitrinite may have a
reflectance higher or lower than fresh vitrinite; this is a problem often encountered in
outcrop samples. Lipid-rich vitrinite, or saprovitrinite, has a lower reflectance than
normal vitrinite and will produce an abnormally low thermal maturity value. Coked
vitrinite is vitrinite that has structures found in vitrinite heated in a coke oven. Naturally
coked vitrii1ite is the product of very rapid heating, such as that found adjacent to
intrusions~ Where it is possible to do so~ vitrinite derived from an uphole portion of a
well will be identified as caved vitrinite. Recycled vitrinite is the vitrinite of higher
maturity which clearly can be separated from the indigenous first-cycle vitrinite
population. Often, the recycled vitrinite merges in with the inert group.
b. Inertinite is made up of woody tissue that has been matured by a different
pathway. 'Early intense oxidation, usually involving chaffing, fungal attack or
biochemical gelification, creates the much more highly reflecting fusinite and
semi...fusinite. Sometimes the division between vitrinite and fusinite is
transitional. 'Sclerotinite, fungal remains having a distinct morphology, are
considered to be inert. An important consideration is that the inerts, as the name
implies, are largely non- reactive "dead carbon" and they have an extremely low
hydrogen index iD. Rock-Ev~l pyrolysis.
5. OTHER ORGANIC MATERIAL
a. Lipid-rich, caved' and recycled 'vitrinite. These are put in this section so we can
show the percentages of these macerals; they are described above.
b. Exsudatinite. Oil and oily exudates fall in this group. Exsudatinite differs from
the solid bitumens on the basis of mobility and solubility. We prefer to maintain
this distinction although the ICCP has now included the solid bitumens in with
the Exsudatinite group.
c. Graptolites are marine organisms that range from the Cambrian to the lower
Mississippian; it has been found that they have a reflectance slightly higher than
vitrinite. Because vitrinite is lacking in early Paleozoic rocks, the proper
identification and measurement of graptolites is important in these sediments.
6. PYRlTE. Various forms of pyrite can be readily identified under the microscope.
Euhedral is pyrite with a definite crystalline habit. Framboidal is pyrite in the form
of grape-like clusters which are' made up of euhedral to subhedral crystals.
Framboidal pyrite is normally found in sediments with a marine influence; for
example, coals with a marine shale roof rock usually contain framboidal pyrite.
Massive pyrite is pyrite with no particular external form. Often this is pyrite that
forms rather late in the pore spaces of the sediment. Replacement/infilling is self-
explanatory.
GMC Data Report No. 244
5/17
ZONES OF PETROLEUM
. GENERATION AND DESTRUCTION
'"C
m
»
-
.? ORGANIC MATTFR TYPF ~
AMORPHOUS (Oil) MIXED COALY (GAS)
Î
G)
z
=i
m
70
.ill..
.3
.4
to
q < 75 :E "tJ
tEI::¡_ I -m-<
~ ;;Q.5 I G5 ~
~ 0 ~ =-6 1\ f P:lU,X on, G3NnA'rION' ~ 43S ~
Q _m· ' ~ VJ
= - I 80 0(") ëi5 -
(), CD :11_ 7 -.....
O<C2::¡ ER-=- I - k5
:þ 0 - C Î_ 8 OIL I ~-i
r- t" ~ m-=-- I. . 0 ~
.,.,> - () '. ^ Z
,.J.I Þ03 Z -i- 9' ' :þ
~ E> g _ ~~:O . ~'. "',..:_ _ PIIU.I'II'r/1GAS G11:N .1!.. ~_ 450 __~'
~ (J) ~ 1~, .' '. ""-'WET PJWttm' . -œsGZN ~o-
. ~ - J] :>ILFLOOR '
. ~ 1.~ - - - - - - GAS - - - - - ~ø 470
1- ~'_ , . I¡..~':'.."" :. . ~'I: DRY', ...!L Z
S :1, . ~ A
; ...2.0 _WET GAS noolt -:- _ ~_ .:.. G S _ _ _ l!QQ.
!II
g
.-:- :þ
z·
-i
J:
J]
:þ -
()
::¡
m
3.0 DRY GAS PRESERVATION LIMIT
~--------------
550
~ ~
Z
t'J
~ 5.0
'",":"
1
+
-
:t
- m
~
:þ
r-
2 ~
m
::D
:þ
-i
Õ
z
+ Z
o
_m
x
- ~
~
3
+
4
+
CORRELATION OF VARIOUS MATURATION INDICES AND ZONES
I '
! OF PETROLEUM GENERATION·, AND DESTRUCTION.
GMC Data Report No. 244
6/17
Q
~
n
tj
~
~
~
(Ð
'0
o
::¡
Z
o
N
~
~
DGSI
DATE:
u:
ILl
10
2
£ 3/14/95
~
ID OR DEPTH
1 95R1013
Comments: .
2 95R1014
Comments:
3 95R1015
Comments:
4 95R1016
Comments:
5 95R1017
Comments:
ANALYST
X Castano
O'Connor
MICROSCOPE
-.I
-
-
-.I
X Jena
Zeiss
95R1013 - 1026
DGSI PROJECT: 95/3227
ORGANIC MATT~R
LIPIDS . HUMIC OTHER
UNSTRUCJlJRED .
STRUCIlJRED
RELATIVE. ABUNDANCE;
VITRINITE·
FLUORESCENCE / TAl
REFLECfED TRANSMITTED
LIPIDS LIPIDS
UNSIR. Sl'RU.
Ro
UNSTR. STIlU.
TAl FLUOR. TAl FLUOR.
u: ~ ILl
~ ILl ~ i
~ ~
ILl ß ë. ILl ïi
~ ~ ~ z 0 ~ ~ i
~ ~ ILl ê. w z Õ "- ILl
i ~ ~ I 2 ~ ~ ~ z ~ ~
~ ::t ILl ::t
0 ~ ~ ~ ~ t: t: ILl l l u: ::J: CI ~ ~ i f f ILl ~
ILl i i 10 Z 2 ~ ~ 0 I ~ ~ 2 j
It W ~ CI ~ W ... ~ 8 Q ~ ~ It: 2 ~ ILl ~ ~ ILl 9 ~
~ ILl ILl ::J ~ ILl ~ CI \:! ~ g ::t ::t ~ iZ :I
~ ~ ~ 0 ILl t ~ l- i: x 0 8 ~ ~ ~ õ ~
:I ~ 0 8 0 ~
::t II) ~ I- ;:¡ 0 0 0 > 0
ç R C VL
WR 5 10 5 [10 70 llA
Particles of coal and sandstone intermixed. Inerts.mainly sc1erotinite.
ç R C VL
WR.. 4 8 3 r 10 75 'I1A T
Similar to previous sample.
WR
Barren of or!anic matter.
WR
As above.
WR
1l S C
631
J'L
10 80
[
SAMPLE STRUcrURED OTHER
TYPEIPREP LIPIDS ORGANIC MATTER
erG Cauble. AL AI&laIt. E EuudadøJte
CC CeDV. C.n SB SuberiDIte G GnptoHtea
SWC S&ckW.lICore C Cutlalt. VL Lipid-Rich Vitrlnlte
OC Outcrop LD Llptodetrlalte VC VitrliútcCootamlDatlon
M MiDe U UødI«er. VR Recyded Vitrinite
Q Quarry S Spuinite
NI N.IDfulII. R Rerinlt.
0 Otber
K KnogeD
WR WIIole Reck
C Coal
I.d. Not Dolerftl.
+ ++
Lipid-rich vitrinite dominates.
+ ++
'I1A
WA
1JfA
1i'
- ++
PYRITE
ABUND.
FLUOR.
INTENS.
E Eubednl N . NOBe 0 Nene
F Fnmbold T Trace Weak
MA Musive Sm.U Amt. 2 Moderate
RI Repbce. M Med. Amt. 3 Strenc
bûdl + Large Amt. 4 InteDIC
++ Abundant
VISUAL KEROGEN ANALYSIS
Total Quality Geochemistry
o 1- 1
Y 3 2
Some !(Teen fluor cufinite noted.
o 1- 1
Y 3 2
I
2
VIT. REFLECT.
EQIDV ALENCE
B Bltamea
G GnptoHtCl
VL Upld-Rkh Vitrinite
VC VItrloIt. CeRtaIn.
VR Rcc:yded Vitrlalte
FLUOR.
COLOR
w WhIt.
G GreeD
Y YeUow
o OnDge
R Red
B Dr.1m
BL Black
L Ught
D Dark
0.34
0.34
0.33
TAl COLOR
VALUES
1- Straw Yellow
1 Pale YeUn,
1+ YeDaw
z- YeUøw-Orange
2 Coldea
2+ Amber
3- Reddlrli Dro_
3 Medlua Dr._
3+ Dark DroWD
4- Dro_Black
.. Black
..+ Black-Op'qu.
a
~
n
tJ
~
.....
~
~.
~
o
::¡
Z
o
N
..þ..
..þ..
DGSI~'
DATE:
II:
W
III
~
~ 3/14/95
~
a
ID OR DEPTH
6 95R1018
Comments:
7 95R1019
Comments:
8 95R1020
Comments:
9 95R1021
Comments:
10 95R1022
Comments:
ANALYST
x
Castano
O'Connor
MICROSCOPE
x
Jena
Zeiss
00
-
-
-.1
UNSTRUcrURED
~
a
f ~
~ ~
~ ~
ã
z
::>
~
~
'~ g
~ ~
II) æ
l~ ~
In
::>
a
;¡;
~
~
00(
IWR'I
CfG CIrUJaI.
CC Cony. Core .,
SWC SideW.OCore
OC Outer.p
M Mine
Q QuarT)'
NI N. Inform.
K Kerogen
WR Whole Rock
C Coal
1.01. Not Ih'.rm.
95R1013 -1026
DGSIPROJECT: 9&3227
.-
, ORGANIC MATtER.' ~~·C._-"C~~.· ~~'~REEAtrVË~,;ÄBONDANCE'.
LIPIDS HUMIC OTHER ' . VITRINITE
STRUcnJRED
~'
II:
W
¡
'0
I
o
~ g
,I-
a
w
~
o
u,
~
~
~
x a
6 ~ ~
::>. Ó' a
~ §. §
~
II:
2
AL Al&lø.Ite
S8 Suberlulte
C Cutlnlte
LD Llptødetrinlte
U UndifTer-.
S Sporlnlte
R Redn1te
o Other
E· EUUlhdalte E Eubednl N None 0 NOlie
:G GnptðUtu F Fnmbeld T Tnce 1 Weak
VL L~RkIa Vitrinite MA Mastive SmaU AmI. 1 Modente
VC VitrlnlteContamlution RI Replace- M Mod. Am" 3 Strong
. VR RKyded.VltriDlte infiD + I..ute AmI. 4 Jateme
++ Abundant
VISUAL KEROGEN ANALYSIS
Total Quality Geochemistry
FLUORESCENCE I TAl
REFLECTED TRANSMITTED
LIPIDS LIPIDS
UNSTR. SfRU.
UNSTR. STRU.
TAl FLUOR. TAl FLUOR.
II:
g
o
u
~
~
~
~
~
~
~
~
o
~
~
III
w
~
II:
o
~
o
o
~' ~ ~
~ ~" ~ ~ !¡¡ !f ~ .' ~.~
w w w w 3 ~ « w w
~ ~ ~ ~ g , ~ ~. ~. t.
'l sue VL
WR 10 5 8, 1 r 5 70 ''JfA T M + +
¡IIerts- Ro 0.64%+. U= Low Ro (0.18-0.22) bands o(yellow brown-fluor. Fluor strollKer tlta" VL.
I t 51 S 31 u 21 I ~ I 5\ V~ I - t'A I T I AI I + I 1 + I 1- J I I ~ I ~1 ~ I I I I I I I
/nerts- Ro 0.51%+. U= As above.
~B S R VL E
WR~ r 1 3 r 65 30 T 'JIA T ++ + M-
VL- desmocolllinite Suberi,lite fluor G~
,)B S R W VL
,IYR 1 6 10 j r 40 40 ,.: 'JIÃ T + + +
HigJ,er Ro O,a1l previous samples. -'
As above.
,)B S R l..D U
IYR 1 6 10 3 r 50 30 '\fA T + + +
¡"erts .56 Similar to 95RI021.
SAMPLE STRUCTURED ·OTHER PYîiITE ABUND. . FLUOR.
TYPEIPREP LIPIDS ORGANIC MATTER INTENS.
~
~
~
II:
g
o
u
o
y
1-
4
1
2
GY I- I-
Y 3 ·1
GY I- I-
Y 4 1
GY I- I-
y 4 2
VIT. REFLECT. FLUOR.
EQUIVALENCE COLOR
B Bltame. W White
G Graptolltu G Green
VL Llpld-Rkh Vltrlø.lte Y Yellinr
VC Vitrinite Cootam. 0 Orange
VR Recycled VItrinite R Red
B Brown
BL Bbdc
L Ught
D Dark
~
~
~
w
~
II:
g
o
u
TAl COLOR
VALVES
1- su-.w YeDew
t rale Yelllnr
1+ Yellow
1- YeDo1'l'-Onoge
1 G.ldell
2+ Amber
3- Reddish Br.1'I'1I
3 Mecßam ßr01'l'D
3+ Dark ßr01'l'll
4- Brown-Bbclc
4 Dbck
,ft- Dlack-Op"que
Ro
~
~
~
w
~ ¡
t; .
i i
w
Is
w Þ
I:: ~
z
« J
~
0.38
0.30
0.36
0.41
0.43
C)
E;::
()
o
~
...
~
:;:0
.g
o
~
Z
o
N
~
~
\0
-
...-
-.I
DGSI
DATE:
It:
W
co
:::t
~ 3/14/95
§
ID OR DEPTH
11 95R1023
Comments:
12 95R1024
Comments:
13 95R1025
Comments:
14 95R1026
Comments:
Comments:
ANAL YST
X Castano
O'Connor
MICROSCOPE
x
Jena
Zeiss
95R1013 - 1026
DGSI PROJECT: 95/3227
.. ORGANIC MATTER
FLUORESCENCE I TAl
REFLECfED TRANSMITTED
LIPIDS LIPIDS
. LIPIDS
HUMIC. -O'(IIE~
_RELATIVE ABUNDANCE
-- ---VITRINITE
UNSTRucruRED
srnUcnJRED
~
w -- C ~
W
0.. ~ ~ z
i: ~ ~ w ~ w
~ OJ :::t ~
w :> ~ c :> w ~
0.. a: 0 ~ ~ ~ ~ ~ ~ t= t= w ~ !!
~ ~ I co z !l III W
~ t- ir w w w w c ~ W W ~ ~
~ ~ 0 Ë ~ 0.. 0.. ~ w ir ~_ C 11-
=> -< :Ë i: i: fI1 ~ !š; i:-
fl S C l..D VL E
WR 10 4 IT -- T 50 15 T - UA T
lWRJ
-I
S SB LD VL E
10 1 T - ~ r 65 10 T
Cell structure in vitrinite exceptiollal'v well preserved.
'l S LD VL E
WR'- 11 6 1 T 55 15 T
Similar to previous sample.
- 'l S LD
8 10 2
'<
UA T
a:
~
0
~
a: ~-
0
~
~
0 -~
~
+ +
+ 1+ 1
WR -
r
VL
40 40
-UA T + +
1fA T + +
VL Ro <0.39.
Ro
UNSTR. STRU.
UNS1R. STRU.
TAl FLUOR. TAl FLUOR.
~ w
~ !f i
w t i
!z
ã ~
Ii. W
Z w ~
-I ~ ~ :> ~ ~ a:
0_, c ~ w ~
w t=
I ir ~ C IE: Æ a: Æ 0 w II: !2 w It: !2 z ~
0 å c- ~ g g )C :> g 3 g
:> 0 ~ w w ir :I
0 ëï: ð 0 0 ~ 0 ~ -< 0 ~ -< 0 ~ !š;
a: ::; 0- 0 0 co 0 > 0
0 I- I
+ y 3 1 0.42
+1 -1:-] 1 0 ;1 1 I 1 1 I
y 2 0.44
:--
0 I 1
+ y 4 1 0.46
0 1 1
+ y 3 1 0.43
SAMPLE STRUCTURED OTHER "YRI1'E ABUND. FLUOR. VIT. REFLEcr. FLUOR. TAl COLOR
TVPEIPREP 1,IPIDS ORGANIC MAUER INTENS. EQUIVALENCE COLOR VALUES
erG cøttJa,. AL AlJllllte E EuØ4htJnlte E Eubednl N None Nene B Blhmaen W Wlúte 1- Straw Yellow
CC CODV. Core SB Suberlnlle G Graptolites F Fnmbold T Trace Wuk G GraptoUtu G Green 1 Pare Yellow
SWC SideWaUCore C CutJalte VL. U~Rkb VItrinite MA loIassive SnuD Awt. 2 Moderate VL Liplcl-Rkh Vitrinite Y Yellow 1+ YeOow
OC Outcrop LI) Uptodetrlulte VC VltrlniteColltamlnatloD RI Repla~e- M MCII1Amt. Strong VC Vitrinite Contam. 0 Orange 2- Yellew-OraDge
M Mine tJ Uudlfrer. VR RKycled Vitrinite iDfiD + LJIr~e^mt. Inteme VR Recycled Vitrinite R Red 2 Golden
Q QlDrry S Sporlnlte ++ Abundsnt B Buwn 2+ Amber
NI No IlICum. R Reslalte BL Black 3- Reddish Bro1fJl
0 Other 3 Medhnn Bn1fll
K Kerogen 3+ Dark Brown
WR Whoa. Rock VISUAL KEROGEN ANAL YSIS L Light 4- Brown-Dlack
C Co.1 Total Quality Geochemistry D Dark 4 Black
..d. Not Detum. 4+ Black-Opaque
VITRINITE REFLECTANCE
SAMPLES: 95R1013 - 1226
DGSI #
OTHER 10:
Sample No.
95/3227
95R1013
15 ¡[~'
10 - ~
I
5 - ~
v rrRINrTE
MEAN 0.34
ST DEV 0.04
VARIANCE 0.00
MINIM UM 0.28
MAXIMUM 0.43
NUM SER 22
BIT UM EN
,"::0.
MEAN
ST DEV
VARIANCE
MINIM UM
MAXIM UM
NUM SER
o
j
1
3
2
o
0.23 VO.2B. V 0..31 VOJ3 Y 0.36 Y 0.38
0.23 YO.29 Y Ò.31 YO.34 YO.36 Y 0.43
0.24 Y 0.29 YO.33 ' Y 0.35 YO.36
0.25 VO.29 YO.33 YO.35 YO.37
0.26 YO.29 YO.33 YO.36 YO.37
OGSI# 95/3227 Sample No. 2
OTHER 10: 95R1014
15-:¡:,'
~
10 - 11~
;¡~\~
rW
5 -It
i11
v rTR IN rTE
MEAN 0.34
ST DEV 0.05
VARIANCE 0.00
MINIM UM 0.27
MAXIM UM 0.44
NUMBER 29
BITUMEN
~!:;:: .~...:' ,~~~
MEAN
ST DEV
VARIANCE
MINIM UM
M A X 1M U M
NUM BER
o
2
3
TYPE
WR
Toe
TMAX
HI
VRo
8 Ro
VRE
0.34
Visual Kerogen Summary
Unstructured Lipids
Structured Lipids 20
Solid Bitumen
Inertinite
Vitrinite 10
CXher 70
TOTAL 100
Background Fluorescence
TAl Unstructured
TAl Structured
Weak-Mod
COMMENTS:
TYPE
WR
TOC
TMAX
HI
VRo
8 Ro
VRE
0.34
Visual Kerogen Summary
Unstructured Lipids
Structured Lipids 15
Solid Bitumen
Inertinite
Vitrinite 10
Other 75
TOTAL 100
Background Fluorescence Weak-Mod
0.24 YO.27 YO.29 YO.31 YO.37 YO.38 VO.4, TAl Unstructured
0.24 v 0.28 V 0.29 Y 0.32 YO.37 VO.38 V 0.42 TAl Structured
0.25 V 0.28 V 0.30 V 0.35 VO.37 VO.39 V 0.44
0.25 V 0.28 V 0.30 Y 0.35 V 0.37 VO.39 COMMENTS:
Y 0.27 YO.29 Y 0.30 Y 0.36 V 0,37 Y 0.40
GMC Data Report No. 244
10/17
VITRINITE REFLECTANCE SAMPLES: 95R1013· 1226
OGSI # 95/3227 Sample No. 3 TYPE WR
OTHER 10: 95R1015 TOC
TMAX
HI
15 V fTRINITE V Ro 0.00
MEAN 0.00 B Ro
ST DEV N.A. VRE
VARIANCE N.A.
MINIM UM 0.00
10 - MAXIM UM 0.00
NUM BER , Visual Keroqen Summary
Unstructured Lipids
B[TUMEN Structured Lipids
5 - MEAN Solid Bitumen
ST DEV
V ARIA N C E Inertinite
MINIM UM Vitrinite
MAXIM UM
0 NUM BER Other
I TOTAL 0
0 1 2 3
Background Fluorescence
'/',,1 " ,~ I TAl Unstructured
TAl Structured
COMMENTS:
DGSI # 95/3227 Sample No. 4 TYPE WR
OTHER 10: 95R1016 TOC.
TMAX
HI
¡ 5 V fTRINITE V Ro 0.00
MEAN 0.00 B Ro
ST 0 EV N.A. VRE
V A FlIANCE N.A.
MINIM UM 0.00
10 - M A X 1M U M 0.00
NUM BER 1 Visual Kerogen Summary
Unstructured Lipids
BITUMEN Structured Lipids
5 - MEAN Solid Bitumen
ST DEV
v A RIANCE Inertinite
MINIM UM Vitrinite
MAXIMUM
NUM BEA Other
0 TOTAL 0
0 2 3
Background Fluorescence
T f-I Unstructured
TAl Structured
COMMENTS:
GMC Data Report No. 244
11/17
VITRINITE REFLECTANCE SAMPLES: 95R1013..1226
OGSI# 95/3227 Sample No. 5 TYPE WR
OTHER 10: 95R1017 TOC
TMAX
HI
15 VITRINITE VRo 0.33
MEAN 0.33 BRo
ST DEV 0.05
VARIANCE 0.00 VRE
MINIM UM 0.25
10 - MAXIM UM 0.41
N U M B ER 10 Visual Kerogen Summary
Unstructured Lipids
BITUMEN Structured Lipids 10
5 - MEAN Solid Bitumen
ST D EV
VARIANCE Inertinite
MINIM UM Vitrinite 10
MAXIM UM
0 N U M B ER Other 80
0 2 TOTAL 100
'1 !
Background Fluorescence Weak-Mod
VO.25 v 0.35 TAl Unstructured
!: ' '," , TAl 'Structured
VO.28· Y 0.36
V o~ 28 V 0.37
VO.32 V 0.38 COMMENTS:
VO.33 V 0041
OGSI# 95/3227 Sample No. 6 TYPE WR
OTHER 10: 95R1018 TOC
TMAX
HI
t .5 V ITRINfTE \lRo 0.38
MEAN 0.38 BRo
ST D EV 0.08
VARIANCE 0.01 VRE
MINIM UM 0.30
10 -. MAXIM UM 0.64
NUM SER 16 Visual Keroaen Summary
Unstructured Lipids
BIT UM EN Stn.ietured Lipids 25
5- MEAN Solid Bitumen
ST DEV
VARIANCE Inertinite
MINIM UM Vitrinite 5
MAXIM UM
Ñ1 NUM BER Other 70
0 TOTAL 100
0 2
Background Fluorescence Weak-Mod
0.17 Q.20 0.26 V 0.30 VO.36 V 0.39 TAl Unstructured
0.18 0.22 . 0.27 VO.31 .V 0.37 V 0.39 TAl Structured
0.19 0.23 0.29 VO.~1 V 0.38 V 0.40
0.19 0.23 0.29 V 0.33 V 0.38 V 0.41 COMMENTS:
0.20 0.24 VO.30 V 0.34 V 0.39 V 0.64 Low Ro is VL
GMC Data Report No. 244
12/17
13/17
GMC Data Report No. 244
Background Fluorescence Weak-Mod
0.19 ,0.25 V,O.29 V 0.34 YO.36 YO.37 V 0.41 0.53 TAl Unstructured
, , TAl Structured
0.20 0.25 VO.31 YO.34 Y 0.36 Y 0.37 YO.41
0.21 0.26 VO.32 VO.35 YO.36 YO.37 Y 0.43
0.23 Y 0.28 VO.33 V 0.36 V 0.37 YO.38 V 0.46 COMMENTS:
0.25 YO.29 YO.33 Y 0.36 Y 0.37 YO.41 0.50
Visual Kerogen Summary
Unstructured Lipids
Stn.ic'tured Up ids 5
Solid Bitumen
Inertinite
Vitrinite 65
Other 30
TOTAL 100
'0.36
WR
TOe,
TMAX
HI
V Ro
B Ro
VRE
TYPE
COMMENTS: ! ':
Low Ro Is VL
,I
Background Fluorescence
TN ,Unstructured
TAl Structured
Weak-Mod
Visual Kerogen Summary
Unstructured Upfds
Structured Lipids 10
Solid Bitumen
Inertinite
Vitrinite 5
Other 85
TOTAL 100
0.30
WR
TOC
TMAX
HI
VRo
B Ro
VRE
TYPE
MEAN
ST DEV
VA RIANCE
MINIM UM
MAXIM UM
NUM SER
BITUMEN
V fTRINfTE
MEAN 0,36
STOEV 0.04
VARIANCE 0.00
M 'NIMUM 0,28
MAX'''' UM 0.46
NUM e'ER 26
, I I ~
8
MEAN
ST 0 EV
VARIANCE
M IHIM UM
MAXIM UM
I NUM SER
3
BIT UMEN
0.30
0.06
0.00
0.28
0.42
8
MEAN
ST DEV
VARIANCE
MINIM UM
MAXIM UM
NUM SER
V fTRINITE
7
SAMPLES: 95R1013 - 1226
3
Y9.2~"
YO.,33
, Y 0.42
0.49 '
0.51
Sample No.
YO.26
YO.26
YO.27
YO.27
YO.28
Sample No.
2
2
o
o
15~t,i
I""'"
~!,
~\:~.
!~~
10 - 1
5-1
95/3227
95R1020
OGSI #:
OTHER 10: ,
0:23
0.23
0.24
0.24
0.24
0.20 q}1 q.22 , , 0.,22
0.21 ' I" '
0.20 0,.22 ' !' '0.22
0.20', 0.21 ;0.2~ d.22
0.21 0.21 0.22 0.23
0.21 0.21 0.22 0.23
1
, 1
I,
o
I
~.if'.",
~:~
, ,
o
5 -
10 -
15 -
95/3227
95R1019
OGS/#
OTHER 10:
VITRINITEMFLECT ANCE
VITRINITE RE;FLECT ANCE
DGSI #
OTHER 10:
95/3227
95R1021
Sample No.
15
10 -
5 -
0
0 2
VO.32 .vO)7 v 0.40 ~ 0,42 V 0,43 V 0..44
",1', ,: ,/,··1'1 :,1 I
V.O.36 VO.37 VOAl ;y 0,42 V 0.43 v 0.44
VO.3.6. : VO.S8 VIO,41 V 0.42 V 0.43 v 0.44
V 0.37 V 0.39 V 0.42 V 0.42 V 0.43 V 0.44
V ().37 V 0.39 V 0,42 V 0.42 V 0.43 V 0.47
OGSI# 95/3227 Sample No.
OTHER ID: 95R1022
15
::~
I
I
~:~,.
~~~
, I',~>-
, .~
dP~
"-
.'
..'So .
[0 -
5 -
o
o
2
,..,-,-,,,-"'-~ .....
SAMPLES: 95R1013 - 1226
9
VITRINITE
MEAN 0.41
ST 0 EV 0.03
VARIANce 0.00
MINIM UM 0.32
MAXIMUM 0.47
NUM SER 30
BITUMEN
MEAN
ST oev
VARIANCE
MINIM UM
MAXIM UM
NUM SER
3
; (! ::i
(0
VITRINITE
MEAN 0.43
STOeV 0.03
VAA~NCE O~O
. MINIM UM 0.37
MAXIM UM 0.48
N,UM SER . 32
BITUMEN
MEAN'
ST 0 EV
VARIANCE
MINIM UM
MAXIMUM
NUM SER
3
TYPE
WR
TOC
TMAX
HI
VRo
B Ro
VRE
0.41
Visual Kerogen Summary
Unstructured Lipids
Structured Lipids 20
Solid Bitumen
Inertinite
Vitrinite 40
Other 40
TOTAL 100
Background Fluorescence
TAl. Unstructured
TAil Structured
Weak-Mod
COMMENTS:
TYPE
WR
TOC
TMAX
HI,
VRo
B Ro
VAE
0.43
Visual Kerogen Summary
Unstructured Lipids
Structured Lipids 20
Solid Bitumen
Inertinite
Vitrinite 50
Other 30
TOTAL 100
Background Fluorescence Weak-Mod
0.31 V 0.40 V 0.41 y 0.43 V 0.44 V 0.46 V 0.48 0.50 -rAI.Unstructured
VO.3? y 0.41 V 0.42 YO.43 V 0.44 VO.46 V 0.48 0.51 TAl Structured
VO.37 YO.41 V 0.42 V 0.43 V 0.44 V 0.47 V 0.48 0.51
VO.4Q V 0.41 Y 0.43 V 0.43 V 0.45 V 0.47 0.50 0.56 COMMENTS:
V 0.40 Y 0.41 V 0.43 V 0.44 YO.46 YO.47 0.50
GMC Data Report No. 244
14/17
VITRlNIT~ REFLECTANCE
DGSI#
OTHER 10:
15
10 .,....
5 -
o .
0, ,
"-'--.,.
SAMPLES: 95R1013 -1226
95/3227
95A1023
Sample No.
11
W
<'it
~
I
m
~
..t~
VITRINITE
MEAN 0.42
ST DEV 0.04
VAR~NCE OßO
MINIM UM 0.38
MAXIM UM 0.50
NUM BER 30
BIT UM EN
MEAN
ST oev
VARIANCE
MINIM UM
MAXIM UM
NUM BEA
I
2
3
, :
Y~:36 VO.38 Y9·40 :y 0.42 YO.44 Y 0.47 0.69
"":"11',
~"0.36," VO.39 , V'{).40 v 0.43 YÒ.44 V 0.48
VO}6' V 0.39 VÔ.40 : v 0.43 V 0.45 Y 0.49
YO.36 'YO.40 v 0.42 V 0.44 V 0.45 V 0.49
V 0.37 YO.40 V 0.42 YO.44 Y 0.45 YO.50
DGSI#
OTHEf11D:
1 5
10-
5 -
o
95/3227
95A1024
Sample No.
12
TYPE
WA
TOC
TMAX
HI
V Ro
B Ro
VRE
0.42
" ,
! ,i
II
I:
V rTRINITE
¡MEAN 0.44
:ST DEV 0.05
¡VARIANCE 0,00
M IN 1M U M 0.36
MAXIMUM 0.53
NUM BER' , 35
Visual Kerogen Summary
Unstructured Upfds
Structured Upids 15
Solid Bitumen
Inertinite
Vitrinite 50
Other 35
TOTAL 100
'I ¡
Baokground Fluorescence
TAl Unstructured
, TÁrStructured
Weak·Mod
I
COMMENTS:
TYPE
WR
TOe:
TMAX
HI
V,Ro
8 Ro
VRE
0.44
BITUMEN
MEAN
5T D ev
VARIANCE
MINIM UM
MAXIM UM
N U M B ER
Visual Kerogen Summary
Uns~ructured Upids
StructÙred Upids 15
Solid Bitumen
Inertinite
Vitrinite 65
Other 20
TOTAL 100
Background Fluorescence Weàk-Mod
VO.36 V 0.40 V 0.41 V 0.43 YO.44 YO.46 V 0.52 TAl Unstructured
VO.3? V 0.40 V 0.41 YO.43 V 0.45 V 0.48 V 0.53 TAl Structured
Y 0.38 vd.40 V 0.41 V 0.43 V 0.45 V 0.48 V 0.53
V 0.40 V 0.40 VO.41 YO.43 V 0.45 YO.50 V 0.53 COMMENTS:
V 0.40 V 0.41 V 0.41 YO.44 V 0.45 YO.SO YO.S3
o
2
GMC Data Report No. 244
15/17
VITRINITE REFLECtANCE
SAMPLES: 95R1 013 .. 1226
OGSI#
OTHER 10:
Sample No.
95/3227
95R1025
13
5 -
v rrRINrrE
MEAN 0.46
ST OEV 0.04
VAR~NCE O~O
MINIM UM 0.36
MAXIM UM 0.53
NUM SER 32
10 -
2
5 -
BITUMEN
MEAN
ST C EV
VARIANCE
M fNIM UM
MAXIM UM
NUM SER
o
¡
1
o "
YO.36 Y.0.43 YO.~5 . YO.46 Y 0.47 Y 0.48 YO.52
YO.38 . YO.44 YO.45 YO.46 YO.47 YO.48 YO.53
YO.39 V '0.44 Y 0.45 V 0.46 YO.47 YO.50 0.61
YO.39 YO.44 YO.45 YO.46 Y 0.47 V 0.50
V 0.41 V 0.45 YO.46 YO.46 YO.48 YO.51
OGSI# 95/3227 Sample No. 14
OTHER 10: 95R1026
15
v rrRINrrE
MEAN 0.43
ST DEV 0,03
VARIANCE 0.00
MINIM UM 0.39
MAXIMUM 0.50
NUM SER 35
10 -
¡¡iJf
1~
~~'fj
~~~
~\':
I
~
f"WÆ
"".'
~~:. . .
~~~~. :
MEAN
ST DEV
V ARrANCE
MINIM UM
MAXIM UM
N U M B ER
BITUMEN
5 -
o
o
2
TYPE
WR
TOC
TMAX
HI
VRo
B Ro
VRE
0.46
Visual Kerogen Summary
Unstructured lipids
Structured lipids 20
Solid Bitumen
Inertinite
Vitrinite 55
Other ,25
TOTAL 100
, '¡ I i
Background Fluorescence
TAl ~nstructured
TAl Structured
Weak-Mod
COMMENTS:
TYPE
WR
TOC
TMAX
HI
V Ro
B Ro
VAE
0.43
Visual Kerogen Summary
Unstructured Uplds
Structured Up ids 20
Solid Bitumen
Inertinite
Vltlinite 40
Other 40
TOTAL 100
Background Fluorescence Weak·Mod
0.31 YO.39 YO.40 YO.41 YO.43 YO.44 YO.45 V 0.46 TAl Unstructured
0.32 VO.39 V 0.40 V 0.42 YO.44 v 0.45 Y 0.45 V 0.46 TAl Structured
0.37 V 0.39 V 0.40 YO.42 V 0.44 Y 0.45 V 0.45 V 0.49
0.38 V 0.40 V 0,41 YO.42 V 0.44 YO.45 Y 0.45 VO.50 COMMENTS:
VO.39 YO.40 V 0.41 V 0.43 V 0.44 V 0.45 V 0.46
GMC Data Report No. 244
16/17
::íBlnplU LUY ~II ,,"UUI
- - -
SystEM JounCE ID HUMBER
~ _ q,,5:"DJ1
(3) wElt "¡ME OR t=IElD AARtY .. I
. ~ Trc.../ f<lolJ"C
- (51 FI@b -
"'0
o
;4 _ _ -
,~~DE m DEGREES-
-. 0
~ tv
t (,01 dtCT10N
SAMPLE
NUMBER
I:J.. r/J Ie I J
j()/~
/ " IJ'
J"J'-
¡f)/-7
II) / t
)DJ'
IOø?t7
)p,;} I
I/)~:J
)P~ :J
)þ:JlJ
J()~S-
Jþ;)'
I -
-.J
-.
~,
- -
- t11110WHBHIP
t2D) DEPTH OR
Uvt OUTCROP HUMBER
:J'1/0 -. cJ~'" J
I/tJ~D - Jll/ 7"-·
)'S"', ¡,O - l~ J 1f? I
, ~l'f_ J"I? - f( S- 8//
- tJ'/l) -1/ "? D
',)70 - ~"þ 'C
9'J IÞ "'7111)-
-IJ'I.1P'" 1/11""-
II' 71> -- . J~¡)Þb
);J.19D -Jt1LJdtJ
J.. '.þ - /;1 ",D
1-3 3~f) - Jj J$"O
J 34?O" J~1.soÞ-
I J. .:J 'It'¡ ·
11) GEOCHEMIST
1
JS) BASIN_
Œ~L
~-lO UJ(ttJDE- IN DEORæg- -
. -
- (12) JL.\NGE-
ttl FORMAT1ÒN
__~h_ __ --'- - ~
- - ---' -- - -
(8)- --
C2¡ GEOLOGIC AGE SAMPLE
TtPE
_ - - - ~~..,..--
- --- --.
~ -~--
. ______0·___·'0
-~-~-_..------ -
- CD- -
C2I OPEMTOR
toCt lEASE OR SEASO~
- - (1)-OEOGRA.PHIC -AR~
-- -
-tt3) COUNTY
\
_.---- -
-~.- - ---- .
-U") STATE
\
(1~ - COUNTRY
VI DEPOStTIOHA.l
-- tNVIRONMEHT
(11) UTHOlOGY
!
- .---.. 1-
.
,t~ COMMENTS
Co r~ c h 'I' J